01.01.2013 Views

Mass, Gas and Galaxies in the Abell 901/902 Supercluster

Mass, Gas and Galaxies in the Abell 901/902 Supercluster

Mass, Gas and Galaxies in the Abell 901/902 Supercluster

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Mass</strong>, <strong>Gas</strong> <strong>and</strong> <strong>Galaxies</strong> <strong>in</strong> <strong>the</strong> <strong>Abell</strong><br />

<strong>901</strong>/<strong>902</strong> <strong>Supercluster</strong><br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans<br />

on behalf of <strong>the</strong> STAGES collaboration<br />

(PI: Meghan Gray)<br />

University of British Columbia, Vancouver.<br />

Canadian Institute for Theoretical Astrophysics, Toronto.<br />

Institute d’Astrophysique de Paris.


STAGES<br />

• 80 orbit mosaic<br />

• ACS + WFPC2/NIC3<br />

parallels<br />

• science exploitation<br />

underway<br />

• second largest HST<br />

mosaic<br />

• sister survey to GEMS/<br />

CDFS<br />

• Data public 20th Feb<br />

2008!<br />

Nott<strong>in</strong>gham<br />

M Gray (PI)<br />

K Lane<br />

A Aragón-Salamanca<br />

O Alma<strong>in</strong>i<br />

I Trujillo<br />

Ed<strong>in</strong>burgh<br />

D Bacon<br />

A Taylor<br />

Oxford<br />

C Wolf<br />

Innsbruck<br />

M Barden<br />

E van Kampen<br />

image: COMBO-17<br />

Collaborators<br />

Texas<br />

S Joghee<br />

J Caldwell<br />

F Barazza<br />

HIA<br />

Victoria<br />

C Peng<br />

UBC<br />

C Heymans<br />

L Van Waerbeke<br />

Arizona<br />

C Papovitch<br />

MPIA Heidelberg<br />

HW Rix<br />

E Bell<br />

K Meisenheimer<br />

R Somerville<br />

S Koposov<br />

K Jahnke<br />

B Häußler<br />

X Zheng<br />

A Pasquali<br />

U<strong>Mass</strong><br />

D McIntosh<br />

Columbia<br />

B Johnson<br />

AIP Postdam<br />

L Witozski<br />

A Boehm<br />

CAHA<br />

S Sanchez<br />

ESO/Chile<br />

R Gilmour<br />

Waterloo<br />

M Balogh


Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


Outl<strong>in</strong>e<br />

✴ The STAGES survey<br />

• Galaxy evolution <strong>in</strong> dense environments<br />

✴ “See<strong>in</strong>g <strong>the</strong> <strong>in</strong>visible”: mapp<strong>in</strong>g <strong>the</strong> dark<br />

matter environment of <strong>Abell</strong> <strong>901</strong>/<strong>902</strong><br />

• Weak gravitational lens<strong>in</strong>g<br />

✴ First galaxy evolution results from <strong>the</strong> <strong>Abell</strong><br />

<strong>901</strong>/<strong>902</strong> laboratory<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


The <strong>Abell</strong> <strong>901</strong>/<strong>902</strong> <strong>Supercluster</strong><br />

30x30 arcm<strong>in</strong> image of <strong>the</strong> A<strong>901</strong>/2 supercluster at z=0.165<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


A<strong>901</strong>a<br />

A<strong>901</strong>b<br />

A<strong>902</strong> SW group<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans Ground-based images from COMBO-17<br />

LBL 22nd Jan 2008


QE (%)<br />

λ / nm<br />

COMBO-17<br />

Wolf et al 2004<br />

σz ∼ 0.02(1 + z)<br />

✴ 5 broad b<strong>and</strong> + 12<br />

narrow b<strong>and</strong> filters<br />

✴ Photometric redshifts to<br />

R


STAGES: Space Telescope A<strong>901</strong>/<strong>902</strong> Galaxy Evolution Survey<br />

Hubble Space Telescope<br />

(M.E Gray)<br />

COMBO-17 survey<br />

(C. Wolf)<br />

Omega2000 @ Calar Alto<br />

(K. Meisenheimer)<br />

2dF spectrograph<br />

(M. E. Gray)<br />

XMM-Newton<br />

(R. Gilmour)<br />

Spitzer<br />

(E. F. Bell)<br />

GALEX<br />

(GALEX team)<br />

GMRT<br />

(D. Green)<br />

constra<strong>in</strong>ed simulations<br />

(E. van Kampen)<br />

80 orbit mosaic; ACS, NICMOS, WFPC<br />

morphologies, weak gravitational lens<strong>in</strong>g<br />

17-b<strong>and</strong> optical imag<strong>in</strong>g:<br />

photo-zs + SEDs for 15000 objects<br />

near-<strong>in</strong>frared extension (Y, J1, J2, H):<br />

M*, photo-zs<br />

spectroscopy of ~300 cluster galaxies:<br />

dynamics, star-formation histories<br />

90 ks X-ray imag<strong>in</strong>g/spectroscopy:<br />

ICM, AGN<br />

<strong>in</strong>frared imag<strong>in</strong>g (8 <strong>and</strong> 24 µm):<br />

obscured star formation, AGN<br />

NUV + FUV imag<strong>in</strong>g:<br />

unobscured star formation<br />

radio imag<strong>in</strong>g (610 <strong>and</strong> 1400MHz)<br />

obscured SF, AGN<br />

N-body + hydro + semi-analytic models<br />

dark matter, gas, galaxies<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


<strong>Mass</strong>ive ellipticals live<br />

<strong>in</strong> cluster cores<br />

What physical mechanism drives galaxy<br />

evolution <strong>in</strong> dense environments?<br />

Spirals, typically live <strong>in</strong> <strong>the</strong><br />

outskirts of <strong>the</strong> supercluster<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


LSB galaxy<br />

1: Galaxy-cluster gravitational <strong>in</strong>terations:<br />

Zoom <strong>in</strong>: Side on view Zoom <strong>in</strong>: Face on view<br />

Galaxy Harassment movie: The evolution of a low surface<br />

brightness galaxy as it falls <strong>in</strong>to a cluster (Moore et al 1998)<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


Ram pressure<br />

stripp<strong>in</strong>g: The<br />

turbulent history of a<br />

spiral galaxy as it falls<br />

through <strong>the</strong> hot ICM<br />

of a rich galaxy<br />

cluster (Quilis et al).<br />

2: Galaxy-cluster gas <strong>in</strong>terations:<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


3: Galaxy-cluster galaxy <strong>in</strong>terations:<br />

Galaxy Merger movie (Dub<strong>in</strong>ski et al)<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


1. Galaxy-cluster gas <strong>in</strong>teractions<br />

• ram-pressure stripp<strong>in</strong>g<br />

2. Galaxy-cluster gravitational <strong>in</strong>teractions<br />

• tidal truncation of galaxy dark matter halos<br />

3. Galaxy-galaxy <strong>in</strong>teractions<br />

What physical mechanism drives galaxy<br />

evolution <strong>in</strong> dense environments?<br />

• mergers (low-speed <strong>in</strong>teractions)<br />

• galaxy harrassment (high-speed<br />

<strong>in</strong>teractions)<br />

Any hope of disentangl<strong>in</strong>g<br />

<strong>the</strong>se effects requires<br />

knowledge of <strong>the</strong><br />

environment; <strong>in</strong> terms of<br />

mass, gas <strong>and</strong> galaxies.<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


Dark Matter is <strong>the</strong> underly<strong>in</strong>g structure of <strong>the</strong> Universe,<br />

dictat<strong>in</strong>g where <strong>and</strong> when galaxies form.<br />

Meghan Gray (University of Nott<strong>in</strong>gham) The Millennium <strong>and</strong> Ca<strong>the</strong>r<strong>in</strong>e Heymans simulation: (University Max of British Planck Columbia) Institute


See<strong>in</strong>g <strong>the</strong> <strong>in</strong>visible<br />

Meghan Gray (University of Nott<strong>in</strong>gham) <strong>and</strong> Ca<strong>the</strong>r<strong>in</strong>e Heymans (University of British Columbia)


See<strong>in</strong>g <strong>the</strong> <strong>in</strong>visible<br />

Meghan Gray (University of Nott<strong>in</strong>gham) <strong>and</strong> Ca<strong>the</strong>r<strong>in</strong>e Heymans (University of British Columbia)


lensed background<br />

galaxy z = 1.55<br />

lens galaxy z = 0.168<br />

Aragon-Salamanca et al <strong>in</strong> prep<br />

Meghan Gray (University of Nott<strong>in</strong>gham) <strong>and</strong> Ca<strong>the</strong>r<strong>in</strong>e Heymans (University of British Columbia)


The dark matter signature on <strong>the</strong> sky<br />

Matter<br />

Distant galaxies Dark Matter<br />

We can use <strong>the</strong> ‘lens<strong>in</strong>g’ signature of dark matter<br />

to tell us where is it <strong>and</strong> how much if it <strong>the</strong>re is.<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


Tangential arclets <strong>in</strong> A<strong>901</strong>a<br />

In <strong>the</strong> cores you can see <strong>the</strong> effect by eye.<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


How to make a dark matter map<br />

1. Obta<strong>in</strong> deep high resolution imag<strong>in</strong>g.<br />

2. Measure <strong>the</strong> ellipticities of distant<br />

galaxies.<br />

3. Account for all artifical sources of<br />

shear (eg <strong>in</strong>strumental distortions)<br />

that are typically more than an order<br />

of magnitude larger than <strong>the</strong> signal<br />

you’re try<strong>in</strong>g to detect (see STEP).<br />

4. Directly from GR you can relate <strong>the</strong><br />

measured shear to <strong>the</strong> projected mass.<br />

ACS PSF<br />

e i =e i source + γi<br />

= 0 γ ≈ <br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


A<strong>901</strong>a<br />

In this analysis we use 60,000<br />

galaxies that are beh<strong>in</strong>d <strong>the</strong><br />

supercluster (65 gals per sq<br />

arcm<strong>in</strong>) to reconstruct <strong>the</strong> dark<br />

matter distribution<br />

A<strong>901</strong>b<br />

A<strong>902</strong> SW group<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans Ground-based images from COMBO-17<br />

LBL 22nd Jan 2008


130kpc resolution at supercluster redshift z=0.165<br />

Heymans et al 2008<br />

from 80 orbits of HST<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008<br />

κ<br />

Contours show<br />

detections<br />

2σ, 4σ, 6σ


What about systematics?<br />

B<br />

E<br />

Lens<strong>in</strong>g only produces<br />

Emode distortions<br />

: systematics<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008<br />

κ


M = 6.1 ± 0.8h −1 10 13 M⊙<br />

M/L = 131 ± 16hM⊙/L⊙<br />

M/M∗ = 32 ± 4<br />

ACS HST image<br />

A<strong>901</strong>a<br />

Infall<strong>in</strong>g X-ray<br />

group A<strong>901</strong>α<br />

Dark Matter density<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


A<strong>901</strong>b: <strong>the</strong> most<br />

massive <strong>and</strong> X-ray<br />

rich of <strong>the</strong> four<br />

clusters<br />

Dark Matter<br />

map resolves<br />

substructure<br />

M = 6.5 ± 1.3h −1 10 13 M⊙<br />

M/L = 165 ± 33hM⊙/L⊙<br />

M/M∗ = 42 ± 8<br />

ACS HST image Dark Matter density<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


A<strong>902</strong> has two peaks <strong>in</strong> <strong>the</strong><br />

dark matter distribution<br />

that are matched by two<br />

BCGs<br />

CBI z=0.46<br />

M = 3.3 ± 0.8h −1 10 13 M⊙<br />

M/L = 108 ± 25hM⊙/L⊙<br />

M/M∗ = 28 ± 6<br />

ACS HST image Dark Matter density<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


SW group<br />

M = 3.8 ± 0.5h −1 10 13 M⊙<br />

M/L = 176 ± 24hM⊙/L⊙<br />

M/M∗ = 41 ± 6<br />

ACS HST image Dark Matter density<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


<strong>Mass</strong> <strong>and</strong> Light<br />

M/L ∼ 100h −1 M⊙/L⊙<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


<strong>Mass</strong> to stellar mass ratio<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


Ground based Map from<br />

Gray et al 2002<br />

Why HST?<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008<br />

κ<br />

Future space-based missions such as<br />

SNAP <strong>and</strong> DUNE are go<strong>in</strong>g to be vital<br />

for future dark matter observations<br />

κ


Why Hubble? ground-based<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


Why Hubble?<br />

STAGES<br />

answer: image quality <strong>and</strong> resolution allows us to detect <strong>the</strong> weak dark matter signature<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


Future telescopes <strong>in</strong> space: a<br />

quick note about depth<br />

✴ It’s not just about image quality.<br />

✴ For high resolution dark matter<br />

maps, you need depth<br />

γ ≈ <br />

✴ A smaller class telescope such as<br />

DUNE will need to observe much<br />

longer than SNAP to obta<strong>in</strong> deep<br />

enough data for simlarly high<br />

resolution observations<br />

DUNE ~ 1.2m<br />

SNAP ~2m<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


STAGES:<br />

Space Telescope A<strong>901</strong>/<strong>902</strong> Galaxy Evolution Survey<br />

✴ The lens<strong>in</strong>g map is one key piece of a bigger puzzle<br />

✴ The larger picture looks at <strong>the</strong> l<strong>in</strong>k between galaxies<br />

<strong>and</strong> environment: nature vs nurture?<br />

✴ Look<strong>in</strong>g at <strong>the</strong> A<strong>901</strong>/<strong>902</strong> with multi-wavelength eyes<br />

we have assembled an ideal laboratory for study<strong>in</strong>g<br />

galaxy evolution<br />

✴ We are f<strong>in</strong>d<strong>in</strong>g that it is <strong>the</strong> outskirts of <strong>the</strong> cluster<br />

where galaxy transformations are occurr<strong>in</strong>g<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


galaxies<br />

dark<br />

matter<br />

STAGES: a laboratory for study<strong>in</strong>g galaxy<br />

evolution <strong>and</strong> environment<br />

“environment”<br />

hot<br />

gas<br />

• harrassment<br />

• strangulation<br />

• stripp<strong>in</strong>g<br />

• tidal truncation<br />

• merg<strong>in</strong>g<br />

• …<br />

star<br />

formation<br />

“galaxies”<br />

shapes<br />

active<br />

galactic<br />

nuclei<br />

sizes<br />

We need multiwavelength observations <strong>in</strong> order to get a full census of <strong>the</strong> supercluster.


Anatomy of a supercluster:<br />

a complex environment<br />

<strong>Mass</strong><br />

gravitational lens<strong>in</strong>g:<br />

Heymans et al 2008<br />

<strong>Gas</strong><br />

X-ray imag<strong>in</strong>g:<br />

Gilmour et al 2007<br />

Step 1: map out <strong>the</strong> environment<br />

<strong>Galaxies</strong><br />

optical imag<strong>in</strong>g<br />

Wolf et al 2004


<strong>Mass</strong>, <strong>Gas</strong> <strong>and</strong> <strong>Galaxies</strong><br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans Ground-based images from COMBO-17<br />

LBL 22nd Jan 2008


hidden supermassive black hole<br />

Step 2: underst<strong>and</strong> <strong>the</strong> galaxies<br />

XMM GALEX HST Spitzer GMRT<br />

merg<strong>in</strong>g galaxy<br />

X-ray ultraviolet optical <strong>in</strong>frared<br />

radio<br />

dust obscuration


Galaxy Classification<br />

E B-V (dust)<br />

Wolf, Gray &<br />

Meisenheimer 2005<br />

Blue <strong>Galaxies</strong><br />

Old Red<br />

<strong>Galaxies</strong><br />

age [Myr]<br />

Dusty Red<br />

<strong>Galaxies</strong><br />

A population of dusty red star form<strong>in</strong>g galaxies<br />

make up 30% of <strong>the</strong> cluster red sequence<br />

A large population of anemic<br />

spirals/dusty red galaxies<br />

Lane et al 2007<br />

early-type late-type<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


Blue<br />

<strong>Galaxies</strong><br />

Step 3: connect galaxies <strong>and</strong> environment<br />

Dark<br />

matter<br />

contours<br />

Old Red<br />

<strong>Galaxies</strong><br />

Dusty Red<br />

<strong>Galaxies</strong><br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


Step 3: connect galaxies <strong>and</strong> environment<br />

Result:<br />

it is <strong>the</strong> <strong>in</strong>termediate<br />

density or <strong>in</strong>fall regions<br />

where most of <strong>the</strong><br />

signatures of galaxy<br />

transformation are seen.<br />

Heiderman et al <strong>in</strong> prep<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


What causes galaxy evolution <strong>in</strong> dense<br />

✴ It’s not <strong>the</strong> gas<br />

environments?<br />

Prelim<strong>in</strong>ary conclusions:<br />

✴ It’s not high galaxy densities<br />

✴ The action seems to be where galaxies are first<br />

experienc<strong>in</strong>g <strong>the</strong> pull of dark matter<br />

✴ Our first f<strong>in</strong>d<strong>in</strong>gs are show<strong>in</strong>g a sweet-spot where<br />

galaxies become close enough, <strong>and</strong> are mov<strong>in</strong>g slow<br />

enough to <strong>in</strong>teract <strong>and</strong> transform.<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008


Summary<br />

✴ STAGES is a multi-wavelength survey of <strong>the</strong> <strong>Abell</strong> <strong>901</strong>/<strong>902</strong><br />

supercluster.<br />

✴ The survey aims to dist<strong>in</strong>guish between <strong>the</strong> different physical<br />

mechanisms which drive galaxy evolution <strong>in</strong> dense environments.<br />

✴ Weak lens<strong>in</strong>g analysis of HST images permits high resolution<br />

dark matter “observations”.<br />

✴ Old Red <strong>Galaxies</strong> trace <strong>the</strong> underly<strong>in</strong>g dark matter distribution<br />

✴ Intermediate density regions key site for galaxy transformations<br />

✴ Current work br<strong>in</strong>g<strong>in</strong>g toge<strong>the</strong>r all different multi-wavelength<br />

cluster <strong>in</strong>formation to form a coherent underst<strong>and</strong><strong>in</strong>g of <strong>the</strong><br />

violent history of this supercluster<br />

Ca<strong>the</strong>r<strong>in</strong>e Heymans LBL 22nd Jan 2008

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!