06.01.2013 Views

Location of objects in multiple-scattering media - COPS

Location of objects in multiple-scattering media - COPS

Location of objects in multiple-scattering media - COPS

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Den Outer et al.<br />

Vol. 10, No. 6/June 1993/J. Opt. Soc. Am. A 1209<br />

<strong>Location</strong> <strong>of</strong> <strong>objects</strong> <strong>in</strong> <strong>multiple</strong>-scatter<strong>in</strong>g <strong>media</strong><br />

P. N. den Outer and Th. M. Nieuwenhuizen<br />

Van der Waals-Zeeman Laboratorium der Universiteit van Amsterdam, Valckenierstraat 65,<br />

1018 XE Amsterdam, The Netherlands<br />

Ad Lagendijk<br />

Van der Waals-Zeeman laboratorium der Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam,<br />

The Netherlands, and Fundamenteel Onderzoek der Materie Instituut voor Atoom-en Molecuulfysica, Kruislaan 407,<br />

1098 SJ Amsterdam, The Netherlands<br />

Received March 26, 1992; revised manuscript received October 21, 1992; accepted November 25, 1992<br />

When a small object is placed <strong>in</strong> a <strong>multiple</strong>-scatter<strong>in</strong>g medium the stationary diffusion equation can be used to<br />

derive the disturbance <strong>in</strong> the transmitted and backscattered light <strong>in</strong>tensity. The diffusion equation will describe<br />

the <strong>in</strong>tensity outside and <strong>in</strong>side the object. The object is characterized by a size, a diffusion constant,<br />

and an absorption length. In this way absorb<strong>in</strong>g <strong>objects</strong> as well as nonabsorb<strong>in</strong>g <strong>objects</strong> can be treated. The<br />

results are derived for two and three dimensions. Experiments are performed on suspended titanium dioxide<br />

particles <strong>in</strong> glycer<strong>in</strong>e, where<strong>in</strong> <strong>objects</strong> could be placed. There is good agreement between theory and experiment.<br />

This work shows that with the use <strong>of</strong> cont<strong>in</strong>uous light sources, it may be possible to recover the location<br />

<strong>of</strong> <strong>objects</strong> accurately <strong>in</strong>side a diffusive scatter<strong>in</strong>g medium.<br />

1. INTRODUCTION<br />

When an object is placed <strong>in</strong> a highly scatter<strong>in</strong>g medium,<br />

ballistic light transport from the object to a detector is<br />

nearly absent. Direct imag<strong>in</strong>g <strong>of</strong> the object is impossible,<br />

and other methods should be used. Many researchers`<br />

have been attracted by this problem, for which there are<br />

important medical applications, such as the location <strong>of</strong><br />

those tumor cells <strong>in</strong> human tissue that cannot be seen<br />

with conventional techniques (cat scanner, x rays, etc.).<br />

As a first step to solv<strong>in</strong>g the problem <strong>of</strong> imag<strong>in</strong>g through<br />

scatter<strong>in</strong>g <strong>media</strong>, one could try to reduce the <strong>multiple</strong>scatter<strong>in</strong>g<br />

contribution to the image either by mak<strong>in</strong>g the<br />

<strong>media</strong> absorb, by filter<strong>in</strong>g out the lowest order <strong>of</strong> scatter<strong>in</strong>g<br />

with the help <strong>of</strong> femtosecond light pulses and ultrafast<br />

detection methods, 3 5 or by spatial <strong>in</strong>coherence techniques.<br />

6 By these methods only the low order <strong>of</strong> scattered<br />

light is detected; therefore high <strong>in</strong>tensities for the<br />

<strong>in</strong>com<strong>in</strong>g light are necessary, and an exponential decay <strong>of</strong><br />

the signal with <strong>in</strong>creas<strong>in</strong>g distance between the object and<br />

boundaries <strong>of</strong> the scatter<strong>in</strong>g medium is to be expected.<br />

This puts a severe limit on the prob<strong>in</strong>g depth. If one<br />

wants to enlarge the prob<strong>in</strong>g depth, one should measure<br />

the diffuse <strong>in</strong>tensity (i.e., the <strong>multiple</strong>-scattered light). A<br />

good description for light propagation through disordered<br />

<strong>media</strong> can be given by diffusion theory. ' Also, <strong>in</strong> human<br />

tissue light propagates diffusively, and the diffusion approximation<br />

can be used to determ<strong>in</strong>e, for <strong>in</strong>stance, parameters<br />

such as the oxygenation state <strong>of</strong> tissue."- 3<br />

Expressions for the Green's function for the diffusion<br />

equation with and without absorption are found,' 9 ' 4 and<br />

<strong>in</strong> a few simple geometries where absorption is negligible<br />

a closed expression can be given (for a spherical geometry<br />

see Ref. 15). A closed expression for a two-dimensional<br />

slab is derived <strong>in</strong> this paper.<br />

When the object is small compared with the system size,<br />

we show that it is possible to calculate the disturbance on<br />

the diffuse <strong>in</strong>tensity. We approach this problem by tak<strong>in</strong>g<br />

a diffusion constant <strong>in</strong>side the object that differs from the<br />

diffusion constant <strong>of</strong> the surround<strong>in</strong>g medium. Also, to<br />

characterize the object we <strong>in</strong>troduce a size a and an aborption<br />

length la or absorption parameter a, describ<strong>in</strong>g the<br />

situation <strong>in</strong> which absorption takes place only at the surface<br />

<strong>of</strong> the object. It turns out that one can dist<strong>in</strong>guish<br />

between absorb<strong>in</strong>g <strong>objects</strong> and scatter<strong>in</strong>g <strong>objects</strong>. Scatter<strong>in</strong>g<br />

<strong>objects</strong> do not absorb but have a diffusion constant<br />

that is different from the surround<strong>in</strong>g medium.<br />

The important parameter for the visibility <strong>of</strong> an object<br />

is the ratio a/L, a be<strong>in</strong>g the size <strong>of</strong> the object and L the<br />

thickness <strong>of</strong> the system where<strong>in</strong> the object has been<br />

placed. The local <strong>in</strong>tensity disturbance that is due to the<br />

object is diffusively broadened; therefore the visibility is<br />

<strong>in</strong>dependent <strong>of</strong> the scatter<strong>in</strong>g mean-free path.<br />

To illustrate our approach, we consider a few examples<br />

<strong>of</strong> scatter<strong>in</strong>g <strong>media</strong> conf<strong>in</strong>ed <strong>in</strong> a simple geometry. We<br />

calculate the transmitted and backscattered <strong>in</strong>tensity for<br />

three- and two-dimensional slabs <strong>in</strong> Subsections 2.A and<br />

2.B, respectively. In Subsection 2.C the disturbance on<br />

the diffuse <strong>in</strong>tensity when a po<strong>in</strong>t source is used <strong>in</strong>stead<br />

<strong>of</strong> a plane wave is calculated. A spherical geometry is<br />

considered <strong>in</strong> Subsection 2.D. Measurements were carried<br />

out for a two-dimensional slab to test the theory. In<br />

Section 3 we report our experimental results, which are <strong>in</strong><br />

good agreement with diffusion theory.<br />

2. CALCULATION OF DIFFUSE INTENSITY<br />

0740-3232/93/061209-10$06.00 © 1993 Optical Society <strong>of</strong> America<br />

For the transport <strong>of</strong> light through a scatter<strong>in</strong>g medium<br />

and through an object we use the diffusion approximation,<br />

and we take smooth boundaries for medium and object.<br />

We consider a spherical object with a radius a that is small<br />

compared with the system size L. Our goal is to solve the


1210 J. Opt. Soc. Am. A/Vol. 10, No. 6/June 1993<br />

stationary diffusion equation with boundary conditions<br />

given by the geometry <strong>of</strong> the scatter<strong>in</strong>g medium and extra<br />

boundary conditions from the embedded object. We consider<br />

a slab geometry and a spherically shaped geometry.<br />

The slab is situated between x = L and x = 0 and is <strong>in</strong>f<strong>in</strong>itely<br />

extended <strong>in</strong> the yz plane. A source S(y, z), plane<br />

wave or po<strong>in</strong>tlike, is placed at x = L. The sphere that<br />

conf<strong>in</strong>es the scatter<strong>in</strong>g medium is centered at the orig<strong>in</strong>.<br />

The stationary diffusion equation reads as<br />

AI(r) = 0. (1)<br />

The boundary conditions at the outer surfaces <strong>of</strong> the medium<br />

are for a slab<br />

and for a sphere<br />

I(L, y, z) = S(y, z), I(0, Y, z) = (2)<br />

I(R, 0, ) = S(O, ), (3)<br />

where I(r) is the diffuse <strong>in</strong>tensity, L is the thickness <strong>of</strong> the<br />

slab, and R is the radius <strong>of</strong> the sphere.<br />

One can dist<strong>in</strong>guish at least two means <strong>of</strong> absorption by<br />

the object: uniform absorption <strong>in</strong> its volume or absorption<br />

only at its surface. Absorption at the surface could<br />

be used, for <strong>in</strong>stance, as a model for dyed polystyrene<br />

spheres. For uniform absorption an absorption length<br />

la1 = /K can be <strong>in</strong>troduced, and for the <strong>in</strong>tensity <strong>in</strong>side the<br />

object the diffusion equation<br />

AI(r) = K 2 1(r) (4)<br />

should be considered. In this case the problem is to solve<br />

Eqs. (1) and (4), together with the boundary condition<br />

given by Eq. (2) or (3) and with extra boundary conditions<br />

on the surface <strong>of</strong> the object that are given by<br />

Iut(a+) = Ii(a-), (5)<br />

D a-|ut = D2 ~ -| (6)<br />

an a+<br />

The diffusion constants Di and D 2 are for the medium and<br />

for <strong>in</strong>side the object, respectively. The normal derivative<br />

a/an is taken on the surface <strong>of</strong> the object. Equation (5)<br />

provides cont<strong>in</strong>uity <strong>of</strong> <strong>in</strong>tensity, and Eq. (6) conserves the<br />

flux through the boundary <strong>of</strong> the object. These boundary<br />

conditions follow from the underly<strong>in</strong>g transport theory,<br />

which yields both the diffusion equation and its boundary<br />

conditions.<br />

To account for absorption only at the boundary <strong>of</strong> the<br />

object, one modifies Eq. (6) such that the flux is not conserved.<br />

In this way absorption takes place at the boundary<br />

<strong>of</strong> the object, and we can use Eq. (1) for the <strong>in</strong>tensity<br />

<strong>in</strong>side the object. The modified boundary conditions are<br />

D aI-<br />

An +<br />

= D2 al<strong>in</strong> +aIi(a).<br />

An a<br />

The absorption parameter a has the dimension <strong>of</strong> speed<br />

(7)<br />

We can dist<strong>in</strong>guish a number <strong>of</strong> relevant cases. For<br />

<strong>in</strong>stance,<br />

or = K = 0, D2 O D,:<br />

a = K = 0, D2 = :<br />

a 0, or K 0:<br />

pure scatterer, no absorption,<br />

glass object or air bubble,<br />

absorber, absorb<strong>in</strong>g behavior<br />

dom<strong>in</strong>ates scatter<strong>in</strong>g.<br />

S<strong>in</strong>ce Eq. (1) is a Laplace equation, we can use the<br />

formalism <strong>of</strong> electrostatics and <strong>in</strong>troduce the analog <strong>of</strong><br />

charges, dipoles, and their mirror images. Positive<br />

charges describe light sources and negative sources describe<br />

absorption <strong>of</strong> light. Dipoles describe scatter<strong>in</strong>g<br />

<strong>objects</strong>.<br />

A. Three-Dimensional Slab<br />

We consider a plane wave S(L, y, z) = Io <strong>in</strong>cident upon a<br />

slab. A schematic view is given <strong>in</strong> Fig. 1. A spherical<br />

object with radius a is located at ro = (x 0, 0,0). We must<br />

write the potential for a po<strong>in</strong>t charge and apply the boundary<br />

condition given by Eq. (2), with S(y, z) = 0. This results<br />

<strong>in</strong> a summation over mirror images, the outcome<br />

be<strong>in</strong>g the diffusion propagator for a slab. The potential<br />

for a dipole can easily be obta<strong>in</strong>ed from this result if one<br />

takes the derivative with respect to the position <strong>of</strong> the<br />

charge. The <strong>in</strong>tensity <strong>in</strong> the slab can be expressed as<br />

1 1<br />

L I~r = IoL + Jr |ro + 2Lnx|' Jr + r + 2Ln52|<br />

P nE -[(X -<br />

x - x + 2nL<br />

xo + 2nL) 2 + p2 ] 3 / 2<br />

x + x + 2nL<br />

[(x + x + 2nL) 2 + 2]312'<br />

with x be<strong>in</strong>g a unit vector along the x axis and p 2 =<br />

y 2 + z 2 .<br />

The first term <strong>in</strong> Eq. (9) describes the undisturbed <strong>in</strong>tensity,<br />

the second term represents the effect <strong>of</strong> absorption<br />

analogous to a charge <strong>in</strong> electrodynamics, and the<br />

I<br />

0.' .<br />

L<br />

.<br />

Den Outer et al.<br />

Fig. 1. Schematic view <strong>of</strong> a <strong>multiple</strong>-scatter<strong>in</strong>g system with an<br />

embedded spherical object. The scatter<strong>in</strong>g system is characterized<br />

by a diffusion constant DI and the object by radius a, diffusion<br />

constant D 2, and absorb<strong>in</strong>g parameter a. A plane wave is<br />

<strong>in</strong>cident at x = L. The <strong>in</strong>tensity is derived at x = 0 and x = L.<br />

(9)


Den Outer et al.<br />

third is the dipole term from scatter<strong>in</strong>g. Further details<br />

<strong>of</strong> the object will be found <strong>in</strong> higher multipoles for the<br />

<strong>in</strong>tensity outside the object, but their contribution to the<br />

disturbance far from the object will be small. When a


1212 J. Opt. Soc. Am. A/Vol. 10, No. 6/June 1993<br />

Moreover, a careful re<strong>in</strong>vestigation <strong>of</strong> the diagrammatic<br />

analysis employed <strong>in</strong> Ref. 7 reveals that the result <strong>in</strong>deed<br />

has the behavior <strong>of</strong> a dipole rather than <strong>of</strong> a charge.<br />

B. Two-Dimensional Slab<br />

The disturbance on the <strong>in</strong>tensity for a two-dimensional<br />

slab is derived completely analogously to the previous approach.<br />

To obta<strong>in</strong> the <strong>in</strong>tensity distribution from a po<strong>in</strong>t<br />

source <strong>in</strong> a two-dimensional system, one has to write<br />

down the potential for a l<strong>in</strong>e charge and apply the first<br />

boundary condition <strong>of</strong> Eqs. (2) with S(L, y, z) = 0. Experimentally<br />

a two-dimensional system can be realized if<br />

one makes the system translationally <strong>in</strong>variant along one<br />

coord<strong>in</strong>ate; i.e., if one uses rods and glass fibers as <strong>objects</strong>.<br />

The application <strong>of</strong> the boundary condition <strong>of</strong> Eqs. (2) on<br />

the potential for a l<strong>in</strong>e charge results <strong>in</strong> a summation over<br />

mirror images, which can be performed exactly. Here it<br />

is convenient to <strong>in</strong>troduce the complex variable ; = x +<br />

iy. The potential for a l<strong>in</strong>e dipole can aga<strong>in</strong> be found if<br />

one takes the derivative <strong>of</strong> this result with respect to the<br />

position. The ansatz for the solution <strong>of</strong> the diffusion<br />

equation [Eq. (1)] with a l<strong>in</strong>e charge and a l<strong>in</strong>e dipole outside<br />

the object reads as<br />

I = I x + q~e~n s<strong>in</strong>[(r/2L)( - x)]<br />

q ~ ns<strong>in</strong>[(ir/2L)( + x)]J<br />

+ pRe{cot[2(; - xo)] + cot[( + ]1<br />

(18)<br />

where x 0 is the position <strong>of</strong> the scatterer (yo = 0). For absorption<br />

only at the boundary the ansatz is<br />

I<strong>in</strong>(0 = A + B(x - xo). (19)<br />

For uniform absorption the ansatz for the <strong>in</strong>tensity <strong>in</strong>side<br />

the object is<br />

I<strong>in</strong>(;) = AIo(Kp) + 2BI(KP)COS .<br />

K<br />

(20)<br />

Here I(r) and I(r) are the modified Bessel functions <strong>of</strong><br />

order 0 and 1, p = IPI = (X 2 + y 2 )1" 2 , and is the angle<br />

between p and the x axis.<br />

To obta<strong>in</strong> the constants q, p, A, and B we approximate<br />

Eq. (18) for ; close to x0 and for a/L small:<br />

Iout( = Io XO + (x - xo)<br />

{ | 7r [(X-XO)2 + y2]1/2 + a2 2L s<strong>in</strong>(7r/L)xo VL2<br />

2L(x - x) + a<br />

+ PL 2(x - XO) 2<br />

2]1/2 + cot -x0 + O()<br />

Y LL<br />

(21)<br />

We <strong>in</strong>sert Eqs. (19) and (21) <strong>in</strong>to Eqs. (7) and (8), which<br />

accounts for uniform absorption and absorption on the<br />

surface <strong>of</strong> the object, to obta<strong>in</strong><br />

q = io[L + p cot(irxo/L)]<br />

aa + D 2KaI,(Ka)/Io(Ka)<br />

D1 + [aa + D2KaI(Ka)/IO(Ka)]ln(L/a*)<br />

ira 2 Di - D 2[KaIo(Ka) - Il(Ka)]/I1(Ka) - aa<br />

O2L2 D + D 2[KaIo(Ka) - Il(Ka)]/II(Ka)<br />

+ aa<br />

A IO(Ka) D<br />

KaIi(Ka)D 2+ I(aa<br />

B = 21(a) (I1 + P 2L)<br />

with the rescaled radius<br />

sra<br />

a 2 s<strong>in</strong>(7rfxolL)<br />

(22)<br />

(23)<br />

Although the dipole term depends on a and K separately,<br />

we take K = 0 from now on. This simplification is justified<br />

because the dipole contribution to the <strong>in</strong>tensity disturbance<br />

can be neglected whenever absorption is present.<br />

One may conclude that the <strong>in</strong>tensity disturbance far outside<br />

the object does not depend dramatically on specific<br />

mechanism <strong>of</strong> absorption. For K = 0, the coefficients reduce<br />

to<br />

rxo D 1 - D 2 - aa ra 2<br />

q IOLL uIDI + D 2 + aa 2L2J<br />

aa<br />

x D1 + aa ln(L/a*)<br />

A Dlq<br />

aa<br />

D - D2 - aa 7ra 2<br />

DI + D 2 + aa 2L 2<br />

B = Io± + Pai-<br />

L<br />

(24)<br />

When aa > Da 2 /L 2 , the charge term dom<strong>in</strong>ates and has<br />

strength [ln(L/a*) + D/aa] . We obta<strong>in</strong> for the transmitted<br />

light<br />

_1 aIr)<br />

T(y) = -- a<br />

Io x _o<br />

I r ir s<strong>in</strong>(.7rxo/L)<br />

L cosh(,7ry/L) - cos(,7rxo/L)<br />

and for the backscattered light<br />

B (y) -1 - - |<br />

Io ax x-L<br />

2Xp 1 - cosh(7ry/L)cos(7rxo/L)<br />

[cosh(7ry/L) - cos(,7rxo/L)]2J<br />

1 + 7r s<strong>in</strong>(7rxo/L)<br />

L cosh(ry/L) + cos(irxo/L)<br />

- 1 + cosh(iry/L)cos(irxo/L) 1<br />

[cosh(ry/L) + cos(lrxo/L)]2J<br />

Den Outer et al.<br />

(25)<br />

(26)


Den Outer et al.-<br />

1 .00<br />

0.95<br />

0.90<br />

'E 0.85<br />

C<br />

4 0.80<br />

S<br />

0.75<br />

t 0.70<br />

'0.65<br />

0.60<br />

0.55 -20<br />

1.005<br />

1.004 -<br />

a 1 .003<br />

C al<br />

. 1.002<br />

Z 1.001<br />

'E<br />

1.000<br />

-16 -12 -8 -4 0 4 8 1 2 1 6 20<br />

transversal position (mm)<br />

(a)<br />

0.999<br />

-20 -16 -12 -8 -4 0 4 8 12 1 6 20<br />

transversal position (mm)<br />

(b)<br />

Fig. 2. Calculated diffuse <strong>in</strong>tensities are shown for an object<br />

embedded <strong>in</strong> a two-dimensional <strong>multiple</strong> scatter<strong>in</strong>g system, as a<br />

function <strong>of</strong> the transversal distance to the object. The <strong>in</strong>tensity<br />

is plotted relative to the undisturbed <strong>in</strong>tensity (no object present),<br />

accord<strong>in</strong>g to Eq. (26). (a) Transmission for absorb<strong>in</strong>g rod,<br />

a = 1, a = a, K = 0. Solid curve, xo = 20 1; dotted curve, x0 =<br />

80 1. (b) Transmission for scatter<strong>in</strong>g rod, a = ,a = K = 0,<br />

D2 = m. Solid curve, x0 = 20 1; dotted curve, xo = 30 1; dashed<br />

curve, xo = 40 1. In all cases L = 100 1. L is the thickness <strong>of</strong> the<br />

slab, and 1 is the mean free path.<br />

A few examples are plotted <strong>in</strong> Fig. 2 for different<br />

tions and absorption coefficients.<br />

C. Po<strong>in</strong>t Source<br />

It is <strong>of</strong>ten more convenient to use a po<strong>in</strong>t source <strong>in</strong>stei<br />

a plane wave, and also the quality <strong>of</strong> the image can be<br />

proved when the response <strong>of</strong> the system on a po<strong>in</strong>t so<br />

is known. 7 To calculate this response, first one sh<br />

know the <strong>in</strong>tensity distribution <strong>in</strong> the slab that is dt<br />

the po<strong>in</strong>t-source <strong>in</strong>cidence <strong>in</strong> the absence <strong>of</strong> an oh<br />

Accord<strong>in</strong>g to Akkermans et al.,1 6 one can make thE<br />

sumption that all the <strong>in</strong>com<strong>in</strong>g light starts to propa<br />

diffusely at one transport mean free path <strong>in</strong>side the<br />

Without an object, the <strong>in</strong>tensity distribution <strong>in</strong>side<br />

slab is given by<br />

G~l, Ren s<strong>in</strong>[(r/2L)- 1)]<br />

G'lI) - ~n s<strong>in</strong>[(,r/2L)(; + 1)]J<br />

for a two-dimensional system and by<br />

G(l,<br />

r) =2 1 zi /<br />

[(1 l - x + 2Ln) 2 + y2 + z2 ]" 2<br />

[(I + x + 2Ln) 2 + y 2 + z 2 ]1/2<br />

Vol. 10, No. 6/June 1993/J. Opt. Soc. Am. A 1213<br />

for a three-dimensional system. S<strong>in</strong>ce a po<strong>in</strong>t source is<br />

used, the ansatz for the solution <strong>of</strong> the total problem, medium<br />

plus object, will change. One should realize that the<br />

direction <strong>of</strong> the dipole depends on the local light flux.<br />

The direction <strong>of</strong> the flux at a particular po<strong>in</strong>t is now a<br />

function <strong>of</strong> position. The new ansatz <strong>in</strong> two dimensions<br />

reads as<br />

with<br />

R s<strong>in</strong>[(ir/2L)(; - x0 - iyo)]<br />

= I0 G(l;) + q Reln s<strong>in</strong>[(ir/2L)(; + x0 + iyo)]J<br />

+ Re cot[ x 0 + iyo)]<br />

+ p*cot[jj§(; + X0 - iyO) (29)<br />

p _js,(xo,yo) + iS 2(Xo,Yo)- (30)<br />

The coefficients s, (x 0, yo) and s 2(xO, yO) follow from a firstorder<br />

Taylor expansion,<br />

s<strong>in</strong>[(Qn/L)(xo - 1)]<br />

= cosh[(7r/L)yo] - cos[(r/L)(xo - 1)]<br />

s<strong>in</strong>[(7r/L)(xo + 1)]<br />

cosh[(ir/L)yo] - cos[(ir/L)(xo + 1)]<br />

s<strong>in</strong>h[( 7/L)yo]<br />

= cosh[(ir/L)yo] - cos[(/L)(xo - 1)]<br />

s<strong>in</strong>h[(1r/L)xo]<br />

cosh[(r/L)yo] - cos[(rr/L)(xo - 1)] (31)<br />

Also, the <strong>in</strong>tensity <strong>in</strong>side the object should be adjusted to<br />

the local flux direction:<br />

'<strong>in</strong> = A + B[s,(xoyo)(x - xo) + s2(xOyo)(y - yo)]-<br />

(32)<br />

Now one can perform a straightforward calculation to<br />

obta<strong>in</strong> the coefficients q, p, A, and B. They are<br />

q = [IoG(l, o) + fis,(xo,yo)cot(lrxo/L)]D + aaln(L/a*)<br />

A = Diq/aa,<br />

i7a 2 D -D2 - aa<br />

2L! DI + D2 + aa<br />

B I 2D, (33)<br />

2L D, + D 2 + aa<br />

(27) In three dimensions the new ansatz reads as<br />

Iout(r) = IoG(1,r) + qIq(r) + p-| G(1,r)<br />

ar ro<br />

(28) I<strong>in</strong>(r) = A + B(r - ro) . - G(l, r),<br />

ar r<br />

d Iq(r),<br />

ar ( (34)<br />

(35)


1214 J. Opt. Soc. Am. A/Vol. 10, No. 6/June 1993<br />

0.35<br />

0.30<br />

0.25<br />

,0.20 /<br />

.10.10/ Z005 . /X ll<br />

0.05<br />

0.00 -<br />

-1 6.0 -12.0 -8.0 -4.0 0.0 4.0 8.0 12.0 1 6.0 20.0<br />

transversal position (mm)<br />

Fig. 3. Calculated transmitted diffuse <strong>in</strong>tensities as a function<br />

<strong>of</strong> the transversal distance y for a slab conta<strong>in</strong><strong>in</strong>g an absorb<strong>in</strong>g<br />

spherical object at various positions, follow<strong>in</strong>g Eq. (16). The light<br />

source is po<strong>in</strong>tlike and placed at r= (1,0,0). Slab thickness<br />

L = 50 1, absorb<strong>in</strong>g object radius a = , = , scatter<strong>in</strong>g term<br />

neglected. Solid curve, no object; long-dashed curve, x =<br />

45 ,yo = 0; dashed-dotted curve, x = 45 ,yo = 10 1; shortdashed<br />

curve, xo = 5 1, yo = 0; dotted curve x 0 = 5 1, yo = 10 1.<br />

where<br />

nIr [(x - xo + 2Ln) 2 + (y - yo) 2 + (z - Z2]12<br />

1<br />

[(x + x 0 + 2Ln) 2 + (y - yo) 2 + (Z - ZO)2]112<br />

(36)<br />

The coefficients q, p, A, and B follow aga<strong>in</strong> from boundary<br />

conditions (7) and (8). This results <strong>in</strong><br />

q = -aIOG(, rO) aa'<br />

D + aa<br />

= D - D2- a<br />

a 3 IO 2 D + D 2 + a<br />

A =Dq<br />

aa2<br />

B = + 3D+ D1<br />

2,+ D2 + aa~<br />

q = -a[IoGR(rsrO) - p ro<br />

p = a 3 I 0a- GR(r, r)2<br />

A = _ Dlq<br />

aa2<br />

The disturbance on the <strong>in</strong>tensity depends strongly on<br />

the position <strong>of</strong> the light source. The disturbance can be<br />

more pronounced than for plane-wave <strong>in</strong>cidence, depend<strong>in</strong>g<br />

on the relative distance between the object and the<br />

light source. This is a more convenient situation because<br />

now a displacement <strong>of</strong> the source can give either a background<br />

measurement (without an object) or a measurement<br />

with an object. A few examples are plotted <strong>in</strong> Fig. 3.<br />

The transmitted <strong>in</strong>tensity is plotted for various positions<br />

<strong>of</strong> the object with respect to the po<strong>in</strong>t source and the<br />

boundaries <strong>of</strong> the slab. The strong dependence <strong>of</strong> the<br />

transmitted <strong>in</strong>tensity on the position <strong>of</strong> the object is readily<br />

seen from the figure.<br />

D. Spherical Geometry<br />

An expression for the light <strong>in</strong>tensity is derived for a<br />

spherical medium <strong>in</strong> which an object has been placed.<br />

First we must know the diffusion propagator, or the<br />

Green's function, for a sphere. When absorption is absent<br />

or negligible, a closed expression can easily be obta<strong>in</strong>ed<br />

with the help <strong>of</strong> only one mirror image. 5 We will use this<br />

Green's function to calculate the disturbance. A po<strong>in</strong>t<br />

source is used and placed at the positive z axis at one<br />

transport mean-free path underneath the surface <strong>of</strong> the<br />

sphere' 6 : r, = (O,O,R - ). So the <strong>in</strong>tensity <strong>in</strong>side the<br />

sphere <strong>of</strong> radius R, <strong>in</strong> the absence <strong>of</strong> an object, is given by<br />

I(r) = IGR(r,r). (38)<br />

The Green's function for a sphere is given by<br />

1<br />

GR (rl,r 2) = I 2<br />

R 1<br />

r2 R2<br />

ri - _X`2<br />

r22<br />

(39)<br />

When an object is placed at r <strong>in</strong>side the sphere, we can<br />

express the <strong>in</strong>tensity as<br />

Iout(r) = I(r) + qGR(r,ro) - P a GR(rro).<br />

aro<br />

Inside the sphere we use the ansatz<br />

(40)<br />

I<strong>in</strong> = A + IoB (r - r). (41)<br />

We use boundary conditions (7) and (8) to derive the<br />

coefficients<br />

R 1 cia<br />

2 (r0 - R2)2J Di + aa[l 2 - 2 aR/(rb - R )]<br />

D- -D2-aa<br />

al. ro 2D,[1 - /2 a3R3 2 /(r0 -<br />

2 3 R ) ] + (D2 + aa)[1 + a 3 R3/(r 2 R<br />

-R2)3]<br />

+qor2- R 22DJ[1 - /2 a R 3 /(ro 2<br />

a R [I R 3<br />

ar ro (ro2 i) 3+(<br />

0 2 -R23<br />

D, + D 2 + aa<br />

- R 2 ) 3 ] + (D 2 + aa)[1 + a3R 3 /(ro 2 - R2)3]<br />

Den Outer et al.<br />

(42)<br />

(43)<br />

(44)<br />

(45)<br />

The coefficients q and p are still to be obta<strong>in</strong>ed from<br />

Eqs. (42) and (43). But the above form permits an easy<br />

comparison with the former obta<strong>in</strong>ed coefficients. The<br />

transmission through the surface <strong>of</strong> the sphere can be<br />

found if one takes the normal derivative.


Den Outer et al.<br />

OBJECT<br />

S Le D<br />

Fig. 4. Experimental setup: L, laser, Sp, spatial filter; S,<br />

screen; C, cell with the scatter<strong>in</strong>g medium and the object; Le,<br />

lens for imag<strong>in</strong>g the diffuse <strong>in</strong>tensity on D, the one-dimensional<br />

diode array.<br />

1.050<br />

1 .000<br />

0.950<br />

0.900 M<br />

O0.850 -<br />

0.800 c<br />

C<br />

S0.750 .<br />

transversal position (mm)<br />

Fig. 5. Transmitted <strong>in</strong>tensity pr<strong>of</strong>iles from a cell conta<strong>in</strong><strong>in</strong>g a<br />

diffusive scatter<strong>in</strong>g suspension, for various positions <strong>of</strong> the embedded<br />

absorb<strong>in</strong>g wire 4 = 350 ,m: a, x0 = 1.00 mm; b,<br />

xO= 2.60 mm, and c, x0 = 4.10 mm. The experimental data are<br />

shown together with the best numerical fits for Eq. (25): a, x0 =<br />

1.41 ± 0.05 mm, D,/oaa = 0.95 ± 0.03; b, x0 = 2.86 + 0.05 mm,<br />

Di/ara = 1.04 + 0.03; c, xo = 4.33 + 0.05 mm, D,/aa = 1.11 ±<br />

0.03. In all cases a = 0.175, bm, p = 0, 1 = 20 ± 3 and cell<br />

thickness L = 10.0 mm.<br />

3. MEASUREMENTS<br />

The experimental setup for a plane-wave transmission<br />

measurement is shown <strong>in</strong> Fig. 4. A 7-mW cont<strong>in</strong>uouswave<br />

He-Ne laser beam (A = 633 nm) is spatially filtered<br />

and expanded to a radius <strong>of</strong> approximately 20 cm to produce<br />

a flat beam pr<strong>of</strong>ile. Part <strong>of</strong> this beam imp<strong>in</strong>ges upon<br />

the cell with the object <strong>in</strong> the highly scatter<strong>in</strong>g medium.<br />

The transmitted light, imaged on a one-dimensional diode<br />

array, is read out by a computer. The spatial resolution is<br />

approximately 60 jum. When backscatter<strong>in</strong>g experiments<br />

Vol. 10, No. 6/June 1993/J. Opt. Soc. Am. A 1215<br />

are done, the illum<strong>in</strong>ated side <strong>of</strong> the cell is imaged on the<br />

diode array. Care should be taken for the w<strong>in</strong>dow ref lection<br />

<strong>of</strong> the cell. We have used two different cells. The<br />

first has a thickness <strong>of</strong> 4 mm and 4 mm X 40 mm X<br />

40 mm sized w<strong>in</strong>dows, the second has a variable thickness<br />

<strong>of</strong> 5 or 10 mm and w<strong>in</strong>dows with size 20 mm X 60 mm X<br />

60 mm. Complications are <strong>in</strong>troduced by the glass w<strong>in</strong>dows,<br />

s<strong>in</strong>ce light is totally reflected by the w<strong>in</strong>dow-air<br />

<strong>in</strong>terface when the angle between the surface normal and<br />

the light ray is beyond the critical angle. This reflected<br />

light either enters the sample aga<strong>in</strong> or is reflected by it.<br />

As a consequence, every po<strong>in</strong>t source at the boundary <strong>of</strong><br />

the scatter<strong>in</strong>g medium is spread out <strong>in</strong> a triangular <strong>in</strong>tensity<br />

pr<strong>of</strong>ile, and a nonnegligible deformation <strong>of</strong> the <strong>in</strong>tensity<br />

occurs. Transmission experiments on absorb<strong>in</strong>g<br />

<strong>objects</strong> suffer most from this effect, because the <strong>in</strong>tensity<br />

pr<strong>of</strong>ile relative to the background is the largest.<br />

This deformation can be reproduced if one convolutes<br />

the calculated pr<strong>of</strong>iles with the triangular <strong>in</strong>tensity pr<strong>of</strong>ile.<br />

The latter should be calculated on the basis <strong>of</strong> <strong>multiple</strong><br />

reflections <strong>in</strong>side the w<strong>in</strong>dow. However, this will<br />

extend the fitt<strong>in</strong>g procedure by the <strong>in</strong>troduction <strong>of</strong> more<br />

fit parameters, and therefore the procedure is not<br />

favorable.<br />

We have chosen to reduce the effect <strong>of</strong> these reflections<br />

on the <strong>in</strong>tensity pr<strong>of</strong>ile by us<strong>in</strong>g a cell with thick w<strong>in</strong>dows.<br />

The total <strong>in</strong>ternal reflected light is well separated from its<br />

source, and <strong>in</strong> most cases the light is reflected beside the<br />

sample. (An antireflection coat<strong>in</strong>g on the w<strong>in</strong>dows would<br />

not have solved this problem because the coat<strong>in</strong>g cannot<br />

reduce total <strong>in</strong>ternal reflections.)<br />

For plane-wave <strong>in</strong>cident experiments we perform ratio<br />

measurements to correct for the sensitivity <strong>of</strong> the <strong>in</strong>dividual<br />

diodes and to correct for the rema<strong>in</strong><strong>in</strong>g beam pr<strong>of</strong>ile.<br />

Depend<strong>in</strong>g on the strength <strong>of</strong> the signal, <strong>in</strong>tegration times<br />

vary from 10 s to 3 m<strong>in</strong>. The scatter<strong>in</strong>g medium consists<br />

<strong>of</strong> suspended TiO 2 rutile particles, hav<strong>in</strong>g an average size<br />

<strong>of</strong> 220 nm, <strong>in</strong> glycer<strong>in</strong>e. We calculate the transport meanfree<br />

path from the measured scatter<strong>in</strong>g mean-free path by<br />

means <strong>of</strong> Mie theory.' 0<br />

In Fig. 5 we present transmission measurements for absorb<strong>in</strong>g<br />

rods. We use a 0.35-mm pencil embedded <strong>in</strong> a<br />

scatter<strong>in</strong>g medium with a transport mean-free path <strong>of</strong><br />

20 tum. The thickness <strong>of</strong> the cell is 10.0 mm. The solid<br />

curves are the best numerical fits <strong>of</strong> Eq. (25) to the measured<br />

pr<strong>of</strong>iles. Here the position and the absorb<strong>in</strong>g<br />

Table 1. Fits <strong>of</strong> the Calculated L<strong>in</strong>e Shape to Experimental Data Obta<strong>in</strong>ed from a Transmission<br />

Experiment with an Absorb<strong>in</strong>g Roda<br />

Experimental Fitted Absorption Experimental Fitted Position<br />

Normal Normal Strength Position Relative to Relative to<br />

Position (mm) Position (mm) D/aa First Position (mm) First Position (mm)<br />

0.75 ± 0.05 1.23 ± 0.02 0.95 ± 0.03 0 0<br />

1.40 ± 0.05 1.91 ± 0.02 0.99 ± 0.03 0.65 ± 0.07 0.68 ± 0.03<br />

2.30 ± 0.05 2.78 ± 0.02 1.04 ± 0.03 1.55 ± 0.07 1.55 ± 0.03<br />

3.50 ± 0.05 3.91 ± 0.02 1.10 ± 0.03 2.75 ± 0.07 2.68 ± 0.03<br />

4.95 ± 0.05 5.28 ± 0.02 1.11 ± 0.03 4.20 ± 0.07 4.05 ± 0.03<br />

6.30 ± 0.05 6.67 ± 0.02 0.96 ± 0.03 5.55 ± 0.07 5.44 ± 0.03<br />

7.80 ± 0.05 8.2 ± 0.1 0.8 ± 0.1 7.05 ± 0.07 7.0 ± 0.1<br />

9.30 ± 0.05 9.8 ± 0.1 0.6 ± 0.1 8.55 ± 0.07 8.6 ± 0.1<br />

aIn all cases the scatter<strong>in</strong>g contribution is neglected, p = 0; the size <strong>of</strong> the rod 0 = 350 Am, and the diffusion constant <strong>in</strong>side the rod D 2


1216 J. Opt. Soc. Am. A/Vol. 10, No. 6/June 1993<br />

.>1 .0<br />

C'<br />

.<br />

X 0.8<br />

C<br />

ffi0.7<br />

2<br />

g 0.6<br />

E 0.5<br />

C<br />

r<br />

u. t 0 1 2 3 4 5 6 7 8<br />

fitted normal position (mm)<br />

9 10<br />

Fig. 6. M<strong>in</strong>ima <strong>of</strong> the <strong>in</strong>tensity pr<strong>of</strong>iles for different positions <strong>of</strong><br />

the absorb<strong>in</strong>g wire. The experimental po<strong>in</strong>ts <strong>of</strong> Table 1 are plotted.<br />

The solid curve is obta<strong>in</strong>ed from Eq. (25) with L = 10.0 mm,<br />

a = 0.175 mm, D,/aa = 1.00, p = 0, and D 2 = 0.<br />

Table 2. Fits <strong>of</strong> the Calculated L<strong>in</strong>e Shape to<br />

Transmission Experiment Data'<br />

Experimental Transversal Fitted Transversal<br />

Displacement (mm) Displacement (mm)<br />

2.00 ± 0.02 2.05 ± 0.03<br />

4.00 ± 0.02 4.04 ± 0.06<br />

5.00 ± 0.02 5.02 ± 0.07<br />

7.00 ± 0.02 7.03 ± 0.09<br />

9.00 ± 0.02 9.1 0.1<br />

11.00 ± 0.02 11.1 ± 0.2<br />

aExperimental displacements <strong>of</strong> an absorb<strong>in</strong>g rod parallel to the slab are<br />

compared with those obta<strong>in</strong>ed from the correspond<strong>in</strong>g fits. The distance<br />

between the rod and the boundary (x position) is 4.30 ± 0.02 mm, and the<br />

thickness <strong>of</strong> the cell is 10.0 mm. The scatter<strong>in</strong>g contribution is neglected<br />

(p = 0), and the diffusion constant <strong>in</strong>side the rod is small (D 2


Den Outer et al.<br />

Table 3. Fits <strong>of</strong> the Calculated L<strong>in</strong>e Shape to Experimental Data Obta<strong>in</strong>ed from a Backscatter<br />

Experiment with an Absorb<strong>in</strong>g Roda<br />

Experimental Fitted Absorption Strength<br />

Normal Position (mm) Normal Position (mm) D/iaa<br />

0.28 ± 0.05 0.34 ± 0.02 0.5 ± 0.1<br />

0.78 ± 0.05 0.82 ± 0.02 0.6 ± 0.1<br />

1.38 ± 0.05 1.32 ± 0.02 2.0 ± 0.1<br />

1.68 ± 0.05 1.7 ± 0.1 1.7 ± 0.1<br />

Ax = 50 + 5 Am<br />

Ax = 48 3 Amb<br />

aThe size <strong>of</strong> the rod 0 = 350 tim, and the thickness <strong>of</strong> the cell is 4 mm. The scatter<strong>in</strong>g contribution is neglected (p = 0). The diffusion constant <strong>in</strong>side<br />

the rod D2


1218 J. Opt. Soc. Am. A/Vol. 10, No. 6/June 1993<br />

formation on the size and on the absorption strength can<br />

be obta<strong>in</strong>ed when the transmitted <strong>in</strong>tensity can be<br />

recorded for various normal positions <strong>of</strong> the object.<br />

The visibility <strong>of</strong> an object scales with the ratio aL, a<br />

be<strong>in</strong>g the object and L the sample size, because diffuse<br />

<strong>in</strong>tensity is measured.<br />

ACKNOWLEDGMENTS<br />

The authors thank Shechao Feng for <strong>in</strong>itiat<strong>in</strong>g the experiment,<br />

Jean-Marc Luck for draw<strong>in</strong>g attention to the application<br />

<strong>of</strong> diffusion theory, and Me<strong>in</strong>t van Albada and<br />

Johannes de Boer for helpful discussions. This work<br />

is part <strong>of</strong> the research program <strong>of</strong> the Sticht<strong>in</strong>g voor<br />

Fundamenteel Onderzoek der Materie, which is f<strong>in</strong>ancially<br />

supported by Nederlandse Organisatie voor Wetenschappelijk<br />

Onderzoek. The work <strong>of</strong> Nieuwenhuizen has been<br />

made possible by a fellowship <strong>of</strong> the Royal Netherlands<br />

Academy <strong>of</strong> Arts and Sciences.<br />

REFERENCES AND NOTES<br />

1. S. R. Arridge, P. van der Zee, M. Cope, and D. T. Delpy,<br />

"Reconstruction methods for <strong>in</strong>fra-red absorption imag<strong>in</strong>g,"<br />

<strong>in</strong> Time-Resolved Spectroscopy and Imag<strong>in</strong>g <strong>of</strong> Tissues,<br />

B. Chance and A. Katzir, eds., Proc. Soc. Photo-Opt. Instrum.<br />

Eng. 1431, 204-351 (1991).<br />

2. D. T. Delpy, M. Cope, P. van der Zee, S. Wray, and J. Wyatt,<br />

"Estimation <strong>of</strong> optical pathlength through tissue from direct<br />

time <strong>of</strong> flight measurement," Phys. Med. Biol. 33, 1433-1442<br />

(1988).<br />

3. H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, and<br />

J. Valdmanis, "Two-dimensional imag<strong>in</strong>g through diffus<strong>in</strong>g<br />

<strong>media</strong> us<strong>in</strong>g 150-fs gated electronic holography techniques,"<br />

Opt. Lett. 16, 487-489 (1991).<br />

4. K. M. Yoo, Q. X<strong>in</strong>g, and R. R. Alfano, "Imag<strong>in</strong>g <strong>objects</strong> hidden<br />

<strong>in</strong> highly scatter<strong>in</strong>g <strong>media</strong> us<strong>in</strong>g femtosecond second-<br />

Den Outer et al.<br />

harmonic-generation cross-correlation time gat<strong>in</strong>g," Opt.<br />

Lett. 16, 1019-1021 (1991).<br />

5. R. W Waynant, presider, session on biomedical imag<strong>in</strong>g, <strong>in</strong><br />

Conference on Lasers and Electro-Optics, Vol. 10 <strong>of</strong> 1991<br />

OSA Technical Digest Series (Optical Society <strong>of</strong> America,<br />

Wash<strong>in</strong>gton, D.C., 1991), pp. 101-104.<br />

6. E. N. Leith, C. Chen, H. Chen, Y Chen, J. Lopez, and P. C.<br />

Sun, "Imag<strong>in</strong>g through scatter<strong>in</strong>g <strong>media</strong> us<strong>in</strong>g spatial <strong>in</strong>coherence<br />

techniques," Opt. Lett. 16, 1820-1822 (1991).<br />

7. R. Berkovits and S. Feng, "Theory <strong>of</strong> speckle-pattern tomography<br />

<strong>in</strong> <strong>multiple</strong>-scatter<strong>in</strong>g <strong>media</strong>," Phys. Rev. Lett. 65,<br />

3120-3123 (1990).<br />

8. I. Freund, "Image reconstruction through <strong>multiple</strong> scatter<strong>in</strong>g<br />

<strong>media</strong>," Opt. Commun. 86, 216-227 (1991).<br />

9. A. Ishimaru, Wave Propagation and Scatter<strong>in</strong>g <strong>in</strong> Random<br />

Media (Academic, New York, 1978), Vols. I and II.<br />

10. H. C. van de Hulst, Multiple Light Scatter<strong>in</strong>g (Academic,<br />

New York, 1980), Vols. I and II.<br />

11. J. Fishk<strong>in</strong>, E. Gratton, M. J. van de Ven, and W W Mantul<strong>in</strong>,<br />

"Diffusion <strong>of</strong> <strong>in</strong>tensity modulated near-<strong>in</strong>frared light <strong>in</strong> turbid<br />

<strong>media</strong>," <strong>in</strong> Time-Resolved Spectroscopy and Imag<strong>in</strong>g <strong>of</strong><br />

Tissues, B. Chance and A. Katzir, eds., Proc. Soc. Photo-Opt.<br />

Instrum. Eng. 1431, 122-135 (1991).<br />

12. S. R. Arridge, M. Cope, P. van der Zee, P. J. Hilson, and D. T.<br />

Delpy, "Visualization <strong>of</strong> the oxygenation state <strong>of</strong> bra<strong>in</strong> and<br />

muscle <strong>in</strong> newborn <strong>in</strong>fants by near <strong>in</strong>fra-red transillum<strong>in</strong>ation,"<br />

<strong>in</strong> Information Process<strong>in</strong>g <strong>in</strong> Medical Imag<strong>in</strong>g, S. L.<br />

Bacharach, ed. (Nijh<strong>of</strong>f, Dordrecht, 1985), pp. 155-177.<br />

13. E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris<br />

"Quantitation <strong>of</strong> time- and frequency-resolved optical spectra<br />

for the determ<strong>in</strong>ation <strong>of</strong> tissue oxygenation," Ann. Biochem.<br />

Exp. Med. 195, 330-351 (1991).<br />

14. M. B. van der Mark, M. P. van Albada, and A. Lagendijk,<br />

"Light scatter<strong>in</strong>g <strong>in</strong> strongly <strong>media</strong>: <strong>multiple</strong> scatter<strong>in</strong>g and<br />

weak localization," Phys. Rev. B 37, 3575-3592 (1988).<br />

15. See, for <strong>in</strong>stance, J. D. Jackson, Classical Electrodynamics<br />

(Wiley, New York, 1975).<br />

16. E. Akkermans, P. E. Wolf, and R. Maynard, "Coherent backscatter<strong>in</strong>g<br />

<strong>of</strong> light by disordered <strong>media</strong>: analysis <strong>of</strong> the peak<br />

l<strong>in</strong>e shape," Phys. Rev. Lett. 56, 1471-1474 (1986).<br />

17. See, for <strong>in</strong>stance, J. W Goodman, Statistical Optics (Wiley,<br />

New York, 1985).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!