05.01.2013 Views

COMPUTATIONAL PROBLEMS IN ABSTRACT ALGEBRA.

COMPUTATIONAL PROBLEMS IN ABSTRACT ALGEBRA.

COMPUTATIONAL PROBLEMS IN ABSTRACT ALGEBRA.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

110 C. Brott and J. Neubiiser<br />

4. V. FELSCH and J. NEUB~~SER : Uber ein Programm zur Berechnung der Automorphismengruppe<br />

einer endlichen Gruppe. Numer. Math. 11 (1968), 277-292.<br />

5. W. GAXH~TZ: Endliche Gruppen mit treuen absolut-irreduziblen Darstellungen.<br />

Math. Nachr. 11 (1954), 129-133.<br />

6. B. HUPPERT: Monomiale Darstellungen endlicher Gruppen. Nagqw Math. .7. 6<br />

(1953), 93-94.<br />

7. B. HUPPERT: Normalteiler und maximale Untergruppen endlicher Gruppen. Math.<br />

Zeit. 60 (1954), 409-434.<br />

8. W. L<strong>IN</strong>DENBERG: ijber eine Darstellung von Gruppenelementen in digitalen Rechenautomaten.<br />

Numer. Math. 4 (1962), 151-153.<br />

9. G. A. MILLER, H. F. BLICHFELDT and L. E. DICKSON: Theory and Applications of<br />

Finite Groups (New York, 1938).<br />

10. J. NEUB~SER: The investigation of finite groups on computers. These Proceedings,<br />

pp. 1-19.<br />

11. J. NEUE&SER: Die Untergruppenverbande der Gruppen der Ordnungen < 100 mit<br />

Ausnahme der Ordnungen 64 und 96. Habilitationsschrift, Kiel, 1967.<br />

12. J. H. WILK<strong>IN</strong>SON: Stability of the reduction of a matrix to almost triangular and<br />

triangular forms by elementary similarity transformations. J. Assoc. Comp. Much.<br />

6 (1959), 336-359.<br />

The characters of the Weyl group E,<br />

J. S. FRAME<br />

1. Introduction. The group F of order 192*10! = 2143V7 = 696,729,600<br />

whose 112 absolutely irreducible characters (all rational) are described in<br />

this paper is isomorphic to the Weyl group ES. The group F itself is described<br />

by Coxeter [l] as the &dimensional group 3[4,2*11 of symmetries of<br />

Gosset’s semi-regular polytope 421, and it is the largest of the irreducible<br />

finite groups generated by reflections. Its factor group A = F/C with respect<br />

to its center C = {I, -I} is the orthogonal group of half the order<br />

investigated by Hamill [7] as a collineation group and by Edge [2] as the<br />

group A of automorphisms of the non-singular quadric consisting of 135<br />

points of a finite projective space [7]. The simple group denoted FH(8,2)<br />

by Dickson is a subgroup A+ of index 2 in A = F/C.<br />

The 8-dimensional orthogonal representation of F, called 8, below,<br />

contains a monomial subgroup M of order 2’8 !, consisting of the products<br />

of 8 ! permutation matrices by 2’ involutory diagonal matrices of determinant<br />

1. There are 64 right cosets of M in the double coset MRM of M generated<br />

by the involution R:<br />

1 1 1 1<br />

14-E - E<br />

R= where E = + 1 1 1 1 =E2<br />

(1.1)<br />

[ - E 14-E1 1 1 1 1<br />

i 1 1 1 1I<br />

Here 14 is the 4X4 identity matrix. Each matrix in MRM has 7 entries<br />

f l/4, and one entry & 314 in each row and column, and the product of the<br />

entries in any row or column is negative. The remaining 70 right cosets of<br />

M in F lie in the double coset MQM where<br />

Q = RR’ = [‘7E” -9 [‘-I I-;] = [‘-T I-“zE] (1.2)<br />

For each row or column of a matrix in MQM there are four entries 0 and<br />

four entries f l/2 and the product of the four signs has a common value for<br />

the eight rows, and a common value for the eight columns.<br />

If the signs in row 8 and then in column 8 of all the 8 ! permutation matrices<br />

of Mare changed, the resulting group isomorphic with Ss can be combined<br />

with the matrix R of (1. l), acting in the role of the transposition (8 9),<br />

111

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!