29.12.2012 Views

Regioselectivity of the Reactions of Heteroatom-Stabilized Allyl ...

Regioselectivity of the Reactions of Heteroatom-Stabilized Allyl ...

Regioselectivity of the Reactions of Heteroatom-Stabilized Allyl ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

718<br />

and anti 417 γ-adducts in excellent yields and high<br />

diastereoselectivity (ratio 92:8) (Scheme 73). Similar<br />

behavior is shown by 3,4-dihydro-4-oxo-(2H)-pyridine-1-carboxylate<br />

219 (cf. section II.F).<br />

F. Rationalization <strong>of</strong> Results<br />

There have been numerous investigations on <strong>the</strong><br />

regioselectivity <strong>of</strong> heteroatom-stabilized allylic<br />

anions. 37,42,75,166,224,442-448 However, <strong>the</strong>re is still no<br />

general concept to describe <strong>the</strong> regioselectivity <strong>of</strong> <strong>the</strong><br />

reaction <strong>of</strong> electrophiles with <strong>the</strong>se compounds.<br />

The rule <strong>of</strong> thumb <strong>of</strong> Still and Macdonald53 is quite<br />

useful for predicting <strong>the</strong> orientation <strong>of</strong> electrophilic<br />

attack. They state that allyl anions substituted by<br />

anion-destabilizing groups (OR, NR2) have an increased<br />

electron density at <strong>the</strong> γ-carbon and hence<br />

favor γ-alkylation, whereas carbonyl compounds react<br />

at <strong>the</strong> R-terminus. Anion-stabilizing groups (SR,<br />

BR2) should have a complementary charge distribution<br />

and <strong>the</strong>refore demonstrate R-alkylation and<br />

γ-attack by carbonyl compounds. However, this rule<br />

<strong>of</strong> thumb does not apply to allyl anions substituted<br />

by strong electron-withdrawing groups and to free<br />

allyl anions; <strong>the</strong> lithium cation and <strong>the</strong> allylic anion<br />

must be associated. This rule is also modified by<br />

various o<strong>the</strong>r factors, for instance by steric effects or<br />

ionizing cosolvents.<br />

The “allopolarization principle” 449 <strong>of</strong> Gompper and<br />

Wagner was applied to kinetically controlled reactions.<br />

They rationalize that <strong>the</strong> change <strong>of</strong> <strong>the</strong> selectivity<br />

<strong>of</strong> a reaction is a function <strong>of</strong> a change in polarity<br />

<strong>of</strong> <strong>the</strong> ambident anion, whereby <strong>the</strong> “polarity index”<br />

is determined by <strong>the</strong> relative charge density at <strong>the</strong><br />

potential reactive centers. Consequently, donor substituents<br />

favor attack at <strong>the</strong> γ-terminus, while R-regioselectivity<br />

is observed for acceptor substituents.<br />

However, this concept cannot be applied to reactions<br />

having π-complexes or ion pairs as intermediates,<br />

since <strong>the</strong> course <strong>of</strong> <strong>the</strong>ir following reactions can no<br />

longer be deduced from <strong>the</strong> properties <strong>of</strong> <strong>the</strong> starting<br />

materials. 449<br />

Pearsons HSAB276,277 was also used to interpret <strong>the</strong><br />

outcome <strong>of</strong> <strong>the</strong>se reactions, but it does not differentiate<br />

between kinetic and <strong>the</strong>rmodynamic control <strong>of</strong> a<br />

reaction and fur<strong>the</strong>r it does not take into consideration<br />

that <strong>the</strong> “hardness” <strong>of</strong> <strong>the</strong> heteroatoms has an<br />

influence on <strong>the</strong> reaction <strong>of</strong> neutral compounds and<br />

<strong>the</strong>ir anions.<br />

X. References<br />

(1) Schleyer, P. v. R.; Chandrasekhar, J.; Kos, A. J.; Clark, T.;<br />

Spitznagel, G. W. J. Am. Chem. Soc. 1981, 103, 882.<br />

(2) (a) Jaun, B.; Schwarz, J.; Breslow, R. J. Am. Chem. Soc. 1980,<br />

102, 5741. (b) Boerth, D. W.; Streitwieser, A., Jr. J. Am. Chem.<br />

Soc. 1981, 103, 6443.<br />

(3) March, J. Advanced Organic Chemistry; John Wiley & Sons:<br />

New York, 1985; p 222.<br />

(4) (a) Yamamoto, Y. In Comprehensive Organic Syn<strong>the</strong>sis; Pergamon<br />

Press: Oxford, U.K., 1991; Vol. 2, pp 55-79. (b) Werstiuk,<br />

N. H. In Umpoled Synthons; Wiley: New York, 1987; Chapter<br />

6. (c) Hoppe, D. Angew. Chem., Int. Ed. Engl. 1984, 23, 932. (d)<br />

Biellmann, J. F.; Ducep, J.-B. Org. React. 1982, 27, 1.<br />

(5) Tonachini, G.; Canepa, C. Tetrahedron 1989, 45, 5163.<br />

(6) Kharasch, M. S.; Sternfeld, E. J. Am. Chem. Soc. 1939, 61, 2318.<br />

(7) Julia, M.; Verpeaux, J.-N.; Zahneisen, Th. Synlett 1990, 769.<br />

(8) Hosomi, A.; Ando, M.; Sakurai; H. Chem. Lett. 1984, 1385.<br />

(9) Imai, T.; Nishida, S. J. Chem. Soc., Chem. Commun. 1994, 277.<br />

(10) Macdonald, T. L.; Narayanan, B. A.; O’Dell, D. E. J. Org. Chem.<br />

1981, 46, 1504.<br />

(11) Mauze, B. J. Organomet. Chem. 1980, 202, 233.<br />

(12) Mauze, B.; Ongoka, P.; Miginiac, L. J. Organomet. Chem. 1984,<br />

264, 1.<br />

(13) Julia, M.; Verpeaux, J.-N.; Zahneisen, Th. Bull. Soc. Chim. Fr.<br />

1994, 131, 539.<br />

(14) Doucoure, A.; Mauze, B.; Miginiac, L. J. Organomet. Chem. 1982,<br />

236, 139.<br />

(15) Mauze, B.; Doucoure, A.; Miginiac, L. J. Organomet. Chem. 1981,<br />

215, 1.<br />

(16) Ongoka, P.; Mauze, B.; Miginiac, L. J. Organomet. Chem. 1985,<br />

284, 139.<br />

(17) Mallaiah, K.; Satyanarayana, J.; Jla, H.; Junjappa, H. Tetrahedron<br />

Lett. 1993, 34, 3145.<br />

(18) Brown, H. C.; Rangaishenvi, M. V. Tetrahedron Lett. 1990, 31,<br />

7113.<br />

(19) Jayaraman, S.; Hu, S.; Oehlschlager, A. C. Tetrahedron Lett.<br />

1995, 36, 4765.<br />

(20) Brown, H. C.; Jayaraman, S. Tetrahedron Lett. 1993, 34, 3997.<br />

(21) Brown, H. C.; Jayaraman, S. J. Org. Chem. 1993, 58, 6791.<br />

(22) Florio, S.; Troisi, L. Tetrahedron Lett. 1996, 37, 4777.<br />

(23) Felkin, H.; Tambute, A. Tetrahedron Lett. 1969, 821.<br />

(24) Nakai, T.; Mikami, K.; Taya, S. J. Am. Chem. Soc. 1981, 103,<br />

6492.<br />

(25) Gonnella, N. C.; Nakanishi, K. J. Am. Chem. Soc. 1982, 104,<br />

3776.<br />

(26) Mikami, K.; Kimura, Y.; Kishi, N.; Nakai, T. J. Org. Chem. 1983,<br />

48, 279.<br />

(27) Marshall, J. A.; Jenson, T. M. J. Org. Chem. 1984, 49, 1707.<br />

(28) Tsai, D. J.-S.; Midland, M. M. J. Org. Chem. 1984, 49, 1842.<br />

(29) Tsai, D. J.-S.; Midland, M. M. J. Am. Chem. Soc. 1985, 107, 3915.<br />

(30) Hayakawa, K.; Hayashida, A.; Kanematsu, K. J. Chem. Soc.,<br />

Chem. Commun. 1988, 1108.<br />

(31) Keegan, D. S.; Midland, M. M.; Werley, R. T.; McLoughlin, J. I.<br />

J. Org. Chem. 1991, 56, 1185.<br />

(32) Tsubuki, M.; Okita, H.; Honda, T. J. Chem. Soc., Chem.<br />

Commun. 1995, 2135.<br />

(33) Mitchell, T. N.; Giesselmann, F. Synlett 1993, 333.<br />

(34) Evans, D. A.; Andrews, G. C.; Buckwalter, B. J. Am. Chem. Soc.<br />

1974, 96, 5560.<br />

(35) Still, W. C.; Macdonald, T. L. J. Am. Chem. Soc. 1974, 96, 5561.<br />

(36) Trost, B. M.; Latimer, L. H. J. Org. Chem. 1977, 42, 3212.<br />

(37) Stowell, J. C. Chem. Rev. 1984, 84, 409.<br />

(38) Yamaguchi, M.; Mukaiyama, T. Chem. Lett. 1979, 1279.<br />

(39) Yamaguchi, M.; Mukaiyama, T. Chem. Lett. 1981, 1005.<br />

(40) Yamamoto, Y.; Yatagai, H.; Maruyama, K. J. Org. Chem. 1980,<br />

45, 195.<br />

(41) Yamamoto, Y.; Saito, Y.; Maruyama, K. Tetrahedron Lett. 1982,<br />

23, 4597.<br />

(42) Yamamoto, Y.; Yatagai, H.; Saito, Y.; Maruyama, K. J. Org.<br />

Chem. 1984, 49, 1096.<br />

(43) Quintard, J.-P.; Elissondo, B.; Pereyre; M. J. Org. Chem. 1983,<br />

48, 1559.<br />

(44) Evans, D. A.; Baillargeon, D. J.; Nelson, J. V. J. Am. Chem. Soc.<br />

1978, 100, 2242.<br />

(45) Mukaiyama, T.; Hayashi, T.; Miwa, T.; Narasaka, K. Chem. Lett.<br />

1982, 1637.<br />

(46) Still, W. C. Tetrahedron Lett. 1976, 2115.<br />

(47) Heathcock, C. H. Org. Synth. 1988, 66, 14<br />

(48) Dannheiser, R. L.; Fink, D. M.; Okano, K.; Tsai, Y.-M.; Szczepanski,<br />

S. W. J. Org. Chem. 1985, 50, 5393.<br />

(49) Ireland, R. E.; Varney, M. D. J. Am. Chem. Soc. 1984, 106, 3668.<br />

(50) Lau, P. W. K.; Chan, T. H. J. Organomet. Chem. 1979, C24.<br />

(51) Hosomi, A.; Hashimoto, H.; Sakurai, H. J. Org. Chem. 1978, 43,<br />

2551.<br />

(52) Kato, M.; Mori, A.; Oshino, H.; Enda, J.; Kobayashi, K.; Kuwajima,<br />

I. J. Am. Chem. Soc. 1984, 106, 1773.<br />

(53) Still, W. C.; McDonald, T. L. J. Org. Chem. 1976, 41, 3620.<br />

(54) Yanagisawa, A.; Yasue, K.; Yamamoto, H. Synlett 1993, 686.<br />

(55) Davies, D. H.; Hall, J.; Smith, E. H. J. Chem. Soc., Perkin Trans.<br />

1989, 1, 837.<br />

(56) Oppolzer, W.; Snowdon, R. L. Tetrahedron Lett. 1976, 4187.<br />

(57) Oppolzer, W.; Snowdon, R. L.; Simmons, D. P. Helv. Chim. Acta<br />

1981, 64, 2002.<br />

(58) Oppolzer, W.; Snowdon, R. L.; Briner, P. H. Helv. Chim. Acta<br />

1981, 64, 2022.<br />

(59) Hoppe, D.; Hanko, R.; Brönneke, A.; Lichtenberg, F. Angew.<br />

Chem., Int. Ed. Engl. 1981, 20, 1024.<br />

(60) Hoppe, D.; Brönneke, A. Tetrahedron Lett. 1983, 24, 1687.<br />

(61) Hoppe, D. Angew. Chem., Int. Ed. Engl. 1984, 96, 932.<br />

(62) van Hülsen, E.; Hoppe, D. Tetrahedron Lett. 1985, 26, 411.<br />

(63) Hoppe, D.; Krämer, T. Angew. Chem., Int. Ed. Engl. 1986, 98,<br />

160.<br />

(64) Zschage, O.; Hoppe, D. Tetrahedron 1992, 48, 5657.<br />

(65) Paulsen, H.; Hoppe, D. Tetrahedron 1992, 48, 5667.<br />

(66) Krämer, T.; Schwark, J.-R.; Hoppe, D. Tetrahedron Lett. 1989,<br />

30, 7037.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!