14.01.2013 Views

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

in addition to their lengthy procedures. 13 Biosensors based on<br />

fluorescent (FL) materials have attracted much attention due to<br />

their sensitivity, selectivity, and rapidity. Organic molecules and<br />

organometallic complexes have been developed for protein<br />

assays. 14,15 Upon complexation or conjugation with proteins, the<br />

luminophores show emission enhancements and/or spectral<br />

shifts, which enable the biopolymers to be detected and quantified.<br />

Some of the FL probes, however, are insoluble in aqueous media,<br />

while others are unstable under ambient conditions. 16 Some<br />

luminophores show spectacular performances in protein assays<br />

but are extremely expensive because of their painstaking<br />

syntheses. 14,15 These drawbacks greatly limit the scope of their<br />

real-life high-tech applications. This calls for the development of<br />

synthetically readily accessible and environmentally stable bioprobes<br />

with high sensitivity and selectivity.<br />

A thorny problem associated with the emissions of conventional<br />

luminophores in aqueous medium or physiological buffer<br />

is aggregation-caused quenching (ACQ). 17 The luminophores are<br />

in close vicinity in the aggregates suspended in the aqueous buffer,<br />

which favors the formation of such detrimental species as<br />

excimers and exciplexes and causes nonradiative relaxations of<br />

the excited states. We have recently discovered that tetraphenylethene<br />

(TPE) behaves in a way exactly opposite to the ACQ<br />

dyes: it is nonemissive in the solution state but becomes highly<br />

luminescent in the aggregate state. 18 We coined “aggregationinduced<br />

emission” (AIE) for the phenomenon because the<br />

nonemissive TPE is induced to emit by aggregate formation.<br />

Decorating TPE with ionic or polar functional groups yields watersoluble<br />

derivatives, which can be utilized as FL probes for<br />

bioanalyses. 19,20 Our and other research groups have successfully<br />

used the TPE-based AIE luminogens for nucleic acid detection,<br />

enzymatic activity assay, and metallic ion tracing. 21,22 The successes<br />

prompted us to further explore their potentials in bioanaly-<br />

(11) Bradford, M. M. Anal. Biochem. 1976, 72, 248.<br />

(12) Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. J. Biol. Chem.<br />

1951, 193, 265.<br />

(13) Haugland, R. P. Handbook of Fluorescent Probes and Research <strong>Chemical</strong>s;<br />

Molecular Probe: Leiden, 2002, p. 420.<br />

(14) (a) Giepmans, B. N. G.; Adams, S. R.; Ellisman, M. H.; Tsien, R. Y. Science<br />

2006, 312, 217. (b) Royer, C. A. Chem. Rev. 2006, 106, 1769. (c) Suzuki,<br />

Y.; Yokoyama, K. J. Am. Chem. Soc. 2005, 127, 17799. (d) Matulis, D.;<br />

Baumann, C. G.; Bloomfield, V. A.; Lovrien, R. E. Biopolymers 1999, 49,<br />

451. (e) Yarmoluk, S. M.; Kryvorotenko, D. V.; Balanda, A. O.; Losytskyy,<br />

M. Y.; Kovalska, V. B. Dyes Pigm. 2001, 51, 41. (f) Hawe, A.; Sutter, M.;<br />

Jiskoot, W. Pharm. Res. 2008, 25, 1487.<br />

(15) (a) Eryazici, I.; Moorefield, C. N.; Newkome, G. R. Chem. Rev. 2008, 108,<br />

1834. (b) Keefe, M. H.; Benkstein, K. D.; Hupp, J. T. Coord. Chem. Rev.<br />

2000, 205, 201.<br />

(16) (a) Matulis, D.; Lovrien, R. Biophys. J. 1998, 74, 422. (b) Davis, D. M.;<br />

Birch, D. J. S. J. Fluoresc. 1996, 6, 23.<br />

(17) Birks, J. B. Photophysics of Aromatic Molecules; Wiley: London, 1970.<br />

(18) Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Chem. Commun. 2009, 4332.<br />

(19) Li, Z.; Dong, Y. Q.; Lam, J. W. Y.; Sun, J.; Qin, A.; Haussler, M.; Dong,<br />

Y. P.; Sung, H. H. Y.; Williams, I. D.; Kwok, H. S.; Tang, B. Z. Adv. Funct.<br />

Mater. 2009, 19, 905.<br />

(20) (a) Yuan, C. X.; Tao, X. T.; Wang, L.; Yang, J. X.; Jiang, M. H. J. Phys. Chem.<br />

C 2009, 113, 6809. (b) Zhao, M.; Wang, M.; Liu, H.; Liu, D.; Zhang, G.;<br />

Zhang, D.; Zhu, D. Langmuir 2009, 25, 676. (c) Wang, M.; Zhang, D.;<br />

Zhang, G.; Zhu, D. Chem. Commun. 2008, 4469. (d) Suzuki, Y.; Yokoyama,<br />

K. J. Am. Chem. Soc. 2005, 127, 17799.<br />

(21) (a) Tong, H.; Hong, Y.; Dong, Y.; Haussler, M.; Lam, J. W. Y.; Li, Z.; Guo,<br />

Z.; Guo, Z.; Tang, B. Z. Chem. Commun. 2006, 3705. (b) Tong, H.; Hong,<br />

Y.; Dong, Y.; Haussler, M.; Li, Z.; Lam, J. W. Y.; Dong, Y.; Sung, H. H. Y.;<br />

Williams, I. D.; Tang, B. Z. J. Phys. Chem. B 2007, 111, 11817. (c) Hong,<br />

Y.; Haussler, M.; Lam, J. W. Y.; Li, Z.; Sin, K. K.; Dong, Y.; Tong, H.; Liu,<br />

J.; Qin, A.; Renneberg, R.; Tang, B. Z. Chem.sEur. J. 2008, 14, 6428.<br />

7036 <strong>Analytical</strong> <strong>Chemistry</strong>, Vol. 82, No. 16, August 15, 2010<br />

Chart 1. <strong>Chemical</strong> Structure of Water-Soluble AIE<br />

Luminogen of BSPOTPE<br />

ses. In this work, we examined the utility of a TPE salt, sodium<br />

1,2-bis[4-(3-sulfonatopropoxyl)phenyl]-1,2-diphenylethene(BSPOTPE;<br />

Chart 1), as a bioprobe for HSA detection and quantitation. The<br />

FL “turn-on” attribute of BSPOTPE by its complexation with<br />

albumin facilitated the quantitative assay and visual observation<br />

of HSA in the aqueous buffer and gel electrophoresis, respectively.<br />

It is well-known that proper biological functions of proteins<br />

are associated with their specific strand conformations and folding<br />

structures. 23 Understanding of protein folding is of fundamental<br />

importance for proteomic and pharmaceutical research. 24 HSA is<br />

a polypeptide chain with three R-helical domains (I-III), which<br />

are further divided into two subdomains (A and B). 1,25 Its crystal<br />

structure shows that the main ligand-binding sites in the albumin<br />

are located in the hydrophobic cavities of subdomains IIA and<br />

IIIA, which are sometimes referred to as Sudlow sites I and II,<br />

respectively. 26 Conformation analyses of the hydrophobic cavities<br />

play an important role in drug development, especially pharmacokinetic<br />

and pharmacodynamic investigations. 27<br />

Study of conformation transitions of proteins in the presence<br />

of denaturants is a topic of great interest because it can offer<br />

mechanistic insights into folding and unfolding processes of the<br />

biopolymers. 28,29 Though intermediate states have been suspected<br />

to be involved in the unfolding and refolding processes of many<br />

proteins, they are often not detected due to the lack of appropriate<br />

probes. 29 Characterization of the intermediate states becomes even<br />

more complex in the multidomain proteins, such as HSA, in which<br />

each domain is capable of unfolding and refolding independently. 30<br />

Whether intermediate states are involved in the unfolding pathway<br />

of HSA has been an issue of debate. In this study, we made use<br />

of the AIE feature of BSPOTPE and investigated the unfolding<br />

process of HSA. A stable molten-globule intermediate was<br />

observed in its unfolding process induced by guanidine hydrochloride<br />

(GndHCl), a well-known denaturant. Förster resonance<br />

energy transfer (FRET) study proved the accessibility of HSA by<br />

BSPOTPE and suggested probable location of the FL bioprobe<br />

in the hydrophobic cavity in the protein folding structure.<br />

Combination of the FL technique with circular dichroism (CD),<br />

(22) (a) Wang, M.; Gu, X.; Zhang, G.; Zhang, D.; Zhu, D. Anal. Chem. 2009,<br />

81, 4444. (b) Wang, M.; Zhang, D.; Zhang, G.; Tang, Y.; Wang, S.; Zhu, D.<br />

Anal. Chem. 2008, 80, 6443.<br />

(23) Flora, K.; Brennan, J. D.; Baker, G. A.; Doody, M. A.; Bright, F. V. Biophys.<br />

J. 1998, 75, 1084.<br />

(24) Jusko, W. J.; Gretch, M. Drug Metab. Rev. 1976, 5, 43.<br />

(25) He, X. M.; Carter, D. C. Nature 1992, 358, 209.<br />

(26) (a) Sudlow, G.; Birkett, D. J.; Wade, D. N. Mol. Pharmacol. 1975, 11, 824.<br />

(b) Sudlow, G.; Birkett, D. J.; Wade, D. N. Mol. Pharmacol. 1976, 12, 1052.<br />

(27) Lavinder, J. J.; Hari, S. B.; Sullivan, B. J.; Magliery, T. J. J. Am. Chem. Soc.<br />

2009, 131, 3794.<br />

(28) Abou-Zied, O. K.; Al-Shihi, O. I. K. J. Am. Chem. Soc. 2008, 130, 10793.<br />

(29) (a) Nolting, B.; Andert, K. Protein Struct. Funct. Genet. 2000, 41, 288. (b)<br />

Santra, M. K.; Banerjee, A.; Krishnakumar, S. S.; Rahaman, O.; Panda, D.<br />

Eur. J. Biochem. 2004, 271, 1789.<br />

(30) Ahmad, B.; Ahmed, M. Z.; Haq, S. K.; Khan, R. H. Biochim. Biophys. Acta<br />

Protein Proteomics 2005, 1750, 93.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!