05.01.2013 Views

Interacting Effects of Photoperiod and Photosynthetic Photon Flux on ...

Interacting Effects of Photoperiod and Photosynthetic Photon Flux on ...

Interacting Effects of Photoperiod and Photosynthetic Photon Flux on ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

J. AMER. SOC. HORT. SCI. 121(2):264–268. 1996.<br />

<str<strong>on</strong>g>Interacting</str<strong>on</strong>g> <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Photoperiod</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Photosynthetic</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Phot<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Flux</str<strong>on</strong>g> <strong>on</strong> Net Carb<strong>on</strong> Assimilati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Starch<br />

Accumulati<strong>on</strong> in Potato Leaves<br />

Gary W. Stutte <str<strong>on</strong>g>and</str<strong>on</strong>g> Neil C. Yorio<br />

Dynamac Corporati<strong>on</strong>, Mail Code DYN-3, Kennedy Space Center, FL 32899<br />

Raym<strong>on</strong>d M. Wheeler<br />

Office <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomedical Operati<strong>on</strong>s, The Nati<strong>on</strong>al Aer<strong>on</strong>autics <str<strong>on</strong>g>and</str<strong>on</strong>g> Space Administrati<strong>on</strong>, Kennedy Space<br />

Center, FL 32899<br />

Additi<strong>on</strong>al index words. advanced life support, c<strong>on</strong>trolled ecological life support system, CELSS, carbohydrate metabolism,<br />

c<strong>on</strong>trolled envir<strong>on</strong>ment, photosynthesis, Solanum tuberosum<br />

Abstract. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> photoperiod (PP) <strong>on</strong> net carb<strong>on</strong> assimilati<strong>on</strong> rate (A ) <str<strong>on</strong>g>and</str<strong>on</strong>g> starch accumulati<strong>on</strong> in newly mature<br />

net<br />

canopy leaves <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘Norl<str<strong>on</strong>g>and</str<strong>on</strong>g>’ potato (Solanum tuberosum L.) was determined under high (412 ∝mol·m –2 ·s –1 ) <str<strong>on</strong>g>and</str<strong>on</strong>g> low ( 263<br />

∝mol·m –2 ·s –1 ) photosynthetic phot<strong>on</strong> flux (PPF) c<strong>on</strong>diti<strong>on</strong>s. The A decreased from 13.9 to 11.6 <str<strong>on</strong>g>and</str<strong>on</strong>g> 9.3 μmol·m net –2 ·s –1 , <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

leaf starch increased from 70 to 129 <str<strong>on</strong>g>and</str<strong>on</strong>g> 118 mg·g –1 drymass (DM) as photoperiod (PP) was increased from 12/12 to 18/<br />

6, <str<strong>on</strong>g>and</str<strong>on</strong>g> 24/0, respectively. L<strong>on</strong>ger PP had a greater effect with high PPF c<strong>on</strong>diti<strong>on</strong>s than with low PPF treatments, with high<br />

PPF showing greater decline in A . <str<strong>on</strong>g>Photoperiod</str<strong>on</strong>g> did not affect either the CO compensati<strong>on</strong> point (50 μmol·mol net 2 –1 ) or CO2 saturati<strong>on</strong> point (1100–1200 μmol·mol –1 ) for A . These results show an apparent limit to the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> starch that can<br />

net<br />

be stored (≈15% DM) in potato leaves. An apparent feedback mechanism exists for regulating A under high PPF, high<br />

net<br />

CO <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>g PP, but there was no correlati<strong>on</strong> between A <str<strong>on</strong>g>and</str<strong>on</strong>g> starch c<strong>on</strong>centrati<strong>on</strong> in individual leaves. This suggests<br />

2, net<br />

that maximum A cannot be sustained with elevated CO c<strong>on</strong>diti<strong>on</strong>s under l<strong>on</strong>g PP (≥12 hours) <str<strong>on</strong>g>and</str<strong>on</strong>g> high PPF c<strong>on</strong>diti<strong>on</strong>s.<br />

net 2<br />

If a physiological limit exists for the fixati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> transport <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong>, then increasing photoperiod <str<strong>on</strong>g>and</str<strong>on</strong>g> light intensity under<br />

high CO c<strong>on</strong>diti<strong>on</strong>s is not the most appropriate means to maximize the yield <str<strong>on</strong>g>of</str<strong>on</strong>g> potatoes.<br />

2<br />

L<strong>on</strong>g durati<strong>on</strong> space missi<strong>on</strong>s will likely require the use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bioregenerative life-support systems to generate oxygen, purify<br />

water, remove carb<strong>on</strong> dioxide, produce food, <str<strong>on</strong>g>and</str<strong>on</strong>g> recycle waste<br />

materials (MacElroy <str<strong>on</strong>g>and</str<strong>on</strong>g> Bredt, 1985; Ols<strong>on</strong> et al., 1988; Salisbury<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Bugbee, 1988). Potatoes, which have been identified as a<br />

c<str<strong>on</strong>g>and</str<strong>on</strong>g>idate crop for inclusi<strong>on</strong> in a c<strong>on</strong>trolled ecological advanced<br />

life-support system (CELSS), have been the subject <str<strong>on</strong>g>of</str<strong>on</strong>g> study for<br />

several years (Tibbitts et al., 1993). Within a CELSS, total irradiance<br />

has been suggested to be the largest limitati<strong>on</strong> to crop<br />

productivity (Salisbury <str<strong>on</strong>g>and</str<strong>on</strong>g> Bugbee, 1988; Wheeler <str<strong>on</strong>g>and</str<strong>on</strong>g> Tibbitts,<br />

1986a, 1986b). We can expect to improve yield by increasing the<br />

net daily integral <str<strong>on</strong>g>of</str<strong>on</strong>g> photosynthetically active radiati<strong>on</strong> (PAR)<br />

through higher irradiance or l<strong>on</strong>ger photoperiod.<br />

It is generally accepted that l<strong>on</strong>g photoperiods inhibit tuber<br />

initiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> promote potato shoot growth (Gregory, 1965).<br />

However, it has been reported that tuber initiati<strong>on</strong> is inhibited <strong>on</strong>ly<br />

at low light levels (Tibbitts et al., 1993; Wheeler et al., 1991).<br />

Therefore, yields are typically higher for field grown plants produced<br />

under l<strong>on</strong>g, rather than short photoperiods with the relatively<br />

high total irradiance received under l<strong>on</strong>g day c<strong>on</strong>diti<strong>on</strong>s<br />

(Wheeler <str<strong>on</strong>g>and</str<strong>on</strong>g> Tibbitts, 1986b) .<br />

Since the photoperiod resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> potato tuberizati<strong>on</strong> was<br />

initially reported (Auchter <str<strong>on</strong>g>and</str<strong>on</strong>g> Harley, 1924; Garner <str<strong>on</strong>g>and</str<strong>on</strong>g> Allard,<br />

1923), a role for starch in the regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> photosynthesis, <str<strong>on</strong>g>and</str<strong>on</strong>g> thus<br />

yield, has been postulated. Although subject to intense investiga-<br />

Received for publicati<strong>on</strong> 8 May 1995. Accepted for publicati<strong>on</strong> 19 Sept. 1995. This<br />

research was c<strong>on</strong>ducted under the auspices <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomedical Operati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Research<br />

Office, John F. Kennedy Space Center, Fla. We wish to thank Elizabeth Stryjewski,<br />

Cheryl Mackowiak, <str<strong>on</strong>g>and</str<strong>on</strong>g> Lisa Ruffe <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dynamac corporati<strong>on</strong> for their support<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this project. Menti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a trademark, proprietary product or vendor does not<br />

c<strong>on</strong>stitute an endorsement <str<strong>on</strong>g>of</str<strong>on</strong>g> the product by either The Dynamac Corporati<strong>on</strong>, or<br />

NASA. The cost <str<strong>on</strong>g>of</str<strong>on</strong>g> publishing this paper was defrayed in part by the payment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

page charges. Under postal regulati<strong>on</strong>s, this paper therefore must be hereby marked<br />

advertisement solely to indicate this fact.<br />

ti<strong>on</strong>, the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> irradiance, CO 2 c<strong>on</strong>centrati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature<br />

<strong>on</strong> starch accumulati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> photosynthetic acti<strong>on</strong> have not been<br />

fully explained at the whole-plant level (Geiger <str<strong>on</strong>g>and</str<strong>on</strong>g> F<strong>on</strong>dy, 1991;<br />

Herold, 1980; Neales <str<strong>on</strong>g>and</str<strong>on</strong>g> Incoll, 1968).<br />

Leaf necrosis has been reported in potato exposed to c<strong>on</strong>tinuous<br />

light (Wheeler <str<strong>on</strong>g>and</str<strong>on</strong>g> Tibbitts, 1986b). Cao <str<strong>on</strong>g>and</str<strong>on</strong>g> Tibbitts (1991)<br />

reported that starch was not correlated to c<strong>on</strong>tinuous light damage<br />

in susceptible cultivars. Starch accumulati<strong>on</strong> in potato leaves<br />

(Lorenzen <str<strong>on</strong>g>and</str<strong>on</strong>g> Ewing, 1992) was greater under l<strong>on</strong>g photoperiods<br />

than short photoperiods, even with the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a str<strong>on</strong>g sink<br />

(e.g., exp<str<strong>on</strong>g>and</str<strong>on</strong>g>ing tubers). Although yield enhancement under l<strong>on</strong>g<br />

days is generally assumed to be related to greater carb<strong>on</strong> assimilati<strong>on</strong>,<br />

there are few reports <str<strong>on</strong>g>of</str<strong>on</strong>g> the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> photoperiod <strong>on</strong> net carb<strong>on</strong><br />

assimilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> potato leaves.<br />

Our objectives were to establish whether l<strong>on</strong>g photoperiod at<br />

different PPF levels would affect net carb<strong>on</strong> assimilati<strong>on</strong> rate (A net )<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> potato leaves, <str<strong>on</strong>g>and</str<strong>on</strong>g> to determine whether photoperiod affects the<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> starch in the leaves.<br />

Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> Methods<br />

Plant growing c<strong>on</strong>diti<strong>on</strong>s. ‘Norl<str<strong>on</strong>g>and</str<strong>on</strong>g>’ potato (Solanum tuberosum),<br />

an early maturing, c<strong>on</strong>tinuous light tolerant cultivar was used in this<br />

experiment. Plantlets were initiated from in vitro nodal culture <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

grown using a recirculating nutrient film technique (NFT) with a<br />

modified half strength Hoagl<str<strong>on</strong>g>and</str<strong>on</strong>g>’s soluti<strong>on</strong> (Wheeler et al., 1990).<br />

Plant growth chambers (model M12; EGC, Chagrin Falls, Ohio)<br />

were c<strong>on</strong>figured to provide either 600 μmol·m –2 ·s –1 PPF (High Light,<br />

HL) or 300 μmol·m –2 ·s –1 PPF (Low Light, LL) with four 400 W metal<br />

halide lamps (Pro-Arc, Venture Lighting, Clevel<str<strong>on</strong>g>and</str<strong>on</strong>g>, Ohio). The<br />

mean PPF valves at canopy level during testing periods are provided<br />

in the results.<br />

Envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s in each plant growth chamber c<strong>on</strong>sisted<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> an initial 12 h light/12 h dark (12/12) photoperiod (PP)<br />

264 J. AMER. SOC. HORT. SCI. 121(2):264–268. 1996.


with a matching thermoperiod <str<strong>on</strong>g>of</str<strong>on</strong>g> 20/16 ± 0.2C <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>stant<br />

relative humidity <str<strong>on</strong>g>of</str<strong>on</strong>g> 65% ± 6%. Atmospheric CO 2 c<strong>on</strong>centrati<strong>on</strong>s<br />

were maintained at 1200 ± 10 μmol·mol –1 with an infrared gas<br />

analyzer (Anarad AR600, Santa Barbara, Calif.) <str<strong>on</strong>g>and</str<strong>on</strong>g> dedicated<br />

computer c<strong>on</strong>trol system. Daily records <str<strong>on</strong>g>of</str<strong>on</strong>g> water use, acid additi<strong>on</strong>s<br />

for pH c<strong>on</strong>trol, <str<strong>on</strong>g>and</str<strong>on</strong>g> nutrient replenishment soluti<strong>on</strong> additi<strong>on</strong>s<br />

were maintained. Weekly measures <str<strong>on</strong>g>of</str<strong>on</strong>g> photosynthetic phot<strong>on</strong> flux<br />

(PPF) at the plant canopy were taken. At harvest, plants were<br />

separated into shoots (leaves <str<strong>on</strong>g>and</str<strong>on</strong>g> stems), roots, <str<strong>on</strong>g>and</str<strong>on</strong>g> tubers. Fresh<br />

mass (FM) <str<strong>on</strong>g>of</str<strong>on</strong>g> tissues was recorded before oven drying for 72 h at<br />

70C for dry mass (DM) determinati<strong>on</strong>.<br />

<str<strong>on</strong>g>Photoperiod</str<strong>on</strong>g> treatments. At 56 days after planting (DAP), the<br />

photoperiod was changed from 12/12 to 18 h light/6 h dark (18/6).<br />

The plants were allowed to adapt to the photoperiod for 36 h before<br />

gas exchange <str<strong>on</strong>g>and</str<strong>on</strong>g> starch measurements were determined. At 63<br />

DAP the photoperiod was changed to 24 h light/0 h dark (24/0).<br />

Following each photoperiod adjustment, the photoperiod was<br />

cycled to 12/12. It is recognized that the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the plant was<br />

different during each photoperiod treatment, but care was taken to<br />

sample leaves <str<strong>on</strong>g>of</str<strong>on</strong>g> similar phylogenetic age.<br />

<str<strong>on</strong>g>Photosynthetic</str<strong>on</strong>g> measurements. Diurnal measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

net CO 2 assimilati<strong>on</strong> rate (A net ) were performed <strong>on</strong> recently mature<br />

single leaves in the upper canopy using a closed leaf cuvette<br />

photosynthesis system (Model LI-6200; Li-Cor, Lincoln, Neb.)<br />

The A net vs. CO 2 internal (A Ci ) curves <str<strong>on</strong>g>and</str<strong>on</strong>g> CO 2 compensati<strong>on</strong> point<br />

were determined at about 1 h after lights came <strong>on</strong> for each <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

photoperiod tests (McDermitt et al, 1988). Fresh mass (FM), leaf<br />

area (LA), <str<strong>on</strong>g>and</str<strong>on</strong>g> dry mass (DM) were obtained for the porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

leaves measured during the carb<strong>on</strong> exchange rate (CER) tests. This<br />

tissue was subsequently used for starch analysis.<br />

Starch analysis. Starch c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> potato leaves used for<br />

diurnal photosynthetic measurements were analyzed using a modificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the method <str<strong>on</strong>g>of</str<strong>on</strong>g> Wang <str<strong>on</strong>g>and</str<strong>on</strong>g> Stutte (1992). Oven-dried<br />

tissue was ground with a mortar <str<strong>on</strong>g>and</str<strong>on</strong>g> pestle, <str<strong>on</strong>g>and</str<strong>on</strong>g> samples (20–100<br />

mg) were extracted three times for 10 min each in boiling 80%<br />

ethanol to remove soluble sugars <str<strong>on</strong>g>and</str<strong>on</strong>g> chlorophyll. The samples<br />

were centrifuged, <str<strong>on</strong>g>and</str<strong>on</strong>g> pellets were resuspended in 0.1 M acetate<br />

buffer, pH 4.6, <str<strong>on</strong>g>and</str<strong>on</strong>g> boiled for 10 min to swell <str<strong>on</strong>g>and</str<strong>on</strong>g> gelatinize the<br />

pellets. St<str<strong>on</strong>g>and</str<strong>on</strong>g>ards <str<strong>on</strong>g>of</str<strong>on</strong>g> potato starch (Sigma Chemical Co., St. Louis)<br />

up to 4.0 mg were run with the samples. To digest the starch,<br />

amyloglucosidase was added to samples <str<strong>on</strong>g>and</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards <str<strong>on</strong>g>and</str<strong>on</strong>g> incubated<br />

in a water bath at 55C for 30 min. The supernatant was<br />

assayed colorimetrically for c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> starch to glucose using<br />

J. AMER. SOC. HORT. SCI. 121(2):264–268. 1996.<br />

glucose oxidase (Sigma Diagnostics, St. Louis). When original<br />

digests yielded starch c<strong>on</strong>centrati<strong>on</strong>s greater than 4.0 mg/sample,<br />

the procedure was repeated <strong>on</strong> the undigested pellet <str<strong>on</strong>g>and</str<strong>on</strong>g> starch<br />

c<strong>on</strong>centrati<strong>on</strong>s from multiple digests were summed together. The<br />

final starch c<strong>on</strong>centrati<strong>on</strong> per sample was expressed as mg starch/<br />

g leaf DM or mg starch/cm 2 LA.<br />

Results<br />

Net carb<strong>on</strong> assimilati<strong>on</strong><br />

Light intensity. As expected, A net <str<strong>on</strong>g>of</str<strong>on</strong>g> recently mature leaves<br />

grown under HL c<strong>on</strong>diti<strong>on</strong>s was higher than A net <str<strong>on</strong>g>of</str<strong>on</strong>g> leaves grown<br />

under LL c<strong>on</strong>diti<strong>on</strong>s (Table 1). The dark period respirati<strong>on</strong> rate<br />

(Rs) <str<strong>on</strong>g>of</str<strong>on</strong>g> the HL leaves was higher than Rs <str<strong>on</strong>g>of</str<strong>on</strong>g> the LL leaves. The<br />

greater Rs <str<strong>on</strong>g>of</str<strong>on</strong>g> the HL treatment may partially result from the greater<br />

specific leaf weight (SLW) <str<strong>on</strong>g>of</str<strong>on</strong>g> the HL than LL leaves.<br />

<str<strong>on</strong>g>Photoperiod</str<strong>on</strong>g>. Changing the PP from 12/12 to 18/6 resulted in a<br />

16% decrease in the instantaneous A net <str<strong>on</strong>g>and</str<strong>on</strong>g> a 23% decrease in Rs.<br />

Exposing the plants to c<strong>on</strong>tinuous lighting c<strong>on</strong>diti<strong>on</strong>s for 36 h<br />

resulted in a 33% decrease from 12/12 in A net (Table 1). Rs was not<br />

measured for the 24/0 treatment.<br />

Diurnal resp<strong>on</strong>se. The A net <str<strong>on</strong>g>of</str<strong>on</strong>g> recently mature leaves did not vary<br />

significantly during the light cycle in either the 12/12 or 18/6<br />

photoperiod treatments (Fig. 1). In c<strong>on</strong>trast, variati<strong>on</strong> in A net increased<br />

when leaves were exposed to c<strong>on</strong>tinuous lighting c<strong>on</strong>diti<strong>on</strong>s.<br />

Under c<strong>on</strong>tinuous illuminati<strong>on</strong>, individual leaves began to exhibit<br />

morphological changes, including localized chlorosis <str<strong>on</strong>g>and</str<strong>on</strong>g> necrosis,<br />

which could result in increased variati<strong>on</strong> in A net between leaves. In<br />

additi<strong>on</strong>, the leaves exhibited slight epinasty <str<strong>on</strong>g>and</str<strong>on</strong>g> the accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

anthocyanin <strong>on</strong> the abaxial surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the leaf. The morphological<br />

resp<strong>on</strong>ses were similar to the c<strong>on</strong>tinuous illuminati<strong>on</strong> injury described<br />

by Cao <str<strong>on</strong>g>and</str<strong>on</strong>g> Tibbitts (1991). The A net values <str<strong>on</strong>g>of</str<strong>on</strong>g> leaves grown<br />

under HL c<strong>on</strong>diti<strong>on</strong>s were comparable to A net values previously<br />

reported for plants <str<strong>on</strong>g>of</str<strong>on</strong>g> comparable ages <str<strong>on</strong>g>and</str<strong>on</strong>g> grown under similar<br />

envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s (Dwelle et al., 1983).<br />

CO 2 compensati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> saturati<strong>on</strong>. CO 2 resp<strong>on</strong>se curves were<br />

determined for each <str<strong>on</strong>g>of</str<strong>on</strong>g> the treatments <str<strong>on</strong>g>and</str<strong>on</strong>g> normalized to 400<br />

μmol·m –2 ·s –1 PPF based <strong>on</strong> PPF resp<strong>on</strong>se curves (Fig. 2). The light<br />

resp<strong>on</strong>se curves obtained from individual leaves used in these<br />

studies was linear (y = 0.0436x – 3.826; r 2 = 0.961) over the PPF<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> 65 to 650 μmol·m –2 ·s –1 . A net values <str<strong>on</strong>g>of</str<strong>on</strong>g> the HL treatment<br />

were greater than the LL treatment at 12/12. The HL <str<strong>on</strong>g>and</str<strong>on</strong>g> LL<br />

treatment A net rates were similar at 18/6 <str<strong>on</strong>g>and</str<strong>on</strong>g> A net <str<strong>on</strong>g>of</str<strong>on</strong>g> HL treatments<br />

Table 1. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> photosynthetic phot<strong>on</strong> flux (PPF) <str<strong>on</strong>g>and</str<strong>on</strong>g> photoperiod <strong>on</strong> net carb<strong>on</strong><br />

assimilati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> starch accumulati<strong>on</strong> in recently mature ‘Norl<str<strong>on</strong>g>and</str<strong>on</strong>g>’ potato leaves. Values<br />

represent the mean <str<strong>on</strong>g>of</str<strong>on</strong>g> all measurements taken during either the light or dark cycle for a<br />

respective treatment.<br />

Carb<strong>on</strong> assimilati<strong>on</strong> Starch c<strong>on</strong>cn<br />

(μmol CO 2 /m 2 per sec) (mg·g –1 DM)<br />

Treatment Light cycle Dark cycle<br />

PPF<br />

Light cycle Dark cycle<br />

Low lightz 9.92 ± 0.37y –0.86 ± 0.14 110.32 ± 5.87 83.50 ± 15.21<br />

High light 12.57 ± 0.69 –1.29 ± 0.10<br />

<str<strong>on</strong>g>Photoperiod</str<strong>on</strong>g><br />

105.31 ± 5.50 90.03 ± 10.90<br />

12/12 13.87 ± 0.87 –1.17 ± 0.05 70.02 ± 8.46 64.10 ± 7.02<br />

18/6 11.63 ± 0.68 –0.90 ± 0.18 129.23 ± 2.69 132.08 ± 8.06<br />

24/0 9.27 ± 0.38 --- x<br />

117.57 ± 3.21 ---<br />

z Low light = 263 ( ± 4.3) μmol·m –2 ·s –1 PPF <str<strong>on</strong>g>and</str<strong>on</strong>g> high light = 412 ( ±10.2) μmol·m –2 ·s –1 PPF<br />

at canopy level.<br />

y Mean ± st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard error.<br />

x No dark period.<br />

265


Fig. 1. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> PPF <strong>on</strong> diurnal changes in net carb<strong>on</strong> assimati<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> newly<br />

mature ‘Norl<str<strong>on</strong>g>and</str<strong>on</strong>g>’ potato leaves exposed to different photoperiods. The mean<br />

PPF values were 263 <str<strong>on</strong>g>and</str<strong>on</strong>g> 412 μmol·m –2 ·s –1 in the low <str<strong>on</strong>g>and</str<strong>on</strong>g> high light chambers,<br />

respectively.<br />

was less than LL at 24/0 PP (Fig. 2). The CO 2 compensati<strong>on</strong> point<br />

was about 50 μmol·mol –1 <str<strong>on</strong>g>and</str<strong>on</strong>g> the CO 2 saturati<strong>on</strong> point was<br />

between 1100 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1200 μmol·mol –1 , irrespective <str<strong>on</strong>g>of</str<strong>on</strong>g> light intensity<br />

or photoperiod treatment. The CO 2 resp<strong>on</strong>se curves were c<strong>on</strong>sistent<br />

with A net values obtained during the diurnal sampling (Table<br />

1).<br />

Starch analysis<br />

Light intensity. The mean leaf starch c<strong>on</strong>centrati<strong>on</strong> during<br />

either the light or dark cycles was not affected by the light intensity<br />

treatment (Table 1).<br />

<str<strong>on</strong>g>Photoperiod</str<strong>on</strong>g>. Increasing the PP from 12/12 to 18/6 significantly<br />

increased the leaf starch c<strong>on</strong>centrati<strong>on</strong> during the light (84%) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

dark (106%) cycles. Increasing the PP from 12/12 to 24/0 resulted<br />

in a similar increase (68%) over 12/12 in leaf starch c<strong>on</strong>centrati<strong>on</strong><br />

during the light cycle (Table 1).<br />

Diurnal resp<strong>on</strong>se. Under 12/12 PP, diurnal cycling <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf starch<br />

c<strong>on</strong>centrati<strong>on</strong> was observed, with accumulati<strong>on</strong> occurring during the<br />

light cycle, <str<strong>on</strong>g>and</str<strong>on</strong>g> remobilizati<strong>on</strong> occurring during the dark cycle (Fig.<br />

3). With the 18/6 PP, c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf starch at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the dark<br />

Fig. 2. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> net carb<strong>on</strong> assimilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> newly mature<br />

‘Norl<str<strong>on</strong>g>and</str<strong>on</strong>g>’ potato leaves exposed to different photoperiods. The mean PPF values<br />

were 263 <str<strong>on</strong>g>and</str<strong>on</strong>g> 412 μmol·m –2 ·s –1 in the low <str<strong>on</strong>g>and</str<strong>on</strong>g> high light chambers, respectively.<br />

cycle increased as the length <str<strong>on</strong>g>of</str<strong>on</strong>g> the dark cycle decreased, although the<br />

change was small. Under c<strong>on</strong>tinuous lighting, the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

starch in the leaves was about 12% <str<strong>on</strong>g>of</str<strong>on</strong>g> dry mass. Under a 12/12 PP, the<br />

starch c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> leaves ranged from 20 to 120 mg/g leaf DM<br />

under LL c<strong>on</strong>diti<strong>on</strong>s, but A net was c<strong>on</strong>stant at 12 μmol·m –2 s –1 during<br />

the light cycle. In c<strong>on</strong>trast, both the starch c<strong>on</strong>centrati<strong>on</strong> (85–120 mg/<br />

g) <str<strong>on</strong>g>and</str<strong>on</strong>g> A net (8–12 μmol·m –2 ·s –1 ) in the 24/0 LL treatment were<br />

relatively c<strong>on</strong>stant (Fig. 4). Although there was a trend towards lower<br />

A net <str<strong>on</strong>g>and</str<strong>on</strong>g> higher starch c<strong>on</strong>centrati<strong>on</strong>s with increasing photoperiod<br />

(Fig. 4), there was no statistical correlati<strong>on</strong> between starch c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> A net <str<strong>on</strong>g>of</str<strong>on</strong>g> individual leaves (r 2 = 0.129).<br />

Discussi<strong>on</strong><br />

These short-term single leaf studies <str<strong>on</strong>g>and</str<strong>on</strong>g> whole plant studies<br />

(Stutte et al., 1993) suggest that carb<strong>on</strong> assimilati<strong>on</strong> is maximized<br />

at 1100 μmol·mol –1 CO 2 at both LL <str<strong>on</strong>g>and</str<strong>on</strong>g> HL c<strong>on</strong>diti<strong>on</strong>s. Dwelle<br />

(1985) reported that single leaf A net was saturated at about 1200<br />

μmol·m –2 ·s –1 at ambient CO 2 c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> that the A net values<br />

ranged from 14–16 μmol·m –2 ·s –1 , which were c<strong>on</strong>sistent with A net<br />

266 J. AMER. SOC. HORT. SCI. 121(2):264–268. 1996.


Fig. 3. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> PPF <strong>on</strong> diurnal changes in leaf starch c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> newly mature<br />

‘Norl<str<strong>on</strong>g>and</str<strong>on</strong>g>’ potato leaves exposed to different photoperiods. The mean PPF values<br />

were 263 <str<strong>on</strong>g>and</str<strong>on</strong>g> 412 μmol·m –2 ·s –1 in the low <str<strong>on</strong>g>and</str<strong>on</strong>g> high light chambers, respectively.<br />

values obtained in these experiments. Light resp<strong>on</strong>se curves obtained<br />

from individual leaves used in these studies indicated that<br />

the resp<strong>on</strong>se was linear (r 2 = 0.961) over the range tested <str<strong>on</strong>g>and</str<strong>on</strong>g> that<br />

light saturati<strong>on</strong> had not been reached.<br />

There were no significant differences in either A net or leaf starch<br />

c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> measurements obtained in 12/12 treatments, suggesting<br />

that the adaptive resp<strong>on</strong>ses were not associated with age <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

plant. This result is c<strong>on</strong>sistent with other reports in the literature.<br />

Although Wolf (1993) reported that an exp<str<strong>on</strong>g>and</str<strong>on</strong>g>ing leaf has greater<br />

A net <str<strong>on</strong>g>and</str<strong>on</strong>g> starch c<strong>on</strong>tent than a fully exp<str<strong>on</strong>g>and</str<strong>on</strong>g>ed leaf, in potato, the<br />

differences between the recently mature leaves were not statistically<br />

significant. Frier (1977) reported that A net <str<strong>on</strong>g>of</str<strong>on</strong>g> the first fully<br />

exp<str<strong>on</strong>g>and</str<strong>on</strong>g>ed leaf increased following tuber initiati<strong>on</strong> but remained<br />

c<strong>on</strong>stant during tuber bulking. All photoperiod treatments were<br />

imposed during this period <str<strong>on</strong>g>of</str<strong>on</strong>g> tuber bulking.<br />

It should be noted that the photoperiod treatments were imposed<br />

<strong>on</strong> the same plants throughout the experiment, <str<strong>on</strong>g>and</str<strong>on</strong>g> as a<br />

c<strong>on</strong>sequence the plants were <str<strong>on</strong>g>of</str<strong>on</strong>g> different ages when the gas<br />

exchange <str<strong>on</strong>g>and</str<strong>on</strong>g> starch measurements were obtained. However, the<br />

short-term photoperiod treatments were started well after the<br />

J. AMER. SOC. HORT. SCI. 121(2):264–268. 1996.<br />

Fig. 4. Effect starch c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> net carb<strong>on</strong> assimulati<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> newly mature<br />

‘Norl<str<strong>on</strong>g>and</str<strong>on</strong>g>’ potato leaves grown in either high or low light c<strong>on</strong>diti<strong>on</strong>s. The mean<br />

PPF values were 263 <str<strong>on</strong>g>and</str<strong>on</strong>g> 412 μmol·m –2 ·s –1 in the low <str<strong>on</strong>g>and</str<strong>on</strong>g> high light chambers,<br />

respectively.<br />

period <str<strong>on</strong>g>of</str<strong>on</strong>g> tuber initiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> rapid vegetative development. A net ,<br />

A Ci <str<strong>on</strong>g>and</str<strong>on</strong>g> leaf starch measurements were obtained from individual<br />

leaves that had been returned to 12/12 photoperiod between<br />

treatments. The A net for the 12/12 PP at 56, 63, <str<strong>on</strong>g>and</str<strong>on</strong>g> 77 DAP were<br />

13.8, 14.1, <str<strong>on</strong>g>and</str<strong>on</strong>g> 13.3 μmol·m –2 ·s –1 , respectively, 1 h after the <strong>on</strong>set<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the light cycle. These values were not significantly different.<br />

Wheeler et al. (1991) grew Norl<str<strong>on</strong>g>and</str<strong>on</strong>g> potatoes in a factorial<br />

experiment involving CO 2 c<strong>on</strong>centrati<strong>on</strong>, photoperiod, <str<strong>on</strong>g>and</str<strong>on</strong>g> light<br />

intensity. Total biomass <str<strong>on</strong>g>and</str<strong>on</strong>g> yield increased whenever any two<br />

variables (photoperiod, PPF, or CO 2 c<strong>on</strong>centrati<strong>on</strong>) were increased,<br />

but declined when all three were increased. This suggests that<br />

optimum envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s (e.g., light intensity, photoperiod,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> CO 2 c<strong>on</strong>centrati<strong>on</strong>) derived from short-term experiments<br />

are not directly transferable to integrated, l<strong>on</strong>g-term producti<strong>on</strong><br />

systems. Our results showed a similar, but more pr<strong>on</strong>ounced<br />

effect. Whenever photoperiod was increased, there was a marked<br />

decline in A net , which was most pr<strong>on</strong>ounced under HL c<strong>on</strong>diti<strong>on</strong>s.<br />

The capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the leaves to return to pretreatment A net <str<strong>on</strong>g>and</str<strong>on</strong>g> starch<br />

levels suggest that the observed resp<strong>on</strong>ses are physiological <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

not shock resp<strong>on</strong>ses.<br />

The maximum starch c<strong>on</strong>centrati<strong>on</strong>s were obtained in the HL<br />

treatments at shorter photoperiods than the LL treatments. This<br />

suggests that A net may be an indirect indicator <str<strong>on</strong>g>of</str<strong>on</strong>g> sink dem<str<strong>on</strong>g>and</str<strong>on</strong>g>, as<br />

described under field c<strong>on</strong>diti<strong>on</strong>s by Dwelle (1985), but does not<br />

appear to correlate with either sink dem<str<strong>on</strong>g>and</str<strong>on</strong>g> or starch storage under<br />

more optimal c<strong>on</strong>trolled envir<strong>on</strong>ment c<strong>on</strong>diti<strong>on</strong>s. The accumulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> starch in the leaves was not correlated with differences in<br />

vascular development between the HL <str<strong>on</strong>g>and</str<strong>on</strong>g> LL treatments, <str<strong>on</strong>g>and</str<strong>on</strong>g> is<br />

c<strong>on</strong>sistent with Moorby (1978), who established that phloem<br />

development did not limit tuber bulking <str<strong>on</strong>g>of</str<strong>on</strong>g> potato.<br />

One must be cautious extrapolating these short-term changes in<br />

267


photoperiod to l<strong>on</strong>g-durati<strong>on</strong> exposure tests. Increasing the PP<br />

from 12/12 to 18/6 resulted in a 16.1% decrease in A net , but<br />

exposure to c<strong>on</strong>tinuous lighting resulted in a 33.2% decrease in<br />

A net . Assuming that A net was at maximum potential in the leaf,<br />

increasing PP would initially appear to be an advantage in overall<br />

carb<strong>on</strong> assimilati<strong>on</strong>. Increasing PP from 12/12 to 18/6 under HL<br />

c<strong>on</strong>diti<strong>on</strong>s would increase the net daily integral (mmol CO 2 fixed/<br />

m 2 per day) from 550 mmol to 735 mmol; a 33.7% increase in total<br />

carb<strong>on</strong> assimilated. Similarly, c<strong>on</strong>tinuous illuminati<strong>on</strong> would result<br />

in the daily fixati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 800 mmol <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong>, a 45% increase<br />

over 12/12 photoperiod. However, Norl<str<strong>on</strong>g>and</str<strong>on</strong>g> was unable to sustain<br />

these rates <str<strong>on</strong>g>of</str<strong>on</strong>g> A net under l<strong>on</strong>g PP in a closed envir<strong>on</strong>ment without<br />

significant tissue damage occurring (Stutte et al., 1993), a result<br />

previously reported by Cao <str<strong>on</strong>g>and</str<strong>on</strong>g> Tibbitts (1991).<br />

‘Norl<str<strong>on</strong>g>and</str<strong>on</strong>g>’ potato has been successfully grown under c<strong>on</strong>diti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> high CO 2 (1200 μmol·mol –1 ), high light (690 μmol·m –2 ·s –1 PPF)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 12/12 photoperiods in the Biomass Producti<strong>on</strong> Chamber at<br />

Kennedy Space Center (KSC). Preliminary results from <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these tests (Stutte et al., 1993) are c<strong>on</strong>sistent with the inability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

plants to sustain high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> A net under l<strong>on</strong>g photoperiods. About<br />

18 h into the light cycle (i.e., 6 h after the former <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> the dark<br />

cycle) A net began to decline, <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>tinued to decrease at a c<strong>on</strong>stant<br />

rate until a dark cycle was imposed. The physiological tolerance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the populati<strong>on</strong> to c<strong>on</strong>tinuous light was not reported.<br />

In c<strong>on</strong>trolled envir<strong>on</strong>ments, especially bioregenerative life<br />

support systems, the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> fixati<strong>on</strong> needs to be maximized<br />

without damaging plant tissues. The evidence suggests reciprocity<br />

between photoperiod <str<strong>on</strong>g>and</str<strong>on</strong>g> light intensity in the plant’s ability to fix<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> transport carb<strong>on</strong>. Overall yield increases may be achieved<br />

through increased photoperiod if PPF is reduced so that unloading<br />

can be maintained. C<strong>on</strong>versely, light intensity may be increased to<br />

achieve higher short term A net rates if a sufficient dark cycle is<br />

provided (≥12 h) for the unloading <str<strong>on</strong>g>and</str<strong>on</strong>g> transport <str<strong>on</strong>g>of</str<strong>on</strong>g> starch reserves<br />

to occur.<br />

If a physiological limit exists for the fixati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> transport <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

carb<strong>on</strong>, then increasing photoperiod <str<strong>on</strong>g>and</str<strong>on</strong>g> light intensity under high<br />

CO 2 c<strong>on</strong>diti<strong>on</strong>s may not be the most appropriate means <str<strong>on</strong>g>of</str<strong>on</strong>g> maximizing<br />

either carb<strong>on</strong> assimilati<strong>on</strong> or yield in potato. The results<br />

reported here suggest that there is a physiological limit to carb<strong>on</strong><br />

unloading capacity <str<strong>on</strong>g>and</str<strong>on</strong>g> that ‘Norl<str<strong>on</strong>g>and</str<strong>on</strong>g>’ potato has short-term mechanisms<br />

for feedback c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> assimilati<strong>on</strong>. The physiological<br />

mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> this feedback is unknown, but does not appear to<br />

be directly associated with starch storage. These results suggest<br />

that total irradiance is not limiting producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> potato, as has been<br />

suggested by several authors (Salisbury <str<strong>on</strong>g>and</str<strong>on</strong>g> Bugbee, 1988; Wheeler<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Tibbitts, 1987), but that producti<strong>on</strong> is limited by the potato<br />

leaves ability to either load, or unload the products <str<strong>on</strong>g>of</str<strong>on</strong>g> photosynthesis.<br />

Literature Cited<br />

Auchter, E.C. <str<strong>on</strong>g>and</str<strong>on</strong>g> C.P. Harley. 1924. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> various lengths <str<strong>on</strong>g>of</str<strong>on</strong>g> day <strong>on</strong><br />

development <str<strong>on</strong>g>and</str<strong>on</strong>g> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some horticultural plants.<br />

Proc. Amer. Soc. Hort. Sci. 21:199–214.<br />

Cao, W. <str<strong>on</strong>g>and</str<strong>on</strong>g> T.W. Tibbitts. 1991. Physiological resp<strong>on</strong>ses in potato plants<br />

under c<strong>on</strong>tinuous irradiati<strong>on</strong>. J. Amer. Soc. Hort. Sci. 116: 525–527<br />

Dwelle, R.B. 1985. Photosynthesis <str<strong>on</strong>g>and</str<strong>on</strong>g> photoassimilate partiti<strong>on</strong>ing, p.<br />

35–58. In: P.H. Li (ed.). Potato physiolgy Academic Press, Orl<str<strong>on</strong>g>and</str<strong>on</strong>g>o, Fla.<br />

Dwelle, R.B., P.J. Hurley, <str<strong>on</strong>g>and</str<strong>on</strong>g> J.J. Pavek. 1983. Photosynthesis <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

stomatal c<strong>on</strong>ductance <str<strong>on</strong>g>of</str<strong>on</strong>g> potato cl<strong>on</strong>es (Solanum tuberosum L.). Plant<br />

Physiol. 72:172–176.<br />

Frier, V. 1977. The relati<strong>on</strong>ship between photosynthesis <str<strong>on</strong>g>and</str<strong>on</strong>g> tuber growth<br />

in Solanum tuberosum L. J. Expt. Bot. 28:999–1007.<br />

Garner, W.W. <str<strong>on</strong>g>and</str<strong>on</strong>g> H.A. Allard. 1923. Further studies <strong>on</strong> photoperiodism:<br />

The resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> plants to relative length <str<strong>on</strong>g>of</str<strong>on</strong>g> day <str<strong>on</strong>g>and</str<strong>on</strong>g> night. J. Agr. Res.<br />

23:871–920.<br />

Geiger, D.R. <str<strong>on</strong>g>and</str<strong>on</strong>g> B.R. F<strong>on</strong>dy. 1991. Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> allocati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

partiti<strong>on</strong>ing: Status <str<strong>on</strong>g>and</str<strong>on</strong>g> research agenda, p. 1–9. In: J.L. B<strong>on</strong>nemain, S.<br />

Delrot, W.J. Lucas, <str<strong>on</strong>g>and</str<strong>on</strong>g> J.J. Dainty. (eds.). Recent advances in phloem<br />

transport <str<strong>on</strong>g>and</str<strong>on</strong>g> assimilate compartmentati<strong>on</strong>. Ouest ed., Nantes, France.<br />

Gregory, L.E. 1965. Physiology <str<strong>on</strong>g>of</str<strong>on</strong>g> tuberizati<strong>on</strong> in plants (tubers <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

tuberous roots), p. 1328–1354. In: Encyclopedia <str<strong>on</strong>g>of</str<strong>on</strong>g> plant physiology.<br />

vol. 15. Springer-Verlag, Berlin.<br />

Herold, A. 1980., Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> photosynthesis by sink activity—The<br />

missing link. New Phytol. 86:131–144.<br />

Lorenzen, J.H. <str<strong>on</strong>g>and</str<strong>on</strong>g> E.E. Ewing. 1992. Starch accumulati<strong>on</strong> in leaves <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

potato (Solanum tuberosum L.) during the first 18 days <str<strong>on</strong>g>of</str<strong>on</strong>g> photoperiod<br />

treatment. Ann. Bot. 69:481–484<br />

MacElroy, R.D. <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Bredt. 1985. Current c<strong>on</strong>cepts <str<strong>on</strong>g>and</str<strong>on</strong>g> future directi<strong>on</strong><br />

in CELSS, p. 1–9. In: Life Support Systems in Space Travel. NASA<br />

C<strong>on</strong>f. Publ. 2378, M<str<strong>on</strong>g>of</str<strong>on</strong>g>fett field, Calif.<br />

McDermitt, D.K., J.M. Norman, J.T. Davis, T.M. Ball, T.J. Arkebauer,<br />

J.M. Welles, <str<strong>on</strong>g>and</str<strong>on</strong>g> S.R. Romer. 1988. CO 2 resp<strong>on</strong>se curves can be<br />

measured with a field-portable closed loop photosynthesis system. Proc.<br />

Intl. Symp. <strong>on</strong> forest tree physiology, Nance, France.<br />

Moorby, J., 1978. The physiology <str<strong>on</strong>g>of</str<strong>on</strong>g> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> tuber yield, p. 153–95.<br />

In: P.M. Harris (ed.). The potato crop: The scientific basis for improvement.<br />

Wiley, New York.<br />

Neales, T.F. <str<strong>on</strong>g>and</str<strong>on</strong>g> L.D. Incoll. 1968. The c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf photosynthesis rate<br />

by the level <str<strong>on</strong>g>of</str<strong>on</strong>g> assimilate c<strong>on</strong>centrati<strong>on</strong> in the leaf: A review <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

hypothesis. Bot. Rev. 34:107–125.<br />

Ols<strong>on</strong>, R.L., M.W. Ales<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> T.J. Slavin. 1988. CELSS for advanced<br />

manned missi<strong>on</strong>s. HortScience 23:275–286.<br />

Salisbury, F.B. <str<strong>on</strong>g>and</str<strong>on</strong>g> B.G. Bugbee. 1988. C<strong>on</strong>trolled ecological life support<br />

system use <str<strong>on</strong>g>of</str<strong>on</strong>g> higher plants. NASA C<strong>on</strong>f. Publ. 2231, M<str<strong>on</strong>g>of</str<strong>on</strong>g>fett Field,<br />

Calif.<br />

Stutte, R.W., R.M. Wheeler, <str<strong>on</strong>g>and</str<strong>on</strong>g> B.V. Peters<strong>on</strong>. 1993. Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

populati<strong>on</strong> CO 2 exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> potato grown in KSC’s biomass producti<strong>on</strong><br />

chamber. 28:467 (Abstr.)<br />

Tibbitts, T.W., W. Cao, <str<strong>on</strong>g>and</str<strong>on</strong>g> R.M. Wheeler. 1993. Growth <str<strong>on</strong>g>of</str<strong>on</strong>g> potatoes for<br />

CELSS. Final Rpt.-NCC2-301. NASA Coop. Agreement.<br />

Wang, Z. <str<strong>on</strong>g>and</str<strong>on</strong>g> G.W. Stutte. 1992. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> carbohydrates in active<br />

osmotic adjustment in apple under water stress. J. Amer. Soc. Hort. Sci.<br />

117:816–823.<br />

Wheeler, R.M., C.L. Mackowiak, J.C. Sager, W.M. Knott, <str<strong>on</strong>g>and</str<strong>on</strong>g> C.R.<br />

Hinkle. 1990. Potato growth <str<strong>on</strong>g>and</str<strong>on</strong>g> yield using nutrient film technique.<br />

Amer. Potato J. 67:177–187.<br />

Wheeler, R.M. <str<strong>on</strong>g>and</str<strong>on</strong>g> T.W. Tibbitts. 1986a. Utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> potatoes for life<br />

support systems in space. I. Cultivar–photoperiod interacti<strong>on</strong>s. Amer.<br />

Potato J. 63:315–323<br />

Wheeler, R.M. <str<strong>on</strong>g>and</str<strong>on</strong>g> T.W. Tibbitts. 1986b. Growth <str<strong>on</strong>g>and</str<strong>on</strong>g> tuberizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

potato (Solanum tuberosum L.) under c<strong>on</strong>tinuous light. Plant Physiol.<br />

80:801–804<br />

Wheeler, R.M. <str<strong>on</strong>g>and</str<strong>on</strong>g> T.W. Tibbitts, 1987. Utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> potatoes for life<br />

support systems in space: III. Productivity at successive harvest dates<br />

under 12 h <str<strong>on</strong>g>and</str<strong>on</strong>g> 24 h photoperiods. Amer. Potato J. 64:311–320.<br />

Wheeler, R.M., T.W. Tibbitts, <str<strong>on</strong>g>and</str<strong>on</strong>g> A.H. Fizpatrick. 1991. Carb<strong>on</strong> dioxide<br />

effects <strong>on</strong> potato growth under different photoperiods <str<strong>on</strong>g>and</str<strong>on</strong>g> irradiance.<br />

Crop Sci. 31:1209–1213.<br />

Wolf, S. 1993. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf age <strong>on</strong> photosynthesis, carb<strong>on</strong> transport, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

carb<strong>on</strong> allocati<strong>on</strong> in potato plants. Potato Res. 36:253–262.<br />

268 J. AMER. SOC. HORT. SCI. 121(2):264–268. 1996.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!