10.01.2013 Views

QMC Simulations within the DMFT - komet 337

QMC Simulations within the DMFT - komet 337

QMC Simulations within the DMFT - komet 337

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Quantum Monte Carlo (<strong>QMC</strong>) <strong>Simulations</strong><br />

<strong>within</strong> <strong>the</strong> Dynamical Mean-field Theory (<strong>DMFT</strong>)<br />

Nils Blümer<br />

TP6, WA Prof. van Dongen (KOMET<strong>337</strong>)<br />

Outline<br />

Introduction: Hubbard model, <strong>DMFT</strong>, self-energy<br />

General Monte Carlo principles<br />

Hirsch-Fye <strong>QMC</strong> algorithm; error bars<br />

Mott Insulator (1 band): <strong>QMC</strong> vs. ePT and SFT/DIA<br />

LDA+<strong>DMFT</strong>(<strong>QMC</strong>) for La1−xSrxTiO3; MEM<br />

Summary and Preview<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 1


H =<br />

�Ne<br />

i=1<br />

Introduction: Hubbard model, <strong>DMFT</strong><br />

pi 2<br />

2m +<br />

L�<br />

k=1<br />

P k 2<br />

2Mk<br />

+ �<br />

k


H =<br />

�Ne<br />

i=1<br />

Introduction: Hubbard model, <strong>DMFT</strong><br />

pi 2<br />

2m +<br />

L�<br />

k=1<br />

P k 2<br />

2Mk<br />

+ �<br />

k


H =<br />

�Ne<br />

i=1<br />

Introduction: Hubbard model, <strong>DMFT</strong><br />

pi 2<br />

2m +<br />

L�<br />

k=1<br />

P k 2<br />

2Mk<br />

+ �<br />

k


H =<br />

�Ne<br />

i=1<br />

Introduction: Hubbard model, <strong>DMFT</strong><br />

pi 2<br />

2m +<br />

L�<br />

k=1<br />

P k 2<br />

2Mk<br />

+ �<br />

k


H =<br />

�Ne<br />

i=1<br />

Introduction: Hubbard model, <strong>DMFT</strong><br />

pi 2<br />

2m +<br />

L�<br />

k=1<br />

P k 2<br />

2Mk<br />

+ �<br />

k


ˆH = �<br />

(i,j),σ<br />

tij(ĉ †<br />

iσ ĉ jσ<br />

Perturbation <strong>the</strong>ory, e.g.<br />

+ h.c.) + U �<br />

• U → 0: Hartree-Fock (uncorrelated)<br />

i<br />

ˆni↑ˆni↓<br />

• t/U → 0: half filling (n = 1) � Heisenberg model<br />

• T → ∞, n → 0<br />

• ( Vion → 0 � jellium model � LDA)<br />

d = 1: Be<strong>the</strong> ansatz, DMRG<br />

finite clusters: ED, <strong>QMC</strong><br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 3


ˆH = �<br />

(i,j),σ<br />

tij(ĉ †<br />

iσ ĉ jσ<br />

Perturbation <strong>the</strong>ory, e.g.<br />

+ h.c.) + U �<br />

• U → 0: Hartree-Fock (uncorrelated)<br />

i<br />

ˆni↑ˆni↓<br />

• t/U → 0: half filling (n = 1) � Heisenberg model<br />

• T → ∞, n → 0<br />

• ( Vion → 0 � jellium model � LDA)<br />

Dynamical mean-field <strong>the</strong>ory (<strong>DMFT</strong>): local self-energy Σ(k, ω) ≡ Σ(ω)<br />

+ non-perturbative<br />

� valid at MIT<br />

+ dynamical on-site<br />

correlations preserved<br />

+ exact for Z → ∞<br />

d = 1: Be<strong>the</strong> ansatz, DMRG<br />

finite clusters: ED, <strong>QMC</strong><br />

+ in <strong>the</strong>rmodynamic limit d=2: Z = 4 bcc: Z = 8 fcc: Z = 12 <strong>DMFT</strong>: Z = ∞<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 3


Excursus: Green function and self-energy<br />

Noninteracting (1-band) system: dispersion ɛk, density of states ρ(ɛ) = 1<br />

V B<br />

Green function (<strong>within</strong> <strong>DMFT</strong> for µ = 0): Gk(ω) =<br />

Σ(ω)<br />

G k (ω)<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-1 0 1 2 3 4 5<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

ω-ε k<br />

-6<br />

-1 0 1 2 3 4 5<br />

ω-ε k<br />

Σ = 0<br />

Σ(ω)<br />

G k (ω)<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-1 0 1 2 3 4 5<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

ω-ε k<br />

-6<br />

-1 0 1 2 3 4 5<br />

ω-ε k<br />

Σ = Σ 0<br />

� d 3 k δ(ɛ − ɛk)<br />

1<br />

ω − ɛk − Σ(ω) = (ω − ɛk − Σ ′ ) + iΣ ′′<br />

(ω − ɛk − Σ ′ ) 2 + Σ ′′2<br />

G k (ω)<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-1 0 1 2 3 4 5<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-1 0 1 2 3 4 5<br />

A(ω) = − 1<br />

π ImG(ω + i0+ ) Σ→0<br />

−→ ρ(ω); G(ω) ≡ Gii(ω) = � dɛ<br />

Σ(ω)<br />

ω-ε k<br />

ω-ε k<br />

Σ = Σ(ω)<br />

ρ(ɛ)<br />

ω−ɛ−Σ(ω)<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 4


Example: half-filled frustrated Hubbard model, U=W=4, T=0.05<br />

Σ (ω)<br />

A ε (ω)<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Re Σ<br />

Im Σ<br />

-4 -2 0 2 4<br />

∫ dω A ε (ω)<br />

1.15<br />

1.1<br />

1.05<br />

1<br />

interpolated<br />

raw<br />

0.95<br />

-2 -1 0<br />

ε<br />

1 2<br />

ω<br />

-4 -3 -2 -1 0 1 2 3 4<br />

ω<br />

ε=0.0<br />

ε=0.5<br />

ε=1.0<br />

ε=1.5<br />

ε=2.0<br />

G(ω)<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

Re G<br />

Im G<br />

-4 -2 0 2 4<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 5<br />

ω


Iterative solution of<br />

<strong>DMFT</strong> equations<br />

Impurity solver:<br />

• Quanten-Monte-Carlo (<strong>QMC</strong>)<br />

G(τ) = −〈ΨΨ ∗ 〉 G[τ]<br />

✬ ✩<br />

G G<br />

✻<br />

G<br />

❵❵❵❵❵❵❵❵<br />

�<br />

G(iωn) = dɛ<br />

• Iterative perturbation <strong>the</strong>ory (IPT; not controlled)<br />

• Non-crossing approximation (NCA; not controlled)<br />

• Exact diagonalization (ED; large finite-size errors)<br />

• Numerical renormalization group (NRG; 1-2 bands)<br />

• Density matrix renormalization group (DMRG)<br />

• Self-energy functional <strong>the</strong>ory (SFT) + ED<br />

Direct d = ∞ solution: PT, ePT<br />

G<br />

❵❵❵❵❵❵❵❵<br />

−1 (iωn)=G −1 (iωn)+Σ(iωn)<br />

ρ(ɛ)<br />

iωn−ɛ−Σ(iωn)<br />

Σ ← Σ0<br />

✫ ✪<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 6<br />

❄<br />

−→


Excursus: Monte-Carlo Principles<br />

Example: Computation of average depth h of a lake from depth distribution h(x1, x2)<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 7


Excursus: Monte-Carlo Principles<br />

Example: Computation of average depth h of a lake from depth distribution h(x1, x2)<br />

Deterministic: lattice + trapezoid rule<br />

N = V/(∆x) d measurements<br />

∆h ∝ (∆x) 2 ∝ N −2/d<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 7


Excursus: Monte-Carlo Principles<br />

Example: Computation of average depth h of a lake from depth distribution h(x1, x2)<br />

Deterministic: lattice + trapezoid rule<br />

N = V/(∆x) d measurements<br />

∆h ∝ (∆x) 2 ∝ N −2/d<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 7


Excursus: Monte-Carlo Principles<br />

Example: Computation of average depth h of a lake from depth distribution h(x1, x2)<br />

Deterministic: lattice + trapezoid rule<br />

N = V/(∆x) d measurements<br />

∆h ∝ (∆x) 2 ∝ N −2/d<br />

Trapez<br />

Δx<br />

0 0.2 0.4 0.6 0.8 1<br />

Δx / Δx0 Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 7


Excursus: Monte-Carlo Principles<br />

Example: Computation of average depth h of a lake from depth distribution h(x1, x2)<br />

Deterministic: lattice + trapezoid rule<br />

N = V/(∆x) d measurements<br />

∆h ∝ (∆x) 2 ∝ N −2/d<br />

Stochastic: simple Monte-Carlo<br />

N “configurations”, equally probable<br />

�<br />

var{h} −1/2<br />

∆h � ∝ N<br />

N<br />

Trapez<br />

Δx<br />

<strong>QMC</strong><br />

N<br />

0 0.2 0.4 0.6 0.8 1<br />

Δx / Δx0 0 100 200 300 400 500<br />

N<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 7


Excursus: Monte-Carlo Principles<br />

Example: Computation of average depth h of a lake from depth distribution h(x1, x2)<br />

Deterministic: lattice + trapezoid rule<br />

N = V/(∆x) d measurements<br />

∆h ∝ (∆x) 2 ∝ N −2/d<br />

Stochastic: simple Monte-Carlo<br />

N “configurations”, equally probable<br />

�<br />

var{h} −1/2<br />

∆h � ∝ N<br />

N<br />

Stochastic: Importance sampling MC<br />

factorization: h(x) = p(x) o(x);<br />

p(x) normalized, var{o} ≪ var{h}<br />

�<br />

var{o}<br />

∆h � ∝ N −1/2<br />

Neff<br />

Trapez<br />

Δx<br />

<strong>QMC</strong><br />

N<br />

<strong>QMC</strong><br />

N<br />

0 0.2 0.4 0.6 0.8 1<br />

Δx / Δx0 0 100 200 300 400 500<br />

N<br />

0 100 200 300 400 500<br />

N<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 7


Application of Monte Carlo in Statistical Physics<br />

〈O〉 = �<br />

i<br />

pi Oi , pi = e−Ei /(kBT )<br />

Z<br />

≡ ˜pi<br />

�<br />

, Z =<br />

Z<br />

i<br />

e −Ei /(kBT )<br />

Simple Monte Carlo: Estimation of both sums from a number N of equally probable configurations.<br />

Problem: typically � var{p} ≫ p.<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 8


Application of Monte Carlo in Statistical Physics<br />

〈O〉 = �<br />

i<br />

pi Oi , pi = e−Ei /(kBT )<br />

Z<br />

≡ ˜pi<br />

�<br />

, Z =<br />

Z<br />

i<br />

e −Ei /(kBT )<br />

Simple Monte Carlo: Estimation of both sums from a number N of equally probable configurations.<br />

Problem: typically � var{p} ≫ p.<br />

Importance Sampling MC: Probability distribution given by Boltzmann weights pi.<br />

Problem: Normalization 1/Z unknown.<br />

Solution: generate probability distribution by random walk, e.g. using Metropolis algorithm:<br />

〈O〉 =<br />

�<br />

i ˜piOi<br />

�<br />

i ˜pi<br />

P {i → j} = min{pj/pi, 1} , pj/pi = e (Ej−Ei )/(kBT )<br />

−→ 〈O〉 =<br />

′�<br />

Oi ≈<br />

+ Precise computation of observable averages 〈O〉<br />

i<br />

N+N<br />

�0<br />

n=1+N 0<br />

− Not accessible by construction: partition function Z, free energy F<br />

Oin; 〈(∆O) 2 〉 ∝ var{O}<br />

N<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 8


Hirsch-Fye <strong>QMC</strong> algorithm for <strong>DMFT</strong> impurity problem<br />

Wanted: Green-Funktion G(ω)<br />

Treatment in imaginary time using fermionic Grassmann variables ψ, ψ ∗ :<br />

Gσ(τ2 − τ1) ≡ Gσ(τ1, τ2) = 1<br />

�<br />

D[ψ] D[ψ<br />

Z<br />

∗ ] ψσ(τ1)ψ ∗<br />

σ (τ2) e A A =<br />

,<br />

A0 − U �<br />

� β<br />

dτ ψ<br />

2<br />

∗<br />

σ (τ)ψσ (τ)ψ∗ σ ′(τ)ψσ ′(τ)<br />

discretization β = Λ ∆τ, Trotter decoupling, discrete Hubbard-Stratonovich transformation<br />

σσ ′<br />

0<br />

Wick <strong>the</strong>orem:<br />

�<br />

M det{M}<br />

G = �<br />

det{M}<br />

Metropolis MC importance sampling over auxiliary Ising field, 2 Λ configurations, 50 � Λ � 400<br />

+ nonperturbative, numerically exact<br />

− effort scales as T −3<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 9


Hirsch-Fye <strong>QMC</strong> algorithm for <strong>DMFT</strong> impurity problem<br />

Wanted: Green-Funktion G(ω)<br />

Treatment in imaginary time using fermionic Grassmann variables ψ, ψ ∗ :<br />

Gσ(τ2 − τ1) ≡ Gσ(τ1, τ2) = 1<br />

�<br />

D[ψ] D[ψ<br />

Z<br />

∗ ] ψσ(τ1)ψ ∗<br />

σ (τ2) e A A =<br />

,<br />

A0 − U �<br />

� β<br />

dτ ψ<br />

2<br />

∗<br />

σ (τ)ψσ (τ)ψ∗ σ ′(τ)ψσ ′(τ)<br />

discretization β = Λ ∆τ, Trotter decoupling, discrete Hubbard-Stratonovich transformation<br />

σσ ′<br />

0<br />

Wick <strong>the</strong>orem:<br />

�<br />

M det{M}<br />

G = �<br />

det{M}<br />

Metropolis MC importance sampling over auxiliary Ising field, 2 Λ configurations, 50 � Λ � 400<br />

+ nonperturbative, numerically exact<br />

− effort scales as T −3<br />

− no information for ω � ωNyquist<br />

G(τ)<br />

0.5<br />

Δτ = 0<br />

Δτ > 0<br />

0<br />

0<br />

τ/β<br />

1<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 9<br />

Im G(iω n )<br />

ω n


Contributions to <strong>DMFT</strong>-<strong>QMC</strong> error bars:<br />

• statistical fluctuations + warm-up<br />

• convergency (of self-consistency cycle)<br />

• discretization (Trotter error and Fourier transform)<br />

Example: half-filled frustrated Hubbard model, U = 5, W = 4, T = 0.04 (Mott insulator)<br />

D<br />

0.0236<br />

0.0235<br />

0.0234<br />

0.0233<br />

0.0232<br />

0.0231<br />

0.023<br />

0.0229<br />

0.0228<br />

0 10 20 30 40 50 60 70<br />

it<br />

Δτ=0.12<br />

Δτ=0.15<br />

Δτ=0.18<br />

Δτ=0.20<br />

E<br />

-0.107<br />

-0.108<br />

-0.109<br />

-0.11<br />

-0.111<br />

-0.112<br />

0 10 20 30 40 50 60 70<br />

it<br />

Δτ=0.12<br />

Δτ=0.15<br />

Δτ=0.18<br />

Δτ=0.20<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 10


Contributions to <strong>DMFT</strong>-<strong>QMC</strong> error bars:<br />

• statistical fluctuations + warm-up<br />

• convergency (of self-consistency cycle)<br />

• discretization (Trotter error and Fourier transform)<br />

Example: half-filled frustrated Hubbard model, U = 5, W = 4, T = 0.04 (Mott insulator)<br />

D<br />

D<br />

0.0236<br />

0.0235<br />

0.0234<br />

0.0233<br />

0.0232<br />

0.0231<br />

0.023<br />

0.0229<br />

0.0228<br />

0.024<br />

0.023<br />

0 10 20 30 40 50 60 70<br />

it<br />

Δτ=0.12<br />

Δτ=0.15<br />

Δτ=0.18<br />

Δτ=0.20<br />

0.022<br />

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07<br />

Δτ 2<br />

E<br />

E<br />

-0.107<br />

-0.108<br />

-0.109<br />

-0.11<br />

-0.111<br />

-0.112<br />

-0.104<br />

-0.106<br />

-0.108<br />

-0.11<br />

-0.112<br />

-0.114<br />

-0.116<br />

0 10 20 30 40 50 60 70<br />

it<br />

Δτ=0.12<br />

Δτ=0.15<br />

Δτ=0.18<br />

Δτ=0.20<br />

-0.118<br />

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07<br />

Δτ 2<br />

next: prerequisite for / proof of extreme precision<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 10


Fourier transformation schemes:<br />

self-energy (T = 0.1, U = 5.0)<br />

a) “Ulmke smoothing”,<br />

b) improved “Smoothing”,<br />

c) scheme with analytic<br />

high-frequency corrections<br />

even stronger effects at lower T<br />

low-frequency errors of Σ(ω) small<br />

in b) und c)<br />

Im Σ(iω n )<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

-6<br />

-7<br />

-8<br />

U=5.0<br />

Δτ=0.4<br />

Δτ=0.25<br />

Δτ=0.20<br />

Δτ=0.156<br />

Δτ=0.125<br />

Δτ=0.1<br />

ω n Im Σ(iω n )<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

-6<br />

Im Σ(iω n )<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

-6<br />

-7<br />

-8<br />

U=5.0<br />

0 5 10 15<br />

ωn 20 25 30<br />

0 5 10 15<br />

ωn 20 25 30<br />

Δτ=0.4<br />

Δτ=0.25<br />

Δτ=0.20<br />

Δτ=0.156<br />

Δτ=0.125<br />

Δτ=0.1<br />

ω n Im Σ(iω n )<br />

0 5 10 15<br />

ωn 20 25 30<br />

b) U=5.0<br />

c)<br />

Im Σ(iω n )<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

-6<br />

-7<br />

-8<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

-6<br />

Δτ=0.4<br />

Δτ=0.25<br />

Δτ=0.20<br />

Δτ=0.156<br />

Δτ=0.125<br />

Δτ=0.1<br />

a)<br />

0 5 10 15<br />

ωn 20 25 30<br />

ω n Im Σ(iω n )<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

-6<br />

0 5 10 15<br />

ωn 20 25 30<br />

0 5 10 15<br />

ωn 20 25 30<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 11


E<br />

-0.09<br />

-0.1<br />

-0.11<br />

Mott insulator: energy + double occupancy I<br />

2 nd order<br />

4 th order<br />

10 th order PT<br />

<strong>QMC</strong><br />

5 5.5 6<br />

Excellent agreement at U = 6.0.<br />

U<br />

10 th<br />

<strong>QMC</strong><br />

order PT<br />

4 th<br />

order<br />

2 nd<br />

order<br />

5 5.5 6<br />

U<br />

0.025<br />

0.02<br />

0.015<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 12<br />

D


(E - E PT ) /10 -4<br />

0<br />

-1<br />

-2<br />

Mott insulator: energy + double occupancy II<br />

12 th order<br />

20 th order<br />

40 th order<br />

<strong>QMC</strong> + ePT<br />

5 5.5 6<br />

U<br />

<strong>QMC</strong> + ePT<br />

40 th order<br />

20 th order<br />

12 th order<br />

5 5.5 6<br />

Mott insulator: Uc1, critical exponents, low-T parameter for Uc(T )<br />

high-precision results for E, D at all U (parametrizations available) � benchmark<br />

[Blümer, Kalinowski, cond-mat/0404568 (2004), cond-mat/0407442 (2004)]<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 13<br />

U<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

(D - D PT ) /10 -4


La1−xSrxTiO3<br />

• perovskite structure<br />

• 1−x t2g electrons per site<br />

• AF for x � 0.05<br />

• strongly correlated metal<br />

Realistic LDA+<strong>DMFT</strong>(<strong>QMC</strong>) calculations<br />

• density functional <strong>the</strong>ory (LDA) fails<br />

Ti 3d<br />

e<br />

g<br />

t 2g<br />

• Ti<br />

• La, Sr<br />

• O<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 14


multi-band issues<br />

2M(2M − 1)<br />

2<br />

Hubbard-Stratonovich fields<br />

approximation: Hund terms J αα ′ s α · s α′<br />

−→ Jαα ′ s α<br />

z sα′<br />

z<br />

to avoid sign problem in <strong>QMC</strong><br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 15


multi-band issues<br />

2M(2M − 1)<br />

2<br />

Hubbard-Stratonovich fields<br />

approximation: Hund terms J αα ′ s α · s α′<br />

Analytic continuation<br />

Aim: (ill-conditioned) inversion of G(τ) =<br />

−→ Jαα ′ s α<br />

z sα′<br />

z<br />

�<br />

to avoid sign problem in <strong>QMC</strong><br />

dω exp[−τω]<br />

1 + exp[−βω] A(ω)<br />

Maximum entropy method (MEM): introduce entropy function to find smoo<strong>the</strong>st solution A(ω)<br />

compatible with G(τ)<br />

G(τ) MEM<br />

−→ ImG(ω) Kra-Kro<br />

−→ ReG(ω)<br />

MEM: not fully controlled; no ∆τ extrapolation possible<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 15


multi-band issues<br />

2M(2M − 1)<br />

2<br />

Hubbard-Stratonovich fields<br />

approximation: Hund terms J αα ′ s α · s α′<br />

Analytic continuation<br />

Aim: (ill-conditioned) inversion of G(τ) =<br />

−→ Jαα ′ s α<br />

z sα′<br />

z<br />

�<br />

to avoid sign problem in <strong>QMC</strong><br />

dω exp[−τω]<br />

1 + exp[−βω] A(ω)<br />

Maximum entropy method (MEM): introduce entropy function to find smoo<strong>the</strong>st solution A(ω)<br />

compatible with G(τ)<br />

G(τ) MEM<br />

−→ ImG(ω) Kra-Kro<br />

−→ ReG(ω)<br />

MEM: not fully controlled; no ∆τ extrapolation possible<br />

for ARPES, σ(ω): use 2-dimensional Newton scheme to invert Dyson equation for G(ω) −→ Σ(ω)<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 15


Photoemission spectra for La1−xSrxTiO3 (x=0.06)<br />

Intensity (arb. Units)<br />

LDA (U=0)<br />

<strong>QMC</strong>: U=5.0<br />

Exp. (T=80K)<br />

Exp. (T=150K)<br />

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1<br />

Energy (eV)<br />

[Nekrasov, Held, Blümer, Poteryaev, Anisimov, Vollhardt, EPJB 18, 55 (2000)]<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 16


Computers<br />

speed (accepted Megaunitsweeps ~ MFlops) on 2 CPUs<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

1 band<br />

3 bands<br />

0 50 100 150 200 250 300<br />

# of time slices Λ (linear Matrix size)<br />

Opteron 244 (32 bit)<br />

HP Superdome<br />

P4 2.6 GHz, serial<br />

Athlon MP 2200+<br />

Athlon MP 1.2 GHz<br />

Group cluster (2nd stage)<br />

JUMP cluster (NIC Jülich)<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 17


Summary<br />

“derivation” of (1-band/multi-band) Hubbard model<br />

characterization of <strong>DMFT</strong><br />

role of self-energy<br />

Monte Carlo principles<br />

<strong>QMC</strong>: principles and caveats (convergency, ∆τ extrapolation)<br />

extreme-precision <strong>QMC</strong> results for 1-band model (vs. ePT, SFT/DIA)<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 18


Summary<br />

“derivation” of (1-band/multi-band) Hubbard model<br />

characterization of <strong>DMFT</strong><br />

role of self-energy<br />

Monte Carlo principles<br />

<strong>QMC</strong>: principles and caveats (convergency, ∆τ extrapolation)<br />

extreme-precision <strong>QMC</strong> results for 1-band model (vs. ePT, SFT/DIA)<br />

multi-band issue: spin-flip terms (not in DIA)<br />

challenge: analytic continuation using MEM<br />

LDA+<strong>DMFT</strong>: significant improvements for PES of La1−xSrxTiO3<br />

technical prerequisite: computer power<br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 18


Summary<br />

“derivation” of (1-band/multi-band) Hubbard model<br />

characterization of <strong>DMFT</strong><br />

role of self-energy<br />

Monte Carlo principles<br />

<strong>QMC</strong>: principles and caveats (convergency, ∆τ extrapolation)<br />

extreme-precision <strong>QMC</strong> results for 1-band model (vs. ePT, SFT/DIA)<br />

multi-band issue: spin-flip terms (not in DIA)<br />

challenge: analytic continuation using MEM<br />

LDA+<strong>DMFT</strong>: significant improvements for PES of La1−xSrxTiO3<br />

technical prerequisite: computer power<br />

Fur<strong>the</strong>r talks:<br />

<strong>DMFT</strong> for double perowskite models<br />

high-frequency corrected <strong>QMC</strong> (multi-band); observables<br />

MEM and LDA+<strong>DMFT</strong><br />

Theorieseminar der DFG-Forschergruppe 559 · Nov 12, 2004 · Nils Blümer (Univ. Mainz) ⊳ ←↪ △ ⊲ 18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!