07.01.2013 Views

The ATLAS Liquid Argon Calorimeter - University of Toronto

The ATLAS Liquid Argon Calorimeter - University of Toronto

The ATLAS Liquid Argon Calorimeter - University of Toronto

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>ATLAS</strong> <strong>Liquid</strong> <strong>Argon</strong> <strong>Calorimeter</strong><br />

Peter Krieger , <strong>University</strong> <strong>of</strong> <strong>Toronto</strong><br />

• <strong>Calorimeter</strong> Design/Construction<br />

• Detector Integration Status<br />

& briefly….<br />

• Testbeam Summary<br />

• Commissioning Plans<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 1


<strong>The</strong> <strong>ATLAS</strong> Detector at the LHC<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 2


<strong>The</strong> <strong>ATLAS</strong> LAr and Tile <strong>Calorimeter</strong>s<br />

LAr hadronic<br />

end-cap (HEC)<br />

LAr EM end-cap (EMEC)<br />

LAr EM barrel<br />

Tile barrel Tile extended barrel<br />

LAr forward calorimeter (FCAL)<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 3


<strong>ATLAS</strong> EM Accordion <strong>Calorimeter</strong><br />

Electromagnetic Barrel (EMB) Electromagnetic Endcap (EMEC)<br />

Half Barrel<br />

Assembly<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 4


<strong>ATLAS</strong> Electromagnetic Barrel <strong>Calorimeter</strong><br />

|η| < 1.475<br />

Cu/kapton electrode<br />

Honeycomb spacer<br />

Stainless-steel-clad<br />

Pb absorber plates<br />

Detector design dictated by physics goals (high energy EM final states)<br />

e.g.<br />

→ → → ′ → , Ζ′ →<br />

0 0<br />

H γγ , H ZZ 4 e, W eνee Accordion structure chosen to ensure azimuthal uniformity (no cracks)<br />

<strong>Liquid</strong> argon chosen for radiation hardness and speed<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 5


Electromagnetic Barrel <strong>Calorimeter</strong><br />

Feedthrough<br />

<strong>Calorimeter</strong><br />

Presampler<br />

Solenoid<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 6


<strong>ATLAS</strong> Barrel Cryostat (October 2004)<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 7


Barrel Toroids Ready for Barrel <strong>Calorimeter</strong><br />

<strong>Calorimeter</strong> move to z=0 taking place today (Oct 26, 2005)<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 8


Installation <strong>of</strong> LAr Cryogenics<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 9


<strong>The</strong> <strong>ATLAS</strong> Endcap <strong>Liquid</strong> <strong>Argon</strong> <strong>Calorimeter</strong><br />

Electromagnetic<br />

Endcap <strong>Calorimeter</strong><br />

Hadronic Endcap <strong>Calorimeter</strong><br />

Forward<br />

<strong>Calorimeter</strong><br />

Cryogenic<br />

feedthroughs<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 10


<strong>ATLAS</strong> Hadronic Endcap <strong>Calorimeter</strong><br />

LAr-Cu sampling calorimeter<br />

covering 1.5 < η < 3.2<br />

Composed <strong>of</strong> 2 wheels per<br />

end, 32 modules per wheel<br />

HEC Module Structure<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 11


Endcap <strong>Calorimeter</strong> Insertion into Cryostat<br />

HEC wheel 1 insertion HEC wheel 2 insertion<br />

EMEC<br />

HEC1<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 12


Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 13


<strong>The</strong> FCal <strong>Calorimeter</strong> (η = 3.2-4.9)<br />

Novel electrode structure � thin annular gaps formed by an tubes in an<br />

absorber matrix, which are filled with anode rods <strong>of</strong> slightly smaller radius<br />

Gap maintained by helically-wound radiation hard plastic fibre (PEEK)<br />

Three modules: 1 EM, 2Hadronic (ease <strong>of</strong> construction, depth segmentation)<br />

Type Absorber<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 14<br />

Gap<br />

(µm)<br />

Number <strong>of</strong><br />

Electrodes<br />

FCal1 EM copper 250 12000<br />

FCal2 HAD tungsten 375 10000<br />

FCal3 HAD tungsten 500 8000<br />

matrix and rods are part <strong>of</strong> the<br />

detector ‘absorber’ and are<br />

composed <strong>of</strong> the same material


FCal2/3 Structure and Assembled Module<br />

<strong>Liquid</strong> <strong>Argon</strong> Gap<br />

Tungsten Rod<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 15


Forward <strong>Calorimeter</strong> Assembly<br />

FCal support tube<br />

Brass Plug<br />

Shielding<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 16


Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 17


Forward <strong>Calorimeter</strong> Installation<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 18


Forward <strong>Calorimeter</strong> Insertion<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 19


Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 20


Endcap Cryostat Move To LHC Point 1<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 21


<strong>Liquid</strong> <strong>Argon</strong> Front-End Electronics<br />

Common readout electronics for all LAr Calorimetry<br />

except for cold (GaAs) preamplifier for Hadronic Endcap <strong>Calorimeter</strong><br />

Installation and testing <strong>of</strong> Front-End Crates<br />

currently underway in <strong>ATLAS</strong> cavern<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 22


LAr Bipolar Signal Pulse Shaping<br />

physics pulse<br />

Amplitude carries<br />

the information (i 0 )<br />

equal<br />

areas<br />

Pulse shape sampled every 25 ns<br />

( eg. once / bunch crossing)<br />

Optimal shaping time is an<br />

optimization problem.<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 23


Electronic Calibration<br />

Pulse height samples � peak height via optimal filtering<br />

• Optimal Filtering (OFC) coefficients E (ADC) = ∑ a i (S i -PED)<br />

• OFC calculation relies on detailed knowledge <strong>of</strong> the physics pulse shape<br />

• Use calibration pulser: inject known current I 0 to calibrate response<br />

• But …. Calibration pulse differs from physics pulse<br />

– Physics pulse: triangular<br />

– Calibration pulse: exponential<br />

Physics<br />

Calibration<br />

Same I 0<br />

Calibration system requires<br />

detailed knowledge <strong>of</strong> the<br />

difference between the physics<br />

and calibration pulse shapes<br />

ADC[phys]/ADC[calib] for the<br />

same initial current I 0<br />

This can be tricky…..<br />

Procedure differs for different HEC, EM, FCal<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 24


LAr <strong>Calorimeter</strong> Testbeam Summary<br />

Testbeam programme (recent):<br />

� HEC/EMEC combined (2002) (Combined π response)<br />

� FCal Standalone (2003) (FCal Calibration)<br />

� HEC/EMEC/FCal Combined (2004) (Combined Endcap Response)<br />

� Barrel Combined Testbeam (2004) (Combined Barrel Response)<br />

Testbeams have served multiple purposes:<br />

� QC/QA during detector construction<br />

� Initial energy scale calibration: detector resolution, linearity<br />

� Investigation <strong>of</strong> crack/dead material effects<br />

� Exercise <strong>ATLAS</strong> electronics chain<br />

� Tests <strong>of</strong> online/<strong>of</strong>fline monitoring/reconstruction s<strong>of</strong>tware<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 25


<strong>Calorimeter</strong> Commissioning Plans<br />

� Coldtesting on the surface after detector integration (complete)<br />

� Testing (warm) in the in <strong>ATLAS</strong> Cavern<br />

� Coldtesting in the <strong>ATLAS</strong> Cavern<br />

� Electronic calibration, noise studies…<br />

� Commissioning/integration <strong>of</strong> trigger/DAQ system<br />

� Data taking with cosmic ray events begins in early 2006<br />

� LAr Barrel (early 2006)<br />

� LAr Endcaps (summer 2006)<br />

� Commissioning with single-beams in 2007<br />

� Commissioning with colliding beams in 2007<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 26


Backup Slides for Testbeam Setups<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 27


Summary <strong>of</strong> <strong>Calorimeter</strong> Testbeams<br />

EM Barrel<br />

Tile Barrel<br />

2004 H8 Barrel CTB<br />

EM Endcap<br />

Hadronic<br />

Endcap<br />

Tile Extended<br />

Barrel<br />

Forward<br />

2002 H6<br />

EMEC/HEC<br />

2004 H6<br />

EMEC/HEC/<br />

FCAL<br />

2003 H6<br />

FCAL<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 28


Barrel Combined Testbeam (<strong>ATLAS</strong> Full Slice)<br />

<strong>Calorimeter</strong> component: Experimental setup:<br />

• Tile barrel modules:<br />

– Three radial layers (1.4 λ, 3.9 λ and 1.8 λ each)<br />

– Total number <strong>of</strong> cells: 134<br />

• LAr barrel module:<br />

– Three radial layers + presampler (24 X 0 globally)<br />

– Total number <strong>of</strong> cells: 2031<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 29


H8 Barrel Combined Testbeam Setup<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 30


R [cm]<br />

Endcap Combined Testbeam (Crack Studies)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Poly shield<br />

elm EndCap<br />

pumps<br />

had EndCap had EndCap<br />

(front) (back)<br />

FCal I FCal II FCal III<br />

(elm) (had) (had)<br />

350 400 450 500 550 600 650<br />

Z [cm]<br />

Forward cone ~ projective.<br />

Dead material<br />

Same region is overlap <strong>of</strong> HEC<br />

and EMEC: loss <strong>of</strong> response<br />

Cu shielding η=3.2<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 31


HEC/EMEC FCAL combined test beam run<br />

Cold tailcatcher<br />

EMEC+HEC+FCAL Setup Material studies<br />

Special HEC mini-Modules<br />

FCal1/2 Mod0<br />

EMEC Mod0<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 32


Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 33


HEC/EMEC Combined Testbeam (2002)<br />

Hadrons, electrons and muons: E(beam) = 6-200 GeV η = 1.6 – 1.8<br />

90° impact angle (unlike <strong>ATLAS</strong>)<br />

Results now published<br />

NIM A531 (2004) 481<br />

HEC2<br />

HEC1<br />

EMEC<br />

Peter Krieger, <strong>University</strong> <strong>of</strong> <strong>Toronto</strong> IEEE NSS Puerto Rico, Oct 26, 2005 34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!