14.01.2013 Views

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

enzymatic amplification techniques such as RAKE assay, 17 bioluminescence-enzyme<br />

labeling, 18 and rolling-circle amplification<br />

(RCA) 19 are also reported for sensitivity enhancement. These<br />

reported detection methods bring great benefit and improvement<br />

to the sensitivity of miRNA profiling to certain extends. Nevertheless,<br />

sample pretreatment and the modifications may result in loss<br />

of samples throughout the multiple pretreatment steps such as<br />

sample enrichment, labeling, and purification. The detection<br />

sensitivity and reliability are hence hindered. Since cellular miRNA<br />

concentration can be as low as 1000 molecules per cell, 20<br />

deficiencies in sensitivity may result in unsuccessful quantification<br />

of low-abundance miRNAs and, thus, false diagnostic result.<br />

Therefore, an ultrasensitive miRNA-profiling assay without the<br />

need of pretreatment is demanded.<br />

Single-molecule detection (SMD) technique has been widely<br />

applied in the behavioral study of individual biomolecules. 21,22<br />

Scientific issues such as monitoring enzymatic kinetics, 23,24 DNA<br />

adsorption/desorption behavior, 25,26 verification of nucleic acid<br />

hybridization, 27 DNA mismatch discrimination, 28 protein and DNA<br />

conformation dynamics, 29,30 and DNA mapping 31,32 have successfully<br />

been accomplished with SMD. Besides, several groups have<br />

also demonstrated the competence of SMD in the quantitation of<br />

biomolecules such as proteins 33 and viral DNA 34,35 by singlemolecule<br />

counting. Recently, quantitation of miRNA in singlemolecule<br />

level was displayed by Neely and co-workers. 36 The<br />

novel miRNA detection assay is free of sample enrichment and<br />

(15) Liang, R. Q.; Li, W.; Li, Y.; Tan, C. Y.; Li, J. X.; Jin, Y. X.; Ruan, K. C. Nucleic<br />

Acids Res. 2005, 33.<br />

(16) Yang, W. J.; Li, X. B.; Li, Y. Y.; Zhao, L. F.; He, W. L.; Gao, Y. Q.; Wan,<br />

Y. J.; Xia, W.; Chen, T.; Zheng, H.; Li, M.; Xu, S. Q. Anal. Biochem. 2008,<br />

376, 183–188.<br />

(17) Nelson, P. T.; Baldwin, D. A.; Scearce, L. M.; Oberholtzer, J. C.; Tobias,<br />

J. W.; Mourelatos, Z. Nat. Methods 2004, 1, 155–161.<br />

(18) Cissell, K. A.; Rahimi, Y.; Shrestha, S.; Hunt, E. A.; Deo, S. K. Anal. Chem.<br />

2008, 80, 2319–2325.<br />

(19) Cheng, Y.; Zhang, X.; Li, Z.; Jiao, X.; Wang, Y.; Zhang, Y. Angew. Chem.,<br />

Int. Ed. 2009, 48, 3268–3272.<br />

(20) Lim, L. P.; Lau, N. C.; Weinstein, E. G.; Abdelhakim, A.; Yekta, S.; Rhoades,<br />

M. W.; Burge, C. B.; Bartel, D. P. Genes Dev. 2003, 17, 991–1008.<br />

(21) Joo, C.; Balci, H.; Ishitsuka, Y.; Buranachai, C.; Ha, T. Annu. Rev. Biochem.<br />

2008, 77, 51–76.<br />

(22) Weiss, S. Science 1999, 283, 1676–1683.<br />

(23) Li, H. W.; Yeung, E. S. Anal. Chem. 2005, 77, 4374–4377.<br />

(24) Li, J. W.; Yeung, E. S. Anal. Chem. 2008, 80, 8509–8513.<br />

(25) Kang, S. H.; Shortreed, M. R.; Yeung, E. S. Anal. Chem. 2001, 73, 1091–<br />

1099.<br />

(26) Li, H. W.; Park, H. Y.; Porter, M. D.; Yeung, E. S. Anal. Chem. 2005, 77,<br />

3256–3260.<br />

(27) Kang, S. H.; Kim, Y. J.; Yeung, E. S. Anal. Bioanal. Chem. 2007, 387,<br />

2663–2671.<br />

(28) Gunnarsson, A.; Jonsson, P.; Marie, R.; Tegenfeldt, J. O.; Hook, F. Nano<br />

Lett. 2008, 8, 183–188.<br />

(29) Cohen, A. E.; Moerner, W. E. Proc. Natl. Acad. Sci. U.S.A. 2007, 104,<br />

12622–12627.<br />

(30) Funatsu, T.; Harada, Y.; Tokunaga, M.; Saito, K.; Yanagida, T. Nature 1995,<br />

374, 555–559.<br />

(31) Chan, E. Y.; Goncalves, N. M.; Haeusler, R. A.; Hatch, A. J.; Larson, J. W.;<br />

Maletta, A. M.; Yantz, G. R.; Carstea, E. D.; Fuchs, M.; Wong, G. G.; Gullans,<br />

S. R.; Gilmanshin, R. Genome Res. 2004, 14, 1137–1146.<br />

(32) Xiao, M.; Phong, A.; Ha, C.; Chan, T. F.; Cai, D. M.; Leung, L.; Wan, E.;<br />

Kistler, A. L.; DeRisi, J. L.; Selvin, P. R.; Kwok, P. Y. Nucleic Acids Res.<br />

2007, 35, e16.<br />

(33) Tessler, L. A.; Reifenberger, J. G.; Mitra, R. D. Anal. Chem. 2009, 81, 7141–<br />

7148.<br />

(34) Lee, J. Y.; Li, J. W.; Yeung, E. S. Anal. Chem. 2007, 79, 8083–8089.<br />

(35) Li, J. W.; Lee, J. Y.; Yeung, E. S. Anal. Chem. 2006, 78, 6490–6496.<br />

(36) Neely, L. A.; Patel, S.; Garver, J.; Gallo, M.; Hackett, M.; McLaughlin, S.;<br />

Nadel, M.; Harris, J.; Gullans, S.; Rooke, J. Nat. Methods 2006, 3, 41–46.<br />

6912 <strong>Analytical</strong> <strong>Chemistry</strong>, Vol. 82, No. 16, August 15, 2010<br />

amplification, but continuous sample flow is needed for improvement<br />

in sensitivity. This microfluidic-assisted fluorescence correlation<br />

spectroscopy platform is also comparatively sophisticated.<br />

In this article, we present a quantitative single-molecule<br />

detection of miRNAs using total internal reflection fluorescence<br />

microscopy (TIRFM). For the proof of concept, we have chosen<br />

hsa-miR-21 (miR-21) as our detection target. The miR-21 is known<br />

as one of the most significant miRNAs elevated in at least six types<br />

of cancers including breast, colon, lung, pancreas, prostate, and<br />

stomach cancers. 7 Studies have indicated the miR-21 mediated<br />

tumor growth by serving as an oncogene 37 and targeting the<br />

tumor suppressor genes such as TPM1 and PDCD 4 in invasion<br />

and metastasis. 38-40 Compared to the conventional methods, the<br />

developed assay here is straightforward because no pretreatment<br />

steps are involved. Both the probe and target oligonucleotides<br />

are free of chemical modifications. The YOYO-1 labeled miRNA<br />

hybrids diffuse freely on unmodified coverslips and are monitored<br />

by electron-multiplying charge-coupled device (EMCCD) under<br />

TIRFM. TIRFM is a highly sensitive microscopic technique that<br />

has been used for SMD in solution. The total internal reflection<br />

(TIR) generates evanescent field layer that has a penetration depth<br />

of about 100-300 nm depending on the incident angle of the<br />

excitation laser beam. The excitation of fluorophores is confined<br />

within the evanescent field layer such that background signal from<br />

the bulk is greatly suppressed. Herein, the diffusing hybrids are<br />

observed as single fluorescent spots when they enter the excitation<br />

volume and are excited. Image of fluorescent molecules are<br />

acquired for single-molecule counting. The counted number is<br />

found to be proportional to the quantity of miRNAs in bulk<br />

solution. The developed assay was also employed for the determination<br />

of miR-21 in normal and cancerous cell lines and the<br />

results were validated with that of qRT-PCR detection.<br />

EXPERIMENTAL SECTION<br />

Slide Pretreatment. All coverslips were prewashed prior to<br />

experiments. Briefly, No. 1 22-mm square cover glasses (Gold<br />

Seal, Electron Microscopy System, Hatfield, PA) were sequentially<br />

sonicated for 30 min in household detergent, 30 min in acetone<br />

(AR grade, Labscan), and 30 min in absolute ethanol. The slides<br />

were then successively soaked for 30 min in Piranha solution<br />

(H2SO4/30% H2O2) (v/v 1:1), rinsed with distilled water<br />

extensively, sonicated for 30 min in HCl/30% H2O2/H2O (v/<br />

v/v 1:1:1) solution, sonicated in distilled water for 15 min,<br />

further sonicated for 30 min in Piranha solution, and finally<br />

sonicated for 15 min in distilled water twice. The slides were<br />

stored in distilled water and blow-dried with nitrogen before<br />

use.<br />

Preparation of Hybridization Buffers. A1× Tris-NaCl-EDTA<br />

(TNE) buffer containing 20 mM pH 8.0 Tris-HCl (Invitrogen,<br />

Carlsbad, CA), 1 mM EDTA, and various concentration (0, 50,<br />

150, 250, and 500 mM) of sodium chloride was prepared with<br />

DEPC-treated water (Ambion, Austin, TX) accordingly as the<br />

(37) Si, M. L.; Zhu, S.; Wu, H.; Lu, Z.; Wu, F.; Mo, Y. Y. Oncogene 2007, 26,<br />

2799–2803.<br />

(38) Lu, Z.; Liu, M.; Stribinskis, V.; Klinge, C. M.; Ramos, K. S.; Colburn, N. H.;<br />

Li, Y. Oncogene 2008, 27, 4373–4379.<br />

(39) Zhu, S. M.; Si, M. L.; Wu, H. L.; Mo, Y. Y. J. Biol. Chem. 2007, 282, 14328–<br />

14336.<br />

(40) Zhu, S. M.; Wu, H. L.; Wu, F. T.; Nie, D. T.; Sheng, S. J.; Mo, Y. Y. Cell<br />

Res. 2008, 18, 350–359.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!