Larry Coffman, President Stormwater Services, LLLP lcoffman ...

Larry Coffman, President Stormwater Services, LLLP lcoffman ... Larry Coffman, President Stormwater Services, LLLP lcoffman ...

water.rutgers.edu
from water.rutgers.edu More from this publisher

<strong>Larry</strong> <strong>Coffman</strong>, <strong>President</strong><br />

<strong>Stormwater</strong> <strong>Services</strong>, <strong>LLLP</strong><br />

<strong>lcoffman</strong>@filterra.com<br />

301-580-6631


The first Rain Garden in Virginia, located in a turning<br />

circle in front of St. Stephens School, Alexandria.


St. Stephens Rain Garden- 5 years later.


What is Bioretention?<br />

Filtering and/or infiltrating stormwater runoff through a terrestrial<br />

aerobic (upland) plant / soil / microbe complex to remove<br />

pollutants through a variety of physical, chemical and biological<br />

processes.<br />

The word “Bioretention” was derived as a technical term to<br />

describe the process of the “biomass” (plant / microbe complex)<br />

“retaining” pollutants of concern such as N, P and heavy metals.<br />

The term “Rain Garden”<br />

“Rain Garden” was derived to market Bioretention to<br />

the general public.


“CULTIVATING<br />

HARMONY IN A<br />

THEMED<br />

GARDEN”


Rain Gardens in OR


Rain Gardens in Australia


Rain Gardens in S. CA


Rain Gardens in FL


Rain Gardens in Auckland, NZ


Rain Gardens in Bose, ID


Rain Gardens in WI


Rain Gardens in MA


Rain Gardens in MN


Rain Gardens in MD


Village Homes<br />

Davis, CA


1992 Somerset, Maryland - Rain Gardens<br />

First Residential Application


2008 Somerset, Maryland - Rain Gardens


1992 Somerset, Maryland - Rain Gardens<br />

First Residential Application


2008 Somerset, Maryland - Rain Gardens


• Education<br />

Responsibility<br />

Function<br />

O & M<br />

• Enforcement<br />

Easements<br />

HOA<br />

Community Standards<br />

• Economics<br />

Property Values<br />

Added Value<br />

Ease of Maintenance


Bioretention Advantages<br />

• Universally applicable<br />

• Economically sustainable<br />

– Lower construction, maintenance & operation costs<br />

• Ecologically sustainable<br />

• Multiple benefits<br />

– Water Quality<br />

– Water Quantity<br />

– Air, Energy, Heat Island, Carbon Sequestration …<br />

• Added value (nature sells!)<br />

• Encourages public stewardship


THE BIORETENTION CONCEPT<br />

Original Design P.G County 1993


What were the drivers for change?<br />

• Problems with ponds (performance and<br />

liabilities).<br />

• Maintenance / inspection of private onsite<br />

systems.<br />

• Costs of growing infrastructure.<br />

• Urban retrofit.<br />

• Restoring ecological integrity of receiving<br />

waters.


Limitations<br />

• Safety / Health<br />

Maintenance<br />

• Inspection / Maintenance<br />

• Inefficient Pollutant Removal<br />

• Temp / Sediment / Frequency /<br />

Volume<br />

Pond Liabilities<br />

Safety


Number in 90 Meter Station<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

16<br />

39<br />

29<br />

20 20<br />

11<br />

10<br />

5<br />

7<br />

20<br />

11<br />

31<br />

19<br />

28<br />

Good Hope Tributary To Paint Branch<br />

15<br />

43<br />

13<br />

10<br />

7<br />

Population Estimates<br />

Adults YOY<br />

28<br />

13 13<br />

17<br />

20<br />

11<br />

15<br />

9<br />

19<br />

10<br />

51<br />

27<br />

22 22<br />

17<br />

16<br />

28<br />

27<br />

34<br />

21<br />

17<br />

15<br />

1979<br />

1980<br />

1981<br />

1982<br />

1983<br />

1984<br />

1985<br />

1986<br />

1987<br />

1988<br />

1989<br />

1990<br />

1991<br />

1992<br />

1993<br />

1994<br />

1995<br />

1996<br />

1997<br />

1998<br />

1999<br />

2000<br />

2001<br />

2002<br />

2003<br />

Year of Survey<br />

22<br />

5<br />

14<br />

8<br />

15<br />

4<br />

11<br />

4<br />

0


45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

B-IBI w/BMPs B-IBI w/o BMPs<br />

0 10 20 30 40 50 60 70<br />

Watershed Urbanization (%TIA)<br />

Figure 2: Showing the lack of mitigating influence of<br />

structural BMPs on biologic conditions in Puget Sound<br />

lowland streams (Horner and May, 2000).


Maintenance Burdens


Issues<br />

• Outdated / Inflexible Regulations & Design<br />

Guidance<br />

• Construction Inspection / Enforcement


THE BIORETENTION CONCEPT<br />

Original Design P.G County 1993


X<br />

2’<br />

Under Drain<br />

Bioretention<br />

Shallow Ponding - 4” to 6”<br />

• Mulch 3”<br />

• Soil Depth 2’ - 2.5’<br />

• Sandy Top Soil<br />

• 65% Sand<br />

• 20% Sandy Loam<br />

• 15% Compost<br />

• Under Drain System<br />

• Plants


New York State<br />

<strong>Stormwater</strong> Management Design Manual<br />

April, 2008<br />

Examples of Outdated<br />

Information


Why shouldn’t there be a preference for<br />

better performing technology?


Bioretention Pollutant Removal<br />

University of Maryland<br />

Box Experiments<br />

Cumulative<br />

Depth<br />

Phos-<br />

(ft) Copper Lead Zinc phorus TKN Ammonia Nitrate<br />

Removal Efficiency (%)<br />

1 90 93 87 0 37 54 -97<br />

2 93 99 98 73 60 86 -194<br />

3 93 99 99 81 68 79 23<br />

Field 97 96 95 65 52 92 16<br />

Dr. Allen Davis, University of Maryland


Stage 1. Capture<br />

Pollutant Removal Mechanisms<br />

“Physical Physical / Chemical / Biological”<br />

Processes<br />

Sedimentation<br />

Filtration<br />

Adsorption<br />

Absorption<br />

Cation Exchange Capacity<br />

Stage 2. Sequester<br />

Microbial Action (aerobic / anaerobic)<br />

decomposition / nitrification /<br />

denitrification<br />

Evaporation / Volatilization<br />

Cycling Nutrients / Carbon / Metals<br />

Biomass Retention (Microbes / Plant)<br />

System Components<br />

Storage<br />

Mulch<br />

Media<br />

Surface Area<br />

Organics<br />

Microbes<br />

Plants


Pollutant Removal - Plant Microbe<br />

• Phytoremediation<br />

– Translocate<br />

– Accumulate<br />

– Metabolize<br />

– Volatilize<br />

– Detoxify<br />

–Degrade<br />

• Exudates<br />

• Bioremediation<br />

• Soils<br />

– Capture / Immobilize<br />

Pollutants


Burnsville, MN<br />

Rainwater Gardens<br />

• Urban Retrofit<br />

• 90% Runoff Reduction<br />

• 85% Participation<br />

For more information, contact<br />

Barr Engineering Company,<br />

4700 W. 77th St., Suite 200,<br />

Minneapolis, MN 55435,<br />

(952)832-2600 or (800)632-<br />

BARR or Fax (952)832-2601.


Interesting Study Findings<br />

• Mulch and Metals<br />

• Plants and Metals<br />

•P Uptake<br />

• Capacity / Longevity<br />

• Time For Reactions (Residence Time)<br />

• Oil and Grease 95% Removal<br />

• 90% Bacteria Removal


Don’t use filter fabric use a bridging stone (pea gravel)<br />

No Need for stone diaphragm!


Pretreatment doesn’t extend the life of the system.<br />

The issue is to ensure proper maintenance!


Criteria severely restrict the use of bioretention.<br />

Flexibility is key!


Division Street Planters


Buckman Heights courtyard with infiltration garden


• Depth should vary based on type of plants, target<br />

pollutants, site constraints, etc.<br />

• Generally 2 to 2.5 feet.


No soils are the same!


Sizing should be based on actual “K” factors


City of Portland , OR<br />

Low Flow – 0.5” to 1” / Hour<br />

“Soaker”<br />

Sand / Municipal Compost<br />

Ocean City, MD<br />

High Flow - + 100”-120 ” / Hour<br />

Filterra<br />

Corse Sand / Peat


Low Flow Media<br />

2 to 10 inches / hour<br />

Peat / Sand / Aggregate Matrix - PSD<br />

Peat 15 to 20% by volume<br />

Clay


High Flow Media<br />

10 to 50 inches / hour<br />

Peat Sand / Aggregate Matrix - PSD<br />

Peat 5 to 10% by volume<br />

Clay


Louisburg Bioretention Cells<br />

• Soil Media:<br />

– Nominally 0.75 m Deep<br />

– 60% Sand<br />

– 40% “Ballfield Mix”<br />

• Low PI (1-2) (1 2) fill<br />

– 85% Sand<br />

– 10% Fines<br />

– 5% Organics<br />

• Constructed Spring 2004


US Army Corps<br />

of Engineers®<br />

Engineers<br />

Darryl J. Calkins<br />

Nov 6, 2003<br />

US Army Cold Regions Research and Engineering Laboratory<br />

Hanover, New Hampshire


State of VT <strong>Stormwater</strong> Management<br />

Manual-Comments<br />

• Infiltration systems & ground freezing<br />

– The moisture content of the soil at freeze-up is critical<br />

as it occupies air void space and during freezing takes<br />

up space that could be available for infiltration


Bioretention Cold Weather<br />

Climate Considerations<br />

• Good Drainage!<br />

• Sandy Course Media<br />

• Combination Filtration / Infiltration<br />

• Provide Extra Surface Storage<br />

• Selection of Plants<br />

• Proper Location and Use<br />

• Reduced Salt or use Alternative Deicers<br />

• Ground Water Levels<br />

• Maintenance


Wilmington, NC


Lessons Learned<br />

Failures Due to:<br />

• Use of Old Design Standards<br />

- clay / organic / K factor<br />

• Poor Drainage<br />

- Under drain design / Geo-fabrics / Saturated soils<br />

• Media Variability<br />

- Reliable Sources<br />

• Contractor Substitutes<br />

• Contamination<br />

- P, N and Heavy Metals<br />

• Sizing / Space<br />

• Maintenance<br />

- Can be high

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!