14.01.2013 Views

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Figure 1. Illustration of the hinge region disulfide bonding pattern<br />

of human (a) IgG2-A and (b) IgG2-B antibodies.<br />

The ability to rapidly detect and characterize IgG2 isoforms is<br />

of great interest, as it may help to facilitate the transition of new<br />

IgG2 molecules from discovery into development and ultimately<br />

commercialization. In recent years, mass spectrometry has played<br />

an increasingly important role in the analytical characterization<br />

of IgG therapeutics. Mass spectrometry is now widely used to<br />

confirm the intact molecular weight of IgGs, 11,12 establish their<br />

glycosylation profile, 13,14 and confirm 15 or establish 16 the primary<br />

(11) Gadgil, H. S.; Pipes, G. D.; Dillon, T. M.; Treuheit, M. J.; Bondarenko, P. V.<br />

J. Am. Soc. Mass Spectrom. 2006, 17, 867–872.<br />

(12) Brady, L. J.; Valliere-Douglass, J.; Martinez, T.; Balland, A. J. Am. Soc. Mass<br />

Spectrom. 2008, 19, 502–509.<br />

(13) Damen, C. W. N.; Chen, W.; Chakraborty, A. B.; van Oosterhout, M.;<br />

Mazzeo, J. R.; Gebler, J. C.; Schellens, J. H. M.; Rosing, H.; Beijnen, J. H.<br />

J. Am. Soc. Mass Spectrom. 2009, 20, 2021–2033.<br />

(14) Olivova, P.; Chen, W.; Chakraborty, A. B.; Gebler, J. C. Rapid Commun.<br />

Mass Spectrom. 2008, 22, 29–40.<br />

(15) Ren, D.; Pipes, G. D.; Hambly, D.; Bondarenko, P. V.; Treuheit, M. J.; Gadgil,<br />

H. S. Anal. Biochem. 2009, 384, 42–48.<br />

(16) Bandeira, N.; Pham, V.; Pevzner, P.; Arnott, D.; Lill, J. R. Nat. Biotechnol.<br />

2008, 26, 1336–1338.<br />

6752 <strong>Analytical</strong> <strong>Chemistry</strong>, Vol. 82, No. 16, August 15, 2010<br />

structure with a high degree of detail. Although MS is not<br />

routinely used to characterize higher order structural elements<br />

in IgGs, MS coupled with hydrogen/deuterium exchange was<br />

recently demonstrated as a method to characterize the conformational<br />

dynamics of IgG1 antibodies in solution. 17<br />

Ion mobility mass spectrometry (IMMS) has shown great<br />

promise as an intact protein separation and analysis methodology<br />

to probe higher order structural elements including the overall<br />

size/shapeofbiopolymersandlargemacromolecularassemblies. 18-28<br />

Recently, Waters Corporation commercialized an ion mobility<br />

mass spectrometer (Synapt) based on traveling waves (T-Wave). 29<br />

In the T-Wave implementation of ion mobility, ion separation<br />

occurs when a sequence of dc pulses push ions through the<br />

mobility cell in the presence of an inert gas at relatively high<br />

pressure. 29,30 The ability of an ion to “surf” the T-wave depends<br />

on its collision cross section (CCS). Ions with compact structures<br />

are pushed through the mobility cell faster than ions with more<br />

elongated structures. In this work, we present evidence that<br />

T-Wave IMMS can be used to separate disulfide variants of intact<br />

IgG2 antibodies. Attractive features of the method include high<br />

sensitivity (µg sample consumption), minimal sample preparation,<br />

and fast analysis time (minutes).<br />

EXPERIMENTAL SECTION<br />

Human monoclonal antibodies mAb#1 (IgG2), mAb#2 (IgG1),<br />

and mAb#3 (IgG2) were produced recombinantly in Chinese<br />

hamster ovary (CHO) cells and purified at Amgen. All additional<br />

reagents were purchased from Sigma-Aldrich (St. Louis, MO)<br />

unless otherwise specified. For control experiments, constant<br />

region two (CH2) domain N-glycans were removed by adding<br />

1500 U of PNGase F (New England Biolabs, Ipswich, MA) per<br />

100 µg of protein and incubating at 37 °C for 16 h.<br />

Disulfide isoforms IgG2-A and IgG2-B were selectively enriched<br />

using methods established by Dillon et al. 4 Briefly, to<br />

enrich isoform B, IgG2s were incubated in 200 mM Tris buffer<br />

(17) Houde, D.; Arndt, J.; Domeier, W.; Berkowitz, S.; Engen, J. R. Anal. Chem.<br />

2009, 81, 2644–2651.<br />

(18) Clemmer, D. E.; Hudgins, R. R.; Jarrold, M. F. J. Am. Chem. Soc. 1995,<br />

117, 10141–10142.<br />

(19) Bohrer, B. C.; Merenbloom, S. I.; Koeniger, S. L.; Hilderbrand, A. E.;<br />

Clemmer, D. E. Annu. Rev. Anal. Chem. 2008, 1, 293–327.<br />

(20) Ruotolo, B. T.; Giles, K.; Campuzano, I.; Sandercock, A. M.; Bateman, R. H.;<br />

Robinson, C. V. Science 2005, 310, 1658–1661.<br />

(21) Kaddis, C. S.; Loo, J. A. Anal. Chem. 2007, 79, 1778–1784.<br />

(22) Leary, J. A.; Schenauer, M. R.; Stefanescu, R.; Andaya, A.; Ruotolo, B. T.;<br />

Robinson, C. V.; Thalassinos, K.; Scrivens, J. H.; Sokabe, M.; Hershey,<br />

J. W. B. J. Am. Soc. Mass Spectrom. 2009, 20, 1699–1706.<br />

(23) Kim, H. I.; Kim, H.; Pang, E. S.; Ryu, E. K.; Beegle, L. W.; Loo, J. A.;<br />

Goddard, W. A.; Kanik, I. Anal. Chem. 2009, 81, 8289–8297.<br />

(24) Atmanene, C. D.; Wagner-Rousset, E.; Malissard, M.; Chol, B.; Robert, A.;<br />

Corvaïa, N.; Dorsselaer, A. V.; Beck, A.; Sanglier-Cianferani, S. Anal. Chem.<br />

2009, 81, 6364–6373.<br />

(25) Ruotolo, B. T.; Hyung, S.-J.; Robinson, P. M.; Giles, K.; Bateman, R. H.;<br />

Robinson, C. V. Angew. Chem., Int. Ed. 2007, 46, 8001–8004.<br />

(26) Hilton, G. R.; Thalassinos, K.; Grabenauer, M.; Sanghera, N.; Slade, S. E.;<br />

Wyttenbach, T.; Robinson, P. J.; Pinheiro, T. J. T.; Bowers, M. T.; Scrivens,<br />

J. H. J. Am. Soc. Mass Spectrom. 2010, 21, 845–854.<br />

(27) Schenauer, M. R.; Meissen, J. K.; Seo, Y.; Ames, J. B.; Leary, J. A. Anal.<br />

Chem. 2009, 81, 10179–10185.<br />

(28) Thalassinos, K.; Grabenauer, M.; Slade, S. E.; Hilton, G. R.; Bowers, M. T.;<br />

Scrivens, J. H. Anal. Chem. 2008, 81, 248–254.<br />

(29) Pringle, S. D.; Giles, K.; Wildgoose, J. L.; Williams, J. P.; Slade, S. E.;<br />

Thalassinos, K.; Bateman, R. H.; Bowers, M. T.; Scrivens, J. H. Int. J. Mass<br />

Spectrom. 2007, 261, 1–12.<br />

(30) Shvartsburg, A. A.; Smith, R. D. Anal. Chem. 2008, 80, 9689–9699.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!