29.12.2012 Views

ijapr - international journal of advances in pharmaceutical research

ijapr - international journal of advances in pharmaceutical research

ijapr - international journal of advances in pharmaceutical research

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

M.S Latha et al. / International Journal <strong>of</strong> Advances <strong>in</strong> Pharmaceutical Research<br />

IJAPR<br />

Available Onl<strong>in</strong>e through<br />

www.<strong>ijapr</strong>onl<strong>in</strong>e.org<br />

CHEMOPREVENTIVE EFFECT OF WOODFORDIA FRUTICOSA KURZ FLOWERS<br />

ON N-NITROSODIETHYLAMINE INDUCED HEPATOCELLULAR<br />

CARCINOMA IN RATS<br />

M.S Latha * , A. Nitha, P.N Ansil, S.P Prabha,<br />

Biochemistry and Pharmacognosy Research Laboratory, School <strong>of</strong> Biosciences,<br />

Mahatma Gandhi University, P.D. Hills P.O, Kottayam, Kerala-686560, India.<br />

Received on 21 – 10 - 2012 Revised on 22 – 11- 2012 Accepted on 02– 12 – 2012<br />

ABSTRACT<br />

To evaluate the chemopreventive effect <strong>of</strong> methanolic extract <strong>of</strong> Woodfordia fruticosa dried flowers on Nnitrosodiethylam<strong>in</strong>e<br />

<strong>in</strong>duced hepatocellular carc<strong>in</strong>oma <strong>in</strong> experimental rats. Two different doses <strong>of</strong> methanolic<br />

extract <strong>of</strong> Woodfordia fruticosa (MEWF 100mg/kg and 200mg/kg) were used to study the chemopreventive effect <strong>in</strong><br />

experimental rats aga<strong>in</strong>st N-nitrosodiethylam<strong>in</strong>e <strong>in</strong>duced hepatocellular carc<strong>in</strong>oma. NDEA (0.02%, 2ml,<br />

5days/week) was adm<strong>in</strong>istered to the rats <strong>in</strong> all groups except normal and drug control. Various serum parameters<br />

like aspartate am<strong>in</strong>otransferase (AST), alan<strong>in</strong>e am<strong>in</strong>otransferase (ALT) and gamma glutamyl transferase (GGT)<br />

were studied. The antioxidant status <strong>of</strong> liver was evaluated by us<strong>in</strong>g the follow<strong>in</strong>g parameters: - glutathione-Stransferase<br />

(GST), glutathione reductase (GR) and glutathione peroxidase (GPx). Immunohistochemical<br />

localizations <strong>of</strong> liver tissue for two important cancer markers: - Proliferat<strong>in</strong>g cell nuclear antigen (PCNA) and<br />

Cycl<strong>in</strong> D1 were evaluated. MEWF significantly (p ≤ 0.05) prevented the elevation <strong>of</strong> serum AST, ALT and GGT<br />

levels. Hepatic GST, GR and GPx levels were remarkably <strong>in</strong>creased by the treatment with the extract.<br />

Immunohistochemical analysis revealed the overexpression <strong>of</strong> proliferat<strong>in</strong>g cell nuclear antigen (PCNA) and cycl<strong>in</strong><br />

D1 <strong>in</strong> the liver tissue <strong>of</strong> rat <strong>in</strong>toxicated with NDEA. The overexpression was effectively reduced by the treatment<br />

with MEWF. This study demonstrates the chemopreventive effect <strong>of</strong> MEWF, and thus scientifically supports the<br />

use <strong>of</strong> this plant <strong>in</strong> traditional medic<strong>in</strong>e for the treatment <strong>of</strong> liver cancer.<br />

Keywords: Chemoprevention, Cycl<strong>in</strong> D1, N- nitrosodiethylam<strong>in</strong>e (NDEA), Proliferat<strong>in</strong>g cell nuclear antigen<br />

(PCNA), Silymar<strong>in</strong>, Woodfordia fruticosa.<br />

1. INTRODUCTION<br />

Hepatocellular carc<strong>in</strong>oma (HCC) is the fifth most<br />

common cancer worldwide and the third most<br />

common cause <strong>of</strong> mortality with a cont<strong>in</strong>uously<br />

<strong>in</strong>creas<strong>in</strong>g <strong>in</strong>cidence annually (1). Liver is an organ<br />

<strong>of</strong> paramount importance and it plays an essential<br />

role <strong>in</strong> drug and xenobiotic metabolism. Chronic<br />

<strong>in</strong>fection <strong>of</strong> hepatitis B and/ C, toxic <strong>in</strong>dustrial<br />

chemicals, aflatox<strong>in</strong> exposure <strong>in</strong> diets, cigarette<br />

smok<strong>in</strong>g, alcohol consumption, air and water<br />

pollutants etc are the major risk factors <strong>of</strong> liver<br />

diseases. Intake <strong>of</strong> acetam<strong>in</strong>ophen like drugs and<br />

certa<strong>in</strong> chemicals may also lead to hepatocellular<br />

carc<strong>in</strong>oma .Moreover, due to the high tolerance <strong>of</strong><br />

liver, HCC is seldom detected at the early stage and<br />

once detected treatment faces a poor prognosis <strong>in</strong><br />

most cases (2).<br />

Research Paper<br />

ISSN: 2230 – 7583<br />

N-nitrosodiethyalam<strong>in</strong>e (NDEA) is a potent<br />

hepatocarc<strong>in</strong>ogen <strong>in</strong> rats produc<strong>in</strong>g reproducible<br />

tumor after repeated adm<strong>in</strong>istration and is the most<br />

important environmental carc<strong>in</strong>ogen among N-niroso<br />

compounds. Adm<strong>in</strong>istration <strong>of</strong> NDEA to animals<br />

causes cancer <strong>in</strong> liver and at low <strong>in</strong>cidence <strong>in</strong> other<br />

organs also. It has been shown that the mechanism <strong>of</strong><br />

action is due to metabolism <strong>of</strong> NDEA to alkylat<strong>in</strong>g<br />

agents and reactive oxygen species and further<br />

<strong>in</strong>teraction with DNA molecule , form<strong>in</strong>g various<br />

DNA adducts that can lead to mutations (3). The O4 –<br />

ethyl deoxythimid<strong>in</strong>e adduct (O4- Etdt) accumulates<br />

<strong>in</strong> hepatocyte DNA follow<strong>in</strong>g NDEA adm<strong>in</strong>istration<br />

which is thought to be important <strong>in</strong> tumor <strong>in</strong>itiation<br />

(4).<br />

Hepatic chemical carc<strong>in</strong>ogenesis is a multistep<br />

process <strong>in</strong> experimental animals. Carc<strong>in</strong>ogens <strong>in</strong>itiate<br />

IJAPR / Dec. 2012/ Vol. 3 /Issue. 12 / 1322 – 1330 1322


M.S Latha et al. / International Journal <strong>of</strong> Advances <strong>in</strong> Pharmaceutical Research<br />

the process, which is followed by regeneration,<br />

growth and clonal proliferation, eventually lead<strong>in</strong>g to<br />

cancer (5). There is extensive evidence that the free<br />

radicals participate <strong>in</strong> NDEA <strong>in</strong>duced<br />

hepatocarc<strong>in</strong>ogenesis (6). Enzymes such as GST, GR<br />

and GPx reduce oxidative stress <strong>in</strong> the normal tissues.<br />

Extensive liver damage causes decrease <strong>in</strong> levels <strong>of</strong><br />

these enzymes suggest<strong>in</strong>g a high oxidative stress <strong>in</strong><br />

the tissues, which may be one <strong>of</strong> the key factors <strong>in</strong><br />

the etiology <strong>of</strong> cancer (7). They have been proved to<br />

cause numerous cellular anomalies, <strong>in</strong>clud<strong>in</strong>g but not<br />

limited to prote<strong>in</strong> damage, deactivation <strong>of</strong> enzymatic<br />

activity, alteration <strong>of</strong> DNA and lipid peroxidation <strong>of</strong><br />

membranes (8). Several herbal drugs like Abrus<br />

precatorius, Scutia myrt<strong>in</strong>a, Funaria <strong>in</strong>dica etc. have<br />

been evaluated for its potential as liver protectant<br />

aga<strong>in</strong>st NDEA <strong>in</strong>duced hepatocellular carc<strong>in</strong>oma <strong>in</strong><br />

rats (9- 11).<br />

Chemoprevention, which is referred to as the use <strong>of</strong><br />

nontoxic natural or synthetic chemicals to <strong>in</strong>tervene<br />

<strong>in</strong> multistage carc<strong>in</strong>ogenesis, has emerged as a<br />

promis<strong>in</strong>g and pragmatic medical approach to reduce<br />

the risk <strong>of</strong> cancer. Numerous components <strong>of</strong> plants,<br />

collectively termed “phytochemicals” have been<br />

reported to possess substantial chemopreventive<br />

properties. For many years cancer chemotherapy has<br />

been dom<strong>in</strong>ated by potent drugs that either <strong>in</strong>terrupt<br />

the synthesis <strong>of</strong> DNA or destroy its structure once it<br />

has formed. Unfortunately, their toxicity is not<br />

limited to cancer cells and normal cells are also<br />

harmed (12).<br />

Use <strong>of</strong> plants and plant derivatives considered as<br />

alternative medic<strong>in</strong>e for many ailments are on the<br />

<strong>in</strong>crease on a global perspective. Woodfordia<br />

fruticosa is a traditional medic<strong>in</strong>al plant belongs to<br />

the family Lythraceae is used aga<strong>in</strong>st a wide variety<br />

<strong>of</strong> diseases. All parts <strong>of</strong> the plant possess valuable<br />

medic<strong>in</strong>al properties such as anti <strong>in</strong>flammatory,<br />

antitumor, hepatoprotective and free radical<br />

scaveng<strong>in</strong>g activity but flowers are <strong>of</strong> maximum<br />

demand. Dried flowers are used as tonic <strong>in</strong> disorders<br />

<strong>of</strong> mucous membrane, hemorrhoids and <strong>in</strong><br />

derangement <strong>of</strong> liver (13). Phenolics, particularly<br />

hydrolysable tann<strong>in</strong>s and flavonoids were identified<br />

as major components <strong>in</strong> Woodfordia fruticosa<br />

flowers. In view <strong>of</strong> these the present study was<br />

undertaken to evaluate the chemopreventive effect <strong>of</strong><br />

Woodfordia fruticosa flower extract on NDEA<br />

<strong>in</strong>duced hepatocellular carc<strong>in</strong>oma <strong>in</strong> experimental<br />

rats.<br />

2. MATERIALS AND METHODS<br />

2.1 Chemicals<br />

N-nitrosodiethylam<strong>in</strong>e (NDEA), silymar<strong>in</strong>,<br />

proliferat<strong>in</strong>g cell nuclear antigen (PCNA), cycl<strong>in</strong> D1,<br />

anti-mouse IgG horse radish peroxidase, streptavid<strong>in</strong><br />

horse radish peroxidase conjugate and<br />

diam<strong>in</strong>obenzid<strong>in</strong>e were purchased from Sigma<br />

Chemical Co., St. Louis, MO, USA. Assay kits for<br />

serum aspartate am<strong>in</strong>otransferase (AST), alan<strong>in</strong>e<br />

am<strong>in</strong>otransferase (ALT) and gamma glutamyl<br />

transferase (GGT) were purchased from Agappe<br />

Diagnostics, India. All other chemicals were <strong>of</strong><br />

analytical grade.<br />

2.2 Collection <strong>of</strong> plant material and preparation <strong>of</strong><br />

plant extracts<br />

Woodfordia fruticosa flowers were collected from<br />

natural habitat (Kollam, Kerala, India) dur<strong>in</strong>g<br />

November - January. Plant material was identified by<br />

Dr. V.T Antony, S.B College. A voucher specimen<br />

(Acc. No. 7566) is deposited at the herbarium <strong>of</strong> the<br />

Department <strong>of</strong> Botany, S.B College, Changanassery,<br />

Kottayam, Kerala. Flowers were shade-dried and<br />

powdered and 50 g <strong>of</strong> dried powder was soxhlet<br />

extracted with 400 mL <strong>of</strong> methanol for 48 h. The<br />

extract was concentrated under reduced pressure<br />

us<strong>in</strong>g a rotary evaporator and was kept under<br />

refrigeration. The yield <strong>of</strong> methanolic extract <strong>of</strong><br />

Woodfordia fruticosa (MEWF) was 12.5 % (w/w).<br />

The concentrate was suspended <strong>in</strong> 5% Tween 80 for<br />

the present studies.<br />

2.3 Animals and diets<br />

Male Wistar rats weigh<strong>in</strong>g 150-160 gm were used <strong>in</strong><br />

this study. The animals were housed <strong>in</strong><br />

polypropylene cages and had free access to standard<br />

pellet diet (Sai Durga Feeds, Bangalore, India) and<br />

dr<strong>in</strong>k<strong>in</strong>g water. The animals were ma<strong>in</strong>ta<strong>in</strong>ed at a<br />

controlled condition <strong>of</strong> temperature <strong>of</strong> 26–28 o C with<br />

a 12 h light: 12 h dark cycle. Animal studies were<br />

followed accord<strong>in</strong>g to Institute Animal Ethics<br />

Committee regulations approved by Committee for<br />

the Purpose <strong>of</strong> Control and Supervision <strong>of</strong><br />

Experiments on Animals (Reg. No. B 2442009/4) and<br />

conducted humanely.<br />

2.4 Induction <strong>of</strong> hepatocellular carc<strong>in</strong>oma<br />

Hepatocellular carc<strong>in</strong>oma (HCC) was <strong>in</strong>duced by oral<br />

adm<strong>in</strong>istration <strong>of</strong> 0.02% NDEA (2ml, 5 days/week<br />

for 20 weeks (12). Silymar<strong>in</strong> at an oral dose <strong>of</strong> 100<br />

mg/kg body weight was used as standard control <strong>in</strong><br />

the experiment (14-15). Two different doses <strong>of</strong><br />

MEWF (100mg/kg and 200 mg/kg) suspended <strong>in</strong> 5%<br />

Tween 80 were prepared for oral adm<strong>in</strong>istration to<br />

the animals. It is reported that the extract <strong>of</strong> W.<br />

fruticosa flowers are safe up to the dose <strong>of</strong><br />

2000mg/kg, p.o (13).<br />

2.5 Experimental design<br />

IJAPR / Dec. 2012/ Vol. 3 /Issue. 12 / 1322 – 1330 1323


M.S Latha et al. / International Journal <strong>of</strong> Advances <strong>in</strong> Pharmaceutical Research<br />

Thirty six rats were divided <strong>in</strong>to six groups,<br />

Group I - Normal control<br />

Group II - NDEA control (0.02% NDEA, 2<br />

ml, 5days/week, p.o)<br />

Group III - Silymar<strong>in</strong> (100mg/kg b.w) +<br />

NDEA<br />

Group IV - MEWF (100mg/kg, b.w ) +<br />

NDEA<br />

Group V - MEWF (200mg/kg, b.w) + NDEA<br />

Group VI - MEWF (200 mg/kg) alone<br />

Daily doses <strong>of</strong> silymar<strong>in</strong> and MEWF treatments were<br />

started <strong>in</strong> groups III to V animals 1 week before the<br />

onset <strong>of</strong> NDEA adm<strong>in</strong>istration and cont<strong>in</strong>ued up to<br />

20 weeks. Group VI served as drug control received<br />

MEWF alone for the entire period. The rats were<br />

sacrificed 48 h after the last dose <strong>of</strong> NDEA<br />

adm<strong>in</strong>istration.<br />

2.6 Serum enzyme analysis<br />

Blood was collected from neck blood vessels and<br />

kept for 30 m<strong>in</strong> at 4 0 C. Serum was separated by<br />

centrifugation at 2500rpm at 4 0 C for 15 m<strong>in</strong>.<br />

Quantify<strong>in</strong>g the serum levels <strong>of</strong> aspartate<br />

am<strong>in</strong>otransferase (AST), alan<strong>in</strong>e am<strong>in</strong>otransferase<br />

(ALT) and gamma glutamyl transferase (GGT) by<br />

us<strong>in</strong>g a standard diagnostic kit (Agappe Diagnostic<br />

Ltd., India). Activities <strong>of</strong> these serum enzymes were<br />

measured by us<strong>in</strong>g semi autoanalyzer (RMS, India).<br />

2.7 Tissue analysis<br />

Liver tissue was excised, washed thoroughly <strong>in</strong> icecold<br />

sal<strong>in</strong>e to remove the blood. Then the dissected<br />

livers were cut <strong>in</strong>to separate portions for biochemical<br />

assays and immunohistochemical exam<strong>in</strong>ation.<br />

2.7.1 Biochemical assays<br />

Ten percent <strong>of</strong> homogenate was prepared <strong>in</strong> 0.1M<br />

Tris HCl buffer (pH – 7.4). The homogenate was<br />

centrifuged at 3000 rpm for 20 m<strong>in</strong> at 4 o C and the<br />

supernatant was used for the estimation <strong>of</strong><br />

glutathione-S-transferase (GST), glutathione<br />

reductase (GR), glutathione peroxidase (GPx) and<br />

total prote<strong>in</strong>.<br />

GST (EC 2.5.1.18) activity was determ<strong>in</strong>ed from the<br />

rate <strong>of</strong> <strong>in</strong>crease <strong>in</strong> conjugate formation between<br />

reduced glutathione and CDNB (16). GR (EC<br />

1.6.4.2) activity was assayed at 37 o C and 340 nm by<br />

follow<strong>in</strong>g the oxidation <strong>of</strong> NADPH by GSSG (17).<br />

GPx (EC 1.11.1.9) activity was determ<strong>in</strong>ed by<br />

measur<strong>in</strong>g the decrease <strong>in</strong> GSH content after<br />

<strong>in</strong>cubat<strong>in</strong>g the sample <strong>in</strong> the presence <strong>of</strong> H2O2 and<br />

NaN3 (18). Prote<strong>in</strong> content <strong>in</strong> the tissue was<br />

determ<strong>in</strong>ed us<strong>in</strong>g bov<strong>in</strong>e serum album<strong>in</strong> (BSA) as the<br />

standard (19).<br />

2.7.2 Immunohistochemical analysis<br />

Immunohistochemical analysis <strong>of</strong> the two cancer<br />

markers, namely proliferat<strong>in</strong>g cell nuclear antigen<br />

(PCNA) and Cycl<strong>in</strong> D1 were conducted.<br />

Tissue sections were deparaff<strong>in</strong>ised <strong>in</strong> three changes<br />

<strong>of</strong> xylene at 60 o C for 10m<strong>in</strong> each and hydrated<br />

through a graded series <strong>of</strong> alcohol. For antigen<br />

retrieval evaluation, slides were placed <strong>in</strong> citrate<br />

buffer (pH 6.0) for three cycles <strong>of</strong> 5 m<strong>in</strong> each <strong>in</strong> a<br />

microwave oven. The sections were then allowed to<br />

cool to room temperature and then r<strong>in</strong>sed with 1x tris<br />

buffered sal<strong>in</strong>e (TBS), and treated with 0.3% H2O2 <strong>in</strong><br />

water for 10 m<strong>in</strong> to block endogenous peroxidase<br />

activity. Non specific b<strong>in</strong>d<strong>in</strong>g was blocked with 3%<br />

BSA <strong>in</strong> room temperature for 1 h. Subsequently the<br />

primary antibody was applied at predeterm<strong>in</strong>ed<br />

dilutions (PCNA antibody diluted 1:500 / Cycl<strong>in</strong><br />

D1antibody diluted 1:80) with 1% BSA <strong>in</strong> PBS for<br />

overnight at 4 o C. After this <strong>in</strong>cubation washed thrice<br />

<strong>in</strong> PBS and <strong>in</strong>cubated with anti-mouse horseradish<br />

peroxidase for 45 m<strong>in</strong>. After triplicate wash<strong>in</strong>g with<br />

PBS, sections were <strong>in</strong>cubated for 30 m<strong>in</strong> with<br />

streptavid<strong>in</strong>–HRP complex. Then washed with PBS<br />

and <strong>in</strong>cubated for 5–10 m<strong>in</strong> <strong>in</strong> a solution <strong>of</strong><br />

diam<strong>in</strong>obenzid<strong>in</strong>e (6 mg/10mL 50mM Tris–HCl, pH<br />

7.6) conta<strong>in</strong><strong>in</strong>g 0.01% H2O2. Countersta<strong>in</strong><strong>in</strong>g was<br />

performed with hematoxyl<strong>in</strong>. Images were taken at<br />

orig<strong>in</strong>al magnification <strong>of</strong> 100× ( Motic AE 21,<br />

Germany and Moticam 1000 camera).<br />

2.8 Statistical analysis<br />

Results were expressed as mean ± S.D and all<br />

statistical comparisons were made by means <strong>of</strong> oneway<br />

ANOVA test followed by Tukey’s post hoc<br />

analysis and p-values less than or equal to 0.05 were<br />

considered significant.<br />

3. RESULTS<br />

3.1 Serum enzyme analysis<br />

The serum levels <strong>of</strong> AST, ALT, and GGT <strong>in</strong> group II<br />

were significantly (p ≤ 0.05) elevated by the<br />

adm<strong>in</strong>istration <strong>of</strong> NDEA, when compared to normal<br />

control. The treatment <strong>of</strong> MEWF at a dose <strong>of</strong> 100 and<br />

200 mg/kg showed a significant decrease (p ≤ 0.05)<br />

<strong>in</strong> AST, ALT, and GGT (Fig.1). Standard control<br />

drug, Silymar<strong>in</strong> at a dose <strong>of</strong> 100 mg/kg also<br />

prevented the elevation <strong>of</strong> serum enzymes. Treatment<br />

with MEWF at 200 mg/kg and Silymar<strong>in</strong> exhibited a<br />

protection <strong>of</strong> 98% and 80.7% <strong>in</strong> AST levels, 97% and<br />

88% <strong>in</strong> ALT levels and 98.2% and 84% <strong>in</strong> GGT<br />

levels, respectively.<br />

3.2 Liver morphology<br />

Fig.2 shows the morphological variations <strong>of</strong> rat livers<br />

<strong>in</strong> different experimental groups. NDEA treated rat<br />

IJAPR / Dec. 2012/ Vol. 3 /Issue. 12 / 1322 – 1330 1324


M.S Latha et al. / International Journal <strong>of</strong> Advances <strong>in</strong> Pharmaceutical Research<br />

liver (Fig.2B) is morphologically different from<br />

normal liver. In NDEA treated groups rat liver<br />

become very large <strong>in</strong> size and a large number <strong>of</strong><br />

hepatic nodules were observed <strong>in</strong> the liver. In MEWF<br />

200mg/kg treated group and <strong>in</strong> MEWF alone treated<br />

groups liver morphology is very similar to normal<br />

rats.<br />

3.3 Tissue biochemical analysis<br />

3.3.1 Estimation <strong>of</strong> Glutathione - S - transferase<br />

(GST)<br />

The GST activity <strong>of</strong> liver tissues were significantly (p<br />

≤ 0.05) reduced <strong>in</strong> NDEA <strong>in</strong>toxicated rats <strong>of</strong> pretreatment<br />

groups compared to normal control. The<br />

MEWF dose dependently <strong>in</strong>creased (p ≤ 0.05) the<br />

activity <strong>of</strong> GST <strong>in</strong> hepatic tissues (Table 1).<br />

Treatment with 200 mg/kg methanolic extract<br />

exhibited prom<strong>in</strong>ently <strong>in</strong>creased i.e., 89.9% GST<br />

levels. In addition, Silymar<strong>in</strong> treated rats also<br />

prevented the NDEA <strong>in</strong>duced decrease <strong>in</strong> GST<br />

activity by 69.9% <strong>in</strong> hepatic tissue.<br />

3.3.2 Estimation <strong>of</strong> Glutathione Reductase (GR)<br />

GR activity was significantly decreased (p ≤ 0.05) <strong>in</strong><br />

NDEA treated animals when compared to control. A<br />

significant <strong>in</strong>crease (p ≤ 0.05) <strong>in</strong> the level <strong>of</strong> GR was<br />

observed <strong>in</strong> MEWF (100 and 200 mg/kg) and<br />

Silymar<strong>in</strong> (100 mg/kg) treated rats <strong>in</strong>toxicated with<br />

NDEA (Table 1). The percentage <strong>of</strong> protection <strong>in</strong> liver<br />

tissue was 83.8% for 200 mg/kg <strong>of</strong> MEWF. Silymar<strong>in</strong><br />

restored the GR activity up to 62.6% <strong>in</strong> rat liver.<br />

3.3.3 Estimation <strong>of</strong> Glutathione Peroxidase (GPx)<br />

Activities <strong>of</strong> hepatic GPx was significantly (p ≤ 0.05)<br />

lowered <strong>in</strong> NDEA treated rats (Table 1). MEWF dose<br />

dependently prevented the lower<strong>in</strong>g <strong>of</strong> GPx<br />

compared to NDEA alone treated groups. In liver,<br />

200 mg/kg <strong>of</strong> methanolic extract showed a protection<br />

<strong>of</strong> 94.5%. Silymar<strong>in</strong>-treated rats also prevented the<br />

lower<strong>in</strong>g <strong>of</strong> GPx by 73.3% <strong>in</strong> hepatic tissues.<br />

3.4 Immunohistochemical analysis<br />

Fig. 3 and 4 shows the immunohistochemical<br />

analysis <strong>of</strong> PCNA and Cycl<strong>in</strong> D1 respectively. Here<br />

normal rat tissue showed regularly sta<strong>in</strong>ed nucleus.<br />

NDEA adm<strong>in</strong>istered rat liver tissue showed<br />

overexpression <strong>of</strong> Proliferat<strong>in</strong>g Cell Nuclear Antigen<br />

(PCNA) and Cycl<strong>in</strong> D1. Adm<strong>in</strong>istration <strong>of</strong> MEWF<br />

showed a reduction <strong>in</strong> the expression <strong>of</strong> PCNA and<br />

Cycl<strong>in</strong> D1. PCNA is a common <strong>in</strong>dex for<br />

proliferation <strong>of</strong> hepatocytes at late G1 stage and early<br />

S stage. Fig. 3B and 4B (HCC bear<strong>in</strong>g) groups<br />

sta<strong>in</strong>ed positively for PCNA and Cycl<strong>in</strong> D1<br />

<strong>in</strong>dicat<strong>in</strong>g active cell proliferation when compared<br />

with normal control. The plant extract given at a<br />

concentration <strong>of</strong> 200mg/kg showed a remarkable<br />

lower<strong>in</strong>g <strong>of</strong> the expression <strong>of</strong> PCNA and cycl<strong>in</strong> D1<br />

and was comparable to the effect rendered by<br />

silymar<strong>in</strong> at a concentration <strong>of</strong> 100mg/kg.<br />

4. DISCUSSION<br />

Abnormal proliferation <strong>of</strong> cells is the ma<strong>in</strong> feature <strong>of</strong><br />

carc<strong>in</strong>ogenesis, and there for exploration <strong>of</strong> drugs<br />

that can affect malignant proliferation <strong>of</strong> liver cells is<br />

<strong>of</strong> primary importance <strong>in</strong> chemical prevention <strong>of</strong> liver<br />

cancer. PCNA present <strong>in</strong> cell nucleus is directly<br />

<strong>in</strong>volved <strong>in</strong> DNA replication. It has been found that<br />

the positive expression <strong>of</strong> PCNA were a common<br />

<strong>in</strong>dex for proliferation <strong>of</strong> hepatocytes at late G1 stage<br />

and early S stage (20). The positive expression <strong>of</strong><br />

prote<strong>in</strong>s was ma<strong>in</strong>ly found <strong>in</strong> the precancerous<br />

proliferation focus and cancerous liver tissue dur<strong>in</strong>g<br />

NDEA <strong>in</strong>duced hepatocarc<strong>in</strong>ogenesis. The high<br />

expression <strong>of</strong> PCNA <strong>in</strong> the present studies suggested<br />

that the ability <strong>of</strong> cell proliferation become stronger,<br />

and this was closely related to malignant cell<br />

proliferation and carc<strong>in</strong>ogenesis (21). The results<br />

<strong>in</strong>dicated that the adm<strong>in</strong>istration <strong>of</strong> MEWF could<br />

remarkably decrease the PCNA <strong>in</strong> HCC bear<strong>in</strong>g<br />

tissue, suggest<strong>in</strong>g that MEWF had the ability to<br />

suppress malignant proliferation <strong>of</strong> hepatocytes <strong>in</strong><br />

experimental liver cancer and <strong>in</strong>hibited tumor growth<br />

through <strong>in</strong>hibition <strong>of</strong> DNA synthesis.<br />

Cycl<strong>in</strong> D1 is another important cancer marker has<br />

been associated with a variety <strong>of</strong> cancers <strong>in</strong>clud<strong>in</strong>g<br />

HCC. Cycl<strong>in</strong> D1 is the regulatory subunit <strong>of</strong> a<br />

holoenzyme that promotes progression through the<br />

G1-S phase <strong>of</strong> cell cycle. Amplification or<br />

overexpression <strong>of</strong> Cycl<strong>in</strong> D1 plays important roles <strong>in</strong><br />

the development <strong>of</strong> a subset <strong>of</strong> human tumorigenesis<br />

and cellular metastasis (22).<br />

Am<strong>in</strong>o transferases (AST, ALT) and GGT are the<br />

important cytoplasmic enzymes present <strong>in</strong> the liver.<br />

Dur<strong>in</strong>g chemical <strong>in</strong>toxication the membrane <strong>in</strong>tegrity<br />

is lost due to necrosis and these enzymes move <strong>in</strong>to<br />

the circulatory system followed by elevated levels <strong>of</strong><br />

enzymes <strong>in</strong> the serum (23). Increased levels <strong>of</strong> serum<br />

AST, ALT and GGT was detected <strong>in</strong> NDEA treated<br />

rats, effectively down- regulated by the treatment<br />

with MEWF <strong>in</strong>dicat<strong>in</strong>g the protective role <strong>of</strong><br />

Woodfordia fruticosa <strong>in</strong> NDEA <strong>in</strong>duced HCC.<br />

The <strong>in</strong>tra cellular antioxidant system comprises <strong>of</strong><br />

different free radical scaveng<strong>in</strong>g antioxidant enzymes<br />

such as GST, GR and GPx constitute the first l<strong>in</strong>e <strong>of</strong><br />

cellular antioxidant defense system. When excess<br />

free radicals are produced, the equilibrium is lost and<br />

consequently oxidative <strong>in</strong>sult is established (24).<br />

GST <strong>of</strong>fers protection aga<strong>in</strong>st lipid peroxidation by<br />

promot<strong>in</strong>g the conjugation <strong>of</strong> toxic electrophiles with<br />

GSH (25). GR is also essential for the ma<strong>in</strong>tenance <strong>of</strong><br />

IJAPR / Dec. 2012/ Vol. 3 /Issue. 12 / 1322 – 1330 1325


M.S Latha et al. / International Journal <strong>of</strong> Advances <strong>in</strong> Pharmaceutical Research<br />

GSH levels <strong>in</strong> vivo. The significant (p ≤ 0.05)<br />

restoration <strong>of</strong> GPx activity <strong>in</strong> MEWF and silymar<strong>in</strong><br />

might be due to the antioxidant activity by<br />

detoxify<strong>in</strong>g the endogenous metabolic peroxides<br />

generated after NDEA <strong>in</strong>toxication <strong>in</strong> hepatic tissues.<br />

These biochemical restorations may be due to the<br />

<strong>in</strong>hibitory effects <strong>of</strong> MEWF <strong>in</strong> the process <strong>of</strong> cellular<br />

damage <strong>in</strong> the liver. Free radical scaveng<strong>in</strong>g activity<br />

<strong>of</strong> Woodfordia fruticosa methanolic extract<br />

is well established and that effectively protects the liver aga<strong>in</strong>st carbon tetrachloride [13], dicl<strong>of</strong>enac (26)<br />

thioacetamide (27) and phenyto<strong>in</strong> (28) <strong>in</strong>duced hepatotoxicity <strong>in</strong> rats.<br />

Prelim<strong>in</strong>ary phytochemical analysis identified the major class <strong>of</strong> chemical components present <strong>in</strong> methanolic extract<br />

are sapon<strong>in</strong>s (steroids and terpenes), phenolics, alkaloids, flavanoids, tann<strong>in</strong>s etc. The phytochemicals identified are<br />

more potent <strong>in</strong> <strong>in</strong>hibit<strong>in</strong>g free radicals and this could be protective aga<strong>in</strong>st the progression <strong>of</strong> NDEA <strong>in</strong>duced HCC.<br />

The compounds reported from the dried flowers <strong>of</strong> Woodfordia fruticosa are β-sitosterol, kaempferol, ellagic acid,<br />

octacosanol, meso-<strong>in</strong>ositol, quercet<strong>in</strong>, woodford<strong>in</strong>s A, B, C, oenothe<strong>in</strong> B, woodford<strong>in</strong> D and oenothe<strong>in</strong> A (29).<br />

Ellagic acid is a compound reported to have chemopreventive effect and is useful <strong>in</strong> <strong>in</strong>flammatory disorders like<br />

colorectal cancer (30). Quercet<strong>in</strong> is a plant derived Flavanoid, used <strong>in</strong> cancer prevention and treatment. Anti<strong>in</strong>flammatory<br />

effect <strong>of</strong> quercet<strong>in</strong> <strong>in</strong> hepatoma cell l<strong>in</strong>es (Hep G2) was reported (31). Woodford<strong>in</strong> C and oenothe<strong>in</strong> B,<br />

a class <strong>of</strong> macrocyclic hydrolysable tann<strong>in</strong>s exhibited potent host-mediated antitumor activity aga<strong>in</strong>st sarcoma 180<br />

<strong>in</strong> mice (32-33). Woodford<strong>in</strong> C shows remarkable <strong>in</strong>hibition <strong>of</strong> DNA topoisomerase II (34). Woodford<strong>in</strong> D and<br />

Oenothe<strong>in</strong> A, trimeric hydrolysable tann<strong>in</strong>s also have antitumor activity (35). Thus protection yielded by this extract<br />

may be due to the comb<strong>in</strong>ed effects <strong>of</strong> these compounds or fractions rather than any s<strong>in</strong>gle component.<br />

AND FIGURES<br />

Table 1: Effect <strong>of</strong> MEWF on GST, GR and GPx <strong>in</strong> the liver tissue <strong>of</strong> different experimental groups<br />

Treatment groups<br />

Normal control<br />

NDEA control (0.02%)<br />

Silymar<strong>in</strong>(100mg/kg)+<br />

NDEA<br />

MEWF(100mg/kg)+ NDEA<br />

MEWF(200mg/kg)+ NDEA<br />

MEWF alone<br />

GST 1<br />

72.5±0.70<br />

33.1±0.43 *<br />

58.3±0.52 **<br />

53.9±0.78 **<br />

68.5±0.51 **<br />

70.2±0.53 **<br />

1: μmol CDNB-GSH conjugate formed/m<strong>in</strong>/mg prote<strong>in</strong> ; 2 : nmol <strong>of</strong> GSSG utilized/m<strong>in</strong>/mg prote<strong>in</strong>; 3: nmol <strong>of</strong> GSH<br />

oxidized/m<strong>in</strong>/mg prote<strong>in</strong><br />

Values are mean± S.D., n=6<br />

* p≤ 0.05 versus normal control<br />

** p≤ 0.05 versus NDEA control<br />

GR 2<br />

21.4±0.77<br />

7.2±0.38 *<br />

16.16±0.43 **<br />

12.3±0.45 **<br />

19.15±0.83 **<br />

21.7±0.61 **<br />

GPx 3<br />

283.1±2.85<br />

162.4±3.09 *<br />

250.8±3.05 **<br />

217.5±2.51 **<br />

276.4±3.81 **<br />

281.8±3.0 **<br />

IJAPR / Dec. 2012/ Vol. 3 /Issue. 12 / 1322 – 1330 1326


M.S Latha et al. / International Journal <strong>of</strong> Advances <strong>in</strong> Pharmaceutical Research<br />

Fig.1. Effects <strong>of</strong> MEWF on changes <strong>in</strong> serum enzyme levels <strong>of</strong> rats treated with NDEA.<br />

Fig. (A) Aspartate am<strong>in</strong>otransferase, (B) Alan<strong>in</strong>e am<strong>in</strong>otransferase and (C) Gamma glutamyl transferase. (I) Normal<br />

control, (II) NDEA control (III) Silymar<strong>in</strong> + NDEA, (IV) MEWF (100 mg/kg) + NDEA (V) MEWF (200 mg/kg) +<br />

NDEA, (VI) MEWF alone. Values are mean ± S.D, error bar <strong>in</strong>dicat<strong>in</strong>g the standard deviation, n = 6 animals. * p ≤<br />

0.05 vs. normal control. **p ≤ 0.05 vs. NDEA control.<br />

Fig.2. Morphological variations <strong>of</strong> liver <strong>in</strong> control and treated rats<br />

Fig.2 (A) Normal control; (B) NDEA control (0.02%); (C) Silymar<strong>in</strong> (100 mg/kg) + NDEA; (D) MEWF (100<br />

mg/kg) + NDEA; (E) MEWF (200 mg/kg) + NDEA and (F) MEWF (200mg/kg) alone.<br />

IJAPR / Dec. 2012/ Vol. 3 /Issue. 12 / 1322 – 1330 1327


M.S Latha et al. / International Journal <strong>of</strong> Advances <strong>in</strong> Pharmaceutical Research<br />

Fig. 3. Immunohistochemical localizations <strong>of</strong> PCNA <strong>in</strong> control and treated groups.<br />

Fig. 3. Liver tissue was immunosta<strong>in</strong>ed for PCNA followed by sta<strong>in</strong><strong>in</strong>g with hemetoxil<strong>in</strong> (100x). (A) Normal<br />

control; (B) NDEA control (0.02%); (C) Silymar<strong>in</strong> (100 mg/kg) + NDEA; (D) MEWF (100 mg/kg) + NDEA;<br />

(E) MEWF (200 mg/kg) + NDEA and (F) MEWF (200mg/kg) alone.<br />

Fig. 4. Immunohistochemical localizations <strong>of</strong> Cycl<strong>in</strong> D1 <strong>in</strong> control and treated groups<br />

Fig. 4. Liver tissue was immunosta<strong>in</strong>ed for Cycl<strong>in</strong> D1 (<strong>in</strong>dicated by brown sta<strong>in</strong>ed nuclei) followed by sta<strong>in</strong><strong>in</strong>g with<br />

hemetoxil<strong>in</strong> (100x). (A) Normal control; (B) NDEA control (0.02%); (C) Silymar<strong>in</strong> (100 mg/kg) + NDEA; (D)<br />

MEWF (100 mg/kg) + NDEA; (E) MEWF (200 mg/kg) + NDEA and (F) MEWF (200mg/kg) alone.<br />

IJAPR / Dec. 2012/ Vol. 3 /Issue. 12 / 1322 – 1330 1328


M.S Latha et al. / International Journal <strong>of</strong> Advances <strong>in</strong> Pharmaceutical Research<br />

CONCLUSION<br />

The results presented <strong>in</strong> this study <strong>in</strong>dicate that the<br />

HCC <strong>in</strong>duced by N-nitrosodiethylam<strong>in</strong>e was<br />

effectively <strong>in</strong>hibited by the treatment with MEWF at<br />

a dose <strong>of</strong> 200 mg/kg, b.w. When compared to<br />

standard drug silymar<strong>in</strong> treated group, the MEWF<br />

treated group showed better efficacy towards NDEA<br />

<strong>in</strong>duced hepatocellular carc<strong>in</strong>oma. In rats treated with<br />

MEWF alone no significant change was observed.<br />

The pretreatment with MEWF on pathological<br />

conditions <strong>in</strong> chronic hepatic disorder such as HCC<br />

showed remarkable protection; provide a new<br />

approach to study the active pr<strong>in</strong>ciple responsible for<br />

chemoprevention <strong>in</strong> tumor models. However further<br />

work is required for the fractionation <strong>of</strong> MEWF and<br />

identification <strong>of</strong> the active compound which is<br />

underway.<br />

Conflict <strong>of</strong> <strong>in</strong>terest statement<br />

We declare that we have no conflict <strong>of</strong> <strong>in</strong>terest.<br />

Acknowledgments<br />

F<strong>in</strong>ancial assistance from Mahatma Gandhi<br />

University as Junior Research Fellowship to Nitha<br />

Anand is thankfully acknowledged. Authors also<br />

thankful to Dr. P.J Wills, Scientist, MIMS <strong>research</strong><br />

foundation, Calicut., Ms. Jyothi Lekshmi M,<br />

Research scholar, SBS, M. G. University, Kottayam<br />

and Ms. Reshmi Radhakrishnan, project staff, SBS,<br />

M.G University, Kottayam for their help <strong>in</strong> this work.<br />

REFERENCES<br />

(1) Park<strong>in</strong> DM, Bray F, Ferlay J, Pisani P., Global cancer<br />

statistics, 2002. CA: A Cancer Journal <strong>of</strong> Cl<strong>in</strong>icians 2005,<br />

55, 74-108.<br />

(2) S<strong>in</strong>gh BN, S<strong>in</strong>gh BR, Sarma BK, S<strong>in</strong>gh HB., Potential<br />

chemoprevention <strong>of</strong> N- nitrosodiethylam<strong>in</strong>e-<strong>in</strong>duced<br />

hepatocarc<strong>in</strong>ogenesis by polyphenolics from Acacia<br />

nilotica bark. Chemico Biological Interactions 2009, 181,<br />

20–28.<br />

(3) Jeena KJ, Joy KL, Kuttan R., Effect <strong>of</strong> Emblica <strong>of</strong>fic<strong>in</strong>alis,<br />

Phyllanthus amarus and Picrorrhiza kurroa on Nnitrosodiethylam<strong>in</strong>e<br />

<strong>in</strong>duced hepatocarc<strong>in</strong>ogenesis.<br />

Cancer Letters 1999, 136, 11-16.<br />

(4) Sivalokanathan S, Ilayaraja M, Balasubramanian MP.,<br />

Antioxidant activity <strong>of</strong> Term<strong>in</strong>alia arjuna bark extract on<br />

N-nitrosodiethyl am<strong>in</strong>e <strong>in</strong>duced hepatocellular carc<strong>in</strong>oma<br />

<strong>in</strong> rats. Molecular and Celularl Biochemistry 2006, 281,<br />

87-93.<br />

(5) Goldworthy TL, Pitot HC., An approach to the<br />

development <strong>of</strong> a short term whole animal<br />

bioassay to dist<strong>in</strong>guish <strong>in</strong>itiat<strong>in</strong>g agents (<strong>in</strong>complete<br />

carc<strong>in</strong>ogens), promot<strong>in</strong>g agents, complete carc<strong>in</strong>ogens,<br />

and noncarc<strong>in</strong>ogens <strong>in</strong> rat liver. Journal <strong>of</strong> Toxicology and<br />

Environmental Health 1985, 16, 389–402.<br />

(6) Nakae D, Kobayashi Y, Akai H, Andoh N, Satoh H,<br />

Ohashi K, Tsutsumi M, Konishi Y., Involvement <strong>of</strong> 8hydroxyguan<strong>in</strong>e<br />

formation <strong>in</strong> the <strong>in</strong>itiation <strong>of</strong> rat liver<br />

carc<strong>in</strong>ogenesis by low dose levels <strong>of</strong> Nnitrosodiethylam<strong>in</strong>e.<br />

Cancer Research 1997, 57, 1281–<br />

1287.<br />

(7) Bansal AK, Bansal M, Soni G, Bhatnagar D., Protective<br />

role <strong>of</strong> Vitam<strong>in</strong> E pre-treatment on N-nitrosodiethylam<strong>in</strong>e<strong>in</strong>duced<br />

oxidative stress <strong>in</strong> rat liver. Chemico Biological<br />

Interactions 2005, 156, 101–111.<br />

(8) Beckman JS, Beckman TW, Chen J, Marshall PA,<br />

Freeman BA., Apparent hydroxyl radical production by<br />

peroxynitrite: implications for endothelial <strong>in</strong>jury from<br />

nitric oxide and superoxide. Proceed<strong>in</strong>gs <strong>of</strong> National<br />

Academy <strong>of</strong> Sciences USA 1990, 87, 1620–1624.<br />

(9) Kartik R, Rao CV, Pushpangadan P, Trivedi SP, Reddy<br />

GD., Explor<strong>in</strong>g the Protective Effects <strong>of</strong> Abrus<br />

precatorius <strong>in</strong> HepG2 and N-Nitrosodiethylam<strong>in</strong>e-Induced<br />

Hepatocellular Carc<strong>in</strong>oma <strong>in</strong> Swiss Alb<strong>in</strong>o Rats. Iranian<br />

Journal <strong>of</strong> Pharmaceutical Sciences 2010, 6, 99-114.<br />

(10) Ramanathan S, Kuppusamy A, Nallasamy VM, Perumal<br />

P., Antitumor effects and antioxidant role <strong>of</strong> Scutia<br />

myrt<strong>in</strong>a <strong>in</strong> N-Nitroso-diethylam<strong>in</strong>e (NDEA) <strong>in</strong>duced<br />

hepatocellular carc<strong>in</strong>oma <strong>in</strong> rats. Asian Journal <strong>of</strong><br />

Pharmaceutical Biological Research 2011, 1, 71-78.<br />

(11) Hussian T, Siddiqui HH, Fareed S, Vijayakumar M, Rao<br />

CV., Evaluation <strong>of</strong> chemopreventive effect <strong>of</strong> Fumaria<br />

<strong>in</strong>dica aga<strong>in</strong>st N-nitrosodiethylam<strong>in</strong>e and CCl4-<strong>in</strong>duced<br />

hepatocellular carc<strong>in</strong>oma <strong>in</strong> Wistar rats. Asian Pacific<br />

Journal <strong>of</strong> Tropical Medic<strong>in</strong>e 2012, 5, 623-629.<br />

(12) Wills PJ, Suresh V, Arun M, Asha VV., Antiangiogenic<br />

effect <strong>of</strong> Lygodium flexuosum aga<strong>in</strong>st Nnitrosodiethylam<strong>in</strong>e-<strong>in</strong>duced<br />

hepatotoxicity <strong>in</strong> rats.<br />

Chemico Biological Interaction 2006, 164, 25-38.<br />

(13) Chandan BK, Saxena A.K, Shukla S, Sharma N, Gupta<br />

DK, S<strong>in</strong>gh K, Suri J, Bhadauria M, Qazi GN.,<br />

Hepatoprotective activity <strong>of</strong> Woodfordia fruticosa Kurz<br />

flowers aga<strong>in</strong>st carbon tetrachloride <strong>in</strong>duced<br />

hepatotoxicity. Journal <strong>of</strong> Ethnopharmacology 2008, 119,<br />

218-224.<br />

(14) Shaarawy SM, Tohamy AA, Elgendy SM, Abd Elmageed<br />

ZW, Bahnasy A, Mohamed MS, Kandil E, Matrougui K.,<br />

Protective effects <strong>of</strong> garlic and silymar<strong>in</strong> on NDEA<strong>in</strong>duced<br />

rats hepatotoxicity. International Journal <strong>of</strong><br />

Biological Sciences 2009, 5, 549-557.<br />

(15) Shyamal S, Latha PG, Suja SR., Sh<strong>in</strong>e VJ, Anuja GI, S<strong>in</strong>i<br />

S, Pradeep S, Shikha P, Rajasekharan S., Hepatoprotective<br />

effect <strong>of</strong> three herbal extracts on aflatox<strong>in</strong> B1-<strong>in</strong>toxicated<br />

rat liver. S<strong>in</strong>gapore Medical Journal 2010, 51, 326-331.<br />

(16) Habig WH, Pabst MJ, Jakoby WB., Glutathione Stransferase.<br />

The first enzymatic step <strong>in</strong><br />

mercapturic acid formation. Journal <strong>of</strong> Biological Chemistry<br />

1974, 249, 7130-7139.<br />

(17) Beutler E. Red cell metabolism. A Manual <strong>of</strong> Biochemical<br />

Methods. Third ed. Grune and<br />

Startton, New York; 1984.<br />

(18) Ajith TA, Hema U, Aswathy MS., Z<strong>in</strong>giber <strong>of</strong>fic<strong>in</strong>ale<br />

Roscoe prevents acetam<strong>in</strong>ophen-<strong>in</strong>duced acute<br />

hepatotoxicity by enhanc<strong>in</strong>g hepatic antioxidant status.<br />

Food and Chemical Toxicology 2007, 45, 2267-2272.<br />

(19) Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Prote<strong>in</strong><br />

measurements with the fol<strong>in</strong> phenol reagent. Journal <strong>of</strong><br />

Biological Chemistry 1951, 193, 265-275.<br />

(20) Chodon D, Banu SM, Padmavathi R, Sakthisekaran D.,<br />

Inhibition <strong>of</strong> cell proliferation and <strong>in</strong>duction <strong>of</strong> apoptosis<br />

IJAPR / Dec. 2012/ Vol. 3 /Issue. 12 / 1322 – 1330 1329


M.S Latha et al. / International Journal <strong>of</strong> Advances <strong>in</strong> Pharmaceutical Research<br />

by geniste<strong>in</strong> <strong>in</strong> experimental hepatocellular carc<strong>in</strong>oma.<br />

Molecular and Cellular Biochemistry 2007, 297, 73-80.<br />

(21) Liu LX, Jiang HC, Zhu AL, Wang XQ, Zhu J., Cell<br />

cycle/growth regulator gene expression <strong>in</strong> human<br />

hepatocellular carc<strong>in</strong>oma and adjacent normal liver<br />

tissues. Oncology Reports 2003, 10, 1771-5.<br />

(22) Fu M, Wang C, Li Z, Sakamaki T, Pestell RG.,<br />

M<strong>in</strong>ireview: Cycl<strong>in</strong> D1: normal and abnormal functions.<br />

Endocr<strong>in</strong>ology 2004, 145, 5439-47.<br />

(23) Al-Attar AM., Hepatoprotective Influence <strong>of</strong> Vitam<strong>in</strong> C<br />

on Thioacetamide-<strong>in</strong>duced Liver Cirrhosis <strong>in</strong> Wistar Male<br />

Rats. Journal <strong>of</strong> Pharmacology and Toxicology 2011, 6,<br />

218- 233.<br />

(24) Manna P, S<strong>in</strong>ha M, Pal P, Sil PC., Arjunolic acid, a<br />

triterpenoid sapon<strong>in</strong>, ameliorates arsenic - <strong>in</strong>duced cyto -<br />

toxicity <strong>in</strong> hepatocytes. Chemico Biological Interaction<br />

2007, 170, 187-200.<br />

(25) Jakoby WB. Detoxification, conjugation and hydrolysis <strong>in</strong><br />

liver biology and pathology. In: Arias IM, Jakoby WB,<br />

(eds.) Raven Press, New York (1988) 375-385.<br />

(26) Baravalia Y, Vaghasiya Y, Chanda S., Hepatoprotective<br />

effect <strong>of</strong> Woodfordia fruticosa Kurz flowers on dicl<strong>of</strong>enac<br />

sodium <strong>in</strong>duced liver toxicity <strong>in</strong> rats. Asian Pacific<br />

Journal <strong>of</strong> Tropical Medic<strong>in</strong>e 2011, 4, 342-6.<br />

(27) Nitha A, Ansil PN, Prabha SP, Wills PJ, Latha MS.,<br />

Preventive and curative effect <strong>of</strong> Woodfordia fruticosa<br />

Kurz flowers on thioacetamide <strong>in</strong>duced oxidative stress <strong>in</strong><br />

rats. Asian Paicific Journal <strong>of</strong> Tropical Biomedic<strong>in</strong>e<br />

2011, 2, S757-64.<br />

(28) Br<strong>in</strong>dha D, Geetha R., Evaluation <strong>of</strong> the protective<br />

efficacy <strong>of</strong> Woodfordia fruticosa on phenytion <strong>in</strong>duced<br />

liver damage <strong>in</strong> rats. Journal <strong>of</strong> cell and tissue <strong>research</strong><br />

2009, 9, 1981- 1984.<br />

(29) Das PK, Goswami S, Ch<strong>in</strong>niah A, Panda N, Banerjee S,<br />

Sahu NP, Achari B., Woodfordia fruticosa: traditional<br />

uses and recent f<strong>in</strong>d<strong>in</strong>gs. Journal <strong>of</strong> Ethnopharmacology<br />

2007, 110, 189-99.<br />

(30) Paper DH, Karall E, Kremser M, Krenn L., Comparison <strong>of</strong><br />

the anti-<strong>in</strong>flammatory effects <strong>of</strong> Drosera rotundifolia and<br />

Drosera madagascariensis <strong>in</strong> the HET-CAM assay.<br />

Phytotherapy Reserch 2005, 19, 323-6.<br />

(31) Granado-Serrano AB, Martín MÁ, Bravo L, Goya L,<br />

Ramos S. Quercet<strong>in</strong> attenuates TNF-<strong>in</strong>duced <strong>in</strong>flammation<br />

<strong>in</strong> hepatic cells by <strong>in</strong>hibit<strong>in</strong>g the NF-κB pathway.<br />

Nutrition and Cancer 2012, 64, 588-98.<br />

(32) Yoshida T, Chou T, Nitta A, Miyamoto K, Koshiura R,<br />

Okuda T., Woodford<strong>in</strong> C, a macro-r<strong>in</strong>g hydrolyzable<br />

tann<strong>in</strong> dimer with antitumor activity, and accompany<strong>in</strong>g<br />

dimers from Woodfordia fruticosa flowers. Chemical and<br />

Pharmaceutical Bullet<strong>in</strong> (Tokyo) 1990, 38, 1211-7.<br />

(33) Miyamoto K, Kishi N, Koshiura R, Yoshida T, Hatano T,<br />

Okuda T., Relationship between the structures and the<br />

antitumor activities <strong>of</strong> tann<strong>in</strong>s. Chemical and<br />

Pharmaceutical Bullet<strong>in</strong> (Tokyo) 1987, 35, 814-22.<br />

(34) Kuramochi-Motegi A, Kuramochi H, Kobayashi F,<br />

Ekimoto H, Takahashi K, Kadota S, Takamori Y, Kikuchi<br />

T., Woodfruticos<strong>in</strong> (woodford<strong>in</strong> C), a new <strong>in</strong>hibitor <strong>of</strong><br />

DNA topoisomerase II. Experimental antitumor activity.<br />

Biochemical Pharmacology 1992, 44, 1961-5.<br />

(35) Yoshida T, Chou T, Matsuda M, Yasuhara T, Yazaki K,<br />

Hatano T, Nitta A, Okuda T., Woodford<strong>in</strong> D and<br />

oenothe<strong>in</strong> A, trimeric hydrolyzable tann<strong>in</strong>s <strong>of</strong> macro-r<strong>in</strong>g<br />

structure with antitumor activity. Chemical and<br />

Pharmaceutical Bullet<strong>in</strong> (Tokyo) 1991, 39, 1157-62.<br />

IJAPR / Dec. 2012/ Vol. 3 /Issue. 12 / 1322 – 1330 1330

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!