04.01.2013 Views

2D/3Danalysis of soldier pile wall(„Berlin”type

2D/3Danalysis of soldier pile wall(„Berlin”type

2D/3Danalysis of soldier pile wall(„Berlin”type

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>2D</strong> / 3D analysis <strong>of</strong><br />

<strong>soldier</strong> <strong>pile</strong> <strong>wall</strong> („Berlin” type).<br />

Case study <strong>of</strong> a disaster<br />

Aleksander Urbański (aurbansk@pk.edu.pl)<br />

Michał Grodecki<br />

Cracow University <strong>of</strong> Technology


Soldier <strong>wall</strong> („Berlin” type). Phases <strong>of</strong> construction<br />

steel<br />

tube<br />

s<strong>of</strong>t fill<br />

concrete<br />

insertion <strong>of</strong> steel pr<strong>of</strong>ile<br />

gradual excavation and lining<br />

anchoring<br />

- optional


a (=2.5m)<br />

Problem:<br />

Deformation and stability<br />

<strong>of</strong> the system<br />

depends mainly on the<br />

bearing capacity <strong>of</strong> the<br />

ground surrounding <strong>pile</strong>s<br />

loaded with large horizontal<br />

forces<br />

How to deal in ZSoil with generic 3D periodic structure in<br />

<strong>2D</strong> (plane strain) model, not loosing its essential 3D features?


Idea <strong>of</strong> modeling in ZSoil :<br />

� <strong>2D</strong> (plane strain, M-C) continuum+beam system<br />

� fictitious e-p connectors<br />

g = 1m<br />

3 zones<br />

on depth<br />

h1<br />

h2<br />

h3<br />

e<br />

k+<br />

L<br />

k-<br />

connectorselasto-plastic<br />

truss,<br />

properties<br />

from 3D problem:<br />

A , E , f ,<br />

σ<br />

C<br />

t<br />

f<br />

c<br />

ε


Subsidiary 3D problem<br />

�one layer <strong>of</strong> B8 el.<br />

�M-C model<br />

�displacement control<br />

�large deformation<br />

�contact (in large def.)<br />

loads:<br />

h<br />

γ ⋅ h<br />

t<br />

a<br />

2<br />

h0<br />

U<br />

z<br />

x<br />

X<br />

R ( ) X U X<br />

y<br />

U<br />

E,<br />

ν , c',<br />

φ'<br />

( h + h)<br />

γ ⋅ 0<br />

sought function<br />

and its aprox.:<br />

RMAX<br />

MAX<br />

U<br />

X


Subsidiary 3D problem<br />

R<br />

X ( X U<br />

Functions for:<br />

� 3 different depth<br />

� 2 directions + / -<br />

)<br />

h=1.5m, k.-<br />

h=0.5m,k.h=2.5m,k.- h=0.5m, k.+<br />

h=1.5m, k.+<br />

a/2<br />

+<br />

t<br />

charakte rystyki Rx-Ux<br />

k- ! k+<br />

3<br />

2<br />

1<br />

h=2.5m, k.+<br />

0<br />

Ux [m]<br />

-0.15 -0.1 -0.05 0 0.05 0.1 0.15<br />

-1<br />

-2<br />

-3<br />

-4<br />

Rx [kN]<br />

U X RX<br />

-


Identifaction <strong>of</strong> connectorsas<br />

elasto-plastic truss el.,<br />

from 3D problem:<br />

averaged lateral stresses in t*a:<br />

q<br />

R =<br />

( U )<br />

X<br />

=<br />

2 ⋅ 2 ⋅ RX<br />

t ⋅ a<br />

( U )<br />

static equivalency:<br />

force in truss = force in section e*g:<br />

tensile / compressive strength:<br />

X<br />

truss el. stiffness:<br />

R<br />

X<br />

( U )<br />

X<br />

X<br />

σ ⋅<br />

q<br />

U<br />

qMAX<br />

MAX<br />

A = q ⋅e<br />

⋅<br />

g<br />

U<br />

± ft ⎫ qMAX<br />

⋅e<br />

⋅ g<br />

⎬ =<br />

fc<br />

⎭ A<br />

qMAX<br />

⋅ e ⋅ g ⋅<br />

A⋅<br />

EC<br />

=<br />

U<br />

MAX<br />

X<br />

L


Section I<br />

5kN/m 2<br />

soil (c’=8kPa,φ‘=22 o )<br />

frictional interface μ=0.158<br />

silt(c’=30kPa,φ‘=18 o ,E=10kPa)<br />

no-friction interface<br />

concrete<br />

initial state,<br />

before excavation,<br />

connectors<br />

IPE 360 , a=2.5m<br />

IPE 360+<strong>pile</strong> CFA d=0.5m


Section I<br />

unloading f.<br />

excavation -<br />

4.8m<br />

raft 0.7m<br />

added „after”<br />

struts<br />

HEA 160 a=2.5m<br />

foundation<br />

additional<br />

connector


Section I<br />

ux=0.2909m (0.32)<br />

ux =0.3466m (0.21-0.41)<br />

(measured)<br />

SF=1.012


Section I<br />

SF=1.012.<br />

bending moments in structural el. (IPE 360)<br />

148.2 kNm<br />

phase 5:<br />

SF=1.0<br />

216.0 kNm<br />

SF=1.26


Section II<br />

5kN/m 2<br />

soil (c’=8kPa, φ‘=22 o )<br />

silt(c’=30kPa,φ‘=18 o )<br />

no-friction interface<br />

initial state,<br />

before 1–st phaze <strong>of</strong> excavation<br />

<strong>pile</strong>s CFA d=0.5 m


Section II<br />

1 phase <strong>of</strong><br />

excavation 2 phase <strong>of</strong><br />

excavation<br />

unloading f.<br />

struts<br />

HEA 160 a=2.5 m raft 0.7m


Section II<br />

M MAX=57.0kNm/1<strong>pile</strong><br />

M MAX =138.9kNm/IPE360<br />

ux=0.6768m (measured 0.645 m)<br />

ux=0.3794m<br />

SF=1.007<br />

-


Section III<br />

5kN/m2 63kN/m<br />

SF =1.55 2<br />

2.5<br />

connectors<br />

1.0<br />

excavation –4.80<br />

IPN 360 a=2.5m<br />

IPN 360 +CFA a=2.5m<br />

support<br />

HEA 160 2.5m<br />

raft 0.7m<br />

| u | ≅<br />

0.<br />

002m<br />

SF=1.55


Averaged horizontal soil pressures<br />

h [m]<br />

-60 -40 -20 0 20 40<br />

q [kPa]<br />

h [m]<br />

Section I<br />

Section II<br />

bearing capacity<br />

-60 -40 -20 0 20 40<br />

q [kPa]<br />

h [m]<br />

14<br />

13<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Section III<br />

qmax=3.0kPa<br />

-0.5 0 0.5 1 1.5 2 2.5 3 3.5<br />

q [kPa]


Conclusions<br />

� Limit state was achevied (s.I and II) by unsupported <strong>soldier</strong><br />

<strong>pile</strong> <strong>wall</strong>, causing excessive displacements. In s. III safety was<br />

assured. Undertaken measures prove to be satisfactory.<br />

� Mixed <strong>2D</strong>/3D method was fast and accurate enough,<br />

in this practical case, for:<br />

�explaining observed phenomena (failure mechanism)<br />

�assessment <strong>of</strong> stability <strong>of</strong> the system (safety factors)<br />

�prediction <strong>of</strong> displacement (~5% accuracy )<br />

More research needed to generalize<br />

Thank you for your attention

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!