10.01.2013 Views

Optical Conductivity of Strongly Correlated Electrons in High ...

Optical Conductivity of Strongly Correlated Electrons in High ...

Optical Conductivity of Strongly Correlated Electrons in High ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Optical</strong> <strong>Conductivity</strong> <strong>of</strong><br />

<strong>Strongly</strong> <strong>Correlated</strong> Electron Systems<br />

<strong>in</strong> <strong>High</strong> Dimensions<br />

N. Blümer<br />

Universität Ma<strong>in</strong>z<br />

Outl<strong>in</strong>e<br />

Introduction<br />

<strong>Optical</strong> <strong>Conductivity</strong> near a MIT for d → ∞<br />

General Dispersion Formalism<br />

Numerical QMC/MEM Results for Half-filled Hubbard Model<br />

Conclusion


Introduction<br />

Def<strong>in</strong>ition and Measurement <strong>of</strong> the <strong>Optical</strong> <strong>Conductivity</strong> σ(ω)<br />

l<strong>in</strong>ear response<br />

homogeneous system<br />

limit q → 0<br />

�<br />

specular reflectivity r(ω) =<br />

⇒ Jα(ω) =<br />

�<br />

�<br />

�<br />

� 1−√ɛ(ω) 1+ √ ɛ(ω)<br />

�<br />

�<br />

�<br />

�<br />

d�<br />

σαβ(ω) Eβ(ω)<br />

β=1<br />

2<br />

K-K<br />

4πi<br />

−→ dielectric function ɛ(ω) = 1 + ω σ(ω)<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 1


Introduction<br />

Def<strong>in</strong>ition and Measurement <strong>of</strong> the <strong>Optical</strong> <strong>Conductivity</strong> σ(ω)<br />

l<strong>in</strong>ear response<br />

homogeneous system<br />

limit q → 0<br />

�<br />

specular reflectivity r(ω) =<br />

The f-sum rules<br />

bounded absorption spectrum:<br />

2<br />

π<br />

ɛ(ω) ω→∞<br />

−→ 1 − ω2 p<br />

� ∞<br />

0<br />

ω 2<br />

⇒ Jα(ω) =<br />

�<br />

�<br />

�<br />

dω ω Im ɛ(ω) = ω 2 p<br />

� 1−√ɛ(ω) 1+ √ ɛ(ω)<br />

Full universal f-sum rule: ω 2 p = 4πne2<br />

m<br />

�<br />

�<br />

�<br />

�<br />

d�<br />

σαβ(ω) Eβ(ω)<br />

β=1<br />

2<br />

K-K<br />

4πi<br />

−→ dielectric function ɛ(ω) = 1 + ω σ(ω)<br />

=⇒<br />

� ∞<br />

0<br />

dω Re σ(ω) = ω2 p<br />

8<br />

(<strong>in</strong>dependent <strong>of</strong> T , <strong>in</strong>teractions etc.)<br />

<strong>Optical</strong><br />

f-sum rule<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 1


Kubo formalism<br />

For cont<strong>in</strong>uum systems:<br />

σαβ(ω) =<br />

V<br />

�(ω + i0 + )<br />

� ∞<br />

Lattice case: ˆ H0 = ˆ K + ˆ H<strong>in</strong>t ≡ �<br />

0<br />

n e 2<br />

dt e i(ω+i0+ )t †<br />

〈[ˆj α(t), ˆj β (0)]〉 + i<br />

m(ω + i0 + ) δαβ<br />

t<br />

ij,σ<br />

0 ij ĉ †<br />

iσĉjσ + ˆ � �<br />

H<strong>in</strong>t ˆniσ<br />

Peierls construction tij = t0 ij exp � −i e<br />

derive ˆj from ˆ H0 −→ ˆ H0 − V<br />

c ˆj · A + O(A2 )<br />

Bravais lattice, one-band: ˆ K = 1<br />

V<br />

�<br />

k,σ ɛk ˆnk,σ, ˆj = e<br />

V �<br />

c� (Ri − Rj) · A �<br />

�<br />

k,σ vk ˆnk,σ (vk = 1<br />

� ∇ɛk)<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 2


Kubo formalism<br />

For cont<strong>in</strong>uum systems:<br />

σαβ(ω) =<br />

V<br />

�(ω + i0 + )<br />

� ∞<br />

Lattice case: ˆ H0 = ˆ K + ˆ H<strong>in</strong>t ≡ �<br />

0<br />

n e 2<br />

dt e i(ω+i0+ )t †<br />

〈[ˆj α(t), ˆj β (0)]〉 + i<br />

m(ω + i0 + ) δαβ<br />

t<br />

ij,σ<br />

0 ij ĉ †<br />

iσĉjσ + ˆ � �<br />

H<strong>in</strong>t ˆniσ<br />

Peierls construction tij = t0 ij exp � −i e<br />

derive ˆj from ˆ H0 −→ ˆ H0 − V<br />

c ˆj · A + O(A2 )<br />

Bravais lattice, one-band: ˆ K = 1<br />

V<br />

Hypercubic lattice, NN hopp<strong>in</strong>g:<br />

ˆK =<br />

d�<br />

α=1<br />

� ∞<br />

0<br />

ˆKα ; ˆ Kα = 2<br />

N<br />

dω σαα(ω) = − π<br />

2<br />

�<br />

k,σ ɛk ˆnk,σ, ˆj = e<br />

V �<br />

�<br />

Re ĉ †<br />

Ri+eαĉRi ; ˆjα = e<br />

iσ<br />

e2a2 V �2 〈 ˆ Kα〉 = − π<br />

2<br />

e 2 a 2<br />

V � 2<br />

2<br />

� N<br />

c� (Ri − Rj) · A �<br />

�<br />

k,σ vk ˆnk,σ (vk = 1<br />

� ∇ɛk)<br />

Im �<br />

iσ<br />

ĉ †<br />

Ri+eα ĉ Ri<br />

1<br />

d 〈 ˆ K〉 ≡ − σ0<br />

4d 〈ɛ〉<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 2


Kubo formalism<br />

For cont<strong>in</strong>uum systems:<br />

σαβ(ω) =<br />

V<br />

�(ω + i0 + )<br />

� ∞<br />

Lattice case: ˆ H0 = ˆ K + ˆ H<strong>in</strong>t ≡ �<br />

0<br />

n e 2<br />

dt e i(ω+i0+ )t †<br />

〈[ˆj α(t), ˆj β (0)]〉 + i<br />

m(ω + i0 + ) δαβ<br />

t<br />

ij,σ<br />

0 ij ĉ †<br />

iσĉjσ + ˆ � �<br />

H<strong>in</strong>t ˆniσ<br />

Peierls construction tij = t0 ij exp � −i e<br />

derive ˆj from ˆ H0 −→ ˆ H0 − V<br />

c ˆj · A + O(A2 )<br />

Bravais lattice, one-band: ˆ K = 1<br />

V<br />

Hypercubic lattice, NN hopp<strong>in</strong>g:<br />

ˆK �=<br />

d�<br />

α=1<br />

� ∞<br />

0<br />

ˆKα ; ˆ Kα = 2<br />

N<br />

dω σαα(ω) = − π<br />

2<br />

�<br />

k,σ ɛk ˆnk,σ, ˆj = e<br />

V �<br />

�<br />

Re ĉ †<br />

Ri+eαĉRi ; ˆjα = e<br />

iσ<br />

e2a2 V �2 〈 ˆ Kα〉 �= − π<br />

2<br />

e 2 a 2<br />

V � 2<br />

2<br />

� N<br />

c� (Ri − Rj) · A �<br />

�<br />

k,σ vk ˆnk,σ (vk = 1<br />

� ∇ɛk)<br />

Im �<br />

iσ<br />

ĉ †<br />

Ri+eα ĉ Ri<br />

1<br />

d 〈 ˆ K〉 ≡ − σ0<br />

4d 〈ɛ〉<br />

stacked<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 2


DMFT Treatment <strong>of</strong> the <strong>Optical</strong> <strong>Conductivity</strong><br />

<strong>Conductivity</strong> on Bravais lattice:<br />

σ ∝ vk<br />

k<br />

k<br />

k<br />

vk+vk Γ<br />

k<br />

k ′<br />

k ′<br />

v k ′ + vk<br />

k<br />

k<br />

Γ<br />

k ′′<br />

k ′′<br />

Γ<br />

k ′<br />

k ′<br />

v k ′ + . . .<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 3


DMFT Treatment <strong>of</strong> the <strong>Optical</strong> <strong>Conductivity</strong><br />

<strong>Conductivity</strong> on Bravais lattice:<br />

σ ∝ vk<br />

k<br />

k<br />

k<br />

vk+vk Γ<br />

k<br />

k ′<br />

k ′<br />

v k ′ + vk<br />

DMFT: limit d → ∞ / Z → ∞: scal<strong>in</strong>g t ∝ 1/ √ Z, Σ(k, ω) → Σ(ω)<br />

local properties depend on lattice only via ρ(ɛ) := 1<br />

N<br />

k<br />

k<br />

Γ<br />

k ′′<br />

k ′′<br />

Γ<br />

�<br />

k δ(ɛ − ɛk)<br />

k ′<br />

k ′<br />

v k ′ + . . .<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 3


DMFT Treatment <strong>of</strong> the <strong>Optical</strong> <strong>Conductivity</strong><br />

<strong>Conductivity</strong> on Bravais lattice:<br />

σ ∝ vk<br />

k<br />

k<br />

k<br />

vk+vk Γ<br />

k<br />

k ′<br />

k ′<br />

v k ′ + vk<br />

DMFT: limit d → ∞ / Z → ∞: scal<strong>in</strong>g t ∝ 1/ √ Z, Σ(k, ω) → Σ(ω)<br />

local properties depend on lattice only via ρ(ɛ) := 1<br />

N<br />

k<br />

k<br />

Γ<br />

k ′′<br />

k ′′<br />

Γ<br />

�<br />

k δ(ɛ − ɛk)<br />

d → ∞: Vertex corrections vanish [Khurana, PRL 64, 1990 (1990)]<br />

k sum → ɛ <strong>in</strong>tegral [Pruschke, Cox, and Jarrell, PRB 47, 3553 (1993)]<br />

� ∞ � ∞<br />

σxx(ω) = σ0 dɛ ˜ρxx(ɛ)<br />

−∞<br />

σ0 := 2πe2 N<br />

�2 V , ˜ρxx(ɛ) := 1<br />

N<br />

dω<br />

−∞<br />

′ Aɛ(ω ′ ) Aɛ(ω ′ + ω) nf(ω ′ ) − nf(ω + ω ′ )<br />

ω<br />

�<br />

k<br />

(vk) 2 x δ(ɛ − ɛk), Aɛ(ω) := − 1<br />

π Im<br />

k ′<br />

k ′<br />

v k ′ + . . .<br />

, where<br />

1<br />

ω − ɛ − Σ(ω)<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 3


<strong>Optical</strong> <strong>Conductivity</strong> Near an MIT for d → ∞<br />

Lattice and Density <strong>of</strong> States<br />

Nearest-neighbor (NN) hopp<strong>in</strong>g<br />

on hypercubic (hc) lattice:<br />

d = 3: square-root band edges<br />

ρ hc<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

-3 -2 -1 0 1 2 3<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 4<br />

ε<br />

d=3


<strong>Optical</strong> <strong>Conductivity</strong> Near an MIT for d → ∞<br />

Lattice and Density <strong>of</strong> States<br />

Nearest-neighbor (NN) hopp<strong>in</strong>g<br />

on hypercubic (hc) lattice:<br />

d = 3: square-root band edges<br />

ρ hc<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

-3 -2 -1 0 1 2 3<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 4<br />

ε<br />

d=3<br />

d=4


<strong>Optical</strong> <strong>Conductivity</strong> Near an MIT for d → ∞<br />

Lattice and Density <strong>of</strong> States<br />

Nearest-neighbor (NN) hopp<strong>in</strong>g<br />

on hypercubic (hc) lattice:<br />

d = 3: square-root band edges<br />

ρ hc<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

-3 -2 -1 0 1 2 3<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 4<br />

ε<br />

d=3<br />

d=5


<strong>Optical</strong> <strong>Conductivity</strong> Near an MIT for d → ∞<br />

Lattice and Density <strong>of</strong> States<br />

Nearest-neighbor (NN) hopp<strong>in</strong>g<br />

on hypercubic (hc) lattice:<br />

d = 3: square-root band edges<br />

d → ∞: no band edges<br />

ρ hc<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

-3 -2 -1 0 1 2 3<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 4<br />

ε<br />

d=3<br />

d=∞


<strong>Optical</strong> <strong>Conductivity</strong> Near an MIT for d → ∞<br />

Lattice and Density <strong>of</strong> States<br />

Nearest-neighbor (NN) hopp<strong>in</strong>g<br />

on hypercubic (hc) lattice:<br />

d = 3: square-root band edges<br />

d → ∞: no band edges<br />

Bethe-”lattice” (Z=4)<br />

ρ hc<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

-3 -2 -1 0 1 2 3<br />

ε<br />

d=3<br />

d=∞<br />

"Bethe"<br />

transport properties <strong>of</strong> Bethe<br />

lattice a priori undef<strong>in</strong>ed<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 4


<strong>Optical</strong> <strong>Conductivity</strong> Near an MIT for d → ∞<br />

Lattice and Density <strong>of</strong> States<br />

Nearest-neighbor (NN) hopp<strong>in</strong>g<br />

on hypercubic (hc) lattice:<br />

d = 3: square-root band edges<br />

d → ∞: no band edges<br />

Bethe-”lattice” (Z=4)<br />

ρ hc<br />

� ∞<br />

0<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

-3 -2 -1 0 1 2 3<br />

ε<br />

d=3<br />

d=∞<br />

"Bethe"<br />

transport properties <strong>of</strong> Bethe<br />

lattice a priori undef<strong>in</strong>ed<br />

previously coherent def<strong>in</strong>ition<br />

<strong>of</strong> σ(ω) only for periodically<br />

cont<strong>in</strong>ued lattice: anisotropic<br />

dω σxx(ω) = − σ0 � ɛ<br />

4d 4 − ɛ2 �<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 4


<strong>Optical</strong> conductivity for the Bethe lattice<br />

Tree level picture [Chung and Freericks, PRB 57, 11955 (1998)]<br />

Ansatz for |ɛ〉 ⇒ K ˆ |ɛ〉 = ɛ |ɛ〉, ˆj |ɛ〉 = 〈vk〉(ɛ) e |ɛ〉<br />

?<br />

=⇒ ˜ρxx(ɛ) = � 4 − ɛ 2� ρ(ɛ),<br />

� ∞<br />

dω σxx(ω) = 3 σ0<br />

4d 〈−ɛ〉<br />

But: <strong>in</strong>complete set <strong>of</strong> states � ρ(ɛ) =<br />

0<br />

√1 π 4−ɛ2 : 1-dimensional<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 5


<strong>Optical</strong> conductivity for the Bethe lattice<br />

Tree level picture [Chung and Freericks, PRB 57, 11955 (1998)]<br />

Ansatz for |ɛ〉 ⇒ K ˆ |ɛ〉 = ɛ |ɛ〉, ˆj |ɛ〉 = 〈vk〉(ɛ) e |ɛ〉<br />

?<br />

=⇒ ˜ρxx(ɛ) = � 4 − ɛ 2� ρ(ɛ),<br />

� ∞<br />

dω σxx(ω) = 3 σ0<br />

4d 〈−ɛ〉<br />

But: <strong>in</strong>complete set <strong>of</strong> states � ρ(ɛ) =<br />

0<br />

√1 π 4−ɛ2 New: general dispersion approach<br />

: 1-dimensional<br />

Def<strong>in</strong>es microscopic model with (e.g.) semi-elliptic DOS<br />

• regular Bravais lattice<br />

• derivation <strong>of</strong> all transport properties straightforward<br />

• conductivity coherent <strong>in</strong> the non<strong>in</strong>teract<strong>in</strong>g limit<br />

• hc symmetry, i.e., isotropic transport (for q → 0)<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 5


General Dispersion Formalism<br />

For translation-<strong>in</strong>variant hopp<strong>in</strong>g: ˆ K = � �<br />

i,σ<br />

τ<br />

tτ ĉ †<br />

Ri+τ ,σ ĉ Ri σ<br />

= �<br />

k,σ<br />

ɛ(k)ˆnkσ<br />

classify contributions to dispersion by taxi-cab hopp<strong>in</strong>g distance ||τ || = �d α=1 |τα|:<br />

∞�<br />

ɛ(k) = ɛD(k), ɛD(k) = �<br />

D=1<br />

||τ ||=D<br />

tτ e iτ ·k .<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 6


General Dispersion Formalism<br />

For translation-<strong>in</strong>variant hopp<strong>in</strong>g: ˆ K = � �<br />

i,σ<br />

τ<br />

tτ ĉ †<br />

Ri+τ ,σ ĉ Ri σ<br />

= �<br />

k,σ<br />

ɛ(k)ˆnkσ<br />

classify contributions to dispersion by taxi-cab hopp<strong>in</strong>g distance ||τ || = �d α=1 |τα|:<br />

∞�<br />

ɛ(k) = ɛD(k), ɛD(k) = �<br />

D=1<br />

||τ ||=D<br />

tτ e iτ ·k .<br />

For d → ∞, almost all vectors with ||τ || = D have form τ = D�<br />

isotropy<br />

=⇒<br />

ɛD(k) =<br />

2<br />

tD<br />

D � �D/2 d<br />

BD(k)<br />

D! 2<br />

BD(k) =<br />

� �D/2 2<br />

d<br />

�<br />

α D�=α D−1�=···�=α1<br />

Functions BD(k) fulfill a recursion relation . . .<br />

i=1<br />

eαi with αi �= αj.<br />

cos(kα D ) cos(kα D−1 ) . . . cos(kα1 )<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 6


BD+1(k) = B1(k) BD(k) − D BD−1(k) + O(1/ √ d)<br />

<strong>of</strong> the Hermite polynomial type. Consequently: BD(k) = HeD(B1(k)).<br />

With <strong>in</strong>itial condition B1(k) =<br />

ɛ(k) =<br />

∞�<br />

D=1<br />

� 2<br />

d<br />

�<br />

α<br />

cos(kα) ≡ ɛ hc<br />

k<br />

t ∗ D<br />

√ D! HeD(ɛ hc<br />

k ) =: F(ɛ hc<br />

k ) t ∗ D =<br />

and orthogonality relation:<br />

1<br />

√ 2πD!<br />

� ∞<br />

dɛ F(ɛ) HeD(ɛ) e<br />

−∞<br />

−ɛ2 /2<br />

so far: completely general (for equivalent dimensions and usual DMFT scal<strong>in</strong>g)<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 7


BD+1(k) = B1(k) BD(k) − D BD−1(k) + O(1/ √ d)<br />

<strong>of</strong> the Hermite polynomial type. Consequently: BD(k) = HeD(B1(k)).<br />

With <strong>in</strong>itial condition B1(k) =<br />

ɛ(k) =<br />

∞�<br />

D=1<br />

� 2<br />

d<br />

�<br />

α<br />

cos(kα) ≡ ɛ hc<br />

k<br />

t ∗ D<br />

√ D! HeD(ɛ hc<br />

k ) =: F(ɛ hc<br />

k ) t ∗ D =<br />

and orthogonality relation:<br />

1<br />

√ 2πD!<br />

� ∞<br />

dɛ F(ɛ) HeD(ɛ) e<br />

−∞<br />

−ɛ2 /2<br />

so far: completely general (for equivalent dimensions and usual DMFT scal<strong>in</strong>g)<br />

Choice <strong>of</strong> monotonic function F(x) implies ρ(ɛ) =<br />

F −1 (ɛ) = √ 2 erf −1<br />

� � ɛ<br />

2 dɛ<br />

−∞<br />

′ ρ(ɛ ′ �<br />

) − 1<br />

1<br />

F ′ (F −1 (ɛ)) ρhc (F −1 (ɛ)) and<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 7


Redef<strong>in</strong>ition <strong>of</strong> the Bethe Lattice<br />

√ 4 − ɛ 2 :<br />

For semi-elliptic DOS, ρ(ɛ) = 1<br />

2π<br />

F −1 (ɛ) = √ 2<br />

π erf−1�<br />

�<br />

ɛ 1 − ( ɛ<br />

2 )2 + 2 arcs<strong>in</strong>( ɛ<br />

2 )<br />

numerical <strong>in</strong>version � F(˜ɛ)<br />

�<br />

ε<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

-1.5<br />

-2<br />

F(˜ɛ)<br />

-4 -2 0<br />

~<br />

ε<br />

2 4<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 8


Redef<strong>in</strong>ition <strong>of</strong> the Bethe Lattice<br />

√ 4 − ɛ 2 :<br />

For semi-elliptic DOS, ρ(ɛ) = 1<br />

2π<br />

F −1 (ɛ) = √ 2<br />

π erf−1�<br />

�<br />

ɛ 1 − ( ɛ<br />

2 )2 + 2 arcs<strong>in</strong>( ɛ<br />

2 )<br />

numerical <strong>in</strong>version � F(˜ɛ)<br />

numerical <strong>in</strong>tegration � t ∗ D<br />

�<br />

ε<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

-1.5<br />

-2<br />

F(˜ɛ)<br />

-4 -2 0<br />

~<br />

ε<br />

2 4<br />

D t ∗ D<br />

� D<br />

n=1 t∗ n 2<br />

1 0.98731 0.974773<br />

3 -0.15353 0.998345<br />

5 0.03893 0.999861<br />

7 -0.01125 0.999987<br />

9 0.00343 0.999999<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 8


Redef<strong>in</strong>ition <strong>of</strong> the Bethe Lattice<br />

√ 4 − ɛ 2 :<br />

For semi-elliptic DOS, ρ(ɛ) = 1<br />

2π<br />

F −1 (ɛ) = √ 2<br />

π erf−1�<br />

�<br />

ɛ 1 − ( ɛ<br />

2 )2 + 2 arcs<strong>in</strong>( ɛ<br />

2 )<br />

numerical <strong>in</strong>version � F(˜ɛ)<br />

numerical <strong>in</strong>tegration � t ∗ D<br />

fast convergence with hopp<strong>in</strong>g cut<strong>of</strong>f Dmax<br />

ρ<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

D max = 5<br />

D max = 7<br />

D max = 9<br />

0.3<br />

0.2<br />

0.1<br />

exact 0<br />

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2<br />

ε<br />

1.6 1.8 2 2.2<br />

�<br />

ε<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

-1.5<br />

-2<br />

F(˜ɛ)<br />

-4 -2 0<br />

~<br />

ε<br />

2 4<br />

D t ∗ D<br />

� D<br />

n=1 t∗ n 2<br />

1 0.98731 0.974773<br />

3 -0.15353 0.998345<br />

5 0.03893 0.999861<br />

7 -0.01125 0.999987<br />

9 0.00343 0.999999<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 8


Cha<strong>in</strong> rule yields Fermi velocity: vk = F ′ (F −1 (ɛ))v hc<br />

k .<br />

Specifically, for Bethe semi-elliptic DOS:<br />

〈|vk| 2 〉(ɛ) := ˜ρ(ɛ)<br />

ρ(ɛ) =<br />

π<br />

2(1 − ɛ2 /4) exp<br />

� �<br />

− 2<br />

<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

hypercubic / stacked<br />

Millis / Freericks<br />

this work<br />

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2<br />

ε<br />

erf −1� ɛ � 1 − ɛ 2 /4 + 2 arcs<strong>in</strong>(ɛ/2)<br />

π<br />

〈|vk| 2 〉 → 0 at band edges<br />

��2 �<br />

.<br />

band center: max. transport contribution<br />

other transport properties: analogous<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 9


Cha<strong>in</strong> rule yields Fermi velocity: vk = F ′ (F −1 (ɛ))v hc<br />

k .<br />

Specifically, for Bethe semi-elliptic DOS:<br />

〈|vk| 2 〉(ɛ) := ˜ρ(ɛ)<br />

ρ(ɛ) =<br />

π<br />

2(1 − ɛ2 /4) exp<br />

� �<br />

− 2<br />

<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

f-sum:<br />

hypercubic / stacked<br />

Millis / Freericks<br />

this work<br />

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2<br />

� ∞<br />

dω σxx(ω) = σ0<br />

4d<br />

0<br />

ε<br />

� ˜ρ ′ (ɛ) � σ0<br />

=<br />

ρ(ɛ) 4d<br />

erf −1� ɛ � 1 − ɛ 2 /4 + 2 arcs<strong>in</strong>(ɛ/2)<br />

π<br />

〈|vk| 2 〉 → 0 at band edges<br />

��2 �<br />

.<br />

band center: max. transport contribution<br />

other transport properties: analogous<br />

�� F ′′ � F −1 (ɛ) � − F −1 (ɛ)F ′� F −1 (ɛ) ���<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 9


Numerical QMC/MEM Results for Half-filled<br />

crossover region<br />

Hubbard Model<br />

For orientation:<br />

MIT phase diagram<br />

Bethe DOS, W = 4<br />

results for T = 0.05<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

MIT at Uc ≈ 4.7 0<br />

T<br />

critical end po<strong>in</strong>t<br />

coexistence region<br />

metal <strong>in</strong>sulator<br />

U c1 U c U c2<br />

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8<br />

Quantum Monte-Carlo (QMC) with discretization ∆τ = 0.1<br />

Analytical cont<strong>in</strong>uation us<strong>in</strong>g Maximum Entropy method<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 10<br />

U


A(ω)<br />

σ(ω)<br />

0.3<br />

0.2<br />

0.1<br />

Local spectral function A(ω)<br />

0<br />

-5 -4 -3 -2 -1 0 1 2 3 4 5<br />

0.3<br />

0.2<br />

0.1<br />

<strong>Optical</strong> conductivity σ(ω)<br />

U=4.0<br />

U=4.6<br />

U=5.0<br />

U=5.5<br />

isotrop<br />

ω<br />

∫0 dω’ σ(ω’)<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

ω<br />

U=4.0<br />

U=4.6<br />

U=5.0<br />

U=5.5<br />

0<br />

0 1 2 3 4<br />

ω<br />

5 6 7 8<br />

0<br />

0 1 2 3 4 5 6 7 8<br />

|ω|<br />

σ(ω=0)<br />

∞<br />

∫0 dω σ(ω)<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

dc conductivity / f-sum<br />

-π/2 E k<strong>in</strong><br />

4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6<br />

U<br />

isotropic<br />

stacked<br />

disordered<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 11


Conclusion<br />

hc+NN DMFT transport formulae strongly modified for general lattices / hopp<strong>in</strong>g<br />

e.g.: t − t ′ model<br />

construction method for lattice models (hc symmetry) with arbitrary DOS <strong>in</strong> large d<br />

first Bravais lattice tb model with f<strong>in</strong>ite band edges <strong>in</strong> d→∞ and nons<strong>in</strong>gular vk<br />

first def<strong>in</strong>ition <strong>of</strong> isotropic and coherent optical conductivity σ(ω) <strong>in</strong> high d<br />

consistent with Bethe semi-elliptic DOS<br />

small impact <strong>of</strong> truncation (Dmax) and <strong>of</strong> application <strong>in</strong> f<strong>in</strong>ite d<br />

works as heuristic scheme <strong>in</strong> f<strong>in</strong>ite d (also multiple bands)<br />

new DMFT f-sum rule<br />

numerical results for σ(ω) based on high-precision QMC/MEM spectra<br />

not discussed: vertex corrections, reduced umklapp scatter<strong>in</strong>g <strong>in</strong> f<strong>in</strong>ite d<br />

http://www.physik.uni-augsburg.de/theo3/diss.de.shtml<br />

http://komet337.physik.uni-ma<strong>in</strong>z.de/Bluemer/talks.de.shtml<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 12


(ε)<br />

General Dispersion Formalism as Heuristic Scheme<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Test: t − t ′ model<br />

d=3<br />

d=4<br />

t’ * /t * = -0.33<br />

exact<br />

-1 0 1 2 3 4<br />

ε<br />

ρ(ε), ~ ρ(ε)<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Application for t2g bands <strong>of</strong><br />

La1-xSrxTiO3 based on LDA data<br />

3<br />

2<br />

1<br />

0<br />

−1 −0.5 0 0.5<br />

ε<br />

1 1.5 2<br />

0<br />

−1 −0.5 0 0.5 1 1.5 2<br />

Nils Blümer · Johannes-Gutenberg-Universität Ma<strong>in</strong>z · February 27, 2003 ⊳ ←↪ △ ⊲ 13<br />

2<br />

ε ε<br />

ρ(ε)<br />

~<br />

ρ(ε)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!