04.01.2013 Views

High-efficiency, multijunction solar cells for large-scale solar ...

High-efficiency, multijunction solar cells for large-scale solar ...

High-efficiency, multijunction solar cells for large-scale solar ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>High</strong>-<strong>efficiency</strong>, <strong>multijunction</strong> <strong>solar</strong><br />

<strong>cells</strong> <strong>for</strong> <strong>large</strong>-<strong>scale</strong> <strong>solar</strong><br />

electricity generation<br />

Sarah Kurtz<br />

APS March Meeting, 2006<br />

Acknowledge: Jerry Olson, John Geisz, Mark Wanlass, Bill McMahon, Dan Friedman,<br />

Scott Ward, Anna Duda, Charlene Kramer, Michelle Young, Alan Kibbler, Aaron Ptak,<br />

Jeff Carapella, Scott Feldman, Chris Honsberg (Univ. of Delaware), Allen Barnett (Univ.<br />

of Delaware), Richard King (Spectrolab), Paul Sharps (EMCORE)


Outline<br />

• Motivation - <strong>High</strong> <strong>efficiency</strong> adds value<br />

• The essence of high <strong>efficiency</strong><br />

– Choice of materials & quality of materials<br />

– Success so far - 39%<br />

• Material quality<br />

– Avoid defects causing non-radiative recombination<br />

• <strong>High</strong>-<strong>efficiency</strong> <strong>cells</strong> <strong>for</strong> the future<br />

– Limited only by our creativity to combine high-quality<br />

materials<br />

• The promise of concentrator systems


Photovoltaic industry is growing<br />

Worldwide PV shipments (MW)<br />

1500<br />

1000<br />

500<br />

0<br />

Data from the<br />

Prometheus Institute<br />

1999 2000 2001 2002 2003 2004 2005<br />

Year<br />

~$10 Billion/yr<br />

Growth would be even faster if cost is reduced and availability increased


To reduce cost and increase availability:<br />

Front<br />

Back<br />

reduce semiconductor material<br />

Solar cell<br />

A higher <strong>efficiency</strong> cell<br />

increases the value of<br />

the rest of the system<br />

Thin film<br />

Goal: Cost dominated by<br />

Balance of system<br />

Concentrator


Detailed balance: Elegant approach<br />

<strong>for</strong> estimating <strong>efficiency</strong> limit<br />

Balances the radiative transfer between the sun (black body)<br />

and a <strong>solar</strong> cell (black body that absorbs Ephoton >Egap), then<br />

uses a diode equation to create the current-voltage curve.<br />

Shockley-Queisser limit: 31% (one sun); 41% (~46,200 suns)


Solar spectrum<br />

5x10 17<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0<br />

Band gap<br />

of 0.75 eV<br />

1<br />

Why <strong>multijunction</strong>?<br />

Power = Current X Voltage<br />

2<br />

Photon energy (eV)<br />

<strong>High</strong> current,<br />

but low voltage<br />

Excess energy lost to heat<br />

3<br />

4<br />

Solar spectrum<br />

5x10 17<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0<br />

1<br />

2<br />

Photon energy (eV)<br />

Band gap<br />

of 2.5 eV<br />

<strong>High</strong> voltage,<br />

but low current<br />

Subbandgap light is lost<br />

<strong>High</strong>est <strong>efficiency</strong>: Absorb each color of light with a<br />

material that has a band gap equal to the photon energy<br />

3<br />

4


Detailed balance <strong>for</strong> multiple junctions<br />

Detailed Balance Efficiency (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Maximum Concentration<br />

2<br />

One sun<br />

4<br />

6<br />

Concentration limit<br />

One sun limit<br />

Number of junctions or absorption processes<br />

Depends on Egap, <strong>solar</strong> concentration, & spectrum.<br />

Assumes ideal materials<br />

8<br />

10<br />

Marti & Araujo<br />

1996 Solar Energy<br />

Materials and Solar<br />

Cells 43 p. 203


Achieved efficiencies - depend<br />

Efficiency (%)<br />

80<br />

60<br />

40<br />

20<br />

more on material quality<br />

0<br />

1<br />

Detailed balance<br />

One sun<br />

Polycrystalline<br />

2<br />

Detailed balance<br />

Maximum concentration<br />

3<br />

Number of junctions<br />

Single-crystal<br />

(concentration)<br />

Single-crystal<br />

Amorphous<br />

4<br />

5


Efficiency (%)<br />

40<br />

36<br />

32<br />

28<br />

24<br />

20<br />

16<br />

12<br />

8<br />

4<br />

0<br />

1975<br />

Multijunction Concentrators<br />

Three-junction (2-terminal,<br />

monolithic)<br />

Two-junction (2-terminal,<br />

monolithic)<br />

Crystalline Si Cells<br />

Single crystal<br />

Multicrystalline<br />

Thick Si Film<br />

Thin Film Technologies<br />

Cu(In,Ga)Se2 CdTe<br />

Amorphous Si:H (stabilized)<br />

Nano-, micro-, poly- Si<br />

Multijunction polycrystalline<br />

Emerging PV<br />

Dye <strong>cells</strong><br />

Organic <strong>cells</strong><br />

(various technologies)<br />

1980<br />

Best Research-Cell Efficiencies<br />

1985<br />

1990<br />

Year<br />

1995<br />

2000<br />

2005


Multijunction <strong>cells</strong> use multiple<br />

materials to match the <strong>solar</strong> spectrum<br />

4 5 6 7 8 9<br />

1<br />

Energy (eV)<br />

2 3 4<br />

GaInP 1.9 eV<br />

GaInAs 1.4 eV<br />

Ge 0.7 eV<br />

Efficiency record = 39%<br />

p<br />

2005 R. King, et al, 20th European<br />

PVSEC


Efficiency (%)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Success of GaInP/GaAs/Ge cell<br />

NREL invention<br />

of GaInP/GaAs<br />

<strong>solar</strong> cell<br />

1985<br />

commercial 3-junction concentrator<br />

production of<br />

tandem<br />

1990<br />

tandempowered<br />

satellite<br />

flown<br />

1995<br />

Year<br />

production<br />

levels reach<br />

300 kW/yr<br />

2000<br />

2005<br />

39%!<br />

This very successful space cell is<br />

currently being engineered into systems<br />

<strong>for</strong> terrestrial use<br />

QuickTime and a<br />

TIFF (LZW) decompressor<br />

are needed to see this picture.<br />

Mars Rover powered by<br />

<strong>multijunction</strong> <strong>cells</strong>


Solar cell - diode model<br />

light<br />

n-type material<br />

Deplet ion<br />

width<br />

p-type<br />

material<br />

Fermi<br />

level<br />

Collect photocarriers at built-in field be<strong>for</strong>e they recombine.


Types of recombination<br />

• Auger<br />

• Radiative<br />

• Non-radiative - tied to material quality


Ec<br />

Ev<br />

Non-radiative recombination<br />

generates heat instead of electricity<br />

Heat<br />

Trap<br />

Heat<br />

Shockley - Read - Hall recombination<br />

• Large numbers of phonons are required<br />

when ΔE is <strong>large</strong> -- probability of transition<br />

decreases exponentially with ΔE<br />

• Trap fills and empties; Fermi level is critical


Defects - problems and solutions<br />

• Defects that cause states near the middle of<br />

the gap are the biggest problem<br />

• These tend to be crystallographic defects<br />

(dislocations, surfaces, grain boundaries)<br />

– use single crystal<br />

• “Perfect” single-crystal material has defects<br />

only at edges<br />

– Terminate crystal with a material that <strong>for</strong>ms bonds<br />

to avoid unpaired electrons<br />

– Build in a field to repel minority carriers


Solar cell schematic to show<br />

light<br />

surface passivation<br />

Passivat ing<br />

window<br />

n-type p-type<br />

Deplet ion<br />

width<br />

Fermi<br />

level<br />

Passivat ing<br />

back-surface field


Summary about high <strong>efficiency</strong><br />

• <strong>High</strong> <strong>efficiency</strong> cell makes rest of system<br />

more valuable<br />

• Minimize non-radiative recombination<br />

– Use single crystal<br />

– “Get rid of” surfaces with passivating layers<br />

• With these ground rules, how do we combine<br />

materials? - Lots of research opportunities


Many available materials<br />

Bandgap (eV)<br />

2.4<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

0.0<br />

5.4<br />

AlP<br />

GaP<br />

Si<br />

AlAs<br />

GaAs<br />

Ge<br />

InP<br />

5.6 5.8 6.0<br />

Lattice Constant (Å)<br />

By making alloys, all band gaps can be achieved<br />

AlSb<br />

GaSb<br />

InAs<br />

6.2<br />

6.4<br />

InSb


Ways to make a single-crystal alloy<br />

Ordered Random Quantum<br />

wells<br />

Quantum<br />

dots<br />

Challenges: • avoid <strong>for</strong>ming defects while controlling structure<br />

• collect photocarriers


Strain is distributed uni<strong>for</strong>mly<br />

Mobility is determined by band structure<br />

Need driving <strong>for</strong>ce <strong>for</strong> ordering, or growth<br />

is impossible<br />

Relatively easy to grow<br />

Alloy scattering is usually small; mobility<br />

is decreased slightly<br />

Collection of photocarriers usually<br />

requires a built-in electric field<br />

Growth is typically more complex,<br />

especially to avoid defects and to<br />

control sizes of quantum structures


Strain is distributed uni<strong>for</strong>mly<br />

Mobility is determined by band structure<br />

Need driving <strong>for</strong>ce <strong>for</strong> ordering, or growth<br />

is impossible<br />

Relatively easy to grow<br />

Alloy scattering is usually small; mobility<br />

is decreased slightly<br />

Collection of photocarriers usually<br />

requires a built-in electric field<br />

Growth is typically more complex,<br />

especially to avoid defects and to<br />

control sizes of quantum structures


GaInP/GaAs/Ge cell is lattice<br />

Bandgap (eV)<br />

2.8<br />

2.4<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

0.0<br />

5.4<br />

AlP<br />

GaP<br />

Ga 0.5In 0.5P<br />

Si<br />

GaAs<br />

Ge<br />

matched<br />

5.6<br />

AlAs<br />

GaAs<br />

Ge<br />

5.8<br />

InP<br />

6.0<br />

InAs<br />

Lattice Constant (Å)<br />

GaSb<br />

AlSb<br />

6.2<br />

6.4<br />

InSb


Bandgap (eV)<br />

2.8<br />

2.4<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

0.0<br />

New lattice matched alloys<br />

5.4<br />

AlP<br />

GaP<br />

AlAs<br />

Ga0.5In0.5P Si<br />

GaAs<br />

GaInAsN<br />

Ge<br />

5.6<br />

GaAs<br />

Ge<br />

5.8<br />

Lattice matched approach is<br />

easiest to implement, but is<br />

limited in material combinations<br />

InP<br />

Lattice Constant (Å)<br />

6.0<br />

InAs<br />

GaSb<br />

Open-circuit voltage (V)<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

1.15<br />

GaInNAs is candidate<br />

<strong>for</strong> 1-eV material, but<br />

does not give ideal<br />

per<strong>for</strong>mance<br />

GaAs<br />

GaNAs<br />

GaInNAs<br />

n-on-p p-on-n<br />

1.20<br />

1.25<br />

1.30<br />

Bandgap (eV)<br />

GaAs<br />

1.35<br />

Ga(In)NAs<br />

1.40


Larger<br />

lattice constant<br />

Smaller<br />

lattice constant<br />

Method <strong>for</strong> growing<br />

mismatched alloys<br />

Step<br />

grade<br />

confines<br />

defects<br />

SiGe (majority-carrier)<br />

devices are now common,<br />

but mismatched epitaxial<br />

<strong>solar</strong> <strong>cells</strong> are in R&D stage<br />

220DF<br />

GaAsP<br />

step grade<br />

1 µm<br />

XTEM<br />

GaAs 0.7 P0.3 0.3<br />

GaP


Bandgap (eV)<br />

<strong>High</strong>-<strong>efficiency</strong> mismatched cell<br />

2.8<br />

2.4<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

0.0<br />

5.4<br />

AlP<br />

GaP<br />

5.6<br />

AlAs<br />

Ga GaAs<br />

0.9In0.1As Si<br />

Ga 0.4In 0.6P<br />

Ge<br />

Ge<br />

5.8<br />

InP<br />

Lattice Constant (Å)<br />

GaSb<br />

InAs<br />

GaInP top cell<br />

GaInAs middle cell<br />

Grade<br />

Ge bottom cell<br />

and substrate<br />

1.8 eV<br />

1.3 eV<br />

0.7 eV<br />

6.0<br />

Metal<br />

38.8% @ 240 suns<br />

R. King, et al 2005, 20th European PVSEC


Bandgap (eV)<br />

2.8<br />

2.4<br />

2.0<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

0.0<br />

Inverted mismatched cell<br />

AlP<br />

GaP<br />

AlAs<br />

Ga0.5In0.5P 5.4<br />

Si<br />

GaAs<br />

5.6<br />

GaAs<br />

Ga 0.3In 0.7As<br />

Ge<br />

5.8<br />

InP<br />

Lattice Constant (Å)<br />

6.0<br />

InAs<br />

GaSb<br />

Substrate removed<br />

after growth<br />

GaAs substrate<br />

GaInP top cell<br />

GaAs middle cell<br />

Grade<br />

GaInAs bottom cell<br />

1.9 eV<br />

1.4 eV<br />

1.0 eV<br />

Metal<br />

37.9% @ 10 suns<br />

Mark Wanlass, et al 2005


Mechanical stacks<br />

GaAs cell<br />

GaSb cell<br />

32.6% <strong>efficiency</strong> @ 100 suns<br />

1990 L. Fraas, et al 21st PVSC, p. 190<br />

4-terminals<br />

Easier to achieve high <strong>efficiency</strong>, but more difficult in<br />

a system because of heat sinking and 4-terminals<br />

Wafer bonding provides pathway to monolithic structure<br />

A. Fontcuberta I Morral, et al, Appl. Phys. Lett. 83, p. 5413 (2003)


Summary<br />

• Photovoltaic industry is growing > 40%/year<br />

• <strong>High</strong> <strong>efficiency</strong> <strong>cells</strong> may help the <strong>solar</strong> industry<br />

grow even faster<br />

• Detailed balance provides upper bound (>60%)<br />

<strong>for</strong> efficiencies, assuming ideal materials<br />

• Single-crystal <strong>solar</strong> <strong>cells</strong> have achieved the<br />

highest efficiencies: 39%<br />

• <strong>High</strong>er efficiencies will be achieved when ways<br />

are found to integrate materials while retaining<br />

high crystal quality


Flying high with high <strong>efficiency</strong><br />

Cells from Mars rover<br />

may soon provide<br />

QuickTime and a<br />

TIFF (LZW) decompressor<br />

are needed to see this picture.<br />

QuickTime and a<br />

TIFF (LZW) decompressor<br />

needed to see this picture.<br />

electricity on earth<br />

QuickTime and a<br />

TIFF (LZW) decompressor<br />

are needed to see this picture.<br />

<strong>High</strong> <strong>efficiency</strong>, low cost,<br />

ideal <strong>for</strong> <strong>large</strong> systems

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!