Robust Design - Dynardo GmbH

Robust Design - Dynardo GmbH Robust Design - Dynardo GmbH

12.01.2013 Views

DYNARDO • © Dynardo GmbH 2012 Robustness & Reliability Analysis 1

DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

<strong>Robust</strong>ness & Reliability Analysis<br />

1


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

<strong>Robust</strong> <strong>Design</strong> Optimization<br />

<strong>Robust</strong> <strong>Design</strong><br />

Variance based<br />

<strong>Robust</strong>ness Evaluation<br />

Probability based<br />

<strong>Robust</strong>ness Evaluation,<br />

(Reliability analysis)<br />

Optimization<br />

Sensitivity Study<br />

CAE process (FEM, CFD, MBD, Excel, Matlab, etc.)<br />

<strong>Robust</strong> <strong>Design</strong> Optimization Methodology<br />

Start<br />

Single & Multi objective<br />

(Pareto) optimization<br />

2


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

How to define <strong>Robust</strong>ness of a <strong>Design</strong><br />

• Intuitively: The performance of a robust design is largely<br />

unaffected by random perturbations<br />

• Variance indicator: The coefficient of variation (CV)<br />

of the objective function and/or constraint values is smaller than<br />

the CV of the input variables<br />

• Sigma level: The interval mean+/- sigma level does not reach an<br />

undesired performance<br />

(e.g. design for six-sigma)<br />

• Probability indicator: The probability of reaching undesired<br />

performance is smaller than an acceptable value<br />

3


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

<strong>Robust</strong>ness Evaluation / Reliability Analysis<br />

• Variance-based robustness evaluation<br />

measure product serviceability<br />

– Safety and reliability for 1 & 2 (3)<br />

Sigma levels and identifies the most<br />

sensitive stochastic variables<br />

– Possible with high number of<br />

stochastic variables<br />

• Probability-based robustness evaluation<br />

(reliability analysis) measure product<br />

serviceability<br />

– Safety and reliability for high<br />

reliability levels (3,4,5,6-Sigma) with<br />

small number of variables<br />

– Possible with a limited number of<br />

stochastic variables<br />

4


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Definition of Uncertainties<br />

5


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Uncertainties and Tolerances<br />

• <strong>Design</strong> variables<br />

• Material, geometry, loads,<br />

constrains,…<br />

• Manufacturing<br />

• Operating processes (misuse)<br />

• Resulting from Deterioration<br />

• …<br />

Property SD/Mean<br />

%<br />

Metallic materiales, yield 15<br />

Carbon fiber rupture 17<br />

Metallic shells, buckling<br />

strength<br />

6<br />

14<br />

Bond insert, axial load 12<br />

Honeycomb, tension 16<br />

Honeycomb, shear, compression 10<br />

Honeycomb, face wrinkling 8<br />

Launch vehicle , thrust 5<br />

Transient loads 50<br />

Thermal loads 7.5<br />

Deployment shock 10<br />

Acoustic loads 40<br />

Vibration loads 20<br />

Klein, Schueller et.al. Probabilistic Approach to Structural Factors of Safety in Aerospace.<br />

Proc. CNES Spacecraft Structures and Mechanical Testing Conf., Paris 1994


DYNARDO • ECCOMAS 2012 congress• © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Definition of Uncertainties<br />

Translate know how about uncertainties into proper scatter definition<br />

Distribution functions define<br />

variable scatter<br />

Correlation is an important<br />

characteristic of stochastic<br />

variables.<br />

Yield stress<br />

Tensile strength<br />

Correlation of single uncertain values<br />

spatial correlated<br />

thickness distribution<br />

7


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

<strong>Design</strong> “single” scatter shapes<br />

• Use of CAD-parameter or mesh morphing functions to<br />

design “single” scatter shapes<br />

Measured ed imperf imperfection modelled imperfection<br />

Imperfection of cylindricity of truck wheel component<br />

by courtesy of<br />

Suchanek, J.; Will, J.: Stochastik analysis as a method to evaluate the robustness of light<br />

truck wheel pack; Proceedings WOSD 6.0, 2009, Weimar, Germany, www.dynardo.de]<br />

8


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Random Field Parametric<br />

• Introduction of scatter of spatially correlated scatters need parametric of<br />

scatter shapes using random field theory.<br />

The correlation function represents the<br />

measure of “waviness” of random fields.<br />

The infinite correlation length reduced the<br />

random field to a simple random variable.<br />

Usually, there exist multiple scatter shapes<br />

representing different scatter sources.<br />

9


DYNARDO • RDO forming simulation • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Use forming simulation to generate scatter fields<br />

4. Mapping to crash mesh<br />

3. Generation of n-imperfect formed<br />

parts using scatter field parametric<br />

2. Identification of most important<br />

scatter fields for scattering forming<br />

result values (thickness,<br />

hardening)<br />

5. Run <strong>Robust</strong>ness Evaluation of<br />

assembly including scatter from forming<br />

1. Running <strong>Robust</strong>ness<br />

evaluation of forming simulation<br />

10


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Use measurements to generate Random Fields<br />

3. Identification of most<br />

important random fields for<br />

measured quantity (geometry)<br />

4. Generate imperfect geometries using<br />

Random Field parametric<br />

2. Trimming of initial FE-mesh regarding<br />

measurement or realization<br />

5. Run <strong>Robust</strong>ness Evaluation to identify<br />

the most sensitive random fields<br />

•<br />

•<br />

• •<br />

•<br />

•<br />

•<br />

••<br />

•<br />

•<br />

•<br />

•<br />

•<br />

1. Multiple Measurements<br />

from Manufacturing<br />

11


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Implementation of Random Field Parametric<br />

Introduction of spatial correlated scatter to CAE-Parameter (geometry,<br />

thickness, plastic astic values)<br />

3. Generation of multiple imperfect<br />

structures using Random Field parametric<br />

2. Generation of scatter shapes using<br />

Random field parametric, quantify scatter<br />

shape importance<br />

4. Running <strong>Robust</strong>ness Evaluation<br />

including Random Field effects<br />

1. Input: process simulation or<br />

measurements<br />

12


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Variance-based <strong>Robust</strong>ness Analysis<br />

13


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Which <strong>Robust</strong>ness do You Mean?<br />

<strong>Robust</strong>ness evaluation due to naturally given scatter<br />

Goal: measurement of variation and correlation<br />

Methodology: variance-based robustness evaluation<br />

Positive side effect of robustness evaluation: The measurement of<br />

prognosis quality of the response variation answer the question - Does<br />

numerical scatter significantly influence the results?<br />

14


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Statistic Measurements<br />

• Evaluation of robustness with statistical<br />

measurements<br />

– Variation analysis (histogram,<br />

coefficient of variation, standard<br />

variation, distribution fit,<br />

probabilities)<br />

– Correlation analysis (linear,<br />

quadratic, nonlinear) including<br />

principal component analysis<br />

– Forecast quality: Evaluation of<br />

Coefficient of Prognosis (CoP)<br />

including coefficients of<br />

determination (CoD)and coefficient<br />

of importance (CoI)<br />

15


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Advanced Statistic Measurements<br />

• Advanced histogram options<br />

– PDF fit (automatic/manual)<br />

– Number of histogram classes<br />

– PDF values ready for optiSLang<br />

input<br />

– Limits with probabilities<br />

– Probabilities with limit<br />

16


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Standardized and Automated Post Processing<br />

Example how the post<br />

processing is<br />

automated for passive<br />

safety at BMW<br />

The maximum from<br />

the time signal was<br />

taken.<br />

17


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

<strong>Robust</strong>ness Evaluation using optiSLang<br />

1) Define the robustness space using<br />

scatter range, distribution and<br />

correlation<br />

5) Identify the most<br />

important scattering<br />

variables<br />

4) Check the CoI/CoP CoI<br />

2) Scan the robustness space by<br />

producing and evaluating n<br />

(100) <strong>Design</strong>s<br />

3) 3) Check the variation interval<br />

18


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

<strong>Robust</strong>ness Evaluation of NVH Performance<br />

Start in 2002, since 2003 used for Production Level<br />

How does body and suspension system scatter influence the NVH<br />

performance?<br />

• Consideration of scatter of body in<br />

white, suspension system<br />

• Prognosis of response value scatter<br />

• Identify correlations due to the input<br />

scatter<br />

• CAE-Solver: NASTRAN<br />

• Up-to-date robustness evaluation of<br />

body in white have 300 .. 600<br />

scattering variables<br />

• Using filter technology to optimize the<br />

number of samples<br />

by courtesy of<br />

Will, J.; Möller, J-St.; Bauer, E.: <strong>Robust</strong>ness evaluations of the NVH comfort using full vehicle models<br />

by means of stochastic analysis, VDI-Berichte Nr.1846, 2004, S.505-527, www.dynardo.de<br />

19


DYNARDO • ECCOMAS 2012 congress• © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

<strong>Robust</strong>ness Evaluation of break systems<br />

Start in 2007, since 2008 used for Production Level<br />

How does material and geometric scatter influence the break noise<br />

performance ?<br />

• Consideration of material<br />

and geometry scatter<br />

• Break noise is a instability<br />

problem<br />

• Identify correlations due to<br />

the input scatter<br />

• CAE-Solver: NASTRAN,<br />

ABAQUS, ANSYS<br />

• Up-to-date robustness<br />

evaluation have 20 ..30<br />

scattering variables<br />

• Integration of geometric<br />

scatter via random fields<br />

1. Define the<br />

Uncertainties<br />

4. Post<br />

processing<br />

2. Simulate random m parameters<br />

p<br />

3. Generate set of random<br />

specimen, replace in FE assembly<br />

to compute<br />

by courtesy of<br />

Will, J.; Nunes, R.: <strong>Robust</strong>ness evaluations of the break system concerning squeal noise<br />

problem, Weimarer Optimierungs- und Stochastiktage 2009, www.dynardo.de<br />

X2<br />

20<br />

X1


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

<strong>Robust</strong>ness Evaluation of Forming Simulations<br />

• Consideration of process<br />

and material scatter<br />

• Determination of process<br />

robustness based on 3-<br />

Sigma-values of quality<br />

criteria<br />

• Projection and<br />

determination of<br />

statistical values on<br />

FE-structure<br />

necessary<br />

CAE-Solver: LS-DYNA,<br />

AUTOFORM and others<br />

Start in 2004 - since 2006 used for production level<br />

1. Variation der Eingangsstreuungen<br />

mittels geeigneter<br />

Samplingverfahren<br />

3. statistische Auswertung<br />

und <strong>Robust</strong>heitsbewertung<br />

Will, J.; Bucher, C.; Ganser, M.; Grossenbacher, K.: Computation and visualization of<br />

statistical measures on Finite Element structures for forming simulations; Proceedings<br />

Weimarer Optimierung- und Stochastiktage 2.0, 2005, Weimar, Germany<br />

2. Simulation inkl.<br />

Mapping<br />

auf einheitliches<br />

Netz<br />

by courtesy of<br />

21


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Why SoS and What is SoS ?<br />

Why: Engineers need to evaluate statistical Das Bild kann zurzeit nicht angezeigt werden. data on the structure to locate<br />

„hot spots“ of variation as well as investigate correlations<br />

What: A post processor for Statistics on finite element Structures<br />

• Visualization of descriptive statistics on the structure<br />

• Visualization of correlations between random input<br />

and structural results<br />

• Visualization of quality performance (QCS)<br />

• Identification of scatter shapes using Random Fields<br />

Key features:<br />

• locale „hot spots“ of variation<br />

• Data reduction and smoothing by mesh coarsening<br />

• Identification of relevant scatter shapes<br />

• Vizualisation statistics of eroded (failed) elements<br />

22


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Statistical post-processing on FE-meshes<br />

Motivation: - Visualization of statistical measurements<br />

- Identification of hot spots,<br />

- Identification of correlation structure (random fields)<br />

1. Import data<br />

(multiple simulation on runs<br />

or measurements) ments)<br />

3. Export local statistics<br />

and imperfection<br />

amplitudes to<br />

optiSLang for further ther<br />

post-processing<br />

2. Visualize variation, v correlation,<br />

identify ify random fi field shapes<br />

23


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Statistical post-processing on FE-meshes<br />

SoS is the tool to answer the questions:<br />

Where? Locate hot spots of highest variation and/or extreme values, which<br />

may cause lack of performance or quality.<br />

Why? Find the input parameters which cause scatter of the results, by<br />

analysing correlation/CoD between random inputs and spatially distributed<br />

results, export to optiSLang p g for MoP/CoP / analysis. y<br />

24


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

SoS application crash simulation<br />

• Stringer in a car body subject to crash simulation<br />

• 55 random inputs: sheet thickness and material parameters (also of<br />

other parts), load parameters (velocity, barrier angle etc.)<br />

• Observed result: remaining effective plastic strain<br />

[Bayer, V.; Will, J.: Random Fields in <strong>Robust</strong>ness and Reliability Assessment of Structural Parts.<br />

SIMVEC, Verein Deutscher Ingenieure VDI, Baden-Baden 2010.]<br />

25


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

SoS application crash simulation<br />

• Analysis of a car structure subject to<br />

random crash load case<br />

• Decomposition of plastic strain<br />

random field<br />

• Analysis of largest influence by<br />

MoP/CoP in optiSLang<br />

[Bayer, V.; Will, J.: Random Fields in <strong>Robust</strong>ness and Reliability Assessment of Structural Parts.<br />

SIMVEC, Verein Deutscher Ingenieure VDI, Baden-Baden 2010.]<br />

26


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

SoS - Eroding elements<br />

General eroding information.<br />

Green area: no elements eroded.<br />

Red area: there were eroded elements.<br />

Eroding percent plot shows the<br />

percentage of eroded elements.<br />

27


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

SoS – Validated Global and Local Statistics<br />

Variation, mean value, correlation, Histogram, linear & quadratic<br />

QCS using SoS on FE-structure correlation, CoD, CoI, CoP and<br />

Anthill plots using optiSLang at local<br />

nodal or element values<br />

Selection of nodal/element results in<br />

SoS and export to optiSLang *.bin<br />

CoD linear base<br />

Correlation<br />

R-value<br />

Cotrrelation<br />

Y-tolerance<br />

28


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

SoS - Applications<br />

- use SoS for robustness evaluation of forming processes<br />

- use SoS for visualization and hot spot investigation at robustness<br />

evaluations in crashworthiness or drop test applications<br />

- use SoS for the identification of random fields from simulation or<br />

measurements<br />

by courtesy of<br />

29


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Standardized and Automated Post Processing<br />

Productive Level needs standardized and automated post processing!<br />

1. Check variation of<br />

plasticity, failure,<br />

intrusions.<br />

3. Summarize variation<br />

and correlation<br />

2. Identify the beginning of the<br />

phenomena in time and use SoS to<br />

identify the source of variation<br />

30


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Summary SoS – Statistic on Structure<br />

The post processor for Statistics on finite element Structures<br />

- Statistic Measurements<br />

- Single <strong>Design</strong>s<br />

- Differences between <strong>Design</strong>s<br />

- Variation interval<br />

- Minimum/Maximum<br />

- Mean Value<br />

- Standard deviation<br />

- Coefficient of variation<br />

- Quantile (± ����<br />

- Correlation & CoD<br />

- Linear correlation & CoD<br />

- At nodal/element level<br />

- Process quality criteria Cp, Cpk<br />

process indices<br />

- Random field generation<br />

- Scatter shape extraction and<br />

visualisation<br />

31


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

<strong>Robust</strong>ness Evaluation of Passive Safety<br />

• Consideration of scatter of material<br />

and load parameters as well as test<br />

conditions<br />

• Prognosis of response value<br />

variation = is the design robust!<br />

• Identify correlations due to the input<br />

scatter<br />

• Quantify the amount of numerical<br />

noise<br />

• CAE-Solver: MADYMO, ABAQUS<br />

Start in 2004, since 2005 used<br />

for productive level<br />

Goal: Ensuring Consumer<br />

Ratings and Regulations &<br />

Improving the <strong>Robust</strong>ness of a<br />

System<br />

Will, J.; Baldauf, H.: Integration of Computational <strong>Robust</strong>ness Evaluations in Virtual<br />

Dimensioning of Passive Passenger Safety at the BMW AG , VDI-Berichte Nr. 1976, 2006,<br />

Seite 851-873, www.dynardo.de<br />

by courtesy of<br />

32


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

<strong>Robust</strong>ness Evaluation Crashworthiness<br />

Start in 2004 – since 2007 use for Production Level<br />

• Consideration of scatter of thickness,<br />

strength, geometry, friction and test<br />

condition<br />

• CAE-Solver: LS-DYNA, Abaqus<br />

• Prognosis of intrusions, failure and<br />

plastic behavior<br />

• Identify Coefficient of Prognosis and<br />

nonlinear correlations<br />

• Check model robustness<br />

• 100 .. 200 scattering variables<br />

• Introduction of forming scatter via<br />

Random Fields<br />

by courtesy of the Daimler AG<br />

In comparison to robustness evaluations for NVH, forming or passive<br />

safety, crashworthiness has very high demands on methodology and<br />

software!<br />

by courtesy of<br />

Will, J.; Frank, T.: <strong>Robust</strong>ness Evaluation of crashworthiness load cases at Daimler AG;<br />

Proceedings Weimarer Optimierung- und Stochastiktage 5.0, 2008, Weimar, Germany,<br />

www.dynardo.de<br />

33


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Summary <strong>Robust</strong>ness Evaluation<br />

• optiSLang + SoS have completed the necessary methodology to run<br />

robustness evaluation for NVH, passive safety, forming simulation or<br />

crashworthiness<br />

Success Key:<br />

• Necessary distribution types and correlation definitions<br />

available<br />

• Optimized LHS sampling<br />

• Reliable measurements of variation, correlation and determination<br />

including filter technology<br />

• Projection of statistic onto the FE-structure<br />

Main customer benefit:<br />

• Identification of problems early in the virtual prototyping stage<br />

• Measure, verify and finally significantly improve the modeling quality<br />

(reduce numerical scatter and modeling errors)<br />

34


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

What is necessary for successful implementation?<br />

1. Introduction of realistic<br />

scatter definitions<br />

� Distribution function<br />

� Correlations<br />

� Random fields<br />

2. Using of reliable stochastic methodology<br />

methodology<br />

� Variance-based robustness<br />

evaluation using optimized LHS<br />

3. Development of reliable robustness<br />

measurements<br />

� Standardized post processing<br />

� Significance filter<br />

� Reliable variation and correlation<br />

measurements<br />

Acceptance of method/result documentation/communication!<br />

35


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

<strong>Robust</strong>ness and Stability of the Model<br />

Which quantity of „numerical noise“ is acceptable?<br />

� Quantification via coefficients of prognosis (CoP)<br />

� Estimation of numerical noise: 100% - CoP<br />

Experience in passive safety, CFD or<br />

crashworthiness tells that result values<br />

with lower CoP than 80% show:<br />

- High amount of numerical noise<br />

resulting from numerical approximation<br />

method (meshing, material, contact,..)<br />

- Problems of result extractions<br />

- Physically instable behavior<br />

36


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

<strong>Robust</strong>ness Insurance Crash Loading<br />

Response CoV<br />

CoD<br />

lin[%]<br />

CoD lin<br />

adj [%]<br />

CoD<br />

quad [%]<br />

CoD<br />

quad adj<br />

[%]<br />

max_int_energy 0.036 99.0 99.0 100.0 99.0<br />

max_hourglass_energy 0.066 91.0 87.0 98.0 94.0<br />

x_1129403_1129404 0.217 54.0 31.0 93.0 79.0<br />

x_4000558_1129403 1.383 86.0 79.0 93.0 80.0<br />

x_4139132 0.123 89.0 83.0 97.0 91.0<br />

x_4144932 0.131 88.0 82.0 97.0 90.0<br />

y_4139132 0.224 92.0 89.0 98.0 93.0<br />

y_4144932 0.252 95.0 93.0 98.0 95.0<br />

z_4139132 0.348 33.0 0.015 90.0 71.0<br />

z_4144932 1.035 49.0 24.0 91.0 74.0<br />

max_sec29_rforce 0.032 87.0 80.0 96.0 88.0<br />

max_sec29_xforce 0.032 86.0 78.0 96.0 87.0<br />

max_sec33_rforce 0.034 89.0 84.0 97.0 90.0<br />

max_sec33_xforce 0.034 90.0 84.0 97.0 90.0<br />

max_plast 0.211 88.0 82.0 95.0 86.0<br />

summ_plast 0.26 91.0 87.0 97.0 92.0<br />

In qualified FE-models numerical scatter is not<br />

dominating important response values!<br />

Model guidelines, model verification and robustness<br />

evaluation ensure a reasonable model quality.<br />

LS-DYNA low speed structural<br />

crash case<br />

<strong>Robust</strong>ness evaluation against<br />

structure and loading scatter<br />

show coefficients between 71<br />

and 99 %<br />

37


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

<strong>Robust</strong>ness check of optimized designs<br />

• With the availability of parametric modeling environments like<br />

ANSYS workbench an robustness check becomes very easy!<br />

• Menck see hammer for oil and gas exploration (up to 400m deep)<br />

• <strong>Robust</strong>ness evaluation against tolerances, material scatter and working<br />

and environmental conditions<br />

• 60 scattering parameter<br />

<strong>Design</strong> Evaluations: 100<br />

Process chain: ProE-ANSYS workbench- optiSLang<br />

38


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

<strong>Robust</strong>ness evaluation as early as possible<br />

Goal: Tolerance check before any<br />

hardware exist!<br />

Classical tolerance analysis tend to be very<br />

conservative<br />

<strong>Robust</strong>ness evaluation against production<br />

tolerances and material scatter (43<br />

scattering parameter) shows:<br />

- Press fit scatter is o.k.<br />

- only single tolerances are important (high<br />

cost saving potentials)<br />

Production shows good agreement!<br />

<strong>Design</strong> Evaluations: 150<br />

solver:<br />

ANSYS/optiSLang<br />

by courtesy of<br />

Suchanek, J.; Will, J.: Stochastik analysis as a method to evaluate the robustness of light<br />

truck wheel pack; Proceedings WOSD 6.0, 2009, Weimar, Germany, www.dynardo.de<br />

39


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Reliability Analysis<br />

40


© <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Reliability analysis<br />

• Limit state function g(x) divides random variable space X<br />

in safe domain g(x)>0 and failure domain g(x) ��<br />

• Multiple failure criteria (limit state functions) are possible<br />

• Failure probability is the probability that at least one failure criteria is<br />

violated (at least one limit state function is negative)<br />

• Integration of joint probability density function over failure domain<br />

41


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Definition of limit state functions<br />

<strong>Dynardo</strong> • optiSlang Seminar<br />

Example damped oscillator<br />

42


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Reliability Analysis Algorithms<br />

Gradient-based<br />

algorithms = First<br />

Order Reliability<br />

algorithm (FORM)<br />

ISPUD Importance<br />

Sampling using <strong>Design</strong><br />

Point<br />

Adaptive Response<br />

Surface Method<br />

Monte Carlo Sampling Latin Hypercube Sampling Directional Sampling<br />

X2<br />

X1<br />

43


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

How choosing the right algorithm?<br />

<strong>Robust</strong>ness Analysis provide the<br />

knowledge to choose the<br />

appropriate algorithm<br />

<strong>Robust</strong>ness & Reliability Algorithms<br />

44


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Application Example ARSM for Reliability<br />

• Fatigue life analysis of Pinion shaft<br />

• Random variables<br />

• Surface roughness<br />

• Boundary residual stress<br />

• Prestress of the shaft nut<br />

• Target: calculate the probability of<br />

failure<br />

• Probability of Failure:<br />

• Prestress I: P(f)=2.3 10 -4 (230<br />

ppm)<br />

• Prestress II: P(f)=1.3 10 -7 (0.13<br />

ppm)<br />

by courtesy of<br />

Solver: Permas<br />

Method: ARSM<br />

75 Solver evaluations<br />

sigma = +/-5kN<br />

sigma = +/-10kN<br />

45


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Probability Assessment of Railways<br />

• Goal: investigate the crosswind stability of Railway<br />

systems<br />

• Sensitivity analysis against stochastic loading<br />

parameters followed by probability analysis<br />

• Random variables<br />

• crosswind amplitude, duration<br />

• aerodynamic coefficients<br />

Solver: ADAMS + Matlab<br />

Methods: LHS, FORM, ISPUD<br />

Proppe, C.Wetzel, C.; Probabilitic Assessment of the Crossswind Stability of Railway<br />

Systems; Proceedings Weimarer Optimierung- und Stochastiktage 4.0, 2007, Weimar,<br />

Germany, www.dynardo.de<br />

46


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

<strong>Robust</strong> <strong>Design</strong> Optimization<br />

47


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

<strong>Design</strong> for Six Sigma<br />

• Six Sigma is a concept to optimize the manufacturing processes such<br />

that automatically parts conforming to six sigma quality are<br />

produced<br />

• <strong>Design</strong> for Six Sigma is a concept to optimize the design such that<br />

the parts conform to six sigma quality, i.e. quality and reliability are<br />

explicit optimization goals<br />

• Because not only 6 Sigma values have to be used as measurement<br />

for a robust design, we use the more general classification <strong>Robust</strong><br />

<strong>Design</strong> Optimization<br />

48


© <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

© <strong>Dynardo</strong> <strong>GmbH</strong><br />

Sigma level vs. failure probability<br />

• The sigma level can be used to calculate the probability of exceeding<br />

a certain response value<br />

• Since the distribution type is often unknown, this estimate may be<br />

very inaccurate for small probabilities<br />

• The sigma level deals with single limit values, whereas the failure<br />

probability quantifies the event, that any of several limits is exceeded<br />

� Reliability analysis should be applied to proof the required safety level<br />

Distribution Required sigma level (CV=20%)<br />

p F = 10 -2 p F = 10 -3 p F = 10 -6<br />

Normal 2.32 3.09 4.75<br />

Log-normal 2.77 4.04 7.57<br />

Rayleigh 2.72 3.76 6.11<br />

Weibull 2.03 2.54 3.49<br />

49


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

<strong>Robust</strong> <strong>Design</strong> Optimization<br />

<strong>Robust</strong> <strong>Design</strong><br />

Variance based<br />

<strong>Robust</strong>ness Evaluation<br />

Probability based<br />

<strong>Robust</strong>ness Evaluation,<br />

(Reliability analysis)<br />

Optimization<br />

Sensitivity Study<br />

CAE process (FEM, CFD, MBD, Excel, Matlab, etc.)<br />

<strong>Robust</strong> <strong>Design</strong> Optimization Methodology<br />

Start<br />

Single & Multi objective<br />

(Pareto) optimization<br />

50


<strong>Robust</strong> <strong>Design</strong><br />

<strong>Robust</strong> <strong>Design</strong> Optimization (RDO) optimize the design performance<br />

with consideration of scatter of design (optimization) variables as<br />

well as other tolerances or uncertainties.<br />

As a consequence of uncertainties the location of the optima as well as<br />

the contour lines of constraints scatters.<br />

To proof <strong>Robust</strong> <strong>Design</strong>s safety distances are quantified with variance<br />

or probability measurements using stochastic analysis.<br />

51


Methods for <strong>Robust</strong> <strong>Design</strong> Optimization<br />

Variance-based RDO<br />

• Safety margins of all critical responses<br />

are larger than a specified sigma level<br />

(e.g. <strong>Design</strong> for Six Sigma)<br />

Reliability-based RDO<br />

• Failure probability with respect to given<br />

limit states is smaller as required value<br />

Taguchi-based RDO<br />

• Taguchi loss functions<br />

• Modified objective function<br />

52


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

<strong>Robust</strong> <strong>Design</strong> Optimization - RDO<br />

<strong>Robust</strong> <strong>Design</strong> Optimization combines optimization and <strong>Robust</strong>ness<br />

Evaluation. From our experience it is often necessary to investigate both<br />

domains separately to be able to formulate a RDO problem. optiSLang<br />

offers you either iterative or automatic RDO flows.<br />

<strong>Robust</strong>ness <strong>Robust</strong>ne evaluation<br />

SSensitivity it analysis<br />

Define safety factors<br />

<strong>Robust</strong> design optimization<br />

<strong>Robust</strong>ness proof!<br />

53


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Iterative RDO Application Connector<br />

2) The DX Six Sigma design was checked in<br />

the space of 36 scattering variables using<br />

optiSLang <strong>Robust</strong>ness evaluation. Some<br />

Criteria show high failure probabilities!<br />

1) From the 31 optimization<br />

parameter the most effective<br />

one are selected with<br />

optiSLang Sensitivity<br />

analysis.<br />

3) From optiSLang <strong>Robust</strong>ness<br />

Evaluation safety margins are<br />

derived.<br />

4) Three steps of optimization<br />

using optiSLang ARSM and EA<br />

optimizer optimizer improve the design to<br />

an optiSLang Six sigma design.<br />

5) Reliability proof using ARSM<br />

to account the failure probability<br />

did proof six sigma quality.<br />

Start: Optimization using 5 Parameter using DX Six Sigma, then customer<br />

asked: How save is the design?<br />

by courtesy of<br />

54


<strong>Robust</strong> <strong>Design</strong> Optimization of a rubber seal<br />

Using <strong>Design</strong>Modeler parametric<br />

was rebuild with 11 Parameter.<br />

Using optiSLang sensitivity<br />

analysis 7 effective parameter<br />

are identified. Using ARSM<br />

design was optimized to have<br />

minimal volume and sufficient<br />

pressure at all contact points.<br />

Initial design<br />

Including Uncertainty of<br />

loading and material 6<br />

Sigma quality was violated.<br />

Therefore iterative RDO<br />

increasing safety margins<br />

was performed to reach 3<br />

Sigma design level.<br />

<strong>Robust</strong> design<br />

Using optiSLang Reliability<br />

Analysis 3 sigma quality was<br />

proven.<br />

Customer started optimization with two parameter and found minimal improvement<br />

potential.<br />

55


DYNARDO • NAFEMS conference 2012 • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Summary<br />

• Stochastic analysis needs a balance between input definitions,<br />

stochastic analysis method and post processing<br />

• Use specific/concrete robustness/reliability measurements<br />

• RDO using one global response surface approximation for<br />

optimization and robustness space usually underrepresents the<br />

influence of scattering variables<br />

• Because all RDO strategies will try to minimize solver runs for<br />

robustness measures, a final proof of robustness/reliability is<br />

mandatory<br />

• Carefully translation and introduction of material scatter is crucial<br />

• Start with robustness evaluation of start/optimal candidate design<br />

• Continue with iterative RDO approach using safety distances<br />

• If safety distances in optimization space vary significant automatic<br />

RDO is necessary<br />

56


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Part 7<br />

Applications<br />

57


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Application Crashworthiness<br />

AZT Insurance Crash Load Case<br />

• Scatter definition (40..60 scattering<br />

parameter)<br />

– Velocity, barrier angle and position<br />

– Friction (Road to Car, Car to<br />

Barrier)<br />

– Yield strength<br />

– Spatially correlated sheet metal<br />

thickness<br />

• Main result: Prognosis of plastic<br />

behavior<br />

• CAE-Solver: LS-DYNA<br />

Deterministic analysis show no problems with an AZT load case. Tests<br />

frequently show plastic phenomena which Daimler would like to minimize.<br />

Motivation for the robustness evaluation was to find the test phenomena<br />

in the scatter bands of robustness evaluations, to understand the sources<br />

and to improve the robustness of the design.<br />

58


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Did You Include All Important Scatter?<br />

Scatter of uniform sheet<br />

thickness thickness (cov=0.05),<br />

yield strength, friction, test est<br />

conditions<br />

We could not find<br />

or explain the test<br />

results!<br />

Introduction of sheet metal<br />

thickness scatter per part<br />

- 100 LS-DYNA simulation<br />

- Extraction via LS-PREPOST<br />

SoS - post processing<br />

Statistics_on_Structure<br />

59


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Definition of Scatter is the Essential Input!<br />

Which degree of forming scatter discretization is becomes necessary?<br />

Level 1 - No distribution information: - increase uniform coil thickness<br />

scatter cov=0.02 to cov=0.03..0.05<br />

Level 2 - Use deterministic distribution information: - use thickness<br />

reduction shape from deterministic forming simulation and superpose coil<br />

(cov=0.02) and forming process scatter (cov=0.01..0.03)<br />

60


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Did You Include All Important Scatter?<br />

Scatter of sheet<br />

thickness, forming<br />

process scatter<br />

covmax=0.05<br />

yield strength, friction,<br />

n,<br />

test conditions<br />

We could find and<br />

explain the test results!<br />

+<br />

Introduction of spatial correlated<br />

forming process scatter<br />

- 100 LS-DYNA simulation<br />

- Extraction via LS-PREPOST<br />

SoS<br />

- post prozessing<br />

Statistics_on_Structure<br />

61


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Iterative <strong>Robust</strong> <strong>Design</strong> Optimization<br />

• <strong>Design</strong> optimization task<br />

• 4 continuous, 2 binary design<br />

variables<br />

• Single objective formulations<br />

(maximal removal power)<br />

• 2 optimization restrictions<br />

• <strong>Robust</strong>ness of performance should<br />

be preserved<br />

by courtesy of<br />

Könning, M; Plotzitza, A.: Optimierung und <strong>Robust</strong>heitsbewertung mit optiSLang bei der<br />

Robert Bosch <strong>GmbH</strong>, Proceeding Weimarer Optimierung- und Stochastiktage 1.0, 2004,<br />

www.dynardo.de<br />

62


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Iterative <strong>Robust</strong> <strong>Design</strong> Optimization<br />

• With help of the sensitivity analysis,<br />

the optimization task was<br />

formulated.<br />

• With help of genetic algorithms, the<br />

optimization was performed.<br />

• With robustness evaluation,<br />

robustness and reliability were<br />

checked.<br />

• The performance was increased by<br />

25 %!<br />

• The results of the digital product<br />

development were proven by<br />

testing!<br />

63


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

RDO Centrifugal Compressor<br />

Parameterization<br />

Parametric geometry definition using ANSYS BladeModeler<br />

(17 geometric parameter)<br />

Model completion and meshing using ANSYS Workbench<br />

by courtesy of<br />

64


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

RDO Centrifugal Compressor<br />

Fluid Structure Interaction (FSI) coupling<br />

Parametric fluid simulation setup using ANSYS CFX<br />

Parametric mechanical setup using ANSYS Workbench<br />

by courtesy of<br />

65


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

RDO Centrifugal Compressor<br />

Optimization goal: increase efficiency<br />

Constraints: 2 pressure ratio’s, 66 frequency constraints, <strong>Robust</strong>ness<br />

Initial SA ARSM I EA I ARSM II ARSM III<br />

Total Pressure Ratio 1.3456 1.3497 1.3479 1.3485 1.356 1.351<br />

Efficiency [%] 86.72 89.15 90.62 90.67 90.76 90.73<br />

#<strong>Design</strong>s - 100 105 84 62 40<br />

by courtesy of<br />

Input Parameter 21<br />

Output Parameter 43<br />

Constraints 68<br />

Tolerance<br />

limit<br />

1.34


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

RDO Centrifugal Compressor<br />

<strong>Robust</strong> <strong>Design</strong> Optimization with respect to 21 design parameters and 20<br />

random geometry parameters, including manufacturing tolerances. <strong>Robust</strong><br />

<strong>Design</strong> was reached after 400+250=650 design evaluations consuming.<br />

<strong>Robust</strong>ness evaluation<br />

Sensi + first optimization step<br />

by courtesy of<br />

RDO optimization<br />

<strong>Robust</strong>ness proof using Reliability<br />

Analysis<br />

67


<strong>Robust</strong> <strong>Design</strong> Optimization of a rubber seal<br />

Parametric model and Sensitivity Study<br />

• Customer investigated Seal optimization using only 2 parameter<br />

• Using <strong>Design</strong>Modeler parametric was rebuild with 11 parameter<br />

Initial design<br />

Sensitivity study<br />

• Using optiSLang sensitivity approach 7 effective optimization<br />

parameter are identified<br />

68


<strong>Robust</strong> <strong>Design</strong> Optimization of a rubber seal<br />

Deterministic optimization<br />

Using optiSLang ARSM algorithm<br />

design was optimized to have minimal<br />

volume and sufficient pressure at all<br />

contact points.<br />

Initial design<br />

Including Uncertainty of loading and<br />

material 6 Sigma quality was violated.<br />

Therefore iterative RDO increasing safety<br />

margins of contact forces was performed<br />

to reach 3 Sigma design level.<br />

Optimal design<br />

69


<strong>Robust</strong> <strong>Design</strong> Optimization of a rubber seal<br />

Iterative <strong>Robust</strong> <strong>Design</strong> Optimization<br />

• Required sigma level = 3 sigma<br />

• 4 iterations of sequential optimization and robustness analysis<br />

• Deterministic optimum (140 design evaluations): 14% failure<br />

• <strong>Robust</strong> optimum (540 design evaluations): 0.3% failure<br />

• Young’s modulus is most important scattering variable<br />

70


<strong>Robust</strong> <strong>Design</strong> Optimization of a rubber seal<br />

Iterative RDO – Reliability proof<br />

• 7 geometry + 2 material =9 important parameters detected<br />

from robustness analysis<br />

Directional Sampling on ARSM<br />

• FORM failed<br />

• ARSM: 116 design evaluations<br />

• Failure probability<br />

= 0.07%, 3.2 sigma<br />

71


RDO on global response surface<br />

• Approximation of model responses in<br />

mixed optimization/stochastic space<br />

• Simultaneous RDO is performed on<br />

a global response surface<br />

• Applicable to variance-, reliabilityand<br />

Taguchi-based RDO<br />

• Approximation quality significantly<br />

influences RDO results<br />

� Final robustness/reliability proof<br />

is required<br />

• Pure stochastic variables have small<br />

influence compared to design variables<br />

� Important local effects in the stochastic<br />

space may be not represented<br />

72


<strong>Robust</strong> <strong>Design</strong> Optimization of a rubber seal<br />

RDO on global response surface<br />

• Optimization variables are varied in optimization space<br />

• Pure stochastic variables are varied +/- 4 sigma<br />

• 200 LHS samples generated with uniform distribution<br />

• Approximation quality between 93% and 97%<br />

• Young’s modulus is in RDO space<br />

minor important but in robustness<br />

space most important<br />

� Pure stochastic variables<br />

are unimportant<br />

� Poor local approximation quality<br />

for robustness analysis<br />

73


<strong>Robust</strong> <strong>Design</strong> Optimization of a rubber seal<br />

RDO on global response surface<br />

• Evolutionary algorithm (444 designs) + 50 <strong>Robust</strong>ness samples for<br />

each optimization design<br />

• Mean values and standard deviation of contact pressures as<br />

robustness measures<br />

• RDO-Optimization with constraints for all contacts: 3.5 sigma<br />

74


<strong>Robust</strong> <strong>Design</strong> Optimization of a rubber seal<br />

RDO on global response surface – <strong>Robust</strong>ness proof<br />

Small approximation error Large approximation error<br />

Failure probability:<br />

• Upper left contact pressure 2.2% (2.0 sigma)<br />

• Lower left contact pressure 1.4% (2.2 Sigma)<br />

� Optimal design is not robust!<br />

75


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Iterative RDO Application Connector<br />

Goal: high safety level of connector<br />

by courtesy of<br />

10 contact forces have to be checked,<br />

failure may happen if N< 1 N<br />

The failure probability of single contact should<br />

be lower than 10%<br />

The failure probability of 5 contacts should be<br />

less than 1 out 4.300.000. (6 Sigma<br />

<strong>Design</strong>)<br />

� Status quo: pre optimized design<br />

using ANSYS DX and 5 optimization<br />

parameter<br />

Question:<br />

how optimal and robust is the design<br />

Solver: ANSYS Workbench<br />

76


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Step 1 - Sensitivity analysis<br />

The Sensitivity Analysis id done in the design<br />

space of 31 potential CAD (ProE) design<br />

parameters<br />

by courtesy of<br />

Identification of n=15<br />

most important<br />

design parameters<br />

77


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Step 2 - <strong>Robust</strong>ness analysis<br />

The failure probability of<br />

single contact failure<br />

is checked with<br />

<strong>Robust</strong>ness<br />

evaluation.<br />

The <strong>Robust</strong>ness Analysis<br />

is done in the<br />

<strong>Robust</strong>ness space of<br />

36 CAD tolerances<br />

• Global variancebased<br />

robustness<br />

analysis using<br />

Advanced Latin<br />

hypercube sampling<br />

with 90 design<br />

evaluations<br />

by courtesy of<br />

Performance<br />

critical contact<br />

force F3o_v<br />

With failure<br />

probability of<br />

89 %!<br />

78


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Step 3 - Optimization<br />

• n=15 most important CAD design<br />

parameters<br />

• Objective: minimal failure distance<br />

of every contact<br />

by courtesy of<br />

Step 1: ARSM<br />

- Stagnation after 5 Iterations (126<br />

<strong>Design</strong> evaluations), contact force<br />

F3o_v still violating criteria<br />

Step 2: introducing of additions constraints<br />

Restart of Evolutionary Optimization using<br />

best <strong>Design</strong>_ARSM, stop after 390<br />

<strong>Design</strong> evaluations with feasible<br />

design, but now other contact forces<br />

become critical<br />

Step 3: modifying the design space range<br />

and introducing additional constraints<br />

Restart using ARSM with best <strong>Design</strong>_EA,<br />

stop after 172 <strong>Design</strong> evaluations<br />

79


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Step 4 <strong>Robust</strong>ness Analysis • 36 scattering CAD tolerances<br />

by courtesy of<br />

• Global variance-based robustness<br />

analysis using Advanced Latin<br />

hypercube sampling with N=50 design<br />

Failure probabilities of two forces higher<br />

than 1%<br />

Performance critical contact force F3o_v<br />

with failure probability 9 %!<br />

Contact force F2o_h with failure<br />

probability 1 %!<br />

80


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Step 5 - Reliability analysis<br />

Identification of n=12 most important random parameters using coefficients of<br />

importance<br />

Defining the limit state condition for violation more than 50% of the contact<br />

forces are lesser than 1N<br />

by courtesy of<br />

Reliability analysis using ARSM with<br />

N=137 D-optimal design of<br />

experiment<br />

Adaptive sampling on the MLS<br />

surrogate model without samples<br />

in the unsafe domain<br />

Probability of failure is near zero,<br />

assumption: normal distributed<br />

random parameters<br />

Optimized design is an Six Sigma<br />

<strong>Design</strong><br />

81


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Results<br />

� Variance and probability-based robust design optimization with 31<br />

optimization parameters and 36 scattering parameters<br />

� Increasing the performance critical contact force F3o_v according<br />

failure probability 89% -> 9%<br />

� Failure probabilities of the other contact forces lesser than 1%<br />

� System failure probability (more than 50% of the contact forces are<br />

lesser than 1) is near zero! (Six Sigma <strong>Design</strong>)<br />

� N=950 parallel finite element calculations<br />

� Total calculation time 1 week<br />

by courtesy of<br />

82


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

<strong>Robust</strong>ness Analysis drop test of mobile phone<br />

A robustness evaluation is a so called global variance-based stochastic<br />

analysis which addresses the question how much the response values<br />

scatter under the consideration of input parameter scatter.<br />

• 209 scattering variables (drop position, material (E,<br />

ro, yield), geometry (thickness, radius), environment<br />

(friction)<br />

• 150 Latin Hypercube Samples<br />

Statistical Post Processing include:<br />

• The variation of the responses<br />

• Coefficient of Determination/Importance, checking<br />

linear and non-linear correlation<br />

• Coefficient of Prognosis<br />

• Statistics on Structure for critical part<br />

by courtesy of<br />

83


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Process automation – drop test<br />

Run the robustness<br />

analysis in optiSLang.<br />

209 scattering inputs<br />

by courtesy of<br />

Run ABAQUS which creates *.csv<br />

files containing the results.<br />

150 designs<br />

Run the robusteval script<br />

after the robustness analysis<br />

is finished. All the designs<br />

will be processed and *.rpt<br />

files are created.<br />

Post processing in<br />

optiSLang.<br />

- 36 responses<br />

84


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Post Processing <strong>Robust</strong>ness - drop test<br />

CoD lin<br />

adj<br />

CoD quad<br />

adj<br />

CoD lin<br />

Adj<br />

Spearman<br />

• The Histogram shows a variation between 45.35<br />

and 121.1<br />

• Probability of violating the limit is 9.33 %<br />

(1-0.9067=0.0933)<br />

CoP<br />

48 48 46 66<br />

• Maximum Cop is 66 %, Inputs ANGLE_Y and<br />

ANLGE_X have the most significant influence<br />

by courtesy of<br />

• Reference<br />

• Maximum<br />

85


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Statistics on Structure (SoS)<br />

• Based on <strong>Robust</strong>ness analysis results (optiSLang)<br />

• Visualization of statistics (Maxima, Minima, Mean value, Coefficient of<br />

variation, …) to locate „hot spots“ of variation at the FE Structure<br />

• Benefits:<br />

• Visualization of Min/Max and scatter range on FE Structure<br />

• Visualization of spatial Distribution of Variation and Correlation on FE-<br />

Structure<br />

• Selecting and visualizing important regions and their correlations<br />

We have to select one time<br />

frame for every design<br />

by courtesy of<br />

86


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Combining SoS and optiSLang<br />

• The picture above shows the maximum of S11 (positive - tension)<br />

• In SoS it is possible to select elements at hot spots and generate optiSLang<br />

*.bin file (see black circles)<br />

• Use the result_monotoring in optiSLang to identify local variation and<br />

correlation, The CoP plots below show that ANGLE_X and ANGLE_Y have<br />

strongest strong influence nfluence on S11 2to:Histogram for the to selected check elements<br />

variation<br />

Structure in<br />

ABAQUS viewer<br />

Element El sets – all glass element sets<br />

by courtesy of<br />

87


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Part 8<br />

Costumers<br />

88


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

Our Costumers agree<br />

89


DYNARDO • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

What‘s the Difference to Others?<br />

Methodology<br />

• Sensitivity analysis and optimization for large (number of variables)<br />

non-linear problems<br />

• COP/MOP to minimize the number of solver calls<br />

• Optimization with robust defaults (ARSM, EA,GA,PARETO)<br />

• Complete methodology suite to run robustness evaluation, reliability<br />

analysis and robust design optimization<br />

Key applications<br />

• Optimization with large number of parameter (>10) having non<br />

linear effects, noise, design failure<br />

• Model update and parameter identification using sensitivity study<br />

and optimization<br />

• oS (+SOS) have completed the functionality for robustness<br />

evaluation and reliability analysis and robust design optimization to<br />

be used in production<br />

We do not just offer a tool, we deliver a process.<br />

We are the ones who implemented robustness evaluation at<br />

different industries.<br />

90


WOSD 2012 • © <strong>Dynardo</strong> <strong>GmbH</strong> 2012<br />

optiSLang goes International<br />

DYNARDO, CADFEM (Germany, Austria, Swiss)<br />

SVSFEM (Czech Republic, Slovakia, Hungary)<br />

Pera Global (China, Shanghai)<br />

CADFEM India (India, Hyderabad)<br />

CAE Technology Inc. (Korea, Seoul)<br />

TaeSung S&E Inc. (Korea, Seoul)<br />

CADFEM CIS (Russia, Moscow)<br />

CADFEM US (USA)<br />

Tecosim Japan (Japan, Saitama)<br />

Introduction Weimar Optimization and Stochastic days 2012<br />

91

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!