14.01.2013 Views

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Anal. Chem. 2010, 82, 6926–6932<br />

Study of Highly Selective and Efficient Thiol<br />

Derivatization Using Selenium Reagents by<br />

Mass Spectrometry<br />

Kehua Xu, †,‡ Yun Zhang, † Bo Tang,* ,‡ Julia Laskin, § Patrick J. Roach, § and Hao Chen* ,†<br />

Center for Intelligent <strong>Chemical</strong> Instrumentation, Department of <strong>Chemistry</strong> and Biochemistry, Ohio University, Athens,<br />

Ohio 45701, Key Laboratory of Molecular and Nano Probes, Ministry of Education, College of <strong>Chemistry</strong>, <strong>Chemical</strong><br />

Engineering and Materials Science, Shandong Normal University, Jinan, China, 250014, and <strong>Chemical</strong> and Materials<br />

Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN K8-88, Richland, Washington 99352<br />

This paper reports a systemic mass spectrometry (MS)<br />

investigation of a novel strategy for labeling biological<br />

thiols, involving the cleavage of the Se-N bond by thiol<br />

to form a new Se-S bond. Our data show that the reaction<br />

is highly selective, rapid, reversible, and efficient. Among<br />

20 amino acids, only cysteine is reactive toward Se-N<br />

containing reagents and the reaction occurs in seconds.<br />

With the addition of dithiothreitol, peptides derivatized<br />

by selenium reagents can be recovered. The high reaction<br />

selectivity and reversibility provide potential in both<br />

selective identification and isolation of thiols from mixtures.<br />

Also, with dependence on the selenium reagent<br />

used, derivatized peptide ions exhibit tunable dissociation<br />

behaviors (either facile cleavage or preservation of the<br />

formed Se-S bond upon collision-induced dissociation),<br />

a feature that is useful in proteomics studies. Equally<br />

importantly, the thiol derivatization yield is striking, as<br />

reflected by 100% conversion of protein �-lactoglobulin<br />

A using ebselen within 30 s. In addition, preliminary<br />

applications such as rapid screening of thiol peptides from<br />

mixtures and identification of the number of protein free<br />

and bound thiols have been demonstrated. The unique<br />

selenium chemistry uncovered in this study would be<br />

valuable in the MS analysis of thiols and disulfide bonds<br />

of proteins/peptides.<br />

Biological thiols, such as glutathione (GSH) and thiol proteins,<br />

are critical physiological components found in animal tissues and<br />

fluids and involved in a plethora of important cellular functions. 1,2<br />

In the past decades chemical characterization of biological thiols<br />

has attracted significant attention. Various measurement<br />

methods have been developed including UV, 3 fluorescence (FL)<br />

* To whom correspondence should be addressed. Hao Chen: phone, 740-<br />

593-0719; fax, 740-597-3157; e-mail, chenh2@ohio.edu. Bo Tang: phone, (86)531-<br />

86180010; e-mail, tangb@sdnu.edu.cn.<br />

† Ohio University.<br />

‡ Shandong Normal University.<br />

§ Pacific Northwest National Laboratory.<br />

(1) Basford, R. E.; Huennekens, F. M. J. Am. Chem. Soc. 1955, 77, 3873–<br />

3877.<br />

(2) Rahman, I.; MacNee, W. Free Radical Biol. Med. 2000, 28, 1405–1420.<br />

(3) Kusmierek, K.; Chwatko, G.; Glowacki, R.; Bald, E. J. Chromatogr., B 2009,<br />

877, 3300–3308.<br />

6926 <strong>Analytical</strong> <strong>Chemistry</strong>, Vol. 82, No. 16, August 15, 2010<br />

spectroscopy, 4-6 and mass spectrometry (MS), 7-12 in which the<br />

derivatization of thiol groups with a suitable chemical reagent is<br />

necessary for increasing thiol stability and improving detection<br />

selectivity.<br />

While spectroscopic methods such as FL are very useful for<br />

detection and imaging of thiol compounds, MS can provide<br />

molecular weight and structural information. The inherent sensitivity<br />

and chemical specificity offered by MS 13-16 is essential in<br />

further identifying biological thiols and investigating their physiological<br />

functions on a molecular level. Also, a number of excellent<br />

MS studies of thiols and disulfides of proteins/peptides based on<br />

the novel ion chemistry have been reported. 10,11,17-20 At present,<br />

MS labeling strategies are mainly based on three types of chemical<br />

reactions. Nucleophilic substitution such as using heptafluorobutyl<br />

chloroformate 21 and iodoacetamide is commonly used for the<br />

analysis of protein tryptic digest; 22 however, these reagents are<br />

not specific for thiol compounds, that is, they can also couple with<br />

amino/hydroxyl groups. The second approach involves Michael-<br />

(4) Lee, J. H.; Lim, C. S.; Tian, Y. S.; Han, J. H.; Cho, B. R. J. Am. Chem. Soc.<br />

2010, 132, 1216–1217.<br />

(5) Pullela, P. K.; Chiku, T.; Carvan, M. J.; Sem, D. S. Anal. Biochem. 2006,<br />

352, 265–273.<br />

(6) Tang, B.; Yin, L.; Wang, X.; Chen, Z.; Tong, L.; Xu, K. Chem. Commun.<br />

2009, 5293–5295.<br />

(7) Gorman, J. J.; Wallis, T. P.; Pitt, J. J. Mass Spectrom. Rev. 2002, 21, 183–<br />

216.<br />

(8) Bilusich, D.; Bowie, J. H. Mass Spectrom. Rev. 2009, 28, 20–34.<br />

(9) Chrisman, P. A.; Pitteri, S. J.; Hogan, J. M.; McLuckey, S. A. J. Am. Soc.<br />

Mass Spectrom. 2005, 16, 1020–1030.<br />

(10) Diedrich, J. K.; Julian, R. R. J. Am. Chem. Soc. 2008, 130, 12212–12213.<br />

(11) Gunawardena, H. P.; O’Hair, R. A. J.; McLuckey, S. A. J. Proteome Res. 2006,<br />

5, 2087–2092.<br />

(12) Seiwert, B.; Karst, U. Anal. Chem. 2007, 79, 7131–7138.<br />

(13) Wang, Y.; Vivekananda, S.; Zhang, K. Anal. Chem. 2002, 74, 4505–4512.<br />

(14) Pingitore, F.; Wesdemiotis, C. Anal. Chem. 2005, 77, 1796–1806.<br />

(15) Blanksby, S. J.; Bierbaum, V. M.; Ellison, B. G.; Kato, S. Angew. Chem.,<br />

Int. Ed. 2007, 46, 4948–4950.<br />

(16) Gronert, S. Chem. Rev. 2001, 101, 329–360.<br />

(17) Kim, H. I.; Beauchamp, J. L. J. Am. Soc. Mass Spectrom. 2009, 20, 157–<br />

166.<br />

(18) Chrisman, P. A.; McLuckey, S. A. J. Proteome Res. 2002, 1, 549–557.<br />

(19) Li, J.; Shefcheck, K.; Callahan, J.; Fenselau, C. Int. J. Mass Spectrom. 2008,<br />

278, 109–133.<br />

(20) Qiao, L.; Bi, H.; Busnel, J.-M.; Liu, B.; Girault, H. H. Chem. Commun. 2008,<br />

47, 6357–6359.<br />

(21) Simek, P.; Husek, P.; Zahradnickova, H. Anal. Chem. 2008, 80, 5776–<br />

5782.<br />

(22) Williams, D. K., Jr.; Meadows, C. W.; Bori, I. D.; Hawkridge, A. M.; Comins,<br />

D. L.; Muddiman, D. C. J. Am. Chem. Soc. 2008, 130, 2122–2123.<br />

10.1021/ac1011602 © 2010 American <strong>Chemical</strong> Society<br />

Published on Web 07/16/2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!