04.01.2013 Views

The Columbia EFRC - Lenfest Center for Sustainable Energy ...

The Columbia EFRC - Lenfest Center for Sustainable Energy ...

The Columbia EFRC - Lenfest Center for Sustainable Energy ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>Columbia</strong> <strong>EFRC</strong>: Redefining<br />

Photovoltaic Efficiency Through<br />

Molecule-Scale Control.<br />

James Yardley<br />

Electrical Engineering<br />

Jim Yardley<br />

Louis Brus<br />

Tony Heinz<br />

file: <strong>Lenfest</strong> Symp 05-04-10 rev b.ppt Page 1


<strong>EFRC</strong> Origins: Basic Research Needs.<br />

file: <strong>EFRC</strong> Program Summary 3-16-10 rev h.ppt Page 2


<strong>Energy</strong> Frontier Research <strong>Center</strong>s: Genesis.<br />

Total Resources: $770 million<br />

over 5 years!<br />

file: <strong>EFRC</strong> Program Summary 3-16-10 rev h.ppt Page 3


<strong>EFRC</strong>: History and Basis<br />

file: <strong>EFRC</strong> Program Summary 3-16-10 rev h.ppt Page 4


<strong>The</strong> <strong>EFRC</strong> Network.<br />

file: <strong>EFRC</strong> Program Summary 3-16-10 rev h.ppt Page 5


Basic Research Needs <strong>for</strong> Solar <strong>Energy</strong>.<br />

• <strong>The</strong> Sun is a singular solution to our future energy needs<br />

- capacity dwarfs fossil, nuclear, wind . . .<br />

- sunlight delivers more energy in one hour<br />

than the earth uses in one year<br />

- free of greenhouse gases and pollutants<br />

- secure from geo-political constraints<br />

• Enormous gap between our tiny use<br />

of solar energy and its immense potential<br />

- Incremental advances in today’s technology<br />

will not bridge the gap<br />

- Conceptual breakthroughs are needed that come<br />

only from high risk-high payoff basic research<br />

• Interdisciplinary research is required<br />

physics, chemistry, biology, materials, nanoscience<br />

• Basic and applied science should couple seamlessly http://www.sc.doe.gov/bes/reports/abstracts.html#SEU<br />

file: <strong>Lenfest</strong> Symp 05-04-10 rev b.ppt Page 6


Solar Cell Evolution.<br />

Shockley-Queisser Limit<br />

“Organic Photovoltaics”<br />

file: <strong>Lenfest</strong> Symp 05-04-10 rev b.ppt Page 7


Organic Photovoltaics: Plastic Photocells.<br />

donor-acceptor junction<br />

polymer donor<br />

MDMO-PPV<br />

Opportunities<br />

inexpensive materials, con<strong>for</strong>mal coating, self-assembling fabrication,<br />

wide choice of molecular structures, “cheap solar paint”<br />

Challenges<br />

low efficiency (2-5%), high defect density, low mobility, full<br />

absorption spectrum, nanostructured architecture<br />

Source: George Crabtree, Solar <strong>Energy</strong>Challenges and Opportunities<br />

(<br />

O<br />

O<br />

) n<br />

fullerene acceptor<br />

PCBM<br />

O<br />

OMe<br />

file: <strong>Lenfest</strong> Symp 05-04-10 rev b.ppt Page 8


<strong>Columbia</strong> <strong>Energy</strong> Frontier Research <strong>Center</strong><br />

<strong>Columbia</strong> University<br />

<strong>Columbia</strong> Nanocenter<br />

Tel Aviv Univ.<br />

Eran Rabani<br />

General Electric<br />

Loucas Tsakalakos<br />

HelioVolt<br />

Louay Eldada<br />

IBM<br />

George Tulevski<br />

State of New York<br />

NYSTAR<br />

NYSERDA<br />

Smart Grid Consortium<br />

Brookhaven National Lab.<br />

<strong>Center</strong> <strong>for</strong> Functional Nanomaterials<br />

Mark Hybertsen<br />

Charles Black<br />

University of Arkansas<br />

Xiaogang Peng<br />

Purdue University<br />

Ashraf Alam<br />

Univ. of Texas<br />

Xiaoyang Zhu<br />

Partners (<strong>EFRC</strong> funded)<br />

Collaborators<br />

Partners (Government)<br />

DOE Funding:<br />

$16 million over 5<br />

years.<br />

Sept. 1, 2009 start.<br />

file: <strong>Lenfest</strong> Symp 05-04-10 rev b.ppt Page 9


<strong>Columbia</strong> <strong>EFRC</strong>: Research Team.<br />

<strong>Columbia</strong> University Principal Investigators<br />

Simon Billinge, Applied Physics<br />

Louis Brus, Chemistry<br />

George Flynn, Chemistry<br />

Tony Heinz, Electrical Engineering<br />

Irving P. Herman, Applied Physics<br />

James Hone, Mechanical Engineering<br />

Philip Kim, Physics<br />

Ioannis Kymissis, Electrical Engineering<br />

Colin Nuckolls, Chemistry<br />

Richard Osgood, Electrical Engineering<br />

David Reichman, Chemistry<br />

Kenneth Shepard, Electrical Engineering<br />

Mike Steigerwald, Chemistry<br />

Latha Venkataraman, Applied Physics<br />

Chee Wei Wong, Mechanical Engineering<br />

James Yardley, Electrical Engineering<br />

<strong>Columbia</strong> University Seed Fund Faculty<br />

Dirk Englund, Electrical Engineering<br />

Jonathan Owen, Chemistry<br />

Abhay Pasupathy, Physics<br />

Principal Investigators at Partner Institutions<br />

Ashraf Alam, Electrical Engineering, Purdue<br />

Xiaogang Peng, Chemistry, Arkansas Univ.<br />

Xiaoyang Zhu, Chemistry, Univ. Texas, Austin<br />

Ashraf Alam Xiaoyang Zhu Xiaogang Peng<br />

file: <strong>Lenfest</strong> Symp 05-04-10 rev b.ppt Page 10


<strong>Columbia</strong> <strong>EFRC</strong>: Research Team… Cont.<br />

External Collaborators (Unfunded)<br />

Charles Black, Brookhaven, CFN<br />

Mark S. Hybertsen, Brookhaven, CFN<br />

Eran Rabani, Chemistry, Tel Aviv University<br />

Charles Black<br />

Mark Hybertsen<br />

Eran Rabani<br />

<strong>EFRC</strong> Research Fellows<br />

<strong>The</strong>anne Schiros, <strong>EFRC</strong>, <strong>Columbia</strong> Univ.<br />

Jonathan Schuller, <strong>EFRC</strong>, <strong>Columbia</strong> Univ.<br />

<strong>The</strong>anne Schiros<br />

Jonathan Schuller<br />

file: <strong>Lenfest</strong> Symp 05-04-10 rev b.ppt Page 11


<strong>The</strong> <strong>Columbia</strong> <strong>EFRC</strong> will create<br />

enabling technology to re-define<br />

efficiency in nanostructured thin-film<br />

organic photovoltaic devices through<br />

fundamental understanding and<br />

through molecule-scale control of<br />

charge <strong>for</strong>mation, separation,<br />

extraction, and transport.<br />

Re-Defining Photovoltaic Efficiency Through<br />

Molecule Scale Control<br />

OVERALL RESEARCH PLAN AND DIRECTIONS<br />

Fundamental understanding of photo-physical and kinetic properties on the<br />

nanoscale will allow us to design systems <strong>for</strong> efficient photovoltaic<br />

generation and separation of charges.<br />

By using new conducting materials such as graphene we can transport these<br />

charges to macroscopic electrical systems, providing basis <strong>for</strong> revolutionary<br />

low cost, high efficiency devices.<br />

an Office of Basic <strong>Energy</strong> Sciences<br />

<strong>Energy</strong> Frontier Research <strong>Center</strong><br />

file: <strong>Lenfest</strong> Symp 05-04-10 rev b.ppt Page 12


<strong>Columbia</strong> <strong>EFRC</strong> Research Thrusts.<br />

Re-Defining Photovoltaic Efficiency Through Molecule Scale Control.<br />

file: <strong>Lenfest</strong> Symp 05-04-10 rev b.ppt Page 13


THRUST 1. FUNDAMENTALS OF CHARGE GENERATION: EXCITATION,<br />

SEPARATION, AND EXTRACTION OF CHARGE CARRIERS.<br />

Thrust Leader: Colin Nuckolls<br />

file: <strong>Lenfest</strong> Symp 05-04-10 rev b.ppt Page 14


New Materials <strong>for</strong> Efficient Charge Extraction<br />

Engineered Quantum Dots<br />

Xiaogang Peng (U Ark)<br />

Simon Billinge<br />

Jonathan Owen<br />

With Chee Wei Wong, Mike Steigerwald, Louis Brus<br />

Molecular Clusters <strong>for</strong> Photovoltaic Cells.<br />

Michael Steigerwald<br />

Jonathan Owen<br />

With Latha Venkataraman<br />

Organic Semiconductors and Nanostructures.<br />

Colin Nuckolls<br />

Ioannis Kymissis<br />

With Jonathan Owen, Mike Steigerwald<br />

Ni 23 Se 12 (PEt 3 ) 13<br />

Program Goal: Develop and engineer new materials that promote<br />

efficient extraction of electron and hole from single exciton.<br />

file: <strong>Lenfest</strong> Symp 05-04-10 rev b.ppt Page 15


Fundamentals of Charge Transport Across Interfaces.<br />

Transport Across Molecular Junctions.<br />

Latha Venkataraman<br />

Mark Hybertsen (BNL)<br />

Mike Steigerwald<br />

Transport Across Interfaces.<br />

George Flynn<br />

Abhay Pasupathy<br />

Richard Osgood<br />

Xiaoyang Zhu (U Tex.)<br />

Direct map of electron flow.<br />

Program goal: Determine the atomic-scale factors controlling<br />

the efficiency and energetics of charge transfer at materials of<br />

interest <strong>for</strong> nanosolar systems.<br />

file: <strong>Lenfest</strong> Symp 05-04-10 rev b.ppt Page 16


Optical Nanostructures <strong>for</strong> Efficient Light Collection.<br />

Nanostructured Antennas.<br />

Richard Osgood<br />

Dirk Englund<br />

With Chee Wei Wong<br />

Light Trapping in Thin Films.<br />

Dirk Englund<br />

With Chee Wei Wong<br />

Program goal: Develop integrated optical devices and<br />

structures that optimize coupling of solar radiation with<br />

nanostructured solar devices.<br />

file: <strong>Lenfest</strong> Symp 05-04-10 rev b.ppt Page 17


THRUST II. CHARGE COLLECTION: TRANSPORT AT<br />

THE NANOSCALE AND BEYOND.<br />

Thrust Leader: Ioannis Kymissis<br />

file: <strong>Lenfest</strong> Symp 05-04-10 rev b.ppt Page 18


Nanostructured Heterojunction Solar Devices.<br />

Ioannis Kymissis<br />

Charles Black (BNL)<br />

Ashrafel Alam (Purdue)<br />

With Colin Nuckolls, Ken Shepard, Philip Kim, Irving Herman<br />

PDMS molding followed by microcontact<br />

printing of surface modifying silanes<br />

Idea: Engineer surface energy <strong>for</strong> control of<br />

organic blend phase separation.<br />

� � � �<br />

� � � �<br />

Program Goal: Develop, understand, and evaluate heterostructure<br />

solar devices with efficient extraction of charge carriers.<br />

p<br />

n<br />

file: <strong>Lenfest</strong> Symp 05-04-10 rev b.ppt Page 19


Self-Assembled Heterostructure Devices.<br />

Colin Nuckolls<br />

Ioannis Kymissis<br />

With Charles Black (BNL), Colin Nuckolls, Ken Shepard, Philip Kim<br />

Program Goal: Develop and understand heterostructure devices built<br />

upon nanoscale self-assembly.<br />

file: <strong>Lenfest</strong> Symp 05-04-10 rev b.ppt Page 20


New Concepts <strong>for</strong> Organic Solar Cell Devices.<br />

Photovoltaic Universal Joints: Ball-and-Socket Interfaces in<br />

Molecular Photovoltaic Cells.<br />

Colin Nuckolls<br />

Ioannis Kymissis<br />

Noah Tremblay<br />

Alon Gorodetsky<br />

Marshall Cox<br />

<strong>The</strong>anne Schiros<br />

Michael Steigerwald<br />

(A) Depiction of ball-and-socket interfaces in bilayer and bulk<br />

heterojunction devices.<br />

(B) <strong>The</strong> chemical structure of the contorted-HBC.<br />

(C) Correlation between depiction (top) and molecular structure<br />

from the co-crystal of HBC and C 60 (bottom).<br />

Funded in part by the National Science Foundation under NSF Award Number CHE-0641523, in part from the <strong>Center</strong> <strong>for</strong> Re-Defining Photovoltaic<br />

Efficiency Through Molecule Scale Control, an <strong>Energy</strong> Frontier Research <strong>Center</strong> funded by the U.S. Department of <strong>Energy</strong>, Office of Science,<br />

Office of Basic <strong>Energy</strong> Sciences under Award Number DE-SC0001085, and in part from the Chemical Sciences, Geosciences and Biosciences<br />

Division, Office of Basic <strong>Energy</strong> Sciences, US D.O.E. (#DE-FG02-01ER15264) and US D.O.E. (#DE-FG02-04ER46118).<br />

file: <strong>Lenfest</strong> Symp 05-04-10 rev b.ppt Page 21


Shape Complementary Molecular Photovoltaics.<br />

electrode 1<br />

n-type semiconductor<br />

p-type semiconductor<br />

electrode 2<br />

p-type n-type<br />

assembly<br />

shapecomplemenarity<br />

Interdigitated columns<br />

HBC/C60 bilayer devices<br />

show good functional<br />

per<strong>for</strong>mance!<br />

Voc=0.95 V, η= 5.7%<br />

(UV), > 1% (amb. solar)<br />

Voc 10x’s larger <strong>for</strong><br />

contorted- vs. flat- HBC<br />

devices (under UV light).<br />

Goal: ordered bulk<br />

heterojunction.<br />

Approach: exploit<br />

physical & electronic<br />

complementarity of C60 with contorted-HBC<br />

(hexabenzocoronene)


Carbon-based Conductor and Semiconductors.<br />

Philip Kim<br />

Tony Heinz<br />

With Ioannis Kymissis, Charles Black (BNL), Ken Shepard.<br />

Conventional solar cells need work<br />

functions matched to materials.<br />

Simplified band diagram (shown at V oc) of a P3HT:PCBM solar cell<br />

having PEDOT and Al contacts.<br />

Band offsets are major source of loss!<br />

Graphene work function is controllable through<br />

chemical doping and through applied electric fields.<br />

Program Goal: Develop carbon-based electrode structures <strong>for</strong> high<br />

efficiency charge extraction from nanostructured heterojunction devices.<br />

file: <strong>Lenfest</strong> Symp 05-04-10 rev b.ppt Page 23


THRUST 3. CARRIER MULTIPLICATION: BEYOND THE<br />

SHOCKLEY-QUEISSER LIMIT.<br />

Thrust Leader: David Reichman<br />

file: <strong>Lenfest</strong> Symp 05-04-10 rev b.ppt Page 24


<strong>The</strong>oretical Basis <strong>for</strong> Carrier Multiplication.<br />

David Reichman<br />

Mark Hybertsen (BNL)<br />

Eran Rabani (Tel Aviv)<br />

• Increase PV efficiency<br />

about 40% above S-Q limit.<br />

• Need strong electronelectron<br />

interactions.<br />

Program Goal: Develop broadly-based theoretical model <strong>for</strong><br />

understanding multiple carrier generation in semiconducting materials<br />

including quantum dots, carbon nanotubes, and molecular clusters.<br />

file: <strong>Lenfest</strong> Symp 05-04-10 rev b.ppt Page 25


MEG in One-Dimensional Systems.<br />

Tony Heinz<br />

Louis Brus<br />

James Hone<br />

Research<br />

Plan<br />

Absorption Spectrum of Individual<br />

(21,21) Armchair Metallic Nanotube<br />

(a) Scanning electron micrograph of an individual SWNT with electrode contacts.<br />

(b) - (d) Fabrication of split gates to produce a controlled p-n junction.<br />

(e) Photocurrent and Rayleigh scattering spectrum.<br />

file: <strong>Lenfest</strong> Symp 05-04-10 rev b.ppt Page 26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!