14.01.2013 Views

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Anal. Chem. 2010, 82, 6958–6968<br />

Cleavable Cross-Linker for Protein Structure<br />

Analysis: Reliable Identification of Cross-Linking<br />

Products by Tandem MS<br />

Mathias Q. Müller, † Frank Dreiocker, ‡ Christian H. Ihling, † Mathias Schäfer,* ,‡ and Andrea Sinz* ,†<br />

Department of Pharmaceutical <strong>Chemistry</strong> and Bioanalytics, Institute of Pharmacy, Martin-Luther-Universität<br />

Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle (Saale), and Institute for Organic <strong>Chemistry</strong>,<br />

Department of <strong>Chemistry</strong>, Universität zu Köln, Greinstrasse 4, D-50939 Cologne, Germany<br />

<strong>Chemical</strong> cross-linking combined with a subsequent<br />

enzymatic cleavage of the created cross-linked complex<br />

and a mass spectrometric analysis of the resulting crosslinked<br />

peptide mixture presents an alternative approach<br />

to high-resolution analysis, such as NMR spectroscopy or<br />

X-ray crystallography, to obtain low-resolution protein<br />

structures and to gain insight into protein interfaces.<br />

Here, we describe a novel urea-based cross-linker, which<br />

allows distinguishing different cross-linking products by<br />

collision-induced dissociation (CID) tandem MS experiments<br />

based on characteristic product ions and constant<br />

neutral losses. The novel cross-linker is part of our<br />

ongoing efforts in developing collision-induced dissociative<br />

reagents that allow an efficient analysis of cross-linked<br />

proteins and protein complexes. Our innovative analytical<br />

concept is exemplified for the Munc13-1 peptide and the<br />

recombinantly expressed ligand binding domain of the<br />

peroxisome proliferator-activated receptor r, for which<br />

cross-linking reaction mixtures were analyzed both by<br />

offline nano-HPLC/MALDI-TOF/TOF mass spectrometry<br />

and by online nano-HPLC/nano-ESI-LTQ-orbitrap mass<br />

spectrometry. The characteristic fragment ion patterns of<br />

the novel cross-linker greatly simplify the identification<br />

of different cross-linked species, namely, modified peptides<br />

as well as intrapeptide and interpeptide cross-links,<br />

from complex mixtures and drastically reduce the potential<br />

of identifying false-positive cross-links. Our novel ureabased<br />

CID cleavable cross-linker is expected to be highly<br />

advantageous for analyzing protein 3D structures and<br />

protein-protein complexes in an automated manner.<br />

<strong>Chemical</strong> cross-linking 1 combined with mass spectrometry<br />

presents an alternative approach to study the tertiary and<br />

quaternary structure of proteins and protein complexes. 2-4<br />

However, an unambiguous, sensitive, reliable, and fast identifica-<br />

* To whom correspondence should be addressed. (A.S.) Phone: +49-345-<br />

5525170. Fax: +49-345-5527026. E-mail: andrea.sinz@pharmazie.uni-halle.de.<br />

(M.S.) Phone: +49-221-4703086. Fax: +49-221-4703064. E-mail: mathias.schaefer@<br />

uni-koeln.de.<br />

† Martin-Luther-Universität Halle-Wittenberg.<br />

‡ Universität zu Köln.<br />

(1) Sinz, A. Angew. Chem., Int. Ed. 2007, 46, 660–662.<br />

(2) Sinz, A. J. Mass Spectrom. 2003, 38, 1225–1237.<br />

(3) Trakselis, M. A.; Alley, S. C.; Ishmael, F. T. Bioconjugate Chem. 2005, 16,<br />

741–750.<br />

6958 <strong>Analytical</strong> <strong>Chemistry</strong>, Vol. 82, No. 16, August 15, 2010<br />

tion of the amino acids involved in the covalent derivatization by<br />

chemical cross-linking remains challenging. A mass spectrometric<br />

identification of the chemically modified amino acids in the<br />

respective protein is performed after proteolytic digestion of<br />

the cross-linking reaction mixtures. This is often hampered by<br />

the complexity of the created peptide mixtures, wherein only a<br />

relatively small percentage of cross-linked products are present<br />

besides a majority of unmodified peptides. To safeguard for a<br />

selective identification of cross-linked peptides using electrospray<br />

ionization (ESI) 5-7 combined with collision-induced dissociation<br />

(CID) 8,9 tandem MS, 10 several approaches have been suggested.<br />

11-14 They include cross-linking reagents that incorporate<br />

the use of marker ions resulting from low-energy CID 15,16 or<br />

metastable decay, 17 isotope-coding strategies, such as proteolytic<br />

digestion in 18 O water, 18 isotope coding of the cross-linking<br />

reagents 19-22 or of the proteins, 23 and an enrichment of cross-<br />

(4) Sinz, A. Mass Spectrom. Rev. 2006, 25, 663–682.<br />

(5) Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Science<br />

1989, 246, 64–71.<br />

(6) Cole, R. Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation<br />

and Applications; 1997.<br />

(7) Kebarle, P.; Verkerk, U. H. Mass Spectrom. Rev. 2009, 28, 898–917.<br />

(8) Wells, J. M.; McLuckey, S. A. The Encyclopedia of Mass Spectrometry; 2003;<br />

p1.<br />

(9) Shukla, A. K.; Futrell, J. H. J. Mass Spectrom. 2000, 35, 1069–1090.<br />

(10) Hunt, D. F.; Yates, J. R., III; Shabanowitz, J.; Winston, S.; Hauer, C. R. Proc.<br />

Natl. Acad. Sci. U.S.A. 1986, 83, 6233–6237.<br />

(11) Soderblom, E. J.; Goshe, M. B. Anal. Chem. 2006, 78, 8059–8068.<br />

(12) Soderblom, E. J.; Bobay, B. G.; Cavanagh, J.; Goshe, M. B. Rapid Commun.<br />

Mass Spectrom. 2007, 21, 3395–3408.<br />

(13) Dreiocker, F.; Müller, M. Q.; Sinz, A.; Schäfer, M. J. Mass Spectrom. 2010,<br />

45, 178–189.<br />

(14) Müller, M. Q.; Dreiocker, F.; Ihling, C. H.; Sinz, A.; Schäfer, M. J. Mass<br />

Spectrom., in press.<br />

(15) Back, J. W.; Hartog, A. F.; Dekker, H. L.; Muijsers, A. O.; de Koning, L. J.;<br />

de Jong, L. J. Am. Soc. Mass Spectrom. 2001, 12, 222–227.<br />

(16) Tang, X.; Munske, G. R.; Siems, W. F.; Bruce, J. E. Anal. Chem. 2005, 77,<br />

311–318.<br />

(17) Young, M. M.; Tang, N.; Hempel, J. C.; Oshiro, C. M.; Taylor, E. W.; Kuntz,<br />

I. D.; Gibson, B. W.; Dollinger, G. Proc. Natl. Acad. Sci. U.S.A. 2000, 97,<br />

5802–5806.<br />

(18) Back, J. W.; Notenboom, V.; de Koning, L. J.; Muijsers, A. O.; Sixma, T. K.;<br />

de Koster, C. G.; de Jong, L. Anal. Chem. 2002, 74, 4417–4422.<br />

(19) Petrotchenko, E. V.; Olkhovik, V. K.; Borchers, C. H. Mol. Cell. Proteomics<br />

2005, 4, 1167–1179.<br />

(20) Schulz, D. M.; Kalkhof, S.; Schmidt, A.; Ihling, C.; Stingl, C.; Mechtler, K.;<br />

Zschörnig, O.; Sinz, A. Proteins 2007, 69, 254–269.<br />

(21) Ihling, C.; Schmidt, A.; Kalkhof, S.; Schulz, D. M.; Stingl, C.; Mechtler, K.;<br />

Haack, M.; Beck-Sickinger, A. G.; Cooper, D. M.; Sinz, A. J. Am. Soc. Mass<br />

Spectrom. 2006, 17, 1100–1113.<br />

10.1021/ac101241t © 2010 American <strong>Chemical</strong> Society<br />

Published on Web 07/22/2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!