27.12.2012 Views

Oscillations, Waves, and Interactions - GWDG

Oscillations, Waves, and Interactions - GWDG

Oscillations, Waves, and Interactions - GWDG

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Complex dynamics of nonlinear systems 409<br />

driven by a gas turbine. If the driving turbines did not run smoothly due to extra<br />

sparking the generators lost their synchrony <strong>and</strong> did not return to their previous<br />

oscillations when the extra sparking of the turbines was over. 4<br />

If the driving amplitude is further increased the cubic nonlinearity becomes more<br />

dominant <strong>and</strong> very different types of motion occur. Figure 3 shows five examples<br />

as time series, phase space projections <strong>and</strong> power spectra. The first time series in<br />

Fig. 3(a) is periodic with the same period as the driving signal. Therefore, this stable<br />

oscillation is also called a period-1 attractor. Figure 3(b) shows the corresponding<br />

trajectory in the (x, ˙x)–plane (i. e., a projection of the attractor) where a red marker is<br />

plotted whenever a period T = 2π<br />

ω of the drive elapsed. This results in a stroboscopic<br />

phase portrait which is a convenient way for plotting Poincaré sections of periodically<br />

driven systems. Figure 3(c) shows a Fourier spectrum of the time series where<br />

only odd harmonics (multiples) of the fundamental frequency occur that coincides<br />

here with the driving frequency ν0 = ω/2π. This feature is closely connected to the<br />

symmetry of the orbits in Fig. 3(b) that can be broken by a symmetry-breaking bifurcation<br />

as shown in Figs. 3(d–f). Symmetry breaking is a precursor of period-doubling<br />

because only asymmetric orbits can undergo a period-doubling bifurcation. An example<br />

for such a period-2 attractor is shown in Figs. 3(g–i) where now subharmonics<br />

occur in the spectrum (Fig. 3(i)) <strong>and</strong> two markers appear on the orbit (Fig. 3(h)).<br />

When the driving amplitude is increased furthermore a full period-doubling cascade<br />

takes place leading to chaotic dynamics as shown in Figs. 3(j–l). The oscillation is<br />

aperiodic (Fig. 3(j)) with a broadb<strong>and</strong> spectrum (Fig. 3(l)) <strong>and</strong> a stroboscopic phase<br />

portrait (Fig. 3(k)) that constitutes a fractal set. Finally, Figs. 3(m–o) show a period-<br />

3 oscillation occuring for f = 56 which is an example for general period-m attractors<br />

that can be found for any m in some specific parts of the parameter space of Duffing’s<br />

equation. Again, this period-3 attractor is symmetric (with odd harmonics of<br />

the fundamental frequency in the spectrum) <strong>and</strong> will undergo a symmetry-breaking<br />

bifurcation before entering a period-doubling cascade to chaos.<br />

Figure 4 shows the Poincaré section of the chaotic attractor from Fig. 3(k) in<br />

more detail which possesses a self-similar structure as can be seen in the enlargement<br />

Fig. 4(b).<br />

Poincaré cross sections are also an elegant way to visualise the parameter dependence<br />

of the dynamics. For this purpose a projection of the points in the Poincaré<br />

section (i. e., z1(n) = x(nT )) is plotted vs. a control parameter that is varied in small<br />

steps. As initial conditions for the solutions of the equations of motions at a new<br />

parameter value the last computed state from the previous parameter is used. In this<br />

way, transients are kept short <strong>and</strong> one follows an attractor (<strong>and</strong> its metamorphoses<br />

4 In Ref. [4] on page 1 <strong>and</strong> 2 Duffing wrote: “Jene synchronen Drehstrommaschinen waren<br />

durch Gasmaschinen angetrieben. Die Frequenz der Antriebsimpulse und die sogenannte<br />

Eigenfrequenz waren genügend ausein<strong>and</strong>er, so daß nur mäßige Pendelungen auftraten, wenn<br />

die Antriebsmaschinen im Beharrungszust<strong>and</strong>e waren. Wurde dieser Beharrungszust<strong>and</strong><br />

jedoch nur durch einige wenige heftigere Zündungen gestört, so wurden, auch nachdem die<br />

Verbrennungen wieder regelmäßig geworden war, die Pendelung immer noch größer und<br />

größer, so daß die Maschinen schließlich außer Tritt kamen. Nach den Ergebnissen der<br />

Theorie hätten, nach Eintreten der regelmäßigen Verbrennung, infolge der Dämpfung die<br />

Schwingungen im Laufe der Zeit wieder ihre normale Größe erhalten müssen.”

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!