12.01.2013 Views

PET/CT for radiotherapy planning of head-‐neck cancer

PET/CT for radiotherapy planning of head-‐neck cancer

PET/CT for radiotherapy planning of head-‐neck cancer

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Dr. Wouter V. Vogel<br />

Department <strong>of</strong> Nuclear medicine<br />

Department <strong>of</strong> Radia3on oncology<br />

NKI-­‐AVL, Amsterdam, NL<br />

<strong>PET</strong>/<strong>CT</strong> <strong>for</strong><br />

<strong>radiotherapy</strong> <strong>planning</strong><br />

<strong>of</strong> <strong>head</strong>-­‐neck <strong>cancer</strong>


Disclosure slide<br />

! Research Support: none<br />

! Consultant: none<br />

! Speakers Bureau: none<br />

! Honoraria and/or Stockholder: none<br />

2<br />

/ 86


Topics<br />

! Why <strong>PET</strong>/<strong>CT</strong> ?<br />

! Diagnos3c value<br />

! Tumor delinea3on<br />

! Tumor characteriza3on<br />

! How to do it<br />

! Requirements<br />

! Image fusion<br />

! Collabora3ons<br />

! Radia3on protec3on<br />

! Future perspec3ve<br />

3<br />

/ 86


Required in<strong>for</strong>maAon<br />

! Loca3on<br />

! Type<br />

! Size<br />

! Volume<br />

! Mucosal spread<br />

! Deep infiltra3on<br />

! Node metastases<br />

! Distant metastases<br />

! Stage<br />

! Pa3ënt characteris3cs<br />

! HPV / EBV<br />

! Et cetera …<br />

4<br />

/ 86


Anatomical imaging with <strong>CT</strong><br />

Based on Assue density<br />

! Anatomical orienta3on<br />

! Recogni3on / delinea3on <strong>of</strong> cri3cal normal organs<br />

! Recogni3on / delinea3on <strong>of</strong> tumor loca3ons<br />

! Required <strong>for</strong> RT <strong>planning</strong> electron density map<br />

5<br />

/ 86


A mulAmodality diagnosis<br />

Clinical evaluaAon<br />

! History<br />

! Inspec3on<br />

! Biopsies<br />

! Experience<br />

???<br />

tumor<br />

AddiAonal imaging<br />

! Ultrasound<br />

! (ce)MRI<br />

! DWI, spectroscopy<br />

! Endoscopy, et cetera<br />

6<br />

/ 86


Molecular imaging<br />

! Is a visual func3on test<br />

! Does not provide borders<br />

<strong>of</strong> 3ssues, but borders <strong>of</strong><br />

func3ons<br />

7<br />

/ 86


FDG <strong>PET</strong>/<strong>CT</strong><br />

<strong>for</strong> selecAon <strong>of</strong> <strong>radiotherapy</strong>


Reasons to per<strong>for</strong>m <strong>PET</strong>/<strong>CT</strong><br />

! Does the pa3ent have <strong>cancer</strong> ?<br />

! Where is it located, and what stage ?<br />

! Is <strong>radiotherapy</strong> appropriate ?<br />

! Op3mizing the treatment<br />

9<br />

/ 86


Finding a primary tumor<br />

DetecAon rate FDG <strong>PET</strong> aIer negaAve convenAonal work-­‐up<br />

! 25% Rusthoven, Review, Cancer 2004<br />

! 29% Johansen, DAHANCA-­‐13, Head Neck 2008<br />

10<br />

/ 86


Are there nodal metastases?<br />

DetecAon <strong>of</strong> nodal disease<br />

! Meta-­‐analysis <strong>of</strong> 32 studies<br />

! Sensi3vity 81-­‐90%<br />

! Specificity 89-­‐90%<br />

<strong>PET</strong> outper<strong>for</strong>ms <strong>CT</strong> and MRI <strong>for</strong><br />

detec3on <strong>of</strong> node metastases in<br />

the neck, and it is the best non-­‐<br />

invasive instrument available<br />

Impact on treatment<br />

! Upgrade elec3ve nodal field areas to high dose RT<br />

11<br />

/ 86


Characterizing extra findings<br />

Coin lesion FDG <strong>PET</strong>/<strong>CT</strong><br />

! Sensi3vity 97%<br />

! Specificity 79%<br />

Impact on treatment<br />

! Nega3ve Follow-­‐up<br />

! Posi3ve Biopsy<br />

(or treatment)<br />

12<br />

/ 86


Are there distant metastases?<br />

For the presence <strong>of</strong> M1 disease<br />

! Sensi3vity 93%<br />

! Specificity 96%<br />

Impact on treatment<br />

! Swith RT from cura3ve to<br />

pallia3ve intent in 15% <strong>of</strong> cases<br />

afer M0 conven3onal workup.<br />

Na3onal Ins3tute <strong>for</strong> Clinical Excellence (NICE). Lung <strong>cancer</strong>: the<br />

diagnosis and treatment <strong>of</strong> lung <strong>cancer</strong>. In: Clinical Guideline No.: 24.<br />

NICE Web site. 2005<br />

13<br />

/ 86


Conclusion<br />

! FDG-­‐<strong>PET</strong>/<strong>CT</strong> is important <strong>for</strong> <strong>radiotherapy</strong><br />

be<strong>for</strong>e you even started<br />

Examples <strong>of</strong> diseases where RT treatment<br />

is currently selected with <strong>PET</strong>/<strong>CT</strong><br />

! Lung <strong>cancer</strong><br />

! Head-­‐neck<br />

! Lymphoma<br />

! Gynaecological<br />

! Melanoma<br />

! Breast <strong>cancer</strong> (recurrence)<br />

! Prostate <strong>cancer</strong> (recurrence, choline)<br />

! Brain tumors (methionine)<br />

! … et cetera<br />

14<br />

/ 86


MulAmodality<br />

more than nice colors ?


Understanding molecular imaging<br />

The in<strong>for</strong>ma3on <strong>of</strong> molecular imaging on its own<br />

can be virtually meaningless<br />

16<br />

/ 86


MulAmodality: the greater perspecAve<br />

The in<strong>for</strong>ma3on <strong>of</strong> molecular imaging on its own<br />

is virtually meaningless<br />

17<br />

/ 86


Imaging modaliAes<br />

1895 X-­‐ray Wilhelm C. Röntgen<br />

1940 Fluorescence microsc. Coons and Kaplan<br />

1946 NMR spectroscopy F. Bloch and E. Purcell<br />

1948 Ultrasound George Ludwig<br />

1953 ScinAgraphy Hal Anger<br />

1963 SPE<strong>CT</strong> Kuhl and Edwards<br />

1970 <strong>PET</strong> Brownell<br />

1973 MRI Paul Lauterbur<br />

1975 <strong>CT</strong> Robert S. Ledley<br />

1979 US doppler Ge<strong>of</strong>f Stevenson<br />

New techniques never replace old ones,<br />

we are just ge\ng more opAons.<br />

18<br />

/ 86


Planar image fusion<br />

1953 Thyroid scin3graphy and photograph <strong>of</strong> a pa3ent<br />

1960 Bonescan and X-­‐rays<br />

19<br />

/ 86


Common pracAce today<br />

21<br />

/ 86


Radiotherapy<br />

what do we need?


TherapeuAc raAo<br />

100%<br />

Effect<br />

Tumour control<br />

Slide 23<br />

Normal tissue damage<br />

/ 86


Increase therapeuAc raAo<br />

• Increase tumour sensitivity to irradiation<br />

• eg add chemotherapy, decrease hypoxia<br />

• Decrease normal tissue sensitivity to irradiation<br />

• eg amifostine<br />

• Increase con<strong>for</strong>mality <strong>of</strong> irradiation<br />

• Focus on tumour<br />

• Avoid organs at risk<br />

This is where <strong>PET</strong> comes into play<br />

Slide 24<br />

/ 86


GTV<br />

Gross Tumor Volume<br />

based on:<br />

Imaging modalities<br />

Diagnostic modalities<br />

(pathology/histology)<br />

Clinical examination<br />

Slide 25<br />

/ 86


<strong>CT</strong>V<br />

Clinical Target Volume<br />

GTV with margin<br />

accounting <strong>for</strong> sub-clinical<br />

microscopic extension<br />

This volume needs to be<br />

treated accurately to<br />

assure treatment efficacy.<br />

e.g.: <strong>CT</strong>V=GTV+0.5 cm<br />

<strong>CT</strong>V is a anatomicalclinical<br />

volume<br />

Slide 26<br />

/ 86


PTV<br />

Planning Target Volume<br />

<strong>CT</strong>V encompassed with<br />

margin <strong>for</strong>:<br />

Organ motion<br />

Daily patient setup<br />

Machine setup<br />

Intra-treatment<br />

variations<br />

…<br />

PTV is a geometrical<br />

concept<br />

Slide 27<br />

/ 86


RT <strong>planning</strong> process<br />

Item<br />

Item 1<br />

• Item 2<br />

• Item 3<br />

Slide 28<br />

/ 86


RT <strong>planning</strong> process<br />

Radiotherapy requires a uni<strong>for</strong>m dose distribution within the tumor.<br />

Target dose uni<strong>for</strong>mity within +7% and -5% <strong>of</strong> the prescribed tumor dose.<br />

While sparing surrounding normal tissues<br />

To achieve this goal multiple beams are used<br />

Main steps in Treatment Planning<br />

1. Define treatment volumes and risk organs<br />

2. Define optimal beam setup<br />

3. Calculate dose distribution within the patient<br />

and treatment times per beam<br />

4. Plan evaluation<br />

Slide 29<br />

/ 86


Sources <strong>of</strong> errors<br />

Inaccurate beam data<br />

Wrong monitor unit calibration<br />

Inaccurate beam measurements<br />

Wrong beam geometry<br />

Slide 30<br />

Accuracy <strong>of</strong> volume definition<br />

With advanced treatment techniques only voxels labeled as tumor will be<br />

irradiated<br />

Target volume delineation becomes extremely important<br />

Inter- and Intra-observer variations should be mimimized<br />

Accuracy <strong>of</strong> image fusion<br />

Patient repositioning<br />

Image registration <strong>CT</strong> / MR / <strong>PET</strong><br />

Data transfer/consistency between RTP and Linac<br />

And many more potential problems...<br />

/ 86


The result we try to get<br />

You need <strong>CT</strong><br />

! Anatomical reference<br />

! Tumor delinea3on<br />

! Electron density map<br />

PaAent benefit<br />

! Bener cura3on/survival<br />

! Less side-­‐effects<br />

! Bener quality <strong>of</strong> life<br />

<strong>PET</strong> imaging adds<br />

! Sensi3ve tumor detec3on<br />

! Discrimina3on tumor / benign<br />

! Consistent tumor delinea3on<br />

! Quan3fy tumor characteris3cs<br />

Impact on <strong>planning</strong><br />

! Improve <strong>planning</strong> accuracy<br />

! Higher dose to tumor<br />

! Lower dose to normal 3ssues<br />

! (Adapt to tumor characteris3cs)<br />

31<br />

/ 86


PotenAal problems<br />

<strong>PET</strong>/<strong>CT</strong> imaging can cause<br />

! FN: missing tumor 3ssue<br />

! FP: including benign 3ssues<br />

! Misposi3on tumor 3ssue<br />

! False tumor characteris3cs<br />

ResulAng in<br />

! Decreased curaAon/survival<br />

! More side-­‐effects<br />

! Reduced quality <strong>of</strong> life<br />

Impact on <strong>planning</strong><br />

! Degrade <strong>planning</strong> accuracy<br />

! Reduce effec3ve dose to tumor<br />

! Increase dose to normal 3ssues<br />

32<br />

/ 86


Technical<br />

requirements


StandardizaAon <strong>of</strong> <strong>PET</strong>/<strong>CT</strong> imaging<br />

! Indica3ons<br />

! Pa3ent prepara3on<br />

! Image acquisi3on<br />

! Image reconstruc3on<br />

! Viewing<br />

! Quan3fica3on<br />

! Delinea3on<br />

! Repor3ng<br />

! Impact<br />

35<br />

/ 86


<strong>PET</strong> <strong>for</strong> radiaAon oncology<br />

! Large bore<br />

! Flat table<br />

! Laser posi3oning<br />

! Posi3oning aids<br />

! Planning <strong>CT</strong><br />

! (4D gated)<br />

36<br />

/ 86


AddiAonal paAent posiAoning<br />

Repeated posiAoning is not a problem !<br />

Modality Repeats<br />

! Planning <strong>CT</strong> / MR 1 – 2<br />

! Addi3onal <strong>PET</strong> (/<strong>CT</strong>) 1<br />

! Radia3on treament 25 – 50<br />

37<br />

/ 86


Required accuracy<br />

Small errors in pa3ent (re)posi3oning are expected,<br />

and are compensated with a margin around the GTV.<br />

This is the PTV.<br />

Acceptable PTV margins<br />

depend on the body part<br />

! Head/neck ~ 5 mm<br />

! Colorectal ~ 10 mm<br />

! Lungs ~ 20 mm<br />

craniocaudal<br />

PosiAoning or image fusion errors on <strong>PET</strong>/<strong>CT</strong><br />

should not exceed the standard PTV margins<br />

38<br />

/ 86


Head/neck<br />

Required<br />

! Flat table<br />

! Customised <strong>head</strong>/neck support<br />

! Personalised mask<br />

! Mask clamps<br />

! Knee support<br />

! (Laser guides)<br />

39<br />

/ 86


Example: NO MASK<br />

40<br />

/ 86


Example: NO MASK<br />

Please don’t<br />

try this at<br />

home<br />

41<br />

/ 86


Example: SubopAmal mask placement<br />

42<br />

/ 86


Example: SubopAmal mask placement<br />

Validate your new<br />

approach and skills<br />

with experts<br />

43<br />

/ 86


Well-­‐trained personnel<br />

RecommendaAons<br />

! Accept a learning curve <strong>for</strong> pa3ent posi3oning<br />

! Collaborate with <strong>radiotherapy</strong> department staff<br />

! Train a dedicated <strong>PET</strong> <strong>planning</strong> staff<br />

44<br />

/ 86


Example: Success<br />

Results<br />

! Image registra3on error < 3 mm (Vogel et al, JNM 2007)<br />

! Correla3on <strong>of</strong> lesions < 5 mm possible<br />

! PTV margins 0.5 cm<br />

45<br />

/ 86


Tumor contouring<br />

using a <strong>PET</strong> signal


DelineaAon: a mulAmodality procedure<br />

Clinical evaluaAon<br />

! History<br />

! Inspec3on<br />

! Biopsy, histology<br />

! Experience<br />

AddiAonal imaging<br />

! Ultrasound<br />

! (ce)<strong>CT</strong><br />

! (ce)MRI, DWI, spectro<br />

! Endoscopy, et cetera…<br />

47<br />

/ 86


What does FDG <strong>PET</strong> show ?<br />

The signal comes from<br />

! Cells that proliferate<br />

! Cells that have de-­‐differen3ated<br />

! Cells that have high Glut-­‐1 expression<br />

! Cells that are hypoxic<br />

<strong>PET</strong> iden3fies voxels that<br />

contain a lot <strong>of</strong> cells, that<br />

tend to be radioresistent<br />

48<br />

/ 86


What does FDG <strong>PET</strong> not show ?<br />

Volumes with a low<br />

concentraAon <strong>of</strong><br />

vital tumor cells<br />

! Microscopic extent<br />

! Superficial spread<br />

! Diffuse infiltra3on<br />

! Necro3c parts<br />

! (Well-­‐differen3ated<br />

tumor parts)<br />

49<br />

/ 86


What volume do you need to know?<br />

From a surgical point <strong>of</strong> view<br />

! All tumor<br />

From a biological point <strong>of</strong> view<br />

! All tumor mee3ng certain diagnos3c criteria<br />

! All tumor relevant <strong>for</strong> a treatment decision<br />

From a radiotherapeuAc point <strong>of</strong> view<br />

! PTV The total volume to be irradiated<br />

! <strong>CT</strong>V The clinically relevant area, likely to contain tumor<br />

! GTV All known tumor containing areas<br />

! Boost A biological subvolume <strong>of</strong> the tumor volume<br />

50<br />

/ 86


<strong>PET</strong> <strong>for</strong> GTV<br />

GTV involves all known tumor locaAons<br />

! GTV involves all known tumor loca3ons<br />

! <strong>PET</strong> does not show them all<br />

! <strong>PET</strong> does not provide the GTV<br />

! <strong>PET</strong> can contribute to GTV defini3on, just like any other scan<br />

51<br />

/ 86


DelineaAon methods<br />

Available strategies<br />

! Visual / manual<br />

! SUV<br />

! % <strong>of</strong> tumor ac3vity<br />

! % <strong>of</strong> background ac3vity<br />

! Ra3o tumor -­‐ background<br />

! Advanced algorithms<br />

This choice is not trivial !<br />

! Resul3ng volume depends heavily on the method<br />

! There is insufficient valida3on <strong>for</strong> all methods<br />

! At least a fixed SUV threshold is not suitable<br />

! A “best method” is currently not iden3fiable<br />

Schinagl et al., IJRBOP 2007<br />

52<br />

/ 86


Impact on volumes<br />

Method<br />

! GTV 40 53.6 mL<br />

! GTV bg 94.7 mL<br />

! GTV vis 157.7 mL<br />

! GTV 2.5 164.6 mL<br />

(Nestle, JNM 2005)<br />

53<br />

/ 86


FDG <strong>PET</strong> versus pathology<br />

Every technique<br />

has issues<br />

! False posi3ves<br />

! False nega3ves<br />

! Limited resolu3on<br />

! Non-­‐linearity<br />

! Mul3-­‐factorial signal<br />

! Interpreta3on issues<br />

Tumor volume in pharyngolaryngeal<br />

squamous cell carcinoma: comparison at <strong>CT</strong>,<br />

MR imaging, and FDG <strong>PET</strong> and valida3on<br />

with surgical specimen.<br />

Daisne et al. Radiology. 2004;233(1):93-­‐100<br />

54<br />

/ 86


A visual mulAmodality approach<br />

x<br />

! x<br />

55<br />

/ 86


Reduce interobserver variaAon<br />

Observer varia3on in target volume delinea3on <strong>of</strong> lung <strong>cancer</strong> related to radia3on<br />

oncologist-­‐computer interac3on: a 'Big Brother' evalua3on. Steenbakkers RJ et al.<br />

Radiother Oncol. 2005 Nov;77(2):182-­‐90.<br />

56<br />

/ 86


Interobserver variaAon – No <strong>PET</strong><br />

57<br />

/ 86


Interobserver variaAon – With FDG-­‐<strong>PET</strong><br />

Huge improvement !<br />

58<br />

/ 86


StandardizaAon <strong>of</strong> delineaAon<br />

! Delinea3on algorithm<br />

! Image reconstruc3on<br />

! Color scales<br />

! Protocols<br />

Whatever you choose, it will instantly fail when<br />

! Switching from 3D to 4D in lung <strong>cancer</strong><br />

! Buying a new <strong>PET</strong> scanner<br />

! Using a different tracer<br />

59<br />

/ 86


Non-­‐homogeneous <strong>PET</strong><br />

<strong>PET</strong> oIen does not represent the tumor as a whole, and will not<br />

replace <strong>CT</strong>, MR, or other means to find tumor volume and borders<br />

<strong>PET</strong> can be used to idenAfy a biological subvolume<br />

Defining Radiotherapy Target Volumes Using (18)F-­‐Fluoro-­‐Deoxy-­‐Glucose Positron<br />

Emission Tomography/Computed Tomography: S3ll a Pandora's Box?<br />

Devic S et al. Int J Radiat Oncol Biol Phys. 2010 Jun 18.<br />

60<br />

/ 86


<strong>PET</strong> <strong>for</strong> Boost definiAon<br />

A boost field involves an important tumor subvolume<br />

! A boost is required <strong>for</strong> areas with<br />

! A high number <strong>of</strong> cells to kill<br />

! Rela3vely radioresistent cells (hypoxia)<br />

! FDG <strong>PET</strong> shows exactly those areas<br />

! <strong>PET</strong> can define a boost area<br />

When <strong>PET</strong> dictates the shape <strong>of</strong> a high-­‐dose RT field,<br />

the procedure needs to be highly standardized!<br />

61<br />

/ 86


Day-­‐to-­‐day problems<br />

Scans have different characterisAcs with regard to<br />

! Image resolu3on, par3al volume effects, blurring<br />

! Involuntary pa3ent mo3on, swallowing<br />

What is the truth ???<br />

62<br />

/ 86


Day-­‐to-­‐day problems<br />

Factors leading to significant tumor locaAon differences in mask<br />

! Positron drif (2-­‐5 mm)<br />

! Pa3ent mo3on (swallowing)<br />

What is the truth ???<br />

63<br />

/ 86


Summary <strong>of</strong> delineaAon<br />

Who needs <strong>PET</strong> <strong>for</strong> volume definiAon ?<br />

! GTV delinea3on when difficult on <strong>CT</strong>/MR/clinical evalua3on<br />

! Boost defini3on in scien3fic research<br />

And how to do it?<br />

! Be aware <strong>of</strong> the limita3ons <strong>of</strong> <strong>PET</strong><br />

! GTV: No definite strategy yet, use a holis3c approach<br />

! Boost: Prefer automa3c, use one algorithm and s3ck to that<br />

64<br />

/ 86


Moving from<br />

tumor contouring<br />

to<br />

biological evaluaAon


Contouring a signal<br />

66<br />

/ 86<br />

Claude Monet<br />

Impression, Sunrise<br />

(1874)<br />

Considered to be<br />

the first<br />

impressionist<br />

pain3ng


From where to what<br />

The Roman Dodecahedra<br />

Courtesy U. Nestle, Freiburg<br />

67<br />

/ 86


What are we currently NOT doing ?<br />

InterpretaAon <strong>of</strong> the biological acAvity inside the GTV/boost<br />

! Op3mal dose ?<br />

! Op3mal frac3ona3on scheme ?<br />

! Inhomogeneous treatment ?<br />

! Radiotherapy the best choice ?<br />

! Radiosensi3zers needed ?<br />

! Is the tumor responding ?<br />

! Adapt or switch treatment ?<br />

! Adjuvant chemo or surgery ?<br />

68<br />

/ 86


FDG uptake predicts RT outcome<br />

[18F]fluorodeoxyglucose uptake by positron emission tomography predicts outcome <strong>of</strong> non-­‐small-­‐cell lung <strong>cancer</strong>.<br />

Sasaki R et al. J Clin Oncol. 2005 Feb 20;23(6):1136-­‐43.<br />

69<br />

/ 86<br />

! Poten3al impact<br />

on required RT<br />

dose, but<br />

unverified


Does the tumor respond to treatment?<br />

Stage III NSCLC<br />

! <strong>PET</strong>/<strong>CT</strong> 2 weeks afer CRT<br />

<strong>PET</strong> CR<br />

! Good prognosis<br />

! Succesful resec3on defines outcome<br />

<strong>PET</strong> PD<br />

! Poor prognosis<br />

! Resec3on no longer defines outcome<br />

18F-­‐FDG <strong>PET</strong> <strong>for</strong> assessment <strong>of</strong> therapy response and<br />

preopera3ve re-­‐evalua3on afer neoadjuvant radio-­‐<br />

chemotherapy in stage III non-­‐small cell lung <strong>cancer</strong>.<br />

Eschmann SM, EJNMMI 2007 Apr;34(4):463-­‐71.<br />

70<br />

/ 86


A different place <strong>for</strong> <strong>PET</strong> <strong>of</strong> nodes ?<br />

Pre<br />

! T1 N2b oropharynx carcinoma<br />

Standard treatment<br />

! Chemoradia3on<br />

! RT 66 Gy / 35 frac3ons<br />

! Cispla3na weekly 40 mg/m 2<br />

In case <strong>of</strong> residual nodes<br />

! Addi3onal neck dissec3on<br />

71<br />

/ 86


A different place <strong>for</strong> <strong>PET</strong> <strong>of</strong> nodes ?<br />

Pre 12 weeks<br />

72<br />

/ 86<br />

Complete metabolic<br />

response 12 weeks<br />

afer treatment<br />

What does this<br />

mean ?


A different place <strong>for</strong> <strong>PET</strong> <strong>of</strong> nodes ?<br />

Pre 12 weeks 1 year<br />

73<br />

/ 86


ScienAfic evaluaAon<br />

! 112 pa3ents with (chemo)radia3on <strong>for</strong> a N2 <strong>head</strong>neck tumor<br />

! FDG-­‐<strong>PET</strong>/<strong>CT</strong> scan 3 months afer CRT<br />

! Only FDG-­‐posi3ve necks received node dissec3on<br />

! All others wait-­‐and-­‐see<br />

! Average follow-­‐up 2,5 years<br />

Results<br />

! 50 pa3ents with residual nodes on <strong>CT</strong><br />

! 9 posi3ve on <strong>PET</strong>: PPV = 22%<br />

! 41 nega3ve on <strong>PET</strong>: NPV = 100%<br />

Results <strong>of</strong> a prospec3ve study <strong>of</strong> positron emission tomography-­‐directed management <strong>of</strong> residual nodal abnormali3es in node-­‐posi3ve<br />

<strong>head</strong> and neck <strong>cancer</strong> afer defini3ve <strong>radiotherapy</strong> with or without systemic therapy.<br />

Porceddu SV et al., Head Neck 2011. (Aus)<br />

74<br />

/ 86


PotenAal impact<br />

! Less opera3ons needed afer CRT<br />

! Quality <strong>of</strong> life bener afer cura3on<br />

75<br />

/ 86


Different biological pathways<br />

Planning <strong>CT</strong> FDG FAZA<br />

Anatomy Metabolism Hypoxia<br />

76<br />

/ 86


<strong>PET</strong> <strong>for</strong> imaging <strong>of</strong><br />

the delivered RT dose


Radionuclide therapy<br />

Iodine MIBG<br />

We can<br />

! SEE our treatment<br />

79<br />

/ 86<br />

! Verify the predicted distribu3on<br />

! Quan3fy the given radia3on dose


External beam <strong>radiotherapy</strong><br />

! Looks very well guided<br />

! But is based on predic3ons<br />

and indirect measurements<br />

80<br />

/ 86


Protons vs photons<br />

Protons have a sharp<br />

energy release pr<strong>of</strong>ile<br />

Courtesy D. Schaart, TU Delf, the Netherlands<br />

81<br />

/ 86


Uncertain proton range<br />

! Proton depth is very exact<br />

Beam Beam<br />

! But may change with tumor reduc3on during treatment<br />

! This threatens the safety <strong>of</strong> the procedure<br />

Courtesy D. Schaart, TU Delf, the Netherlands<br />

82<br />

/ 86


Place a <strong>PET</strong> in the proton beam setup<br />

Visualise and quan3fy<br />

energy release DURING<br />

(or very shortly afer)<br />

proton treament !<br />

Courtesy D. Schaart, TU Delf, the Netherlands<br />

84<br />

/ 86


In-­‐line <strong>PET</strong> images<br />

Image quality is s3ll limited, but quan3fica3on seems valid<br />

Courtesy D. Schaart, TU Delf, the Netherlands<br />

Prediced dose Measured <strong>PET</strong><br />

85<br />

/ 86


Dr. Wouter V. Vogel<br />

Nuclear medicine physician<br />

NKI-­‐AvL, Amsterdam, the Netherlands<br />

Thank you<br />

<strong>for</strong> your arenAon

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!