14.01.2013 Views

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Anal. Chem. 2010, 82, 6770–6774<br />

Surface-Enhanced Raman Spectroscopy as a Tool<br />

for Detecting Ca 2+ Mobilizing Second Messengers<br />

in Cell Extracts<br />

Elina A. Vitol, † Eugen Brailoiu, ‡ Zulfiya Orynbayeva, § Nae J. Dun, ‡ Gary Friedman, † and<br />

Yury Gogotsi* ,|<br />

Department of Electrical and Computer Engineering, and Department of Materials Science and Engineering, Drexel<br />

University, Philadelphia, Pennsylvania 19104, and Department of Pharmacology, Temple University, Philadelphia,<br />

Pennsylvania 19140<br />

Understanding of calcium signaling pathways in cells is<br />

essential for elucidating the mechanisms of both normal<br />

cell function and cancer development. Calcium messengers<br />

play the crucial role for intracellular Ca 2+ release.<br />

We propose a new approach to detecting the calcium<br />

second messenger nicotinic acid adenine dinucleotide<br />

phosphate (NAADP) in cell extracts using surfaceenhanced<br />

Raman spectroscopy (SERS). Currently available<br />

radioreceptor binding and enzymatic assays require<br />

extensive sample preparation and take more than<br />

12 h. With a SERS sensor, NAADP can be detected in<br />

less than 1 min without any special sample preparation.<br />

To the best of our knowledge, this is the first<br />

demonstration of using SERS for calcium signaling<br />

applications.<br />

Calcium signaling is one of the fundamental cellular processes<br />

involved in any cell metabolic and physiologic activity. 1 Calcium<br />

signals convey information from the cell plasma membrane to<br />

intracellular targets. The mechanism of calcium concentration<br />

modulations is a complex problem associated with calcium influx<br />

from the extracellular matrix and release from intracellular stores<br />

mobilized by calcium messengers. Calcium signaling pathways<br />

of two calcium messengers, inositol trisphosphate (IP3) 2,3 and<br />

cyclic adenine dinucleotide ribose (cADPR), 4 have been studied<br />

extensively in different types of cells. Nicotinic acid adenine<br />

dinucleotide phosphate (NAADP) has a unique physiological role<br />

in cells 5 in the release of Ca 2+ from acid-filled calcium stores<br />

* To whom correspondence should be addressed. E-mail: gogotsi@drexel.edu.<br />

† Department of Electrical and Computer Engineering, Drexel University.<br />

‡ Temple University.<br />

§ School of Biomedical Engineering, Science and Health System, Drexel<br />

University.<br />

| Department of Materials Science and Engineering, Drexel University.<br />

(1) Patel, S.; Churchill, G. C.; Galione, A. Biochem. J. 2000, 352, 725–729.<br />

(2) Taylor, C. W.; Thorn, P. Curr. Biol. 2001, 11, R352–R355.<br />

(3) Cancela, J. M.; Gerasimenko, O. V.; Gerasimenko, J. V.; Tepikin, A. V.;<br />

Petersen, O. H. EMBO J. 2000, 19, 2549–2557.<br />

(4) Guse, A. H.; da Silva, C. P.; Berg, I.; Skapenko, A. L.; Weber, K.; Heyer, P.;<br />

Hohenegger, M.; Ashamu, G. A.; Schulze-Koops, H.; Potter, B. V. L.; Mayr,<br />

G. W. Nature 1999, 398, 70–73.<br />

(5) Lee, H. C.; Aarhus, R. J. Biol. Chem. 1995, 270, 2152–2157.<br />

6770 <strong>Analytical</strong> <strong>Chemistry</strong>, Vol. 82, No. 16, August 15, 2010<br />

through two-pore channels 1, 2, and 3. 6,7 NAADP is the least<br />

investigated Ca 2+ mobilizing second messenger, because of the<br />

lack of widely accessible and efficient techniques for detecting<br />

and quantifying its concentration in cells. Enzymatic bioassays<br />

and radioreceptor binding assays are the primary methods<br />

which have been used for detecting NAADP in cell extracts. 8,9<br />

The enzymatic assay 9 requires NAADP to be first converted to<br />

nicotinamide adenine dinucleotide phosphate (NADP) using ADPribosyl<br />

cyclase, which is followed by two enzymatic cycling<br />

reactions of oxidation/reoxidation of NADP. 10 Diaphorase, the<br />

enzyme for reoxidation of NADP to nicotinamide adenine dinucleotide<br />

phosphate (NADPH), also serves as a catalyst for conversion<br />

of the reaction indicator resazurin to a highly fluorescent resorufin.<br />

The latter is then used for fluorimetric assessment of the NAADP<br />

concentration. Importantly, the described assay requires a very<br />

high purity of all of the components and takes more than 12 h. 10<br />

The radioreceptor binding assay is less time-consuming and can<br />

be conducted without extensive sample purification, 8 but due to<br />

the need for unique specialized equipment, the availability of this<br />

method is extremely limited.<br />

Here we present an alternative, label-free technique for the<br />

detection of NAADP enabled by surface-enhanced Raman spectroscopy<br />

(SERS). 11-13 SERS enhances Raman scattering due to<br />

the amplification of the electric field around metal nanostructures.<br />

14,15 Solutions of metal colloids have been used for SERS, 16,17<br />

but in some cases they show relatively poor data reproducibility<br />

resulting from uncontrollable aggregation of colloidal particles. 17–19<br />

For this reason, SERS sensors with metal nanostructures fixed<br />

(6) Brailoiu, E.; Churamani, D.; Cai, X. J.; Schrlau, M. G.; Brailoiu, G. C.; Gao,<br />

X.; Hooper, R.; Boulware, M. J.; Dun, N. J.; Marchant, J. S.; Patel, S. J. Cell<br />

Biol. 2009, 186, 201–209.<br />

(7) Calcraft, P. J.; Ruas, M.; Pan, Z.; Cheng, X. T.; Arredouani, A.; Hao, X. M.;<br />

Tang, J. S.; Rietdorf, K.; Teboul, L.; Chuang, K. T.; Lin, P. H.; Xiao, R.;<br />

Wang, C. B.; Zhu, Y. M.; Lin, Y. K.; Wyatt, C. N.; Parrington, J.; Ma, J. J.;<br />

Evans, A. M.; Galione, A.; Zhu, M. X. Nature 2009, 459, 596–U130.<br />

(8) Lewis, A. M.; Masgrau, R.; Vasudevan, S. R.; Yarnasaki, M.; O’Neill, J. S.;<br />

Garnham, C.; James, K.; Macdonald, A.; Ziegler, M.; Galione, A.; Churchill,<br />

G. C. Anal. Biochem. 2007, 371, 26–36.<br />

(9) Graeff, R.; Lee, H. C. Biochem. J. 2002, 367, 163–168.<br />

(10) Gasser, A.; Bruhn, S.; Guse, A. H. J. Biol. Chem. 2006, 281, 16906–16913.<br />

(11) Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R.;<br />

Feld, M. S. Phys. Rev. Lett. 1997, 78, 1667–1670.<br />

(12) Moskovits, M. Rev. Mod. Phys. 1985, 57, 783–826.<br />

(13) Nabiev, I. R.; Morjani, H.; Manfait, M. Eur. Biophys. J. 1991, 19, 311–316.<br />

(14) Vitol, E. A.; Orynbayeva, Z.; Bouchard, M. J.; Azizkhan-Clifford, J.; Friedman,<br />

G.; Gogotsi, Y. ACS Nano 2009, 3, 3529–3536.<br />

10.1021/ac100563t © 2010 American <strong>Chemical</strong> Society<br />

Published on Web 07/26/2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!