27.12.2012 Views

Oscillations, Waves, and Interactions - GWDG

Oscillations, Waves, and Interactions - GWDG

Oscillations, Waves, and Interactions - GWDG

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

430 U. Parlitz<br />

(a)<br />

y<br />

(c)<br />

y<br />

40<br />

20<br />

ÈË�Ö��Ö�ÔÐ��Ñ�ÒØ×<br />

(b)<br />

τ1,<br />

ÈË�Ö��Ö�ÔÐ��Ñ�ÒØ×<br />

−40<br />

−40 −20 0 20 40<br />

0<br />

−20<br />

40<br />

20<br />

0<br />

−20<br />

−40<br />

−40 −20 0<br />

x<br />

20 40<br />

x<br />

(d)<br />

τ1<br />

k1a<br />

3<br />

−<br />

τ2<br />

k2a<br />

− τ1 −<br />

k1b<br />

k1a<br />

k1b, k2b τ2, k2a<br />

k3b − τ3, k3a<br />

τ1, k1a<br />

−<br />

k1b, k2b<br />

τ2, k2a k3b<br />

τ3, k3a<br />

k1a<br />

2<br />

k1b<br />

1<br />

1<br />

− −<br />

Figure 19. Phase (colour coded) of the complex solution f of the controlled GLE (29)<br />

with parameters (a, b) = (−1.45, 0.34). White rectangles denote control cells where signals<br />

are measured <strong>and</strong> control is applied. In the region between the control cells chaotic spiral<br />

waves are turned into (a) slanted traveling waves if the control scheme (b) is applied with<br />

parameters τ1 = 31, τ2 = 59, τ3 = 84, k1a = 0.22, k1b = 0.3, k2a = 0.2, k2b = 0.5, k3a = 0.3,<br />

<strong>and</strong> k3b = 0. Using control scheme (d) with k1a = 0.22, k2a = 0.1, k3a = 0.35, k1b = 0.3,<br />

k2b = 0.5, k3b = 0, τ1 = 41, τ2 = 27, <strong>and</strong> τ3 = 49 individual spiral waves can be trapped (c).<br />

From Ref. [94].<br />

References<br />

[1] W. Lauterborn, ‘Numerical Investigation of Nonlinear <strong>Oscillations</strong> of Gas Bubbles in<br />

Liquids’, J. Acoust. Soc. Am. 59, 283 (1976).<br />

[2] W. Lauterborn <strong>and</strong> E. Cramer, ‘Subharmonic Route to Chaos Observed in Acoustics’,<br />

Phys. Rev. Lett. 47, 1445 (1981).<br />

[3] W. Lauterborn <strong>and</strong> U. Parlitz, ‘Methods of chaos physics <strong>and</strong> their application to<br />

acoustics’, J. Acoust. Soc. Am. 84, 1975 (1988).<br />

[4] G. Duffing, Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische<br />

Bedeutung, (Verlag Friedr. Vieweg & Sohn, Braunschweig, 1918).<br />

[5] U. Parlitz <strong>and</strong> W. Lauterborn, ‘Superstructure in the bifurcation set of the Duffing<br />

equation ¨x + d ˙x + x + x 3 = fcos(wt)’, Phys. Lett. A 107, 351 (1985).<br />

[6] U. Parlitz <strong>and</strong> W. Lauterborn, ‘Resonances <strong>and</strong> torsion numbers of driven dissipative<br />

nonlinear oscillators’, Z. Naturforsch. 41a, 605 (1986).<br />

[7] C. Scheffczyk, U. Parlitz, T. Kurz, W. Knop <strong>and</strong> W. Lauterborn, ‘Comparison of<br />

bifurcation structures of driven dissipative nonlinear oscillators’, Phys. Rev. A 43,<br />

k2b<br />

τ2<br />

k2a<br />

2<br />

k2b<br />

τ3<br />

k3a<br />

−<br />

3<br />

k3b<br />

τ3<br />

k3a<br />

k3b

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!