14.01.2013 Views

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

Analytical Chemistry Chemical Cytometry Quantitates Superoxide

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Figure 1. <strong>Chemical</strong> structures of MK-2662 and its internal standard,<br />

[ 13 C18, 15 N2] MK-2662 (ISTD). The underlined region indicates the<br />

N-terminal tryptic peptide used as surrogate for quantification.<br />

is time-consuming; therefore, reagent availability could become<br />

a rate-limiting step. In the case of MK-2662 analysis, ELISA was<br />

abandoned because a drug-specific antibody was not available at<br />

the time of assay development.<br />

Bioassay is a cell-based or enzyme-based assay that measures<br />

the biologic activity of a specific biological process. 7 Since bioassay<br />

measures the total activity of the sample irrespective of the<br />

chemical structures, the assay specificity is usually less than that<br />

of ELISA. It could provide a measure of pharmacodynamic (PD)<br />

properties 7 but may not be appropriate for pharmacokinetic (PK)<br />

assessment.<br />

Liquid chromatography-mass spectrometry (LC-MS) has<br />

been increasingly used to quantify peptides and proteins in<br />

biological matrixes 9-11 because of its selectivity. Despite commonly<br />

used sample cleanup techniques, such as protein precipitation<br />

(PPT), 9 solid-phase extraction (SPE), 12-14 two-dimensional<br />

(2D) SPE, 15 and 2D high-performance liquid chromatography<br />

(HPLC), 16,17 the immunoaffinity purification (IAP) coupled with<br />

LC-MS/MS represents an emerging strategy for peptide and<br />

protein bioanalysis. The IAP strategies include immunoaffinity<br />

depletion that can be used to remove abundant proteins from<br />

biological matrixes 18,19 and immunoaffinity capture that utilizes<br />

a single antibody to isolate and enrich the target peptides or<br />

(9) van den Broek, I.; Sparidans, R. W.; Schellens, J. H. M.; Beijnen, J. H.<br />

J. Chromatogr., B 2008, 872, 1–22.<br />

(10) Careri, M.; Mangia, A. J. Chromatogr., A 2003, 1000, 609–635.<br />

(11) John, H.; Walden, M.; Schafer, S.; Genz, S.; Forssanmm, W. G. Anal.<br />

Bioanal.Chem. 2004, 378, 883–897.<br />

(12) van den Broek, I.; Sparidans, R. W.; Huitema, A. D. R.; Schellens, J. H. M.;<br />

Beijnen, J. H. J. Chromatogr., B 2006, 837, 49–58.<br />

(13) van den Broek, I.; Sparidans, R. W.; Huitema, A. D. R.; Schellens, J. H. M.;<br />

Beijnen, J. H. J. Chromatogr., B 2007, 854, 245–259.<br />

(14) Heudi, O.; Barteau, S.; Zimmer, D.; Schmidt, J.; Bill, K.; Lehmann, N.; Bauer,<br />

C.; Kretz, O. Anal. Chem. 2008, 80, 4200–4207.<br />

(15) Yang, Z.; Hayes, M.; Fang, X.; Daley, M. P.; Ettenberg, S.; Francis, L. S. T.<br />

Anal. Chem. 2007, 79, 9294–9301.<br />

(16) Motoyama, A.; Xu, T.; Ruse, C. I.; Wohlschlegel, J. A.; Yates, J. R. Anal.<br />

Chem. 2007, 79, 3623–3634.<br />

(17) Linke, T.; Ross, A. C.; Harrison, E. H. J. Chromatogr A. 2006, 1123, 160–<br />

169.<br />

6878 <strong>Analytical</strong> <strong>Chemistry</strong>, Vol. 82, No. 16, August 15, 2010<br />

proteins from biological samples. Although many applications<br />

using online immunoaffinity columns have been reported, 20-24<br />

offline affinity purification using different carriers, such as<br />

macroporous polymeric beads, agarose or sepharose beads, 25,26<br />

and magnetic beads, 27-29 etc., for immobilization of a variety of<br />

enzyme and/or capture antibodies enables more flexibility in<br />

terms of selection of carriers, antibodies, assay formats, and<br />

experimental conditions as compared to the online approach.<br />

This report presents a sensitive and reproducible bioanalytical<br />

approach for quantification of a PEGylated peptide in plasma. To<br />

support human clinical studies for MK-2662, a 2D HPLC-MS/<br />

MS method using a turbo ion spray (TIS) interface, monitoring<br />

the surrogate N-terminal peptide (HAibDGTFTSDYSK) of MK-<br />

2662 after tryptic digestion, has been developed and validated to<br />

quantify MK-2662 in human plasma. A stable-isotope-labeled<br />

internal standard, [ 13 C18, 15 N2] MK-2662, was employed. Two<br />

sample preparation methods, PPT versus IAP using an anti-<br />

PEG antibody, followed by trypsin digestion in a 96-well format<br />

using 0.2 mL plasma sample, have been evaluated and applied<br />

to clinical sample analysis. The potential caveats of the protein<br />

precipitation approach and the benefit of immunoaffinity<br />

purification in regard to assay specificity are discussed. To our<br />

best knowledge, this is the first report describing use of anti-<br />

PEG antibody to capture a PEGylated peptide in combination<br />

with LC-MS/MS analysis. This approach is potentially applicable<br />

to analysis of other PEGylated peptides or proteins.<br />

EXPERIMENTAL SECTION<br />

<strong>Chemical</strong>s and Reagents. MK-2662 and stable-isotope-labeled<br />

internal standard (ISTD, Figure 1) were synthesized at the Merck<br />

Research Laboratories, Merck & Co. (Rahway, NJ). HPLC grade<br />

acetonitrile, HPLC grade methanol, laboratory grade formic acid<br />

(88%), certified ammonium formate, and certified ammonium<br />

bicarbonate were obtained from Fisher Scientific (Pittsburgh, PA).<br />

Human control plasma (K2EDTA as anticoagulant) was purchased<br />

from Biological Specialty Co. (Colmar, PA). Water was<br />

purified by a Milli-Q ultrapure water system from Millipore<br />

(Bedford, MA). Bovine serum albumin (BSA) at 22% in 0.85%<br />

(18) Hagman, C.; Ricke, D.; Ewert, S.; Bek, S.; Falchetto, R.; Bitsch, F. Anal.<br />

Chem. 2008, 80, 1290–1296.<br />

(19) Dekker, L. J.; Bosman, J.; Burgers, P. C.; van Rijswijk, A.; Freije., R.; Luider,<br />

T.; Bischoff, R. J. Chromatogr., B 2007, 847, 65–69.<br />

(20) Radabaugh, M. R.; Nemirovskiy, O. V.; Misko, T. P.; Aggarwal, P.; Rodney<br />

Mathews, W. Anal. Biochem. 2008, 380, 68–76.<br />

(21) Li, W. W.; Nemirovskiy, O.; Fountain, S.; Rodney Mathews, W.; Szekely-<br />

Klepser, G. Anal. Biochem. 2007, 369, 41–53.<br />

(22) Berna, M.; Schmalz, C.; Duffin, K.; Mitchell, P.; Chambers, M.; Ackermann,<br />

B. Anal. Biochem. 2006, 356, 235–243.<br />

(23) Zhang, X.; Martens, D.; Kramer, P. M.; Kettrup, A. A.; Liang, X. J. Chromatogr.,<br />

A 2006, 1133, 112–118.<br />

(24) Edinboro, L. E.; Karnes, H. T. J. Chromatogr., A 2005, 1083, 127–132.<br />

(25) Huang, L.; Harvie, G.; Feitelson, J. S.; Gramatikoff, K.; Herold, D. A.; Allen,<br />

D. L.; Amunngama, R.; Hagler, R. A.; Pisano, M. R.; Zhang, W. W.; Fang,<br />

X. Proteomics 2005, 5, 3314–3328.<br />

(26) Hoofnagle., A. N.; Becker, J. O.; Wener, M. H.; Heinecke, J. W. Clin. Chem.<br />

2008, 54, 1796–1804.<br />

(27) Lee, Y. C.; Block, G.; Chen, H.; Folch-Puy, E.; Foronjy, R.; Jalili, R.;<br />

Jendresen, C. B.; Kimura, M.; Kraft, E.; Lindemose, S.; Lu, J.; McLain, T.;<br />

Nutt, L.; Ramon-Garcia, S.; Smith, J.; Spivak, A.; Wang, M. L.; Zanic, M.;<br />

Lin, S. H. Protein Expression Purif. 2008, 62, 223–229.<br />

(28) Dubois, M.; Becher, F.; Herbet, A.; Ezan, E. Rapid Commun. Mass Spectrom.<br />

2007, 21, 352–358.<br />

(29) Berna, M. J.; Zhen, Y.; Watson, D. E.; Hale, J. E.; Ackermann, B. L. Anal.<br />

Chem. 2007, 79, 4199–4205.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!