07.01.2013 Views

Energy, Materials, and Vehicle Weight Reduction Will Joost

Energy, Materials, and Vehicle Weight Reduction Will Joost

Energy, Materials, and Vehicle Weight Reduction Will Joost

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Energy</strong>, <strong>Materials</strong>, <strong>and</strong> <strong>Vehicle</strong><br />

<strong>Weight</strong> <strong>Reduction</strong><br />

<strong>Will</strong> <strong>Joost</strong><br />

Technology Area Development Manager<br />

Lightweight <strong>Materials</strong><br />

<strong>Vehicle</strong> Technologies Program<br />

1 | Program Name or Ancillary Text eere.energy.gov


<strong>Vehicle</strong> Technologies Program<br />

Hybrid Electric Systems<br />

Team Lead – Dave Howell<br />

<strong>Vehicle</strong> Systems<br />

Lee Slezak<br />

David Anderson<br />

<strong>Energy</strong> Storage<br />

Tien Duong<br />

Brian Cunningham<br />

Peter Faguy<br />

Power Electronics & Electric Motors<br />

Susan Rogers<br />

Steven Boyd<br />

2 | <strong>Vehicle</strong> Technologies Program<br />

FreedomCAR <strong>and</strong> Fuel Partnership<br />

Director – Christy Cooper<br />

Yury Kalish<br />

Chief Scientist<br />

James Eberhardt<br />

Education <strong>and</strong> Outreach<br />

Connie Bezanson<br />

Supervisory General Engineer<br />

Ed Owens<br />

<strong>Materials</strong> Technology<br />

Team Lead – Carol Schutte<br />

Lightweight <strong>Materials</strong><br />

<strong>Will</strong> <strong>Joost</strong><br />

Propulsion <strong>Materials</strong><br />

Jerry Gibbs<br />

HTML<br />

Carol Schutte<br />

Program Manager<br />

Patrick Davis<br />

21 st Century Truck Partnership<br />

Director – Ken Howden<br />

Analysis<br />

Phil Patterson<br />

Jake Ward<br />

Budget Program Analyst<br />

Noel Cole<br />

Supervisory General Engineer<br />

Steve Goguen<br />

Fuels Technology<br />

Team Lead – Kevin Stork<br />

Advanced Petroleum Based Fuels<br />

Steve Przesmitzki<br />

Non-Petroleum Fuels<br />

Dennis Smith<br />

Technology Integration/<br />

Clean Cities<br />

Dennis Smith<br />

Linda Bluestein<br />

Shannon Shea<br />

Mark Smith<br />

Legislation/Rulemaking<br />

Dana O’Hara<br />

Administration<br />

Maxine Robinson<br />

Bernadette Jackson<br />

Johnathan Wicker<br />

Advanced Combustion Engine R&D<br />

Team Lead – Gurpreet Singh<br />

Combustion & Emission Controls<br />

Ken Howden<br />

Rol<strong>and</strong> Gravel<br />

Solid State <strong>Energy</strong> Conversion<br />

John Fairbanks<br />

eere.energy.gov


The Plan<br />

• Why reduce vehicle weight?<br />

• What does weight reduction look like today?<br />

• How can we move forward?<br />

3 | <strong>Vehicle</strong> Technologies Program<br />

eere.energy.gov


U.S. Total <strong>Energy</strong> Flow (QBtu) - 2010<br />

4 | <strong>Vehicle</strong> Technologies Program<br />

Transportation accounts for ~28%<br />

of U.S. energy consumption<br />

<strong>Energy</strong> Information Administration (www.eia.gov)<br />

eere.energy.gov


U.S. Petroleum Flow (Mbpd) - 2010<br />

94% of transportation<br />

energy is from petroleum<br />

5 | <strong>Vehicle</strong> Technologies Program<br />

<strong>Energy</strong> Information Administration (www.eia.gov)<br />

71% of petroleum is used<br />

in transportation<br />

eere.energy.gov


Transportation <strong>Energy</strong> Consumption<br />

by Mode - 2009<br />

Non-highway<br />

Buses<br />

1%<br />

Med. Trucks<br />

3%<br />

Water<br />

5%<br />

6 | <strong>Vehicle</strong> Technologies Program<br />

Air<br />

10%<br />

Heavy Trucks<br />

13%<br />

Military<br />

3%<br />

Cars<br />

29%<br />

Rail<br />

2%<br />

Light Trucks<br />

34%<br />

<strong>Energy</strong> Information Administration (www.eia.gov)<br />

On-highway consumption<br />

� ~10.6 mbpd<br />

U.S. domestic production<br />

� ~5.3 mbpd<br />

Highway<br />

eere.energy.gov


<strong>Energy</strong> flow in a typical ICE vehicle<br />

Engine<br />

Loss<br />

(Heat)<br />

62%<br />

7 | <strong>Vehicle</strong> Technologies Program<br />

Engine Loss<br />

(Mechanical)<br />

100%<br />

Drive Train<br />

Loss<br />

(Mechanical)<br />

12%<br />

<strong>Energy</strong> to the wheels<br />

- Aerodynamic<br />

Drag<br />

- Rolling<br />

Resistance<br />

- Inertia<br />

(acceleration)<br />

eere.energy.gov


Mass <strong>and</strong> Fuel Consumption<br />

Fuel<br />

Consumed<br />

8 | <strong>Vehicle</strong> Technologies Program<br />

b = Specific Fuel Consumption (Heat/Mech Loss)<br />

F T = Tractive Forces (Drag, Inertia, Rolling)<br />

η = Drivetrain Efficiency (Mechanical Loss)<br />

Cheah, L. Cars on a Diet: The Material <strong>and</strong> <strong>Energy</strong> Impacts of Passenger <strong>Vehicle</strong> <strong>Weight</strong> <strong>Reduction</strong> in the U.S., 2010.<br />

eere.energy.gov


The Mass Effect<br />

• We know that mass affects tractive forces<br />

– Rolling resistance, inertial forces<br />

• The relationship between mass <strong>and</strong> energy consumption<br />

is complicated by a variety of factors<br />

– Averages/fleet mix<br />

– Mass compounding<br />

– <strong>Vehicle</strong> design<br />

– Powertrain resizing<br />

– Material energy content<br />

• So how does vehicle mass affect vehicle efficiency?<br />

9 | <strong>Vehicle</strong> Technologies Program<br />

eere.energy.gov


What can weight savings do for you?<br />

Improve performance<br />

• Fuel economy<br />

• Acceleration<br />

• Gradability<br />

• H<strong>and</strong>ling/Feel<br />

• Safety?<br />

10 | <strong>Vehicle</strong> Technologies Program<br />

Increase freight efficiency<br />

• Freight efficiency when<br />

weight limited<br />

• Fuel efficiency when<br />

volume limited<br />

Extend electric range<br />

• Increase range with<br />

existing battery<br />

• Maintain range with<br />

smaller battery<br />

• Optimize for<br />

requirements<br />

eere.energy.gov


Fuel Economy (mpg)<br />

<strong>Weight</strong> <strong>Reduction</strong> <strong>and</strong> Fuel Economy<br />

32.0<br />

31.0<br />

30.0<br />

29.0<br />

28.0<br />

Fuel Economy vs. Mass<br />

27.0<br />

75% 80% 85% 90% 95% 100%<br />

11 | <strong>Vehicle</strong> Technologies Program<br />

Conv Conv w/ Resizing<br />

Percent of Baseline <strong>Vehicle</strong> Mass<br />

Ricardo Inc., 2008<br />

Conv. Midsize Sedan: 6.8% improvement in<br />

fuel economy for 10% reduction in weight<br />

Fuel Economy (mpg)<br />

50.0<br />

45.0<br />

40.0<br />

35.0<br />

30.0<br />

25.0<br />

20.0<br />

15.0<br />

Fuel Economy vs. Mass<br />

Conv Conv w/Resizing<br />

10.0<br />

0% 50% 100% 150% 200% 250%<br />

Percent of Baseline <strong>Vehicle</strong> Mass<br />

FAST Model, NREL 2011<br />

Conv. Midsize Sedan: 6.9% improvement in<br />

fuel economy for 10% reduction in weight<br />

eere.energy.gov


0-60 Time (seconds)<br />

<strong>Weight</strong> <strong>Reduction</strong> <strong>and</strong> Performance<br />

9.8<br />

9.6<br />

9.4<br />

9.2<br />

9<br />

8.8<br />

8.6<br />

8.4<br />

Acceleration vs. Mass<br />

8.2<br />

75% 80% 85% 90% 95% 100%<br />

12 | <strong>Vehicle</strong> Technologies Program<br />

Conventional<br />

Percent of Baseline <strong>Vehicle</strong> Mass<br />

Ricardo Inc., 2008<br />

Conv. Midsize Sedan: 7% improvement in<br />

0-60 time for 10% reduction in weight<br />

4<br />

50% 60% 70% 80% 90% 100%<br />

Performance improvements compete with resizing � design objectives<br />

Max Grade in Top Gear (%)<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

Gradability vs. Mass<br />

Conventional<br />

Percent of Baseline <strong>Vehicle</strong> Mass<br />

Conv. Midsize Sedan: 25% improvement in<br />

gradability for 10% reduction in weight<br />

eere.energy.gov


Heavy Duty <strong>Vehicle</strong>s<br />

Empty Trailer<br />

13,000 lbs (16%)<br />

13 | <strong>Vehicle</strong> Technologies Program<br />

Tractor<br />

16,000 lbs (20%)<br />

• 50% reduction in tractor/trailer weight<br />

� 23% reduction in total weight<br />

• You can’t “lightweight” cargo<br />

� You can increase freight efficiency<br />

+<br />

Freight Efficiency (Tonmiles/gallon)<br />

100.0<br />

98.0<br />

96.0<br />

94.0<br />

92.0<br />

90.0<br />

88.0<br />

Cargo<br />

51,000 lbs (64%)<br />

= 80,000 lbs<br />

Fixed Load Added Load<br />

Ricardo Inc., 2009<br />

86.0<br />

92% 94% 96% 98% 100%<br />

Percent of Baseline <strong>Vehicle</strong> Mass Without Cargo<br />

eere.energy.gov


<strong>Weight</strong> <strong>Reduction</strong> <strong>and</strong> “Electric<br />

<strong>Vehicle</strong>s”<br />

Electric Range (km)<br />

290<br />

270<br />

250<br />

230<br />

210<br />

190<br />

170<br />

14 | <strong>Vehicle</strong> Technologies Program<br />

EV Range vs. Mass<br />

Kan, Y et. al JISSE-10, 2007<br />

150<br />

60% 70% 80% 90% 100%<br />

Percent of Baseline <strong>Vehicle</strong> Mass (%)<br />

BEV Midsize Sedan: 13.7% improvement in<br />

electric range for 10% reduction in weight<br />

Battery Cost Savings<br />

• $/kWh fixed<br />

• Fewer kWh to maintain range<br />

… Design balance including cost!<br />

Fuel Economy (mpg)<br />

70.0<br />

60.0<br />

50.0<br />

40.0<br />

30.0<br />

20.0<br />

Fuel Economy vs. Mass<br />

Conv Conv w/Resizing<br />

HEV HEV w/Resizing<br />

10.0<br />

0% 50% 100% 150% 200% 250%<br />

Percent of Baseline <strong>Vehicle</strong> Mass<br />

FAST Model, NREL 2011<br />

HEV Midsize Sedan: 5.1% improvement in<br />

fuel economy for 10% reduction in weight<br />

eere.energy.gov


The Mass Effect<br />

• Directly calculating the impact of vehicle weight reduction on energy<br />

consumption is difficult<br />

– Complicated by mass compounding, design, material energy content,<br />

etc.<br />

• Mass reduction does provide improvements<br />

– Typical ICE <strong>Vehicle</strong>s � Efficiency, performance, <strong>and</strong> optimization<br />

– Heavy Duty <strong>Vehicle</strong>s � Freight Efficiency<br />

– HEV/PHEV/BEV � Range, battery size, <strong>and</strong> cost<br />

• Impact on <strong>Energy</strong> Consumption<br />

– Nearer term: 30% light duty wt. reduction, 15% heavy duty wt.<br />

reduction � Potentially more than 2 QBtu per year saved!<br />

– Longer term: 45% light duty wt. reduction, 25% heavy duty wt.<br />

reduction � Potentially more than 3.5 QBtu per year saved!<br />

15 | <strong>Vehicle</strong> Technologies Program<br />

eere.energy.gov


<strong>Weight</strong> <strong>Reduction</strong> Potentials<br />

Lightweight Material Material Replaced Mass <strong>Reduction</strong> (%)<br />

Relative Cost<br />

Per Part<br />

Magnesium Steel, Cast Iron 60 - 75 1.5 - 2.5<br />

Carbon Fiber Composites Steel 50 - 60 2 - 10+<br />

Aluminum Matrix<br />

Composites<br />

Steel, Cast Iron 40 - 60 1.5 - 3+<br />

Aluminum Steel, Cast Iron 40 - 60 1.3 - 2<br />

Titanium Steel 40 - 55 1.5 - 10+<br />

Glass Fiber Composites Steel 25 - 35 1 - 1.5<br />

Advanced High Strength<br />

Steel<br />

Mild Steel 15 - 25 1 - 1.5<br />

High Strength Steel Mild Steel 10 - 15 1<br />

16 | <strong>Vehicle</strong> Technologies Program<br />

eere.energy.gov


Example Component Lightweighting<br />

- Mg engine cradle for Corvette Z06<br />

- 35% lighter than Al<br />

- Single piece Mg casting vs. multi-piece<br />

steel assembly<br />

17 | <strong>Vehicle</strong> Technologies Program<br />

- Carbon Fiber<br />

Composite seat<br />

structure<br />

- 58% lighter than<br />

st<strong>and</strong>ard design<br />

- AHSS rear cradle for RWD vehicles<br />

- 27% lighter than conventional design, no<br />

loss of stiffness<br />

- Cost neutral<br />

- Mg engine block, bedplate, oil pan,<br />

<strong>and</strong> engine cover<br />

- 28% lighter than Al version<br />

eere.energy.gov


Example System Lightweighting<br />

- Multi-material vehicle, Al intensive<br />

- 30% weight reduction for BIW<br />

18 | <strong>Vehicle</strong> Technologies Program<br />

PNGV<br />

EU Super<br />

Light Car<br />

- Multi-material vehicles<br />

- ~25% overall vehicle weight reduction<br />

- AHSS intensive vehicle<br />

- 16% weight reduction for BIW<br />

<strong>Energy</strong><br />

Foundation<br />

- Lotus<br />

Mg Front<br />

End<br />

- Mg intensive front end structure<br />

- 45% weight reduction compared to steel<br />

- 56% reduction in part count<br />

eere.energy.gov


Percentage of Total <strong>Vehicle</strong> Mass (%)<br />

Characteristics of Production<br />

<strong>Vehicle</strong>s<br />

18.0%<br />

16.0%<br />

14.0%<br />

12.0%<br />

10.0%<br />

8.0%<br />

6.0%<br />

4.0%<br />

2.0%<br />

<strong>Vehicle</strong> Material Content vs. Year<br />

0.0%<br />

1980 1990 2000 2010<br />

Production Year<br />

Wards, American Metals Market<br />

19 | <strong>Vehicle</strong> Technologies Program<br />

HS <strong>and</strong> MS<br />

Steel<br />

Aluminum<br />

Magnesium<br />

Polymers<br />

<strong>and</strong><br />

Composites<br />

<strong>Weight</strong> (lbs.)<br />

3900<br />

3800<br />

3700<br />

3600<br />

3500<br />

3400<br />

3300<br />

3200<br />

3100<br />

Average Curb <strong>Weight</strong> vs. Year - EPA<br />

Midsize Car<br />

3000<br />

1980 1985 1990 1995 2000 2005 2010<br />

Production Year<br />

EPA<br />

eere.energy.gov


Advanced Material <strong>Vehicle</strong>s<br />

• Some advanced<br />

material use is<br />

“tactical”…<br />

…hoods, interior<br />

pieces, etc.<br />

• A few vehicles use<br />

advanced materials at<br />

a full-vehicle level…<br />

…but do not save<br />

considerable weight!<br />

20 | <strong>Vehicle</strong> Technologies Program<br />

Curb <strong>Weight</strong> (lbs.)<br />

5000<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

<strong>Vehicle</strong> Curb <strong>Weight</strong> vs. Footprint<br />

Ferrari F430<br />

Lotus Exige<br />

1000<br />

20 40 60 80 100 120 140<br />

Footprint (sq-ft)<br />

Corvette Z06<br />

Audi A8<br />

eere.energy.gov


The <strong>Weight</strong> <strong>Reduction</strong> Story<br />

• Lightweight materials have found increased<br />

application in production vehicles<br />

• <strong>Weight</strong> reduction doesn’t always result in weight<br />

reduction<br />

– Offset by the addition of new features<br />

– Offset by improving performance, comfort, design<br />

– Offset by improving safety <strong>and</strong> crashworthiness<br />

The materials <strong>and</strong> design toolbox is growing<br />

21 | <strong>Vehicle</strong> Technologies Program<br />

eere.energy.gov


Lightweight <strong>Materials</strong> Strategy<br />

22 | <strong>Vehicle</strong> Technologies Program<br />

Light- <strong>and</strong> Heavy-Duty<br />

Roadmaps<br />

Properties <strong>and</strong> Manufacturing Multi-material Enabling Modeling <strong>and</strong> Simulation<br />

• Reducing the cost<br />

• raw materials<br />

• processing<br />

• Improving<br />

• performance<br />

• manufacturability<br />

• Enabling structural<br />

joints between<br />

dissimilar materials<br />

• Preventing corrosion<br />

in complex material<br />

systems<br />

• Developing NDE<br />

techniques<br />

Demonstration, Validation, <strong>and</strong> Analysis<br />

• Predicting the<br />

behavior accurately<br />

• Optimizing complex<br />

processes efficiently<br />

• ICME: Developing<br />

new materials <strong>and</strong><br />

processes<br />

eere.energy.gov


Properties <strong>and</strong> Manufacturing –<br />

Non-Ferrous<br />

Magnesium Aluminum<br />

When it “works” � Cost (~$2-5/ lb-saved)<br />

Otherwise �<br />

• Lack of domestic<br />

supply, unstable pricing<br />

• Difficulty forming sheet<br />

products at low<br />

temperatures<br />

• Limited energy<br />

absorption in<br />

conventional alloys<br />

Carbon Fiber Composites<br />

23 | <strong>Vehicle</strong> Technologies Program<br />

Russia<br />

, 4%<br />

U.S.,<br />

7%<br />

China,<br />

80%<br />

When it “works” � Cost (~$3-6/ lb-saved)<br />

Addressing Cost �<br />

Others<br />

, 9%<br />

• Producing carbon fiber from low cost feedstock (~50% of<br />

carbon fiber cost<br />

• Graphitizing carbon fiber more rapidly/efficiently (~23% of<br />

carbon fiber cost)<br />

When it “works” � Cost (~$1-3/ lb-saved)<br />

Otherwise �<br />

• Difficulty casting complex,<br />

high strength parts<br />

• Insufficient strength in<br />

conventional automotive<br />

alloys<br />

• Non-conventional alloys<br />

benefit from nonautomotive<br />

heat treatment<br />

eere.energy.gov


Properties <strong>and</strong> Manufacturing –<br />

AHSS<br />

Beating the banana curve<br />

• What other relevant properties should we<br />

consider?<br />

• What are the microstructural options to<br />

achieve 3G properties?<br />

• Can this be compatible with existing<br />

infrastructure? Should it be?<br />

24 | <strong>Vehicle</strong> Technologies Program<br />

3G…now what?<br />

• How do you turn sheet into components?<br />

• How will the steel behave in a crash<br />

event?<br />

• What is the system-level weight reduction<br />

potential of these steels?<br />

• Does it have to be stamped sheet?<br />

eere.energy.gov


Multi-material Enabling<br />

Magnesium Aluminum<br />

• Corrosion (galvanic<br />

<strong>and</strong> general)<br />

• Difficulty Joining<br />

• Mg-Mg<br />

• Mg-X<br />

• Riveted Joints<br />

• Questionable<br />

compatibility with<br />

existing paint/coating<br />

systems<br />

Carbon Fiber Composites<br />

• Corrosion <strong>and</strong> environmental degradation<br />

• Some difficulty joining<br />

• Questions regarding non-destructive evaluation<br />

25 | <strong>Vehicle</strong> Technologies Program<br />

• HAZ property deterioration<br />

• Difficulty joining mixed<br />

grades<br />

• Joint integrity<br />

• Joint formability<br />

• Difficulty recycling mixed<br />

grades<br />

AHSS<br />

Mg Si Cu Zn<br />

5182 4.0 - 5.0 < 0.2 < 0.15 < 0.25<br />

6111 0.5 - 1.0 0.6 - 1.1 0.5 - 0.9 < 0.15<br />

7075 2.1 - 2.9 < 0.4 1.2 - 2.0 5.1 - 6.1<br />

• HAZ property deterioration<br />

• Limited weld fatigue strength<br />

• Tool wear, tool load, infrastructure<br />

eere.energy.gov


Multi-material Enabling<br />

Magnesium Aluminum<br />

• Corrosion (galvanic<br />

<strong>and</strong> general)<br />

• Difficulty Joining<br />

• Mg-Mg<br />

• Mg-X<br />

• Riveted Joints<br />

• Questionable<br />

compatibility with<br />

existing paint/coating<br />

systems<br />

Carbon Fiber Composites<br />

• Corrosion <strong>and</strong> environmental degradation<br />

• Some difficulty joining<br />

• Questions regarding non-destructive evaluation<br />

26 | <strong>Vehicle</strong> Technologies Program<br />

• HAZ property deterioration<br />

• Difficulty joining mixed<br />

grades<br />

• Joint integrity<br />

• Joint formability<br />

• Difficulty recycling mixed<br />

grades<br />

AHSS<br />

Mg Si Cu Zn<br />

5182 4.0 - 5.0 < 0.2 < 0.15 < 0.25<br />

6111 0.5 - 1.0 0.6 - 1.1 0.5 - 0.9 < 0.15<br />

7075 2.1 - 2.9 < 0.4 1.2 - 2.0 5.1 - 6.1<br />

• HAZ property deterioration<br />

• Limited weld fatigue strength<br />

• Tool wear, tool load, infrastructure<br />

eere.energy.gov


Modeling <strong>and</strong> CMS – Non-Ferrous<br />

Magnesium Aluminum<br />

• Complicated deformation in<br />

HCP Mg alloys<br />

• Highly anisotropic<br />

plastic response<br />

• Profuse twinning<br />

• Few established design<br />

rules for anisotropy<br />

• Substantial gaps in basic<br />

metallurgical data<br />

Carbon Fiber Composites<br />

27 | <strong>Vehicle</strong> Technologies Program<br />

Q. Ma et al. Scripta Mat. 64 (2011) 813–816<br />

• Process-structure models:<br />

• Difficult to predict fiber orientation <strong>and</strong> length in longfiber<br />

injection molding<br />

• Structure-property models:<br />

• Complicated micro/meso/macrostructures make<br />

efficient simulation of structural <strong>and</strong> crash<br />

performance difficult<br />

• Basic metallurgical<br />

models are well<br />

established<br />

• Substantial<br />

fundamental data is<br />

available<br />

• Useful predictive<br />

models established for<br />

some conditions<br />

• Truly predictive, multiscale<br />

models are still<br />

lacking<br />

P.E. Krajewski et al. Acta Mat. 58 (2010) 1074–1086<br />

http://www1.eere.energy.gov/vehicles<strong>and</strong>fuels/resources/fcvt_reports.html<br />

eere.energy.gov


Modeling <strong>and</strong> CMS - AHSS<br />

Beating the banana curve<br />

• There are many paths towards new, advanced properties<br />

• How can we efficiently optimize the existing approaches?<br />

• How can we efficiently discover new approaches?<br />

S. Haw at al. Compt. Meth. Appl.<br />

Mech. Eng. 193 (2004) 1865-1908<br />

http://www1.eere.energy.gov/vehicles<strong>and</strong>fuels/p<br />

dfs/merit_review_2010/lightweight_materials/lm0<br />

20_sun_2010_o.pdf<br />

28 | <strong>Vehicle</strong> Technologies Program<br />

N.I. Medvedeva et al. Phys. Rev. B 81 (2010) 012105<br />

Predictive Engineering<br />

• Can we apply these techniques to<br />

solve engineering problems?<br />

• Prediction/design for<br />

manufacturing?<br />

• Prediction/design for<br />

performance?<br />

eere.energy.gov


Big Picture<br />

<strong>Energy</strong> <strong>and</strong> <strong>Vehicle</strong> <strong>Weight</strong> <strong>Reduction</strong><br />

• U.S. transportation energy accounts for 28% of<br />

total consumption<br />

• 94% of transportation energy is from petroleum<br />

• The relationship between weight <strong>and</strong> energy<br />

savings is complicated…<br />

• …but significant fuel economy <strong>and</strong> energy<br />

savings are likely<br />

29 | <strong>Vehicle</strong> Technologies Program<br />

Moving Forward with Lightweight <strong>Materials</strong><br />

<strong>Vehicle</strong> <strong>Weight</strong> <strong>Reduction</strong> Today<br />

• Lightweight materials (including steels) have<br />

seen wider application in vehicles…<br />

• …but vehicle weight has increased!<br />

• Dem<strong>and</strong> for improved safety, comfort, emissions<br />

control, etc. has offset weight reduction<br />

• Development of lightweight materials provides a<br />

strong foundation for future weight reduction<br />

• Steel, Aluminum, Magnesium, Carbon Fiber Composites, <strong>and</strong><br />

other materials will likely play a roll in continued weight reduction<br />

• Significant unanswered questions exist in properties,<br />

manufacturing, multi-material enabling, <strong>and</strong> modeling/simulation<br />

of these materials<br />

• Where does steel need to go from here?<br />

eere.energy.gov


Mass <strong>Reduction</strong>, <strong>Vehicle</strong>s, <strong>and</strong> <strong>Energy</strong>:<br />

• Cheah, L.W. Cars on a Diet: The Material <strong>and</strong> <strong>Energy</strong> Impacts of Passenger <strong>Vehicle</strong><br />

<strong>Weight</strong> <strong>Reduction</strong> in the U.S. Ph.D. Dissertation, Massachusetts Institute of<br />

Technology, Cambridge, MA, 2010.<br />

• Lutsey, N. Review of Technical Literature <strong>and</strong> Trends Related to Automobile Massreduction<br />

Technology, Institute of Transportation Studies, UC Davis, 2010.<br />

EERE <strong>Vehicle</strong> Technologies Program Resources:<br />

• Annual Reports<br />

http://www1.eere.energy.gov/vehicles<strong>and</strong>fuels/resources/fcvt_reports.html<br />

• Annual Review Presentations<br />

http://www1.eere.energy.gov/vehicles<strong>and</strong>fuels/resources/proceedings/index.html<br />

• Annual Merit Review<br />

May 16 – 18, 2012, Crystal City (Arlington), VA<br />

30 | <strong>Vehicle</strong> Technologies Program<br />

william.joost@ee.doe.gov<br />

eere.energy.gov

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!