05.01.2013 Views

COMPUTATIONAL PROBLEMS IN ABSTRACT ALGEBRA.

COMPUTATIONAL PROBLEMS IN ABSTRACT ALGEBRA.

COMPUTATIONAL PROBLEMS IN ABSTRACT ALGEBRA.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

74 L. Gerhards and E. Altmann<br />

REFERENCES<br />

1. E. ALTMANN : Anwendungen der Theorie der Faktorisierungen, Forschungsbericht<br />

des Landes Nordrhein Westfalen, Heft 1902. Zugleich Schriften des Rhein - Westf.<br />

Inst. fiir Znstr. Math., Bonn, Ser. A, No. 20.<br />

2. V. FELSCH and J. NEOBUSER: Uber ein Programm zur Berechnung der Automorphismengruppe<br />

einer endlichen Gruppe. Num. Math 11 (1968), 277-292.<br />

3. L. GERHARDS and W. L<strong>IN</strong>DENBERG: Ein Verfahren zur Berechnung des vollstlndigen<br />

Untergruppenverbandes endlicher Gruppen auf Dualmaschienen. Num. Math. 7<br />

(1965), l-10.<br />

4. P. HALL: On the Sylow systems of a soluble group. Proc. London Math. Sot. (2) 43<br />

(1937), 316-323.<br />

5. P. HALL: On the Sylow normalizers of a soluble group. Proc. London Math. Sot.<br />

(2) 43 (1937), 507-528.<br />

6. W. L<strong>IN</strong>DENBERG and L. GERHARDS: Combinatorial construction by computer of the<br />

set of all subgroups of a finite group by composition of partial sets of its subgroups.<br />

These Proceedings, pp. 75-82.<br />

7. W. L<strong>IN</strong>DENBERG: Uber eine Darstellung von Gruppenelementen in digitalen Rechenautomaten.<br />

Num. Math. 4 (1962), 151-153.<br />

8. L. R~DEI: Die Anwendung des schiefen Produktes in der Gruppentheorie. JournaC<br />

reine angew. Math. 188 (1950), 201-228.<br />

9. J. SZEP: Uber die als Produkte zweier Untergruppen darstellbaren endlichen Gruppen.<br />

Corn. Math. Helv. 22 (1949), 31-33.<br />

Combinatorial construction by computer of<br />

the set of all subgroups of a finite group by<br />

composition of partial sets of its subgroups<br />

W. L<strong>IN</strong>DENBERG and L. GERHARDS<br />

THE following paper contains a description of the main parts of a program<br />

for computational determination of the lattice of all subgroups of a finite<br />

group a. The program has been developed by the authors and has been<br />

realized for the computer IBM 7090, It is of combinatorial type and does not<br />

require further assumptions for @.<br />

1. Preliminaries. Let @ = {X1, . . ., xn} be a finite group generated by an<br />

ordered system (Xl, . . ., x,) of independent? elements (e.g. permutations,<br />

matrices or abstract elements together with the connecting relations of<br />

multiplication [l], [3]). Generating @ successively by x1, x2, . . . , x,, we obtain<br />

achain(e)c@lc.. . C @), = @ Of subgroups Of @(pi = {Xl, . . . , Xi},<br />

i= 1, . ..) n). The order of @i will be denoted by I@il. If !J,Ri is the set<br />

of all cyclic subgroups of pi of prime-power order, Zi shall be some set of<br />

generators of all elements of pi such that Zin Zk = Zi for all k == i<br />

(i, k = l,, . . . , n). Let lZil be the number of elements of Zi. We shall list<br />

all the elements of Zi (i = 1, . . . , n) in such a way that the sequence of the<br />

elements in the list of Zi is the same as in the list of all elements of 2,<br />

(kz= i), i.e. the part of the first ]Zil elements of the list of all elements of Zk<br />

is identical with the list of Zi.<br />

For characterizing any subgroups % of @i [4] we note that Z&f = ‘%n Zi<br />

is uniquely determined by a. Now, if the @h element of Zi (14 9 == IZiI) is<br />

associated with the binary number 2Qm1, and any subset G of Zi with the<br />

sum B(G) of those binary numbers associated with all the elements of G,<br />

we have that $!l corresponds uniquely with B(Z@). For standardization,<br />

however, we complete this number by apposition of lZ,l- IZil zeros to the<br />

higher digits of a number B(a) of IZ, 1 digits. B(a) shall be used for represent-<br />

IZSl IZRl<br />

ing the subgroup $!l c 8.x If B(a) = 1 aj.2’-’ and B(B) = ,g1bj*2’-’<br />

j=l<br />

t This is no loss of generality.<br />

$ For the following discussions it will be useful to remember that, for any subgroup<br />

xc&$ (NQ@$+ ,), B(3) may contain ones only in its /Z,( lower digits.<br />

75

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!