14.01.2013 Views

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Anal. Chem. 2010, 82, 7044–7048<br />

Direct Fluorescence Polarization Assay for the<br />

Detection of Glycopeptide Antibiotics<br />

Linliang Yu, Meng Zhong, and Yinan Wei*<br />

Department of <strong>Chemistry</strong>, University of Kentucky, Lexington, Kentucky 40506<br />

Glycopeptide antibiotics are widely used in the treatment<br />

of infections caused by Gram-positive bacteria. They<br />

inhibit the biosynthesis of the bacterial cell wall through<br />

binding to the D-alanyl-D-alanine (D-Ala-D-Ala) terminal<br />

peptide of the peptidoglycan precursor. Taking advantage<br />

of this highly specific interaction, we developed a direct<br />

fluorescence polarization based method for the detection<br />

of glycopeptide antibiotics. Briefly, we labeled the acetylated<br />

tripeptide Ac-L-Lys-D-Ala-D-Ala-OH with a fluorophore<br />

to create a peptide probe. Using three glycopeptide<br />

antibiotics, vancomycin, teicoplanin, and telavancin, as<br />

model compounds, we demonstrated that the fluorescence<br />

polarization of the peptide probe increased upon<br />

binding to antibiotics in a concentration dependent manner.<br />

The dissociation constants (Kd) between the peptide<br />

probes and the antibiotics were consistent with those<br />

reported between free D-Ala-D-Ala and the antibiotics<br />

in the literature. The assay is highly reproducible and<br />

selective toward glycopeptide antibiotics. Its detection<br />

limit and work concentration range are 0.5 µM and<br />

0.5-4 µM for vancomycin, 0.25 µM and 0.25-2 µM<br />

for teicoplanin, and 1 µM and 1-8 µM for telavancin.<br />

Furthermore, we compared our assay in parallel with<br />

a commercial fluorescence polarization immunoassay<br />

(FPIA) kit in detecting teicoplanin spiked in human<br />

blood samples. The accuracy and precision of the two<br />

methods are comparable. We expect our assay to be<br />

useful in both research and clinical laboratories.<br />

Glycopeptide antibiotics are cyclic peptides that bind to the<br />

peptidoglycan precursor D-alanyl-D-alanine to inhibit the biosynthesis<br />

of bacterial cell walls. They are widely used to treat<br />

infections caused by Gram-positive bacteria, including Methicillin<br />

Resistant Staphylococcus aureus (MRSA), and are regarded as the<br />

drug of “last resort”. 1 Vancomycin, teicoplanin, and telavancin are<br />

three representative glycopeptide antibiotics that are currently in<br />

clinical use. 2-4 Monitoring of drug levels in patients’ serum during<br />

* To whom correspondence should be addressed. Address: 305 <strong>Chemistry</strong>-<br />

Physics Building, University of Kentucky, Lexington, KY 40506-0055. Telephone:<br />

(859) 257-7085. Fax: (859) 323-1069. E-mail: yinan.wei@uky.edu.<br />

(1) Perkins, H. R. Pharmacol. Ther. 1982, 16, 181–197.<br />

(2) Levine, D. P. Clin. Infect. Dis. 2006, 42, S5–S12.<br />

(3) Delalla, F.; Nicolin, R.; Rinaldi, E.; Scarpellini, P.; Rigoli, R.; Manfrin, V.;<br />

Tramarin, A. Antimicrob. Agents Chemother. 1992, 36, 2192–2196.<br />

(4) Higgins, D. L.; Chang, R.; Debabov, D. V.; Leung, J.; Wu, T.; Krause, K. M.;<br />

Sandvik, E.; Hubbard, J. M.; Kaniga, K.; Schmidt, D. E.; Gao, Q.; Cass,<br />

R. T.; Karr, D. E.; Benton, B. M.; Humphrey, P. P. Antimicrob. Agents<br />

Chemother. 2005, 49, 1127–1134.<br />

7044 <strong>Analytical</strong> <strong>Chemistry</strong>, Vol. 82, No. 16, August 15, 2010<br />

the treatment is critical in maximizing the effectiveness of the<br />

treatment while minimizing drug toxicities and side effects. 5-7<br />

Such data also provide important pharmacokinetic and pharmacodynamic<br />

parameters for clinical studies 8-12 and, thus, guide the<br />

optimization of therapies. 7,13,14 In addition, vancomycin has been<br />

extensively used as a model antibiotic in tissue engineering and<br />

controlled drug release studies. 15-20 Various assays have been<br />

developed to measure the concentration of glycopeptide antibiotics,includingmethodsbasedonUVabsorbance,<br />

17 immunoassay, 21-24<br />

high performance liquid chromatography (HPLC), 25-28 and agar<br />

diffusion bioassay. 29,30 Each of these existing methods suffer from<br />

(5) James, C. W.; Gurk-Turner, C. Proc. (Bayl. Univ. Med. Cent.) 2001, 14,<br />

189–190.<br />

(6) Williams, A. H.; Gruneberg, R. N. J. Antimicrob. Chemother. 1984, 14, 441–<br />

445.<br />

(7) Brink, A. J.; Richards, G. A.; Cummins, R. R.; Lambson, J.; Teicoplanin,<br />

G. U. Int. J. Antimicrob. Agents 2008, 32, 455–458.<br />

(8) Svetitsky, S.; Leibovici, L.; Paul, M. Antimicrob. Agents Chemother. 2009,<br />

53, 4069–4079.<br />

(9) Wood, M. J. J. Antimicrob. Chemother. 1997, 40, 147–147.<br />

(10) Cobo, J.; Fortun, J. J. Antimicrob. Chemother. 1996, 38, 1113–1114.<br />

(11) Wood, M. J. J. Antimicrob. Chemother. 1996, 38, 919–919.<br />

(12) Wood, M. J. J. Antimicrob. Chemother. 1996, 37, 209–222.<br />

(13) Pea, F.; Brollo, L.; Viale, P.; Pavan, F.; Furlanut, M. J. Antimicrob. Chemother.<br />

2003, 51, 971–975.<br />

(14) Mohammedi, I.; Descloux, E.; Argaud, L.; Le Scanff, J.; Robert, D. Int. J.<br />

Antimicrob. Agents 2006, 27, 259–262.<br />

(15) Adams, C. S.; Antoci, V., Jr.; Harrison, G.; Patal, P.; Freeman, T. A.; Shapiro,<br />

I. M.; Parvizi, J.; Hickok, N. J.; Radin, S.; Ducheyne, P. J. Orthop. Res. 2009,<br />

27, 701–709.<br />

(16) Antoci, V., Jr.; King, S. B.; Jose, B.; Parvizi, J.; Zeiger, A. R.; Wickstrom, E.;<br />

Freeman, T. A.; Composto, R. J.; Ducheyne, P.; Shapiro, I. M.; Hickok, N. J.;<br />

Adams, C. S. J. Orthop. Res. 2007, 25, 858–866.<br />

(17) Radin, S.; Chen, T.; Ducheyne, P. Biomaterials 2009, 30, 850–858.<br />

(18) Radin, S.; Ducheyne, P.; Kamplain, T.; Tan, B. H. J. Biomed. Mater. Res.<br />

2001, 57, 313–320.<br />

(19) Perelman, L. A.; Pacholski, C.; Li, Y. Y.; VanNieuwenhz, M. S.; Sailor, M. J.<br />

Nanomedicine 2008, 3, 31–43.<br />

(20) Lai, C. Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.;<br />

Lin, V. S. Y. J. Am. Chem. Soc. 2003, 125, 4451–4459.<br />

(21) Kitzis, M. D.; Goldstein, F. W. Clin. Microbiol. Infect. 2006, 12, 92–95.<br />

(22) Wilson, J. F.; Davis, A. C.; Tobin, C. M. J. Antimicrob. Chemother. 2003,<br />

52, 78–82.<br />

(23) Lee, H. B.; Kwak, B. Y.; Lee, J. C.; Kim, C. J.; Shon, D. H. J. Microbiol.<br />

Biotechnol. 2004, 14, 612–619.<br />

(24) Lam, M. T.; Le, X. C. Analyst 2002, 127, 1633–1637.<br />

(25) Valle, M. J. D.; Lopez, F. G.; Navarro, A. S. J. Pharm. Biomed. Anal. 2008,<br />

48, 835–839.<br />

(26) Abu-Shandi, K. H. Anal. Bioanal. Chem. 2009, 395, 527–532.<br />

(27) Saito, M.; Santa, T.; Tsunoda, M.; Hamamoto, H.; Usui, N. Biomed.<br />

Chromatogr. 2004, 18, 735–738.<br />

(28) Shen, J.; Jiao, Z.; Zhou, Y. N.; Zhu, H. L.; Song, Z. J. Chromatographia 2007,<br />

65, 9–12.<br />

(29) Kureishi, A.; Jewesson, P. J.; Bartlett, K. H.; Cole, C. D.; Chow, A. W.<br />

Antimicrob. Agents Chemother. 1990, 34, 1642–1647.<br />

(30) Bantar, C.; Durlach, R.; Nicola, F.; Freuler, C.; Bonvehi, P.; Vazquez, R.;<br />

Smayevsky, J. J. Antimicrob. Chemother. 1999, 43, 737–740.<br />

10.1021/ac100543e © 2010 American <strong>Chemical</strong> Society<br />

Published on Web 07/20/2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!