14.01.2013 Views

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Anal. Chem. 2010, 82, 6947–6957<br />

Identification of Metallothionein Subisoforms in<br />

HPLC Using Accurate Mass and Online Sequencing<br />

by Electrospray Hybrid Linear Ion Trap-Orbital Ion<br />

Trap Mass Spectrometry<br />

Sandra Mounicou,* ,† Laurent Ouerdane, † BéatriceL’Azou, ‡ Isabelle Passagne, ‡<br />

CélineOhayon-Courtès, ‡ Joanna Szpunar, † and Ryszard Lobinski †<br />

CNRS/UPPA, Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, UMR 5254, 2, av. Pr. Angot,<br />

64053 Pau, France, and EA 3672 Santé-Travail-Environnement, Université Victor Segalen, 146, rue Léo Saignat,<br />

33076 Bordeaux<br />

A comprehensive approach to the characterization of<br />

metallothionein (MT) isoforms based on microbore HPLC<br />

with multimodal detection was developed. MTs were<br />

separated as Cd7 complexes, detected by ICP MS and<br />

tentatively identified by molecular mass measured with<br />

1-2 ppm accuracy using Orbital ion trap mass spectrometry.<br />

The identification was validated by accurate<br />

mass of the corresponding apo-MTs after postcolumn<br />

acidification and by their sequences acquired online<br />

by higher-energy collision dissociation MS/MS. The<br />

detection limits down to 10 fmol and 45 fmol could<br />

be obtained by ESI MS for apo- and Cd7-isoforms,<br />

respectively, and were lower than those obtained by<br />

ICP MS (100 fmol). The individual MT isoforms could<br />

be sequenced at levels as low as 200 fmol with the<br />

sequence coverage exceeding 90%. The approach was<br />

successfully applied to the identification of MT isoforms<br />

induced in a pig kidney cell line (LLC-PK1)<br />

exposed to CdS nanoparticles.<br />

Mammalian metallothioneins (MT) are low molecular weight<br />

proteins (60-62 amino acid with molecular mass of ca. 6000-7000<br />

Da) characterized by high cysteine content (up to 30% residues)<br />

enabling to bind a wide range of transition and heavy metal<br />

ions. 1-3 They are involved in a variety of biochemical processes<br />

essential for life, such as cellular growth, stress response, copper<br />

and zinc homeostasis, and detoxification of heavy metals. Hence,<br />

MTs can be valuable biomarkers of stress conditions and several<br />

pathologies which require the development of methods for the<br />

determination and identification of the individual MT isoforms and<br />

products of their post-translational modifications. 4-7 The primary<br />

* To whom correspondence should be addressed.<br />

† Laboratoire de Chimie Analytique Bio-Inorganique et Environnement.<br />

‡ Université Victor Segalen.<br />

(1) Hamer, D. H. Annu. Rev. Biochem. 1986, 55, 913–951.<br />

(2) Kagi, J. H. R. Methods Enzymol. 1991, 205, 613–626.<br />

(3) Metallothioneins; Stillman, M. J.; Shaw, C. F. I.; Suzuki, K. T., Eds.; VCh:<br />

New York, 1992.<br />

(4) Kagi, J. H. R.; Schaffer, A. Biochemistry 1988, 27, 8509–8515.<br />

(5) Cousins, R. J. Physiol. Rev. 1985, 65, 238–309.<br />

(6) Klaassen, C. D.; Liu, J.; Choudhuri, S. Ann. Rev. Pharmacol. Toxicol. 1999,<br />

39, 267–294.<br />

structure of metallothioneins exhibits modifications up to 15 amino<br />

acids leading to the occurrence of several subisoforms. 1-3<br />

Electrospray ionization (ESI) MS was first proposed by<br />

Fenselau group for in vitro studies of the complexation of metalions<br />

by MTs. 8,9 These seminal works have been followed by a<br />

large number of studies using ESI MS to study the stoichiometry<br />

of metal binding to MTs and its domains, 10-14 reactivity and<br />

kinetics of metal exchange, 15-18 and reaction of MT with metallodrugs<br />

19 which have been competently reviewed. 15,20,21 Recombinant<br />

and highly purified MTs were used in these studies because<br />

of the very low purity of the commercial MT which are mixtures<br />

of different isoforms.<br />

Electrospray MS, coupled with a high-resolution separation<br />

techniques, such as reversed-phase chromatography 22 or capillary<br />

electrophoresis, 23-25 was shown to be an attractive technique to<br />

(7) Coyle, P.; Philcox, J. C.; Carey, L. C.; Rofe, A. M. Cell. Mol. Life Sci. 2002,<br />

59, 627–647.<br />

(8) Yu, X.; Wojciechowski, M.; Fenselau, C. Anal. Chem. 1993, 65, 1355–<br />

1359.<br />

(9) Afonso, C.; Hathout, Y.; Fenselau, C. J. Mass Spectrom. 2002, 37, 755–<br />

759.<br />

(10) Gehrig, P. M.; You, C.; Dallinger, R.; Gruber, C.; Brouwer, M.; Kôgi,<br />

J. H. R.; Hunziker, P. E. Protein Sci. 2000, 9, 395–402.<br />

(11) Merrifield, M. E.; Huang, Z.; Kille, P.; Stillman, M. J. J. Inorg. Biochem.<br />

2002, 88, 153–172.<br />

(12) Ngu, T. T.; Krecisz, S.; Stillman, M. J. Biochem. Biophys. Res. Commun.<br />

2010, 396, 206–212.<br />

(13) Orihuela, R.; Domènech, J.; Bofill, R.; You, C.; Mackay, E. A.; Kägi, J. H. R.;<br />

Capdevila, M.; Atrian, S. J. Biol. Inorg. Chem. 2008, 13, 801–812.<br />

(14) Palumaa, P.; Eriste, E.; Kruusel, K.; Kangur, L.; Jörnvall, H.; Sillard, R. Cell.<br />

Mol. Biol. (Noisy-le-Grand, Fr.) 2003, 49, 763–768.<br />

(15) Duncan, K. E. R.; Ngu, T. T.; Chan, J.; Salgado, M. T.; Merrifield, M. E.;<br />

Stillman, M. J. Exper. Biol. Med. 2006, 231, 1488–1499.<br />

(16) Palumaa, P.; Eriste, E.; Njunkova, O.; Pokras, L.; Jörnvall, H.; Sillard, R.<br />

Biochemistry 2002, 41, 6158–6163.<br />

(17) Vaher, M.; Romero-Isart, N.; Vasak, M.; Palumaa, P. J. Inorg. Biochem.<br />

2001, 83, 1–6.<br />

(18) Zeitoun-Ghandour, S.; Charnock, J. M.; Hodson, M. E.; Leszczyszyn, O. I.;<br />

Blindauer, C. A.; Stürzenbaum, S. R. FEBS J. 2010, 277, 2531–2542.<br />

(19) Karotki, A. V.; Vasak, M. J. Biol. Inorg. Chem. 2009, 14, 1129–1138.<br />

(20) Chan, J.; Huang, Z.; Merrifield, M. E.; Salgado, M. T.; Stillman, M. J. Coord.<br />

Chem. Rev. 2002, 233-234, 319–339.<br />

(21) Ngu, T. T.; Stillman, M. J. Dalton Trans. 2009, 5425–5433.<br />

(22) Chassaigne, H.; Lobinski, R. J. Chromatogr., A 1998, 829, 127–136.<br />

(23) Mounicou, S.; Polec, K.; Chassaigne, H.; Potin-Gautier, M.; Lobinski, R. J.<br />

Anal. At. Spectrom. 2000, 15, 635–642.<br />

(24) Andon, B.; Barbosa, J.; Sanz-Nebot, V. Electrophoresis 2006, 27, 3661–<br />

3670.<br />

10.1021/ac101245h © 2010 American <strong>Chemical</strong> Society 6947<br />

<strong>Analytical</strong> <strong>Chemistry</strong>, Vol. 82, No. 16, August 15, 2010<br />

Published on Web 07/29/2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!