23.02.2023 Views

The Zero Delusion v0.99x

Zero signifies absence or an amount of no dimension and allegedly exemplifies one of humanity's most splendid insights. Nonetheless, it is a questionable number. Why did algebra embrace zero and dismiss infinity despite representing symmetric and complementary concepts? Why is zero exceptional in arithmetic? Is zero a "real" point? Has it a geometrical meaning? Is zero naturalistic? Is it universal? Digit 0 is unnecessary in positional notation (e.g., bijective numeration). The uniform distribution is unreachable, transmitting nill bits of information is impossible, and communication is never error-free. Zero is elusive in thermodynamics, quantum field theory, and cosmology. A minimal fundamental extent is plausible but hard to accept because of our acquaintance with zero. Mathematical zeroes are semantically void (e.g., empty set, empty sum, zero vector, zero function, unknot). Because "division by zero" and "identically zero" are uncomputable, we advocate for the nonzero algebraic numbers to build new physics that reflects nature's countable character. In a linear scale, we must handle zero as the smallest possible nonzero rational or the limit of an asymptotically vanishing sequence of rationals. Instead, zero is a logarithmic scale's pointer to a being's property via log(1)). The exponential function, which decodes the encoded data back to the linear scale, is crucial to understanding the Lie algebra-group correspondence, the Laplace transform, linear fractional transformations, and the notion of conformality. Ultimately, we define a "coding space" as a doubly conformal transformation realm of zero-fleeing hyperbolic geometry that keeps the structural and scaling relationships of the world.

Zero signifies absence or an amount of no dimension and allegedly exemplifies one of humanity's most splendid insights. Nonetheless, it is a questionable number. Why did algebra embrace zero and dismiss infinity despite representing symmetric and complementary concepts? Why is zero exceptional in arithmetic? Is zero a "real" point? Has it a geometrical meaning? Is zero naturalistic? Is it universal? Digit 0 is unnecessary in positional notation (e.g., bijective numeration). The uniform distribution is unreachable, transmitting nill bits of information is impossible, and communication is never error-free. Zero is elusive in thermodynamics, quantum field theory, and cosmology. A minimal fundamental extent is plausible but hard to accept because of our acquaintance with zero. Mathematical zeroes are semantically void (e.g., empty set, empty sum, zero vector, zero function, unknot). Because "division by zero" and "identically zero" are uncomputable, we advocate for the nonzero algebraic numbers to build new physics that reflects nature's countable character. In a linear scale, we must handle zero as the smallest possible nonzero rational or the limit of an asymptotically vanishing sequence of rationals. Instead, zero is a logarithmic scale's pointer to a being's property via log(1)). The exponential function, which decodes the encoded data back to the linear scale, is crucial to understanding the Lie algebra-group correspondence, the Laplace transform, linear fractional transformations, and the notion of conformality. Ultimately, we define a "coding space" as a doubly conformal transformation realm of zero-fleeing hyperbolic geometry that keeps the structural and scaling relationships of the world.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

137. Planck Collaboration, Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi,

C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak,

S., Battye, R., Benabed, K., Bernard, J. P., Bersanelli, M., Bielewicz, P., Bock,

J. J., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bucher, M., Burigana,

C., Butler, R. C., Calabrese, E., Cardoso, J. F., Carron, J., Challinor, A.,

Chiang, H. C., Chluba, J., Colombo, L. P. L., Combet, C., Contreras, D., Crill,

B. P., Cuttaia, F., de Bernardis, P., de Zotti, G., Delabrouille, J., Delouis, J. M.,

Di Valentino, E., Diego, J. M., Doré, O., Douspis, M., Ducout, A., Dupac, X.,

Dusini, S., Efstathiou, G., Elsner, F., Enblin, T. A., Eriksen, H. K., Fantaye, Y.,

Farhang, M., Fergusson, J., Fernández-Cobos, R., Finelli, F., Forastieri, F., Frailis,

M., Fraisse, A. A., Franceschi, E., Frolov, A., Galeotta, S., Galli, S., Ganga, K.,

Génova-Santos, R. T., Gerbino, M., Ghosh, T., González-Nuevo, J., Górski, K.

M., Gratton, S., Gruppuso, A., Gudmundsson, J. E., Hamann, J., Handley, W.,

Hansen, F. K., Herranz, D., Hildebrandt, S. R., Hivon, E., Huang, Z., Jaffe, A.

H., Jones, W. C., Karakci, A., Keihänen, E., Keskitalo, R., Kiiveri, K., Kim, J.,

Kisner, T. S., Knox, L., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lagache,

G., Lamarre, J. M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Le Jeune, M.,

Lemos, P., Lesgourgues, J., Levrier, F., Lewis, A., Liguori, M., Lilje, P. B., Lilley,

M., Lindholm, V., López-Caniego, M., Lubin, P. M., Ma, Y. Z., Macías-Pérez,

J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Marcos-Caballero, A.,

Maris, M., Martin, P. G., Martinelli, M., Martínez-González, E., Matarrese, S.,

Mauri, N., McEwen, J. D., Meinhold, P. R., Melchiorri, A., Mennella, A., Migliaccio,

M., Millea, M., Mitra, S., Miville-Deschênes, M. A., Molinari, D., Montier,

L., Morgante, G., Moss, A., Natoli, P., Nørgaard-Nielsen, H. U., Pagano, L., Paoletti,

D., Partridge, B., Patanchon, G., Peiris, H. V., Perrotta, F., Pettorino, V.,

Piacentini, F., Polastri, L., Polenta, G., Puget, J. L., Rachen, J. P., Reinecke, M.,

Remazeilles, M., Renzi, A., Rocha, G., Rosset, C., Roudier, G., Rubiño-Martín, J.

A., Ruiz-Granados, B., Salvati, L., Sandri, M., Savelainen, M., Scott, D., Shellard,

E. P. S., Sirignano, C., Sirri, G., Spencer, L. D., Sunyaev, R., Suur-Uski, A. S.,

Tauber, J. A., Tavagnacco, D., Tenti, M., Toffolatti, L., Tomasi, M., Trombetti,

T., Valenziano, L., Valiviita, J., Van Tent, B., Vibert, L., Vielva, P., Villa, F.,

Vittorio, N., Wandelt, B. D., Wehus, I. K., White, M., White, S. D. M., Zacchei,

A., and Zonca, A. Planck 2018 results - VI. Cosmological parameters. Astronomy

& Astrophysics, 641:A6, 2020.

138. Henri Poincaré. The Value of Science: Essential Writings of Henri Poincaré.

Modern Library Science. Random House Publishing Group, 2012.

139. Henri Poincaré. Science and Hypothesis (1905). Read Books Limited, 2016.

140. Harry Pollard and Harold G. Diamond. The Theory of Algebraic Numbers. Dover

books on mathematics. Dover Publications, 1998.

141. John Preskill. Quantum Computation (Physics 219 / Computer Science 219).

California Institute of Technology, Pasadena, California, 2021. Fall.

142. Marc-Olivier Renou, David Trillo, Mirjam Weilenmann, Thinh P. Le, Armin

Tavakoli, Nicolas Gisin, Antonio Acín, and Miguel Navascués. Quantum Theory

Based on Real Numbers Can Be Experimentally Falsified. Nature, 600(7890):625–

629, 2021.

143. Paulo Ribenboim. The Little Book of Bigger Primes. Springer Nature Book

Archives Millennium. Springer Science and Business Media, 2004.

144. Phil Richerme. How to Create a Time Crystal. Physics, 10(15), January 2017.

145. Dean Rickles, Steven French, and Juha T. Saatsi. The Structural Foundations of

Quantum Gravity. Clarendon Press, 2006.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!