03.01.2013 Views

Standardized DVB-T2 RF specifications - DigitalEurope

Standardized DVB-T2 RF specifications - DigitalEurope

Standardized DVB-T2 RF specifications - DigitalEurope

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

DIGITALEUROPE White paper:<br />

<strong>Standardized</strong> <strong>DVB</strong>-<strong>T2</strong> <strong>RF</strong> <strong>specifications</strong><br />

DIGITALEUROPE<br />

Rue de la Science, 14>> B-1040 Brussels [Belgium]<br />

T. +32 2 609 53 10 >>F. +32 2 609 53 39<br />

www.digitaleurope.org<br />

Transparency register member for the Commission: 64270747023-20<br />

Brussels, April 17, 2012<br />

DIGITALEUROPE represents the digital technology industry in Europe. Our 100+ members<br />

include some of the world’s largest IT, telecommunications and consumer electronics<br />

companies, as well as national associations from every part of Europe.<br />

This paper summarises recent work of the DIGITALEUROPE E-book <strong>RF</strong> group on defining a<br />

minimum <strong>RF</strong> specification for <strong>DVB</strong>-<strong>T2</strong> receivers. Some of the specification is derived from<br />

work carried out in the UK DTG D-Book <strong>RF</strong> group but it also includes new test areas not<br />

covered by other <strong>DVB</strong>-<strong>T2</strong> <strong>RF</strong> <strong>specifications</strong>. The aim is to show the current best practice for<br />

<strong>DVB</strong>-<strong>T2</strong> receiver specification and testing. The specification has been verified on recent<br />

<strong>DVB</strong>-<strong>T2</strong> receivers. It is hoped this white paper will assist countries rolling out new <strong>T2</strong><br />

services. This specification will eventually be published as an update to the IEC 62216 E-<br />

Book.<br />

1- <strong>DVB</strong>-<strong>T2</strong> MODES<br />

<strong>DVB</strong>-<strong>T2</strong> is a very flexible physical layer standard with many configuration options.<br />

Unfortunately this very flexibility makes standardising on common operating modes difficult<br />

due to the large number of possible mode combinations. To keep receiver compliance testing<br />

time within reasonable limits, we have defined a subset of 9 modes for detailed performance<br />

testing in difficult channels (Table 1). These modes cover many important areas of<br />

functionality in the <strong>DVB</strong>-<strong>T2</strong> specification. In addition it is expected that the receiver should be<br />

able to demodulate an impairment free signal with all the following options from the <strong>DVB</strong>-<strong>T2</strong><br />

specification (EN 302 755). Receivers should be able to automatically detect the mode being<br />

received when channel scanning.<br />

� Constellation (QPSK, 16-QAM, 64-QAM, 256QAM, rotated or normal)<br />

� Code rate (1/2, 3/5, 2/3, 3/4, 4/5 or 5/6),<br />

� Guard interval (1/4, 1/8, 1/16, 1/32, 1/128, 19/256, 19/128),<br />

� Transmission modes (1K, 2K, 4K, 8K, 16K, 32K),<br />

� Extended carrier modes (8K, 16K and 32K only)<br />

� Pilot patterns PP1-PP7<br />

� SISO and MISO<br />

� HEM (high efficiency) and normal modes<br />

� Normal and short FEC frames<br />

� 7 and 8 MHz bandwidths<br />

� Single and multiple PLP modes<br />

>>1 of 27


Most of these options can be tested using large sets of functional tests, however any<br />

changes to the <strong>DVB</strong>-<strong>T2</strong> mode chosen for broadcasting must also be <strong>RF</strong> performance tested<br />

with the legacy receiver population to ensure a smooth transition.<br />

Table 1 – Selected <strong>DVB</strong>-<strong>T2</strong> modes for performance testing<br />

Mode: 1 2 3 4 5 6 1 7 8 9<br />

Test<br />

Coverage<br />

FFTSIZE<br />

E=Ext. N=Normal<br />

AWGN & Static 0dB Echo Tests All Performance Tests<br />

CCI Tests with<br />

modes 4 & 5<br />

SFN SFN MFN SFN SFN<br />

8KE 16KE 16KE 16KN 32KN 32KN 32KE 32KE 32KE<br />

GI 1/16 19/128 19/256 1/32 1/32 1/8 1/128 1/16 1/32<br />

LF 252 120 118 128 62 44 60 62 62<br />

SISO/MISO SISO SISO SISO SISO<br />

SISO/<br />

SISO SISO SISO SISO<br />

(MISO) 2<br />

PAPR None TR None TR TR TR None TR TR<br />

Frames per<br />

superframe (N<strong>T2</strong>)<br />

Channel<br />

Bandwidth (MHz)<br />

Signal<br />

Bandwidth (MHz)<br />

2 2 2 2 2 2 2 2 2<br />

8 8 8 8 8 7 8 8 8<br />

7.71 7.77 7.77 7.61 7.61 7.61 7.77 7.77 7.77<br />

Pilot Pattern PP4 PP3 PP2 PP4 PP4 PP2 PP7 PP4 PP6<br />

L1 Modulation QPSK 16QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM<br />

PLP #0<br />

Type 1 1 1 1 1 1 1 1 1<br />

Modulation QPSK 16QAM 64QAM 256QAM 256QAM 256QAM 256QAM 256QAM 256QAM<br />

Rate 1/2 2/3 2/3 3/5 3/5 3/5 2/3 2/3 3/4<br />

FEC Type 64800 64800 64800 64800 64800 64800 64800 64800 64800<br />

Rotated QAM Yes Yes Yes Yes Yes Yes Yes Yes Yes<br />

FEC blocks per<br />

interleaving frame<br />

TI blocks per<br />

frame (N_TI)<br />

<strong>T2</strong> frames per<br />

Interleaving<br />

Frame (P_I)<br />

Frame Interval<br />

(I_JUMP)<br />

Type of timeinterleaving<br />

Time Interleaving<br />

Length<br />

51 96 138 202<br />

196/<br />

(195)<br />

132 202 200 204<br />

3 3 3 3 3 2 3 3 3<br />

1 1 1 1 1 1 1 1 1<br />

1 1 1 1 1 1 1 1 1<br />

0 0 0 0 0 0 0 0 0<br />

3 3 3 3 3 2 3 3 3<br />

Data Rate Mbit/s 6.8601 16.7738 26.2131 33.1148<br />

Sensitivity dBm<br />

(NF=7dB)<br />

33.1667/(<br />

32.9974)<br />

25.2380 40.2146 36.5519 43.2113<br />

-94.5 -86.6 -81.4 -78.7 -78.8 -78.8 -77.8 -77.2 -75.7<br />

1 Note performance testing for the 7MHz mode 6 should use frequencies in VHF band III.<br />

2 When mode 5 is used in MISO mode, the number of FEC blocks per interleaving frame needs to be set to 195<br />

instead of the SISO value of 196.<br />

>>2 of 27


All single PLP modes use HEM (High Efficiency) input stage mode. There is no null packet<br />

deletion, in-band signaling, L1 repetition or auxiliary streams. In order to comply with v1.2.1<br />

of the <strong>DVB</strong>-<strong>T2</strong> specification, ISSY should be used in all but the simplest of modes and so the<br />

use of ISSY is explicitly indicated in this document where it is required. Network operators<br />

should be aware that some signal configurations allowed by version 1.1.1 but prohibited by<br />

version 1.2.1 might not be correctly received and decoded by receivers designed to the later<br />

versions. It is therefore recommended that only parameter combinations permitted by version<br />

1.2.1 and later be used. The L1 signaling may however be transmitted according to version<br />

1.1.1.<br />

To reduce receiver testing times, modes 1-4 in Table 1 are only tested for basic AWGN and<br />

0dB echo C/N, and mode 4 is additionally used for co-channel ATV interference testing.<br />

Modes 5-9 represent more commonly used SFN and MFN modes and are specified with all<br />

the performance tests.<br />

2- <strong>RF</strong> FREQUENCIES<br />

This specification covers operation in VHF band III (7MHz channel bandwidth) and/or UHF<br />

bands IV and V (8MHz channel bandwidth). Receivers should be able to operate with<br />

transmission network frequency errors of up to +/-50 KHz, and channel bandwidths of 7<br />

and/or 8MHz.<br />

3- FAILURE POINT CRITERIA<br />

Due to the sharp “cliff-edge” BER characteristic of LDPC decoding, BER measurements are<br />

very time consuming to perform for <strong>DVB</strong>-<strong>T2</strong> measurements, but picture failure<br />

measurements are easier to make than for <strong>DVB</strong>-T. For this reason, two different picture<br />

failure point criteria are defined for different tests:<br />

1. Picture failure point1 (PFP1), defined as the minimum C/N or C/I value when two out<br />

of three 10-second periods are free from picture artefacts.<br />

2. Picture failure point2 (PFP2), defined as the minimum C/N or C/I value when two out<br />

of three 20-second periods are free from picture artefacts. This reduces the<br />

probability of incorrect results when testing <strong>DVB</strong>-<strong>T2</strong> impulse noise immunity for<br />

patterns 7-12 which have a long burst repetition period of 1000 ms.<br />

4- MINIMUM RECEIVER SIGNAL INPUT LEVELS<br />

The receiver should have a noise figure equal or better than 7 dB.<br />

The required minimum input signal levels (P min) for PFP1 are:<br />

P min = -98.1 dBm + C/N [dB ] [for 8 MHz modes 1-3, 7-9 ]<br />

P min = -98.2 dBm + C/N [dB ] [for 8 MHz modes 4-5 ]<br />

P min = -98.7 dBm + C/N [dB ] [for 7 MHz mode 6]<br />

where C/N is specified in Table 2<br />

>>3 of 27


5- MAXIMUM RECEIVER INPUT LEVEL<br />

The receiver should be able to handle <strong>DVB</strong>-<strong>T2</strong> signals up to a level of -25 dBm while<br />

providing the specified performance. Maximum level for ATV/DTV interfering signals is<br />

-25dBm.<br />

6- C/N PE<strong>RF</strong>ORMANCE CALCULATION METHOD FOR AWGN AND 0dB ECHO<br />

The <strong>DVB</strong>-<strong>T2</strong> implementation lines in the A133 Blue Book (ref.1) show two sets of simulations<br />

in tables 44 and 47. The simulations in table 44 represent the absolute best possible<br />

theoretical performance assuming a theoretical receiver that can perform “Genie Aided” demapping<br />

(an infinite number of de-mapping iterations). Table 44 also assumes an infinite<br />

number of LDPC iterations. Clearly neither of these two assumptions is valid for a real<br />

receiver due to finite limits on clock rate and silicon area. In contrast table 47 shows<br />

simulated performance for a receiver using a non-iterative de-mapper and 50 LDPC<br />

iterations (see also section 10.5.5 of ref.1). Table 47 is used to calculate the required AWGN<br />

C/N in this specification. However because table 47 does not include 0dB echo simulations<br />

but table 44 does, both these sets of simulation results are used derive the required C/N<br />

performance in 0dB echo channels as shown below.<br />

6- 1- AWGN C/N calculation<br />

C/N = (C/N)table_47 + A + Pboost+ IL + Dpx, where<br />

(C/N)table_47 = AWGN C/N for post LDPC BER=10 -6 (table 47 of ref.1)<br />

A = additional C/N required to reach post LDPC BER=10 -7 – around 0.1dB<br />

Pboost= correction for pilot boosting (from table 46 of ref.1)<br />

IL = loss due to real channel estimation, imperfect LDPC decoding and other<br />

imperfections not considered part of the back-stop noise. This is derived from ref.1<br />

and includes a small additional allowance for receiver synchronization, fixed point<br />

losses etc. For the E-book specification IL varies with pilot pattern as follows 2.5dB<br />

(PP1-PP2), 2.0dB (PP3-PP4), 1.5dB (PP5-PP7).<br />

Dpx= additional C/N term corresponding to a back-stop noise level at -33 dBc. This<br />

term is derived by first calculating the sum of all terms except Dpx and then checking<br />

how much C/N degradation is caused by the -33 dBc backstop noise level. The term<br />

Dpx is identical to this degradation.<br />

6- 2- 0dB echo C/N calculation<br />

C/N0db = (C/N)table_47 +[END of 0dB echo channel] + A + Pboost+ IL+IL(CR) + Dpx<br />

= (C/N)table_47 +[(C/N)0dB_table_44 – (C/N)AWGN_table_44] + A + Pboost+ IL+IL(CR) + Dpx, where<br />

(C/N)table_47, A, Pboost, IL and Dpx as defined above for the AWGN C/N calculation<br />

END = effective noise degradation (difference between 0dB echo and AWGN C/N)<br />

>>4 of 27


(C/N)0dB_table_44 = 0dB echo C/N for genie aided simulation (table 44 of ref.1)<br />

(C/N)AWGN_table_44 = AWGN C/N for genie aided simulation (table 44 of ref.1)<br />

IL(CR) = code rate dependent implementation loss due to additional losses in a 0dB<br />

echo channel. These are 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 dB for 1/2 rate to 5/6 rate<br />

respectively). These have been verified on several different receiver implementations.<br />

7- AWGN C/N PE<strong>RF</strong>ORMANCE<br />

The receiver should have the performance given in Table 2 when noise (N) is applied<br />

together with the wanted carrier (C) in a signal bandwidth of 7.61, 7.71 & 7.77 MHz<br />

depending upon mode. The values are calculated using a receiver backstop noise value Px<br />

of -33 dBc. An ideal transmitter is assumed. The <strong>DVB</strong>-<strong>T2</strong> signal is set to -50dBm at the tuner<br />

input.<br />

Table 2 - C/N (dB) for PFP1<br />

Mode Details<br />

Gaussian PFP1<br />

dB<br />

1 8KE QPSK 1/2 1/16 PP4 3.6<br />

2 16KE 16 QAM 2/3 19/128PP3 11.5<br />

3 16KE 64 QAM 2/3 19/256 PP2 16.7<br />

4 16KN 256 QAM 3/5 1/32 PP4 19.5<br />

5 32KN 256 QAM 3/5 1/32 PP4 19.4<br />

6 32KN 256 QAM 3/5 1/8 PP2 19.9<br />

7 32KE 256 QAM 2/3 1/128 PP7 20.3<br />

8 32KE 256 QAM 2/3 1/16 PP4 20.9<br />

9 32KE 256 QAM 3/4 1/32 PP6 22.4<br />

8- IMMUNITY TO ANALOGUE AND DIGITAL SIGNALS IN OTHER CHANNELS<br />

8- 1- General notes for testing<br />

All TV interferer signals are held at a constant at -25dBm at the tuner input whilst the wanted<br />

signal is attenuated until PFP1 is obtained.<br />

The <strong>RF</strong> signal should be broken after each change in wanted signal level to ensure the<br />

receiver re-acquires. This is to ensure any weaknesses in the receiver acquisition processes<br />

are included in the overall result.<br />

A band pass filter on the interference source is normally needed on N±3 measurements and<br />

beyond to achieve accurate results by reducing out of band interference from the<br />

interference source.<br />

>>5 of 27


8- 2- Immunity to analogue signals in other channels<br />

The immunity for interference from analogue TV signals in adjacent and non-adjacent<br />

channels is specified as the maximum ratio of the interference to wanted signal (I/C) for<br />

reception (PFP1).<br />

Table 3 shows recommended I/C levels for different types of analogue TV interference.<br />

Table 3 – Immunity to analogue signals on other channels (I/C PFP1)<br />

Mode<br />

N±1<br />

PAL G<br />

PAL I1<br />

N±1<br />

PAL B 3<br />

N-1<br />

SECAM L<br />

PAL D1 4<br />

N+1<br />

SECAM L<br />

PAL D1 4<br />

N±m (m�1)<br />

andN+9 5<br />

SECAM L<br />

PAL D1 4<br />

N±m (m�1)<br />

and image<br />

channel 5<br />

PAL B/G/I1 5<br />

Bandwidth: 8 MHz 7 MHz 8 MHz 8 MHz 8 MHz 7/8 MHz<br />

5 – 32KN 256Q 3/5 1/32 PP4<br />

8MHz<br />

6 – 32KN 256Q 3/5 1/8 PP2<br />

7MHz<br />

7 – 32KE 256Q 2/3 1/128 PP7<br />

8MHz<br />

8 – 32KE 256Q 2/3 1/16 PP4<br />

8MHz<br />

9 – 32KE 256Q 3/4 1/32 PP6<br />

8MHz<br />

8- 3- Immunity to DTT signals in other channels<br />

36 28 30 43 44<br />

32 43<br />

35 27 29 42 43<br />

34 26 28 41 42<br />

33 25 27 40 41<br />

The immunity for interference from digital TV signals in adjacent and non-adjacent channels<br />

is specified as the maximum ratio of the interference to wanted signal (I/C) for reception<br />

(PFP1). Table 4 shows recommended I/C levels for <strong>DVB</strong>-T/<strong>T2</strong> interference.<br />

Note immunity to digital signals in other channels should use a <strong>DVB</strong>-T or non-extended <strong>DVB</strong>-<br />

<strong>T2</strong> interferer for the 7MHz mode and an extended <strong>DVB</strong>-<strong>T2</strong> mode interferer for 8MHz modes.<br />

Table 4 – Immunity to digital signals on other channels (I/C PFP1)<br />

Mode N±1 N±2 N±3<br />

N±m (m�1, m>3)<br />

except N+9 5<br />

5 – 32KN 256Q 3/5 1/32 PP4 8MHz 27 37 42 45 30<br />

6 – 32KN 256Q 3/5 1/8 PP2 7MHz 26 36 41 44 29<br />

7 – 32KE 256Q 2/3 1/128 PP7 8MHz 26 36 41 44 29<br />

8 – 32KE 256Q 2/3 1/16 PP4 8MHz 25 35 40 43 28<br />

9 – 32KE 256Q 3/4 1/32 PP6 8MHz 24 34 39 42 27<br />

3 Note that if PAL B N-1 is using NICAM sound, the digital channel on N cannot be used without an offset,<br />

because of the overlapping spectrums. The offset to be used in this test is recommended to be +167KHz on<br />

the wanted signal.<br />

4 Note that the figures for PAL D1 are provisional. Performance for PAL D/K is similar to D1.<br />

5 Note that N+9 is a popular choice for the image channel in tuner designs using 36MHz IF for 8MHz channel<br />

systems. For 7MHz systems, the image channel is N+10 (70MHz).<br />

N+9 5<br />

>>6 of 27


8- 4- Immunity to LTE signals in other channels<br />

Figure 1 shows the harmonized 800MHz spectrum organization for LTE deployment. There<br />

is only a small 1 MHz guard band between the top TV channel 60 and the lowest LTE base<br />

station in block A. Also the LTE handset (UE) block C falls on the N+9 image channel of TV<br />

tuner designs employing a 36MHz IF frequency. It is important to test immunity to these<br />

types of adjacent channel interference. Recent tests on existing DTT receivers have shown<br />

the most challenging form of interference for some receivers is when the LTE interferer is<br />

bursty – typical of a lightly loaded or idling LTE network. Signals captured from a real LTE<br />

base station (BS) and handset (UE) are used as interference sources to test that receivers<br />

provide a reasonable level of immunity against this type of bursty interference. The I/C<br />

specification set in Table 5 is designed to reject badly behaving receivers. These interference<br />

signals are in the following files available on the DIGITALEUROPE website:<br />

766-<br />

774<br />

MHz<br />

DTT<br />

CH58<br />

� Base Station: LTE_BS-idle_V2.wv (a lightly loaded 10MHz LTE BS signal consisting<br />

mainly of synchronisation and broadcast signals)<br />

� Handset : LTE_UE_1Mbs_V2.wv (a lightly loaded 10MHz LTE UE signal with 1Mbit/s<br />

data traffic)<br />

774-<br />

782<br />

MHz<br />

DTT<br />

CH59<br />

Figure 1– Harmonised 800MHz spectrum for LTE Deployment<br />

782-<br />

790<br />

MHz<br />

DTT<br />

CH60<br />

791-<br />

796<br />

MHz<br />

1 MHz<br />

Guard Band<br />

796-<br />

801<br />

MHz<br />

10 MHz BS<br />

Block A<br />

801-<br />

806<br />

MHz<br />

806-<br />

811<br />

MHz<br />

10 MHz BS<br />

Block B<br />

811-<br />

816<br />

MHz<br />

Downlink (BS)<br />

6 blocks of 5MHz or<br />

3 blocks of 10 MHz<br />

816-<br />

821<br />

MHz<br />

10 MHz BS<br />

Block C<br />

821-832<br />

MHz<br />

11 MHz<br />

Duplex Gap<br />

832-<br />

837<br />

MHz<br />

837-<br />

842<br />

MHz<br />

10 MHz UE<br />

Block A<br />

842-<br />

847<br />

MHz<br />

847-<br />

852<br />

MHz<br />

10 MHz UE<br />

Block B<br />

852-<br />

857<br />

MHz<br />

Uplink (UE)<br />

6 blocks of 5MHz or<br />

3 blocks of 10 MHz<br />

Table 5 – Immunity to LTE signals on other channels (I/C PFP1)<br />

Mode<br />

Note : Wanted signal centre at<br />

786 MHz<br />

BS-A<br />

(796<br />

MHz)<br />

BS-B<br />

(806<br />

MHz)<br />

UE-A<br />

(837<br />

MHz)<br />

UE-C<br />

(757<br />

MHz)<br />

857-<br />

862<br />

MHz<br />

10 MHz UE<br />

Block C<br />

Interferer power at tuner<br />

input(measured during<br />

active part of LTE signal) 6<br />

5 – 32KN 256Q 3/5 1/32 PP4 8MHz 30 dB 30 dB 30 dB 30 dB -15 dBm<br />

7 – 32KE 256Q 2/3 1/128 PP7 8MHz 30 dB 30 dB 30 dB 30 dB -15 dBm<br />

8 – 32KE 256Q 2/3 1/16 PP4 8MHz 30 dB 30 dB 30 dB 30 dB -15 dBm<br />

9 – 32KE 256Q 3/4 1/32 PP6 8MHz 30 dB 30 dB 30 dB 30 dB -15 dBm<br />

6 Note the power of the LTE BS and UE signal is defined as the RMS power during the active part of<br />

the signal. To assist setting the power level of the LTE BS_idle downlink signal, the RMS power<br />

measured by a power meter shall be set approximately 8.3 dB lower (e.g. -23.3dBm). Similarly for<br />

the LTE UE_1Mbs signal, the RMS power measured by a power meter shall be set approximately<br />

9.7 dB lower (e.g. -24.7 dBm).<br />

>>7 of 27


8- 5- Immunity to pattern L3<br />

This is a tuner linearity test with one digital <strong>DVB</strong>-T signal on the N+4 channel and another<br />

digital <strong>DVB</strong>-T signal on the N+2 channel in addition to the wanted <strong>DVB</strong>-<strong>T2</strong> signal on channel<br />

N. This type of test is becoming increasingly important in today’s crowded spectrum.<br />

The <strong>DVB</strong>-<strong>T2</strong> receiver should provide the PFP1 when the unwanted signals are at the highest<br />

allowed level (-25dBm at the tuner input) and the wanted signal is I/C dB lower, where I/C is<br />

given in Table 6.<br />

Table 6 – Immunity to Pattern L3 (I/C PFP1)<br />

Mode I/C [N+2 and N+4]<br />

5 – 32KN 256Q 3/5 1/32 PP4 8MHz 28<br />

6 – 32KN 256Q 3/5 1/8 PP2 7MHz 27<br />

7 – 32KE 256Q 2/3 1/128 PP7 8MHz 27<br />

8 – 32KE 256Q 2/3 1/16 PP4 8MHz 26<br />

9 – 32KE 256Q 3/4 1/32 PP6 8MHz 25<br />

9- IMMUNITY TO CO-CHANNEL INTE<strong>RF</strong>ERENCE<br />

9- 1- Immunity to co-channel interference from analogue TV signals<br />

The immunity for interference from co-channel analogue TV-signals is specified as the<br />

maximum ratio of the interference to wanted signal (I/C) for reception (PFP1). The wanted<br />

<strong>DVB</strong>-<strong>T2</strong> signal should be set to -50 dBm at the tuner input.<br />

Table 7 – Immunity to co-channel interference 7 from analogue signals (I/C PFP1)<br />

Mode PAL-I1 PAL B PAL G/D1 SECAM-L<br />

4 – 16KN 256Q 3/5 1/32 PP4 8MHz -5 -5 -6<br />

5 – 32KN 256Q 3/5 1/32 PP4 8MHz -5 -5 -6<br />

6 – 32KN 256Q 3/5 1/8 PP2 7MHz -6<br />

7 – 32KE 256Q 2/3 1/128 PP7 8MHz -6 -6 -7<br />

8 – 32KE 256Q 2/3 1/16 PP4 8MHz -7 -7 -8<br />

9 – 32KE 256Q 3/4 1/32 PP6 8MHz -8 -8 -9<br />

9- 2- Immunity to co-channel DAB interference<br />

The immunity for co-channel interference from a single 1.7MHz wide DAB signal in the<br />

centre of the wanted channel is specified as the maximum ratio of the interference to wanted<br />

signal (I/C) for reception (PFP1). Only two modes are specified to reduce testing. The<br />

wanted <strong>DVB</strong>-<strong>T2</strong> signal should be set to -50 dBm at the tuner input.<br />

7 Note that the CCI interference generator should have its frequency reference locked to the <strong>DVB</strong> -<br />

T/<strong>T2</strong> signal generator in order to obtain repeatable measurement results.<br />

>>8 of 27


Table 8 – Immunity to co-channel interference from a single 1.7MHz DAB signal<br />

(I/C PFP1)<br />

10- MULTIPATH PE<strong>RF</strong>ORMANCE<br />

10- 1- SFN multipath performance<br />

10- 1- 1- Static 0dB echo<br />

Mode I/C dB<br />

6 – 32KN 256Q 3/5 1/8 PP2 7MHz -4<br />

8 – 32KE 256Q 2/3 1/16 PP4 8MHz -5<br />

The required C/N for picture failure point PFP1 should be obtained when the channel<br />

contains two paths with relative delays as shown in Table 9. All paths have zero phase at the<br />

channel centre.<br />

The <strong>DVB</strong>-<strong>T2</strong> signal should be set to -50 dBm at the tuner input.<br />

Table 9 – C/N Requirements for 0dB Echo (PFP1)<br />

Mode Echo Delay<br />

1.95 µsec 95% Guard<br />

Interval<br />

C/N dB C/N dB<br />

1 - 8KE QPSK 1/2 1/16 PP48MHz 5.3 5.3<br />

2 - 16KE 16 QAM 2/3 19/128 PP38MHz 14.5 14.5<br />

3 - 16KE 64 QAM 2/3 19/256 PP28MHz 20.2 20.2<br />

4 - 16KN 256 QAM 3/5 1/32 PP48MHz 23.2 23.2<br />

5 – 32KN 256Q 3/5 1/32 PP48MHz 23.2 23.2<br />

6 – 32KN 256Q 3/5 1/8 PP2 7MHz 23.6 23.6<br />

7 – 32KE 256Q 2/3 1/128 PP7 8MHz 24.5 24.5<br />

8 – 32KE 256Q 2/3 1/16 PP4 8MHz 25.2 25.2<br />

9 – 32KE 256Q 3/4 1/32 PP6 8MHz 27.4 27.4<br />

10- 1- 2- Variable power echo<br />

The required C/N for picture failure point (PFP1) shown in Table 10 should be obtained when<br />

the channel contains two paths with relative delays shown in Table 11, where the relative<br />

power level of the two paths are dynamically changing including 0dB echo level crossing.<br />

The C/N value is defined at the 0dB level crossing. On a typical channel simulator, a<br />

frequency separation of 0.1Hz would be selected as 0.1Hz “pure doppler”. All paths have<br />

zero phase at the channel centre.<br />

The <strong>DVB</strong>-<strong>T2</strong> signal should be set to -50 dBm at the tuner input.<br />

>>9 of 27


Table 10 – C/N Requirements for Varying Echo Power Levels (PFP2)<br />

Mode C/N dB<br />

5 – 32KN 256Q 3/5 1/32 PP4 8MHz 26.2<br />

6 – 32KN 256Q 3/5 1/8 PP2 7MHz 26.6<br />

7 – 32KE 256Q 2/3 1/128 PP7 8MHz 27.5<br />

8 – 32KE 256Q 2/3 1/16 PP4 8MHz 28.2<br />

9 – 32KE 256Q 3/4 1/32 PP6 8MHz 30.4<br />

Table 11 – Definition of Varying Echo Power Channel<br />

Path No Relative<br />

Power (dB)<br />

Delay Frequency<br />

Separation<br />

1 0 0 None<br />

2 0 95% GI None<br />

3 -1 95% GI Pure 0.1Hz<br />

10- 1- 3- Performance with echoes outside the guard interval<br />

This test checks performance in the presence of either a single pre-echo or a single postecho<br />

outside the guard interval, with the main path at zero delay. This is important in SFN<br />

networks where it is possible to receive low level echoes outside the guard interval in certain<br />

situations.<br />

For the modes shown in Table 12, the attenuation of the single echo at the specified delay<br />

points is measured to achieve PFP1. The receiver should achieve PFP1 with the echo level<br />

greater than or equal to that shown in Table 12. All echoes have zero phase at channel<br />

centre. No noise is added. The <strong>DVB</strong>-<strong>T2</strong> signal should be set to -50 dBm at the tuner input.<br />

For 7MHz channels, multiply the delay times in the tables by 8/7.<br />

Table 12 – Long echo test profile (Echo Level for PFP1)<br />

Mode Delay and Echo Level<br />

5 – 32KN 256Q 3/5 1/32 PP4 8MHz Delay µs ±120 ±150 ±200 ±230 ±266<br />

Echo level dB -2 -5 -8.5 -10 -11<br />

6 – 32KN 256Q 3/5 1/8 PP2 7MHz Delay µs ±540 ±560 ±580 ±600 ±608<br />

Echo level dB -4 -6 -7.5 -8.5 -9<br />

7 – 32KE 256Q 2/3 1/128 PP7 8MHz Delay µs ±30 ±60 ±90 ±120 ±133<br />

Echo level dB -2 -5.5 -8 -10 -10.5<br />

8 – 32KE 256Q 2/3 1/16 PP4 8MHz Delay µs ±230 ±240 ±250 ±260 ±266<br />

Echo level dB -2 -3.5 -5.5 -6.5 -7<br />

9 – 32KE 256Q 3/4 1/32 PP6 8MHz Delay µs ±115 ±120 ±125 ±130 ±133<br />

Echo level dB -2 -3 -4.5 -5.5 -6<br />

>>10 of 27


10- 2- MFN multipath performance<br />

10- 2- 1- Performance with short echoes<br />

The receiver should provide PFP1 for the C/N values shown in Table 14 when the channel<br />

profile in Table 13 is applied. All paths have zero phase at the channel centre. The <strong>DVB</strong>-<strong>T2</strong><br />

signal should be set to -50 dBm at the tuner input.<br />

Note that due to the short echo delays in Table 13, some test equipment does not report<br />

back the correct C/N.<br />

Table 13 – Short echo test profile<br />

Tap Delay (µs) Relative Attenuation (dB)<br />

1 0 2,8<br />

2 0,05 0<br />

3 0,4 3,8<br />

4 1,45 0,1<br />

5 2,3 2,6<br />

6 2,8 1,3<br />

Table 14 – C/N Requirements for Short Echo Profile (PFP1)<br />

Mode C/N dB<br />

5 – 32KN 256Q 3/5 1/32 PP4 8MHz 21.5<br />

6 – 32KN 256Q 3/5 1/8 PP2 7MHz 22.0<br />

7 – 32KE 256Q 2/3 1/128 PP7 8MHz 22.7<br />

8 – 32KE 256Q 2/3 1/16 PP4 8MHz 23.4<br />

9 – 32KE 256Q 3/4 1/32 PP6 8MHz 25.7<br />

11- PE<strong>RF</strong>ORMANCE IN TIME VARYING CHANNELS<br />

Receivers should handle expected time variations of paths to fixed roof-top reception. Such<br />

variation is caused by the swaying of masts, antennas and branches of trees etc. Normally<br />

the required C/N increases with frequency separation as shown in Figure 2.<br />

The increase in required C/N for PFP1 reception should be less than or equal to the Δvalue<br />

shown in Table 15 for a 20μs 0dB echo with 0º phase at the channel centre using the<br />

frequency separation shown, when compared to a 20μs 0dB echo with frequency separation<br />

equal to 1 Hz (Doppler shift of +/- 0.5Hz after AFC). The <strong>DVB</strong>-<strong>T2</strong> signal should be set to -50<br />

dBm at the tuner input.<br />

Note: On a typical channel simulator, a frequency separation of 10Hz corresponds to a “Pure<br />

Doppler” setting of 10Hz (+/-5Hz after receiver AFC), which at 666MHz with a frequency ratio<br />

of 1.0, corresponds to a speed of 4.5m/sec or 16.2km/hr.<br />

>>11 of 27


Figure 2 - Tolerance to a single echo with Doppler<br />

Table 15 – C/N Variation Requirements for Time Varying Channel (PFP1)<br />

Mode Frequency<br />

Separation<br />

f1 Hz<br />

Δ C/N dB (with<br />

respect to C/N at<br />

1Hz frequency<br />

separation)<br />

5 – 32KN 256Q 3/5 1/32 PP4 8MHz 10 3 dB<br />

6 – 32KN 256Q 3/5 1/8 PP2 7MHz 10 3 dB<br />

7 – 32KE 256Q 2/3 1/128 PP7 8MHz 10 3 dB<br />

8 – 32KE 256Q 2/3 1/16 PP4 8MHz 10 3 dB<br />

9 – 32KE 256Q 3/4 1/32 PP6 8MHz 10 5 dB<br />

12- TOLERANCE TO IMPULSE INTE<strong>RF</strong>ERENCE<br />

12- 1- General<br />

C/Nmin + � dB<br />

C/Nmin<br />

C/Nmin (dB)<br />

Impulse interference is different from other forms of interference, in that it is generated in<br />

short bursts. Sources include car ignition systems and domestic appliances such as switches<br />

and electric motors. In portable and mobile environment, the impulse interference will reach<br />

the receiver directly through the antenna. The damage is potentially serious because a single<br />

impulse burst can destroy several symbols of data. Research work on the impulse<br />

interference has been mainly carried out in the UK digital television group (DTG) (ref 2).<br />

Some of the <strong>specifications</strong> presented here are derived from that work.<br />

12- 2- Test patterns<br />

C/N (dB)<br />

1 f1<br />

Frequency<br />

Separation (Hz)<br />

Various test signals comprising gated bursts of Gaussian noise are defined based on the<br />

model shown in Figure 3. These have been chosen to match different categories of<br />

measured impulse noise in the domestic environment such as dishwashers, lights, and<br />

central heating thermostats. The <strong>DVB</strong>-<strong>T2</strong> time interleaver improves impulse noise immunity<br />

significantly over <strong>DVB</strong>-T by breaking up the noise impulses over time. This requires longer<br />

noise burst durations, burst repetition periods and picture observation times (PFP2) to be<br />

used compared with <strong>DVB</strong>-T as shown in Table 16.<br />

>>12 of 27


Test<br />

No<br />

Pulses per<br />

burst<br />

Figure 3 – Definition of the impulse interference test pattern<br />

Burst 1 Burst 2<br />

Burst Du ration<br />

Burst repetition period<br />

1000ms <strong>DVB</strong>-<strong>T2</strong><br />

Table 16 – <strong>DVB</strong>-<strong>T2</strong> Impulse interference test patterns<br />

Minimum/maximum<br />

pulse spacing<br />

μs<br />

Burst<br />

duration<br />

μs<br />

Minimum/maximum<br />

burst duration<br />

μs<br />

Burst<br />

repetition<br />

period<br />

ms<br />

7 4 15 35 1 45.25 105.25 1000<br />

8 40 0.5 1 10 19.75 39.25 1000<br />

9 80 0.5 3 20 39.75 237.25 1000<br />

10 400 1 30 100 399.25 11,970.25 1000<br />

11 4,000 0.5 3 1,000 1,999.75 11,997.25 1000<br />

12 40,000 0.5 1 10,000 19,999.75 39,999.25 1000<br />

Table 17 - Minimum I/C values for <strong>DVB</strong>-<strong>T2</strong> impulsive noise tests<br />

Mode Expected I/C (dB) for picture failure (PFP2)<br />

Test Pattern Number<br />

7 8 9 10 11 12<br />

5 – 32KN 256Q 3/5 1/32 PP4 8MHz 28.7 18.7 15.7 5.7 -4.8 -16.8<br />

6 – 32KN 256Q 3/5 1/8 PP2 7MHz 29.1 19.1 16.1 6.1 -4.4 -16.4<br />

7 – 32KE 256Q 2/3 1/128 PP7 8MHz 27.7 17.7 14.7 4.7 -5.8 -17.8<br />

8 – 32KE 256Q 2/3 1/16 PP4 8MHz 27.2 17.2 14.2 4.2 -6.3 -18.3<br />

9 – 32KE 256Q 3/4 1/32 PP6 8MHz 25.7 15.7 12.7 2.7 -7.8 -19.8<br />

12- 3- Test requirement and procedure<br />

Pulse Duration 250ns (fixed)<br />

The number of pulses per burst is defined, but the spacing between pulses is<br />

allowed to vary randomly between specified maximum and minimum values.<br />

The minimum I/C for picture failure point PFP2 should be obtained when the channel<br />

contains gated Gaussian noise as defined in Table 16, for the modes shown in Table 17.<br />

>>13 of 27


The wanted signal power should be set to -60dBm at the tuner input, and the impulse noise<br />

increased until the picture failure point condition PFP2 is reached. The wanted signal power<br />

and the un-gated noise power are then measured (in the bandwidth of the wanted signal) to<br />

calculate the I/C.<br />

13- OPERATION WITH FEFS<br />

<strong>DVB</strong>-<strong>T2</strong> receivers should be able to operate in a system using FEFs continuously as defined<br />

in Table 18 which takes some of its parameters from the DTG D-book (ref.2). All single PLP<br />

modes with FEFs use HEM input stage mode, and ISSY. There is no Null Packet Deletion or<br />

in band signaling. L1 repetition and auxiliary streams are not used. Demodulating the actual<br />

FEF content is not required.<br />

Table 18 – Parameters for standard FEF tests<br />

Identifier DTG201 DTG202 DTG203 DTG204 DTG205 DTG206 DTG207<br />

Stream Name FEF_1 FEF_2 FEF_3 FEF_4 FEF_5 FEF_6 FEF_7<br />

Overall<br />

FEF<br />

40ms<br />

FEF<br />

20ms<br />

FEF<br />

10ms<br />

FEF 5ms FEF<br />

60ms<br />

FEF has<br />

power<br />

equal to<br />

<strong>T2</strong> frame<br />

FFTSIZE 4K 32K 32K 32K 32K 32K 32K<br />

FEF<br />

100ms<br />

FEF has<br />

power<br />

equal to<br />

<strong>T2</strong> frame<br />

GI 1/4 1/128 1/128 1/128 1/128 1/128 1/128<br />

Data Symbols 15 59 59 29 15 59 19<br />

SISO/MISO SISO SISO SISO SISO SISO SISO SISO<br />

PAPR None None None None None None None<br />

Frames per superframe 4 4 2 2 2 4 4<br />

Bandwidth 8MHz 8MHz 8MHz 8MHz 8MHz 8MHz 8MHz<br />

Extended Bandwidth Mode No Yes Yes Yes Yes Yes Yes<br />

Pilot Pattern PP1 PP7 PP7 PP7 PP7 PP7 PP7<br />

L1 Modulation QPSK BPSK BPSK BPSK BPSK BPSK BPSK<br />

FEF Type 0 0 0 0 0 0 0<br />

FEF Length (samples) 78848 365713 182856 91428 45714 550000 914286<br />

FEF Interval 2 4 2 2 2 1 1<br />

FEF P1: S1 Value 2 2 2 2 2 2 2<br />

FEF P1: S2 Value 1 1 1 1 1 1 1<br />

L1 Repetition 0 0 0 0 0 0 0<br />

PLP #0<br />

Type 1 1 1 1 1 1 1<br />

Modulation 16QAM 256QAM 256QAM 256QAM 256QAM 256QAM 256QAM<br />

Rate 1/2 2/3 2/3 2/3 2/3 2/3 2/3<br />

>>14 of 27


FEC Type 64800 64800 64800 64800 64800 64800 64800<br />

Rotated QAM Yes Yes Yes Yes Yes Yes Yes<br />

FEC blocks per interleaving<br />

frame<br />

3 201 201 99 53 201 66<br />

TI blocks per frame (N_TI) 1 3 3 3 1 3 1<br />

<strong>T2</strong> frames per Interleaving<br />

Frame (P_I)<br />

1 1 1 1 1 1 1<br />

Frame Interval (I_JUMP) 1 1 1 1 1 1 1<br />

Type of time-interleaving 0 0 0 0 0 0 0<br />

Time Interleaving Length 1 3 3 3 1 3 1<br />

Design Delay 114053 667232 667232 335371 540324 667471 673827<br />

Additionally FEFs may be enabled and disabled over time and the FEF content may be<br />

changed dynamically. One application of this is to allow interference into the wanted channel<br />

to be measured on a live system. A test for this scenario is described below.<br />

The receiver should be able to continue normal reception throughout these changes of <strong>DVB</strong>-<br />

<strong>T2</strong> signal configuration without requiring a channel rescan, however it is acceptable for the<br />

receiver to re-acquire the channel during the transition phases when FEFs are being enabled<br />

or disabled, causing a brief interruption in reception.<br />

To test receiver conformance, the receiver should be able to acquire and display error free<br />

video without requiring a channel re-scan each time the input is switched from a <strong>DVB</strong>-<strong>T2</strong><br />

signal configured as mode 8, to a <strong>DVB</strong>-<strong>T2</strong> signal configured as shown in Table 19, followed<br />

by switching back to the original mode 8 input.<br />

It is acceptable to have signal breaks during switching if necessary for re-configuring the<br />

<strong>DVB</strong>-<strong>T2</strong> modulator and demodulator, but there should be no picture failures after each<br />

transition phase once the receiver has re-acquired.<br />

Table 19 – Parameters for FEF off/on/off test<br />

Parameter Value<br />

<strong>DVB</strong>-<strong>T2</strong> mode used for testing Mode 8 with N<strong>T2</strong> (number of frames per superframe)<br />

changed from 2 to 6 as shown below<br />

<strong>DVB</strong>-<strong>T2</strong> signal level at tuner input -50dBm<br />

ISSY enabled Yes<br />

FEF enabled Yes<br />

Frames per superframe (N<strong>T2</strong>) 6<br />

FEF P1 S1 value 2<br />

FEF P1 S2 value 1<br />

<strong>T2</strong> P1 S2 value 1<br />

FEF length 520000 samples or 56.875 ms<br />

FEF interval 6 <strong>T2</strong> Frames<br />

FEF content Empty (zero power)<br />

Design Delay 719248 samples<br />

>>15 of 27


14- MISO OPERATION<br />

MISO transmissions of group 1 and group 2 can either be transmitted from a single<br />

transmitter location (co-located MISO), or from two or more transmitter locations (distributed<br />

MISO). In the latter case there is a possibility that only one MISO group can be received due<br />

to obstructions in the channel. Tests for basic MISO functionality under these different<br />

conditions are shown in Table 21.<br />

Table 20 – <strong>DVB</strong>-<strong>T2</strong> MISO Test Setup<br />

Test Parameters Value<br />

<strong>DVB</strong>-<strong>T2</strong> mode Mode 5 with 195 FEC blocks per interleaving frame<br />

<strong>DVB</strong>-<strong>T2</strong> signal level at tuner input -50dBm<br />

Background AWGN applied -30dBc<br />

Table 21 – <strong>DVB</strong>-<strong>T2</strong> MISO Test Definitions<br />

Test Number Test Details Expected Result<br />

1 Gaussian channel - MISO group 1 only PFP1<br />

2 Gaussian channel - MISO group 2 only PFP1<br />

3 MISO group 1 (with 10 µsec delay) + MISO group 2 (no delay) PFP1<br />

4 MISO group 1 (with 85 µsec delay) + MISO group 2 (no delay) PFP1<br />

5 MISO group 1 (with 10 µsec delay + MISO group 1 (no delay) PFP1<br />

6 MISO group 1 (with 85 µsec delay + MISO group 1 (no delay) PFP1<br />

15- MPLP / RECEIVER BUFFER MODEL OPERATION<br />

Functional tests to verify correct operation of the <strong>DVB</strong>-<strong>T2</strong> receiver buffer model with multiple<br />

PLPs are shown in Table 22. The receiver should be able to detect the services during a<br />

channel scan, select the PLP number shown in Table 22 and display the video correctly. All<br />

the streams use 8MHz <strong>RF</strong> bandwidth. A description of how to generate the multiple PLP test<br />

signals is given in the Annex. Any transport stream with a bit rate of 3.3Mbit/s or lower can<br />

be used.<br />

Table 22 – <strong>DVB</strong>-<strong>T2</strong> MPLP / RBM Operation<br />

Test Selected PLP for reception Test Signal Name<br />

VV702 0 VV702_plp0<br />

1 VV702_plp1<br />

VV705 0 VV705_plp0<br />

VV708 0 VV708_plp0<br />

2 VV708_plp2<br />

VV710 0 VV710_plp0<br />

3 VV710_plp3<br />

>>16 of 27


REFERENCES AND ACKNOWLEDGEMENTS<br />

1. <strong>DVB</strong>-<strong>T2</strong> A133 Blue Book – Implementation guidelines for a second generation digital<br />

terrestrial television broadcasting system (<strong>DVB</strong>-<strong>T2</strong>)<br />

2. DTG D-Book 7 Part A, Digital Television Group, UK<br />

3. E-Book <strong>RF</strong> specification draft v2.16, DIGITALEUROPE<br />

>>17 of 27


ANNEX - GUIDELINES ON THE GENERATION OF REAL VIDEO MULTIPLE PLP<br />

TEST SIGNALS<br />

Summary<br />

The test signals are a subset of tests developed in the <strong>DVB</strong>-<strong>T2</strong> V&V group to check corner<br />

cases of receiver buffer model operation and proper recognition of multiple PLP services in<br />

the received <strong>DVB</strong>-<strong>T2</strong> <strong>RF</strong> signal by monitoring the displayed picture and sound of the TV<br />

product. It is expected that test equipment manufacturers will provide suitable test signals<br />

following the guidelines in this annex to enable receiver testing. A low bit rate transport<br />

stream >18 of 27


TS0<br />

TS1<br />

PLP0<br />

PLP1<br />

Common<br />

PLP<br />

Figure 5– Recombination of selected data PLP (PLP0 in this example) and the common<br />

PLP in the receiver to re-create TS0<br />

Normal<br />

slot for PLP 1<br />

TS0<br />

Null<br />

Packet<br />

TS0<br />

Null<br />

Packet<br />

Null<br />

Packet<br />

TS0<br />

Null<br />

Packet<br />

TS0<br />

Null<br />

Packet<br />

Null<br />

Packet<br />

TS0<br />

TS0<br />

TS1<br />

PLP0<br />

PLP1<br />

PLPC<br />

TS0 Comm<br />

Cat 1<br />

Null<br />

Packet<br />

TS0<br />

Null<br />

Packet<br />

Null<br />

Packet<br />

Comm<br />

Cat 1<br />

Null<br />

Packet TS0<br />

Null<br />

Packet<br />

Comm<br />

Cat 1<br />

TS0<br />

Null<br />

Packet<br />

Null<br />

Packet<br />

Null<br />

Packet<br />

Normal packet<br />

for TS0/PLP0<br />

TS0 TS0 TS0 TS0 TS0 Null Null TS0 Null TS0 TS0 TS0 TS0 TS0<br />

Null Null Null TS0 Null TS1 TS1 TS0 TS1 Null Null TS0 Null Null TS1 TS0<br />

TS1 TS1 Null TS0 Null TS1<br />

Common<br />

slot<br />

TS0 TS0 TS0<br />

Test signal composition<br />

First chapter: 2 repetitions of repeating unit with NumPackets[0]=4, NumPackets[1]=3<br />

4<br />

Null<br />

Packet<br />

TS1<br />

Null<br />

Packet<br />

TS1<br />

Null<br />

Packet<br />

Null<br />

Packet<br />

Null<br />

Packet<br />

Comm<br />

Null<br />

Cat 2<br />

Packet<br />

PLP 1<br />

TS1<br />

Comm<br />

Cat 2<br />

PLP 1<br />

TS1<br />

Comm<br />

Null<br />

Cat 2<br />

Packet<br />

PLP 1<br />

Null<br />

TS1 TS1<br />

Packet<br />

Comm<br />

Null<br />

Cat 2<br />

Packet<br />

PLP 1<br />

TS1<br />

Null Null Null Null TS0 TS0<br />

Figure 6 shows how the packets for TS0 are allocated to the selected PLP (PLP0) in units (in<br />

red boxes) of different numbers of packets (run lengths), and to common PLP slots that<br />

occur at regular spacing (M=4 in this example). In addition TS1 (PRBS) is assigned to PLP1.<br />

A chapter is formed by repeating units a specific number of times. A new chapter containing<br />

new run lengths for TS0 and TS1 and a new number of unit repetitions is shown starting to<br />

the right of the red line.<br />

Figure 6 - Test signal composition<br />

M packets (M=4)<br />

Null<br />

Packet<br />

TS0<br />

Null<br />

Packet<br />

TS0<br />

Null<br />

Packet<br />

Null<br />

Packet<br />

Normal packet<br />

for TS1/PLP1<br />

TS0<br />

Null<br />

Packet<br />

TS0<br />

Null<br />

Packet<br />

Null<br />

Packet<br />

Comm<br />

Cat 2<br />

PLP 2<br />

Comm<br />

Cat 2<br />

PLP 2<br />

Time<br />

Null<br />

Packet<br />

Comm<br />

Cat 2<br />

PLP 1<br />

Comm<br />

Cat 2<br />

PLP 2<br />

Comm<br />

Cat x<br />

PLP i<br />

Comm<br />

Comm<br />

Comm<br />

Null<br />

Null Null<br />

Null<br />

TS0 TS0 Cat 3<br />

TS0 Cat 3 TS0<br />

TS0 Cat 3 TS0<br />

Packet Packet Packet<br />

Packet<br />

PLP 1<br />

PLP 2<br />

PLP 2<br />

Null<br />

Packet<br />

Null Null Null Null<br />

Null<br />

Null<br />

Null<br />

TS0 TS0<br />

TS0 TS0<br />

TS0<br />

TS0<br />

Packet Packet Packet Packet Packet Packet Packet<br />

Null<br />

Packet<br />

Null<br />

Packet<br />

Null<br />

Packet<br />

Null<br />

Packet<br />

Null<br />

Packet<br />

TS0 TS0<br />

Null Null Null Null Null TS1 TS1 Null TS1 Null Null Null Null Null<br />

Null Null<br />

Null<br />

TS0<br />

Null<br />

Null TS0 Null Null Null TS0 Null Null Null TS0 Null Null Null TS0 Null Null Null TS0 Null Null<br />

TS1<br />

Comm<br />

Cat 3<br />

PLP 1<br />

TS1<br />

3 3<br />

Null<br />

TS1 TS1<br />

Packet<br />

Null<br />

Packet<br />

Comm<br />

Cat 3<br />

PLP 1<br />

Common packet,<br />

category x<br />

describing PLP i<br />

Null TS0 Null Null TS0 TS0 TS0 Null<br />

Null Null Null Null TS0 Null TS0 Null<br />

TS1 Null TS1 TS1 Null Null Null TS1<br />

Null<br />

Packet<br />

TS1<br />

TS1<br />

Null<br />

Packet<br />

Null<br />

Packet<br />

Null<br />

Packet<br />

New repeating unit with<br />

NumPackets[0]=2,<br />

NumPackets[1]=1<br />

4 2 2<br />

Comm<br />

Cat 3<br />

PLP 2<br />

Null<br />

Packet<br />

Comm<br />

Null<br />

Cat 3<br />

Packet<br />

PLP 2<br />

Null<br />

Packet<br />

Null<br />

Packet<br />

Null<br />

Packet<br />

TS1<br />

TS1<br />

Null<br />

Packet<br />

Null<br />

Packet<br />

1<br />

Null<br />

Packet<br />

Null<br />

Packet<br />

Comm<br />

Cat 3<br />

PLP 2<br />

Null<br />

Packet<br />

Comm<br />

Cat 3<br />

PLP 2<br />

>>19 of 27<br />

Null<br />

Packet<br />

Null<br />

Packet<br />

Null<br />

Packet


Input stream<br />

definition<br />

Input stream<br />

generation model<br />

Table 23 - Test signal generation parameters<br />

Number 702 705 708 710<br />

Mnemonic TDICC3 SPLPTDICC2 DJBCC2 TDICC1<br />

VV Reference VV702-TDICC3 VV705-SPLPTDICC2 VV708-DJBCC2 VV710-TDICC1<br />

Time Deinterleaver<br />

Buffer Corner Case<br />

3 below limit (OK)<br />

Dynamic multiple<br />

PLP<br />

Single PLP corner<br />

case (OK - below<br />

limit) FEF<br />

SPLP (Fixed bitrate)<br />

De-jitter Buffer<br />

corner case (OK -<br />

below limit)<br />

Dynamic multiple<br />

PLP<br />

Time Deinterleaver<br />

Buffer Corner Case<br />

(OK) Based on<br />

VV400 + FEF, with<br />

critical i/p<br />

Dynamic multiple<br />

PLP<br />

Input TS rate Mbit/s 36.234886 38.030308 5955840/178801<br />

Input one big TS file<br />

M Common slot<br />

interval<br />

L Number of<br />

chapters<br />

N_EIT Number of<br />

successive EIT<br />

packets<br />

NumReps Repeats of<br />

repeating unit<br />

RunLength(TS0) Run length for<br />

each TS..<br />

RunLength(TS1) in each repeating<br />

unit..<br />

22 11 11<br />

4 8 10<br />

50 100 100<br />

15, 1, 15, 1 15,1,15,1,15,1,15,1 15,1,15,1,15,1,15,1<br />

,15,1<br />

92, 20, 44, 27 102,95,102,95,102,<br />

95,102,95<br />

44, 27, 92, 20 15,29,15,29,15,29,<br />

15,29<br />

RunLength(TS2) ..in a chapter 8, 2, 8, 2 14,15,14,15,14,15,<br />

14,15<br />

RunLength(TS3) 8, 2, 8, 2 14,16,14,16,14,16,<br />

14,16<br />

Overall<br />

102,95,102,95,0,0,<br />

66,3,102,95<br />

13,11,13,11,19,13,<br />

8,17,13,11<br />

13,15,13,15,19,13,<br />

8,15,13,15<br />

13,14,13,14,18,11,<br />

7,3,13,14<br />

Length V&V minimum of<br />

one <strong>T2</strong> frame<br />

4 frames 7 frames 3 frames 5 frames<br />

PLP Multiple Single Multiple Multiple<br />

FFTSIZE 32K 32K 32K 32K<br />

GI 1/128 1/16 1/128 1/128<br />

Data Symbols Including frame<br />

closing symbol (if<br />

present)<br />

27 61 27 27<br />

SISO/MISO SISO SISO SISO SISO<br />

PAPR P2-TR & L1-ACE TR & L1-ACE P2-TR & L1-ACE P2-TR & L1-ACE<br />

>>20 of 27


only only only<br />

Frames per<br />

superframe<br />

2 6 2 4<br />

Bandwidth 8MHz 8MHz 8MHz 8MHz<br />

Elementary period T 0.109375 0.109375 0.109375 0.109375<br />

Extended Carrier<br />

Mode<br />

Yes Yes Yes Yes<br />

Pilot Pattern PP7 PP4 PP7 PP7<br />

L1 Modulation 16QAM 64QAM 16QAM 16QAM<br />

Sub Slices per Frame Not required in<br />

Single PLP<br />

108 1 108 108<br />

FEF None Yes None Yes<br />

FEF Type 0000 0000<br />

FEF Length in samples 595420 380000<br />

FEF Interval 6 4<br />

FEF P1: S1 Value 010 010<br />

FEF P1: S2 Value 0001 0001<br />

FEF contents PRBS PRBS<br />

L1 Repetition Repetition of the<br />

dynamic signalling<br />

0 0 0 0<br />

Number of PLPs 5 1 5 5<br />

Number of <strong>RF</strong>s 1 1 1 1<br />

Number of AUXs 0 0 0 0<br />

AUX_CONFIG_<strong>RF</strong>U<br />

AUX_STREAM_TYPE<br />

AUX_PRIVATE_CONF<br />

AUX_PRIVATE_DYN<br />

Spec version 1.2.1 1.2.1 1.2.1 1.2.1<br />

Vclip infinity 3.55 infinity infinity<br />

L1 Extension Present? No No No No<br />

L1 Extension Block<br />

Type<br />

L1 Extension Data<br />

Length<br />

L1 Bias balancing cells<br />

present?<br />

Number of Active L1<br />

Bias balancing cells<br />

(per P2)<br />

No No No No<br />

L1_ACE_MAX 0 0.1 0 0<br />

Pseudo Fixed Frame<br />

Structure<br />

Use Max Cells Per<br />

<strong>T2</strong> Frame for<br />

scheduling<br />

Yes No No Yes<br />

>>21 of 27


PLP 1<br />

PLP_ID 0 0 0 0<br />

PLP_GROUP_ID 0 1 0 0<br />

Type 1 1 2 2<br />

Modulation 256QAM 256QAM 256QAM 256QAM<br />

Rate 2/3 3/5 2/3 2/3<br />

FEC Type 64800 64800 64800 64800<br />

Rotated QAM Yes Yes Yes Yes<br />

FEC blocks per<br />

interleaving frame<br />

Max FEC blocks per<br />

interleaving frame<br />

Comma-separated<br />

list gives the<br />

number of blocks<br />

in each<br />

Interleaving Frame<br />

dynamic 200 dynamic dynamic<br />

Value for<br />

configurable<br />

signalling. May<br />

exceed the max<br />

value used<br />

57 200 57 57<br />

derived parameter 1 3 1 1<br />

TI blocks per frame<br />

(N_TI)<br />

<strong>T2</strong> frames per<br />

Interleaving Frame<br />

(P_I)<br />

derived parameter 1 1 1 1<br />

Frame Interval<br />

(I_JUMP)<br />

1 1 1 1<br />

First frame index 0 0 0 0<br />

Input stage<br />

Mode HEM HEM HEM HEM<br />

ISSY Yes Yes Yes Yes<br />

BUFS 1613824 2097152 1671168 1662976<br />

Design delay (samples) 939080 719388 935798 939195<br />

Null packet deletion Not required in<br />

Single PLP (I.G.<br />

7.7.3.1)<br />

Yes No Yes Yes<br />

In Band Signalling Type A No Type A Type A<br />

Number of other PLPs<br />

in-band signalling<br />

Number of NULL<br />

packets inserted each<br />

time (p)<br />

Frequency of NULL<br />

packets insertion in<br />

packets (q)<br />

PLP 2<br />

0 0 0<br />

PLP_ID 1 1 1<br />

PLP_GROUP_ID 0 0 0<br />

Type 1 2 2<br />

>>22 of 27


Modulation 256QAM 256QAM 256QAM<br />

Rate 2/3 2/3 2/3<br />

FEC Type 64800 64800 64800<br />

Rotated QAM Yes Yes Yes<br />

FEC blocks per<br />

interleaving frame<br />

dynamic dynamic dynamic<br />

Max FEC blocks per<br />

interleaving frame<br />

57 57 57<br />

TI blocks per frame<br />

(N_TI)<br />

1 1 1<br />

<strong>T2</strong> frames per<br />

Interleaving Frame<br />

(P_I)<br />

1 1 1<br />

Frame Interval<br />

(I_JUMP)<br />

1 1 1<br />

First frame index 0 0 0<br />

Input stage<br />

Mode HEM HEM HEM<br />

ISSY Yes Yes Yes<br />

BUFS 1613824 1671168 1662976<br />

Design delay (samples) 939080 935798 939195<br />

Null packet deletion Yes Yes Yes<br />

In Band Signalling Type A Type A Type A<br />

Number of other PLPs<br />

in-band signalling<br />

Number of NULL<br />

packets inserted each<br />

time (p)<br />

Frequency of NULL<br />

packets insertion in<br />

packets (q)<br />

PLP 3<br />

0 0 0<br />

PLP_ID 2 2 2<br />

PLP_GROUP_ID 0 0 0<br />

Type 1 2 2<br />

Modulation 256QAM 256QAM 256QAM<br />

Rate 2/3 2/3 2/3<br />

FEC Type 64800 64800 64800<br />

Rotated QAM Yes Yes Yes<br />

FEC blocks per<br />

interleaving frame<br />

Max FEC blocks per<br />

interleaving frame<br />

TI blocks per frame<br />

(N_TI)<br />

dynamic dynamic dynamic<br />

22 57 57<br />

1 1 1<br />

>>23 of 27


<strong>T2</strong> frames per<br />

Interleaving Frame<br />

(P_I)<br />

1 1 1<br />

Frame Interval<br />

(I_JUMP)<br />

1 1 1<br />

First frame index 0 0 0<br />

Input stage<br />

Mode HEM HEM HEM<br />

ISSY Yes Yes Yes<br />

BUFS 1613824 1671168 1662976<br />

Design delay (samples) 939080 935798 939195<br />

Null packet deletion Yes Yes Yes<br />

In Band Signalling Type A Type A Type A<br />

Number of other PLPs<br />

in-band signalling<br />

Number of NULL<br />

packets inserted each<br />

time (p)<br />

Frequency of NULL<br />

packets insertion in<br />

packets (q)<br />

PLP 4<br />

0 0 0<br />

PLP_ID 3 3 3<br />

PLP_GROUP_ID 0 0 0<br />

Type 1 2 2<br />

Modulation 256QAM 256QAM 256QAM<br />

Rate 2/3 2/3 2/3<br />

FEC Type 64800 64800 64800<br />

Rotated QAM Yes Yes Yes<br />

FEC blocks per<br />

interleaving frame<br />

dynamic dynamic dynamic<br />

Max FEC blocks per<br />

interleaving frame<br />

22 57 57<br />

TI blocks per frame<br />

(N_TI)<br />

1 1 1<br />

<strong>T2</strong> frames per<br />

Interleaving Frame<br />

(P_I)<br />

1 1 1<br />

Frame Interval<br />

(I_JUMP)<br />

1 1 1<br />

First frame index 0 0 0<br />

Input stage<br />

Mode HEM HEM HEM<br />

ISSY Yes Yes Yes<br />

BUFS 1613824 1671168 1662976<br />

>>24 of 27


Design delay (samples) 939080 935798 939195<br />

Null packet deletion Yes Yes Yes<br />

In Band Signalling Type A Type A Type A<br />

Number of other PLPs<br />

in-band signalling<br />

Number of NULL<br />

packets inserted each<br />

time (p)<br />

Frequency of NULL<br />

packets insertion in<br />

packets (q)<br />

PLP 5<br />

0 0 0<br />

PLP_ID 4 4 4<br />

PLP_GROUP_ID 0 0 0<br />

Type 0 0 0<br />

Modulation 64QAM 64QAM 64QAM<br />

Rate 2/3 2/3 2/3<br />

FEC Type 16200 16200 16200<br />

Rotated QAM Yes Yes Yes<br />

FEC blocks per<br />

interleaving frame<br />

17 35 33<br />

Max FEC blocks per<br />

interleaving frame<br />

17 35 33<br />

TI blocks per frame<br />

(N_TI)<br />

1 1 1<br />

<strong>T2</strong> frames per<br />

Interleaving Frame<br />

(P_I)<br />

1 1 1<br />

Frame Interval<br />

(I_JUMP)<br />

1 1 1<br />

First frame index 0 0 0<br />

Input stage<br />

Mode HEM HEM HEM<br />

ISSY Yes Yes Yes<br />

BUFS 483328 425984 434176<br />

Design delay (samples) 939080 935798 939195<br />

Null packet deletion Yes Yes Yes<br />

In Band Signalling Type A Type A Type A<br />

Number of other PLPs<br />

in-band signalling<br />

Number of NULL<br />

packets inserted each<br />

time (p)<br />

0 0 0<br />

>>25 of 27


Frequency of NULL<br />

packets insertion in<br />

packets (q)<br />

Max Cells Per <strong>T2</strong><br />

Frame<br />

Common PLPs 45900 89100<br />

Type 1 PLPs 688500 0<br />

Type 2 PLPs 0 656100<br />

Dynamic Block<br />

Numbers<br />

PLP_GROUP_0<br />

Total FEC blocks<br />

common PLP<br />

17 35 33<br />

Total FEC blocks type 1 85 0 0<br />

Total FEC blocks type 2 0 82 81<br />

Max FEC blocks per<br />

PLP type 1<br />

Max FEC blocks per<br />

PLP type 2<br />

PLP_GROUP_1<br />

Total FEC blocks<br />

common PLP<br />

Total FEC blocks type 1<br />

Total FEC blocks type 2<br />

Max FEC blocks per<br />

PLP type 1<br />

Max FEC blocks per<br />

PLP type 2<br />

57 0 0<br />

0 57 57<br />

>>26 of 27


ABOUT DIGITALEUROPE<br />

DIGITALEUROPE represents the digital technology industry in Europe. Our 100+ members<br />

include some of the world's largest IT, telecoms and consumer electronics companies and<br />

national associations from every part of Europe. DIGITALEUROPE wants European<br />

businesses and citizens to benefit fully from digital technologies and for Europe to grow,<br />

attract and sustain the world's best digital technology companies.<br />

DIGITALEUROPE ensures industry participation in the development and implementation of<br />

EU policies. DIGITALEUROPE’s members include 58 global corporations and 34 national<br />

trade associations from across Europe. In total, 10,000 companies employing two million<br />

citizens and generating €1 trillion in revenues. Our website provides further information on<br />

our recent news and activities: http://www.digitaleurope.org<br />

THE MEMBERSHIP OF DIGITALEUROPE<br />

COMPANY MEMBERS:<br />

Acer, Alcatel-Lucent, AMD, APC by Schneider Electric, Apple, Bang & Olufsen, BenQ<br />

Europa BV, Bose, Brother, Canon, Cassidian, Cisco, Dell, Epson, Ericsson, Fujitsu, Hitachi,<br />

HP, Huawei, IBM, Ingram Micro, Intel, JVC Kenwood Group, Kodak, Konica Minolta, Kyocera<br />

Mita, Lexmark, LG, Loewe, Microsoft, Mitsubishi Electric, Motorola Mobility, Motorola<br />

Solutions, NEC, Nokia, Nokia Siemens Networks, Océ, Oki, Optoma, Oracle, Panasonic,<br />

Philips, Pioneer, Qualcomm, Research In Motion, Ricoh International, Samsung, SAP,<br />

Sharp, Siemens, SMART Technologies, Sony, Sony Ericsson, Swatch Group, Technicolor,<br />

Texas Instruments, Toshiba, Xerox, ZTE Corporation.<br />

NATIONAL TRADE ASSOCIATIONS:<br />

Belgium: AGORIA; Bulgaria: BAIT; Cyprus: CITEA; Denmark: DI ITEK, IT-BRANCHEN;<br />

Estonia: ITL; Finland: FFTI; France: SIMAVELEC; Germany: BITKOM, ZVEI; Greece:<br />

SEPE; Hungary: IVSZ; Ireland: ICT IRELAND; Italy: ANITEC; Lithuania: INFOBALT;<br />

Netherlands: ICT OFFICE, FIAR; Poland: KIGEIT, PIIT; Portugal: AGEFE, APDC;<br />

Romania: APDETIC; Slovakia: ITAS; Slovenia: GZS; Spain: AMETIC, Sweden:<br />

IT&Telekomföretagen; United Kingdom: INTELLECT<br />

Belarus: INFOPARK; Norway:IKT NORGE; Switzerland: SWICO; Turkey: ECID, TESID,<br />

TÜBISAD; Ukraine: IT UKRAINE.<br />

>>27 of 27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!