12.01.2013 Views

Recent developments in the Metamodel of Optimal ... - Dynardo GmbH

Recent developments in the Metamodel of Optimal ... - Dynardo GmbH

Recent developments in the Metamodel of Optimal ... - Dynardo GmbH

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

WOST 2011 • 24.– 25.11.2011 • © <strong>Dynardo</strong> <strong>GmbH</strong> 2011<br />

<strong>Recent</strong> <strong>developments</strong> <strong>in</strong> <strong>the</strong><br />

<strong>Metamodel</strong> <strong>of</strong> <strong>Optimal</strong> Prognosis<br />

Thomas Most & Johannes Will<br />

<strong>Dynardo</strong> <strong>GmbH</strong><br />

<strong>Recent</strong> <strong>developments</strong> <strong>in</strong> <strong>the</strong> <strong>Metamodel</strong> <strong>of</strong> <strong>Optimal</strong> Prognosis<br />

Thomas Most & Johannes Will<br />

1


WOST 2011 • 24.– 25.11.2011 • © <strong>Dynardo</strong> <strong>GmbH</strong> 2011<br />

Introduction<br />

• Start<strong>in</strong>g <strong>in</strong> 2008 <strong>the</strong> <strong>Metamodel</strong> <strong>of</strong> <strong>Optimal</strong> Prognosis has become an<br />

important feature <strong>in</strong> optiSLang’s sensitivity analysis, optimization and<br />

robustness analysis<br />

• The ma<strong>in</strong> priorities <strong>of</strong> <strong>the</strong> MOP methodology are:<br />

• Detection <strong>of</strong> <strong>the</strong> important variable subspace<br />

• Usage <strong>of</strong> understandable, reproducible and fast<br />

approximation models<br />

• Objective estimation <strong>of</strong> <strong>the</strong> approximation quality<br />

• However, some questions need to be discussed:<br />

• May more complex meta-models significantly improve <strong>the</strong><br />

approximation quality?<br />

• How can we adapt <strong>the</strong> MOP to perform optimal <strong>in</strong> <strong>the</strong> framework<br />

<strong>of</strong> an optimization problem?<br />

<strong>Recent</strong> <strong>developments</strong> <strong>in</strong> <strong>the</strong> <strong>Metamodel</strong> <strong>of</strong> <strong>Optimal</strong> Prognosis<br />

Thomas Most & Johannes Will<br />

2


WOST 2011 • 24.– 25.11.2011 • © <strong>Dynardo</strong> <strong>GmbH</strong> 2011<br />

Polynomial regression<br />

• Set <strong>of</strong> <strong>in</strong>put variables<br />

• Def<strong>in</strong>ition <strong>of</strong> polynomial basis<br />

• Approximation function<br />

• Least squares solution<br />

<strong>Recent</strong> <strong>developments</strong> <strong>in</strong> <strong>the</strong> <strong>Metamodel</strong> <strong>of</strong> <strong>Optimal</strong> Prognosis<br />

Thomas Most & Johannes Will<br />

3


WOST 2011 • 24.– 25.11.2011 • © <strong>Dynardo</strong> <strong>GmbH</strong> 2011<br />

Coefficient <strong>of</strong> Determ<strong>in</strong>ation (CoD)<br />

• Fraction <strong>of</strong> expla<strong>in</strong>ed variation<br />

<strong>of</strong> an approximated response<br />

• Total variation<br />

• Unexpla<strong>in</strong>ed variation<br />

• Adjusted CoD<br />

to penalize over-fitt<strong>in</strong>g<br />

<strong>Recent</strong> <strong>developments</strong> <strong>in</strong> <strong>the</strong> <strong>Metamodel</strong> <strong>of</strong> <strong>Optimal</strong> Prognosis<br />

Thomas Most & Johannes Will<br />

4


WOST 2011 • 24.– 25.11.2011 • © <strong>Dynardo</strong> <strong>GmbH</strong> 2011<br />

Limitations <strong>of</strong> <strong>the</strong> CoD<br />

• CoD is only based on how good <strong>the</strong> regression model fits through <strong>the</strong><br />

sample po<strong>in</strong>ts, but not on how good <strong>the</strong> prediction quality is<br />

• Approximation quality is too optimistic for small number <strong>of</strong> samples<br />

• For <strong>in</strong>terpolation models with perfect fit, CoD is equal to one<br />

• Better approximation models are required for highly nonl<strong>in</strong>ear<br />

problems, but CoD works only with polynomials<br />

<strong>Recent</strong> <strong>developments</strong> <strong>in</strong> <strong>the</strong> <strong>Metamodel</strong> <strong>of</strong> <strong>Optimal</strong> Prognosis<br />

Thomas Most & Johannes Will<br />

5


WOST 2011 • 24.– 25.11.2011 • © <strong>Dynardo</strong> <strong>GmbH</strong> 2011<br />

Mov<strong>in</strong>g Least Squares (MLS)<br />

• Local polynomial regression with<br />

position-dependent coefficients<br />

• Distance depend<strong>in</strong>g weight<strong>in</strong>g function<br />

• Smooth<strong>in</strong>g <strong>of</strong> approximation is<br />

controlled by weight<strong>in</strong>g radius D<br />

• Choice <strong>of</strong> D directly <strong>in</strong>fluences <strong>the</strong> CoD<br />

<strong>Recent</strong> <strong>developments</strong> <strong>in</strong> <strong>the</strong> <strong>Metamodel</strong> <strong>of</strong> <strong>Optimal</strong> Prognosis<br />

Thomas Most & Johannes Will<br />

6


WOST 2011 • 24.– 25.11.2011 • © <strong>Dynardo</strong> <strong>GmbH</strong> 2011<br />

Coefficient <strong>of</strong> Prognosis (CoP)<br />

• Fraction <strong>of</strong> expla<strong>in</strong>ed variation<br />

<strong>of</strong> prediction<br />

• Estimation <strong>of</strong> CoP by cross<br />

validation us<strong>in</strong>g a partition<strong>in</strong>g<br />

<strong>of</strong> available <strong>the</strong> samples<br />

• CoP <strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>g number <strong>of</strong> samples<br />

• CoP is suitable for <strong>in</strong>terpolation and regression models<br />

• With MLS cont<strong>in</strong>uous functions also <strong>in</strong>clud<strong>in</strong>g coupl<strong>in</strong>g terms<br />

can be represented with a certa<strong>in</strong> number <strong>of</strong> samples<br />

• Prediction quality is better if unimportant variables are removed<br />

from <strong>the</strong> approximation model<br />

<strong>Recent</strong> <strong>developments</strong> <strong>in</strong> <strong>the</strong> <strong>Metamodel</strong> <strong>of</strong> <strong>Optimal</strong> Prognosis<br />

Thomas Most & Johannes Will<br />

7


WOST 2011 • 24.– 25.11.2011 • © <strong>Dynardo</strong> <strong>GmbH</strong> 2011<br />

<strong>Metamodel</strong> <strong>of</strong> <strong>Optimal</strong> Prognosis (MOP)<br />

• Approximation <strong>of</strong> solver output by fast surrogate model<br />

• Reduction <strong>of</strong> <strong>in</strong>put space to get best compromise between available<br />

<strong>in</strong>formation (samples) and model representation (number <strong>of</strong> <strong>in</strong>puts)<br />

• Advanced filter technology to obta<strong>in</strong> candidates <strong>of</strong> optimal subspace<br />

• Determ<strong>in</strong>ation <strong>of</strong> optimal approximation model (polynomials, MLS, …)<br />

• Assessment <strong>of</strong> approximation quality (CoP)<br />

MOP solves 3 important tasks:<br />

• Best variable subspace<br />

• Best meta-model<br />

• Estimation <strong>of</strong> prediction quality<br />

<strong>Recent</strong> <strong>developments</strong> <strong>in</strong> <strong>the</strong> <strong>Metamodel</strong> <strong>of</strong> <strong>Optimal</strong> Prognosis<br />

Thomas Most & Johannes Will<br />

8


WOST 2011 • 24.– 25.11.2011 • © <strong>Dynardo</strong> <strong>GmbH</strong> 2011<br />

Example: Analytical nonl<strong>in</strong>ear function<br />

• Additive l<strong>in</strong>ear and nonl<strong>in</strong>ear terms and one coupl<strong>in</strong>g term<br />

• Contribution to <strong>the</strong> output variance (reference values):<br />

X 1 : 18.0%, X 2 : 30.6%, X 3 : 64.3%, X 4 : 0.7%, X 5 : 0.2%<br />

<strong>Recent</strong> <strong>developments</strong> <strong>in</strong> <strong>the</strong> <strong>Metamodel</strong> <strong>of</strong> <strong>Optimal</strong> Prognosis<br />

Thomas Most & Johannes Will<br />

9


WOST 2011 • 24.– 25.11.2011 • © <strong>Dynardo</strong> <strong>GmbH</strong> 2011<br />

Example: Analytical nonl<strong>in</strong>ear function<br />

MOP vs. Polynomials & MLS<br />

• 100 LHS support po<strong>in</strong>ts<br />

• Expla<strong>in</strong>ed variation <strong>of</strong> <strong>in</strong>dependent test data<br />

set with 100 samples as error measure<br />

• With <strong>in</strong>creas<strong>in</strong>g number <strong>of</strong> unimportant variables <strong>the</strong> approximation<br />

error <strong>in</strong>creases for polynomials and MLS<br />

• MOP detects 3 important variables<br />

<strong>Recent</strong> <strong>developments</strong> <strong>in</strong> <strong>the</strong> <strong>Metamodel</strong> <strong>of</strong> <strong>Optimal</strong> Prognosis<br />

Thomas Most & Johannes Will<br />

10


WOST 2011 • 24.– 25.11.2011 • © <strong>Dynardo</strong> <strong>GmbH</strong> 2011<br />

Example: Analytical nonl<strong>in</strong>ear function<br />

MOP vs. Krig<strong>in</strong>g<br />

• Krig<strong>in</strong>g optimized with maximum likelihood will not always give <strong>the</strong><br />

optimal correlation parameters<br />

• For certa<strong>in</strong> number <strong>of</strong> <strong>in</strong>puts Krig<strong>in</strong>g seems to be more suitable than<br />

Mov<strong>in</strong>g Least Squares<br />

<strong>Recent</strong> <strong>developments</strong> <strong>in</strong> <strong>the</strong> <strong>Metamodel</strong> <strong>of</strong> <strong>Optimal</strong> Prognosis<br />

Thomas Most & Johannes Will<br />

11


WOST 2011 • 24.– 25.11.2011 • © <strong>Dynardo</strong> <strong>GmbH</strong> 2011<br />

Example: Analytical nonl<strong>in</strong>ear function<br />

MOP vs. Support Vector Regression & Artificial Neural Networks<br />

• SVR and ANN require much more effort for tra<strong>in</strong><strong>in</strong>g<br />

• ANN approximation quality strongly decreases with <strong>in</strong>creas<strong>in</strong>g dimension<br />

• Krig<strong>in</strong>g approximation seems to be similar or even more accurate<br />

<strong>Recent</strong> <strong>developments</strong> <strong>in</strong> <strong>the</strong> <strong>Metamodel</strong> <strong>of</strong> <strong>Optimal</strong> Prognosis<br />

Thomas Most & Johannes Will<br />

12


WOST 2011 • 24.– 25.11.2011 • © <strong>Dynardo</strong> <strong>GmbH</strong> 2011<br />

Example: Analytical nonl<strong>in</strong>ear function<br />

MOP vs. MATLAB’s stepwise regression<br />

• Stepwise regression selects coefficients <strong>of</strong> polynomial regression by<br />

statistical significance test<strong>in</strong>g<br />

• For a larger number <strong>of</strong> <strong>in</strong>puts F-test based MATLAB implementation<br />

performs only well if l<strong>in</strong>ear terms are considered<br />

<strong>Recent</strong> <strong>developments</strong> <strong>in</strong> <strong>the</strong> <strong>Metamodel</strong> <strong>of</strong> <strong>Optimal</strong> Prognosis<br />

Thomas Most & Johannes Will<br />

13


WOST 2011 • 24.– 25.11.2011 • © <strong>Dynardo</strong> <strong>GmbH</strong> 2011<br />

New implementation <strong>of</strong> MOP<br />

• Implementation based on state-<strong>of</strong>-<strong>the</strong>-art algebra library<br />

• Parallel comput<strong>in</strong>g will be <strong>in</strong>troduced at several levels (research project <strong>in</strong><br />

cooperation with Fraunh<strong>of</strong>er ITWM founded by KMU-<strong>in</strong>novativ/BMBF)<br />

• Efficient CoP implementation enables very fast test<strong>in</strong>g<br />

– Analytical estimator for polynomials with Box-Cox<br />

– No extra computational effort for MLS<br />

• New filter technology for <strong>the</strong> detection <strong>of</strong> <strong>in</strong>teraction terms between<br />

<strong>in</strong>put variables <strong>in</strong> high dimensional problems<br />

• Hierarchical model test<strong>in</strong>g to reduce overall computational effort and to<br />

enable more time consum<strong>in</strong>g models such as Krig<strong>in</strong>g<br />

<strong>Recent</strong> <strong>developments</strong> <strong>in</strong> <strong>the</strong> <strong>Metamodel</strong> <strong>of</strong> <strong>Optimal</strong> Prognosis<br />

Thomas Most & Johannes Will<br />

14


WOST 2011 • 24.– 25.11.2011 • © <strong>Dynardo</strong> <strong>GmbH</strong> 2011<br />

Sensitivity analysis vs. optimization us<strong>in</strong>g MOP<br />

• MOP is build by equally weight<strong>in</strong>g <strong>the</strong> prediction errors:<br />

• This is optimal for sensitivity analysis s<strong>in</strong>ce global variance-based<br />

measures (s<strong>in</strong>gle variable CoPs) are most accurate with equal weights<br />

• Optimization requires good approximation quality <strong>of</strong> objective and<br />

constra<strong>in</strong>t functions <strong>in</strong> <strong>the</strong> region around <strong>the</strong> optimum<br />

� Weight<strong>in</strong>g <strong>of</strong> prediction errors to improve <strong>the</strong> MOP based optimization<br />

• Extrapolation <strong>of</strong> approximation function <strong>of</strong>ten looses accuracy<br />

� Additional constra<strong>in</strong>t to consider approximation quality<br />

<strong>Recent</strong> <strong>developments</strong> <strong>in</strong> <strong>the</strong> <strong>Metamodel</strong> <strong>of</strong> <strong>Optimal</strong> Prognosis<br />

Thomas Most & Johannes Will<br />

15


WOST 2011 • 24.– 25.11.2011 • © <strong>Dynardo</strong> <strong>GmbH</strong> 2011<br />

Example: Rosenbrock function<br />

Optimization us<strong>in</strong>g MOP<br />

• Optimum at 1.0;1.0<br />

• Best design from 500 LHS<br />

samples at 0.5;0.3<br />

• Global CoP is 99.996%<br />

• Optimum found on MOP<br />

approximation at 1.7;3.0<br />

• Approximation is globally very<br />

good but locally not sufficient:<br />

� Weighted CoP is 73.24%<br />

(with <strong>the</strong> samples f≤20)<br />

� Choice <strong>of</strong> optimal <strong>in</strong>fluence<br />

radius needs to consider<br />

local/weighted CoP<br />

<strong>Recent</strong> <strong>developments</strong> <strong>in</strong> <strong>the</strong> <strong>Metamodel</strong> <strong>of</strong> <strong>Optimal</strong> Prognosis<br />

Thomas Most & Johannes Will<br />

16


WOST 2011 • 24.– 25.11.2011 • © <strong>Dynardo</strong> <strong>GmbH</strong> 2011<br />

Example: Rosenbrock function<br />

Optimization us<strong>in</strong>g Krig<strong>in</strong>g<br />

• Global CoP is 99.999%<br />

• Optimum found on Krig<strong>in</strong>g<br />

approximation at 1.1;1.2<br />

• Weighted CoP is 99.912%<br />

(with <strong>the</strong> samples f≤20)<br />

<strong>Recent</strong> <strong>developments</strong> <strong>in</strong> <strong>the</strong> <strong>Metamodel</strong> <strong>of</strong> <strong>Optimal</strong> Prognosis<br />

Thomas Most & Johannes Will<br />

17


WOST 2011 • 24.– 25.11.2011 • © <strong>Dynardo</strong> <strong>GmbH</strong> 2011<br />

Conclusions<br />

• CoP based detection <strong>of</strong> important variables enables application <strong>of</strong> MOP<br />

for high-dimensional <strong>in</strong>dustrial problems<br />

• Us<strong>in</strong>g <strong>the</strong> optimal subspace is <strong>of</strong>ten more promis<strong>in</strong>g than us<strong>in</strong>g<br />

highly complex approximation models<br />

• New implementation will significantly accelerate MOP approach and<br />

enables <strong>the</strong> consideration <strong>of</strong> more time consum<strong>in</strong>g models (Krig<strong>in</strong>g)<br />

• New filter technology will improve <strong>the</strong> variable detection<br />

• Optimization requires special strategies<br />

• Weighted CoP to get best approximation around <strong>the</strong> optimum<br />

• Consideration <strong>of</strong> local approximation quality <strong>in</strong> optimization method<br />

<strong>Recent</strong> <strong>developments</strong> <strong>in</strong> <strong>the</strong> <strong>Metamodel</strong> <strong>of</strong> <strong>Optimal</strong> Prognosis<br />

Thomas Most & Johannes Will<br />

18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!