Rüdiger Schulz – Botanical Institute Solar BioHydrogen in Germany ...

Rüdiger Schulz – Botanical Institute Solar BioHydrogen in Germany ... Rüdiger Schulz – Botanical Institute Solar BioHydrogen in Germany ...

Christian-Albrechts-University Kiel (at the Baltic Sea)<br />

<strong>Solar</strong> <strong>BioHydrogen</strong> <strong>in</strong> <strong>Germany</strong><br />

Progress Report<br />

<strong>Rüdiger</strong> <strong>Schulz</strong> <strong>–</strong> <strong>Botanical</strong> <strong>Institute</strong>


Current strategy <strong>in</strong> <strong>Germany</strong>


“National Hydrogen and Fuel Cell<br />

Technology Innovation Programme”<br />

f<strong>in</strong>anced by BMVBS<br />

(Bundesm<strong>in</strong>isterium für Verkehr, Bau und Stadtentwicklung)<br />

Federal M<strong>in</strong>istry of Transport, Build<strong>in</strong>g and Urban Affairs<br />

2006-2015<br />

50 Mill. €/y + 50-100 Mill €/y (Industry)<br />

Recently some money<br />

for hydrogen production,<br />

but not for biohydrogen.


“<strong>Solar</strong> energy techniques<br />

of the next generation”<br />

+ 16 Mill. Euro 2008 - 2011/2012<br />

f<strong>in</strong>anced by BMBF<br />

(Bundesm<strong>in</strong>isterium für Bildung und Forschung)<br />

Federal M<strong>in</strong>istry of Education and Research<br />

+ 5 Mill. Euro Biohydrogen (Biology, Photobioreactors)<br />

+ 11 Mill. Euro Photovoltaik


The ma<strong>in</strong> german research groups<br />

Synechocystis<br />

for solar biohydrogen<br />

PSI<br />

<strong>Rüdiger</strong> <strong>Schulz</strong>, Kiel<br />

Jens Appel, Kiel<br />

Chlamydomonas<br />

Olaf Kruse, Bielefeld<br />

Clemens Posten,<br />

Karlsruhe<br />

Cell free, <strong>in</strong> vitro<br />

Matthias Rögner, Bochum<br />

Bärbel Friedrich, Berl<strong>in</strong><br />

Wolfgang Lubitz, Mülheim


The ma<strong>in</strong> german research groups<br />

Synechocystis<br />

for solar biohydrogen<br />

PSI<br />

<strong>Rüdiger</strong> <strong>Schulz</strong>, Kiel<br />

Jens Appel, Kiel<br />

Chlamydomonas<br />

Olaf Kruse, Bielefeld<br />

Clemens Posten,<br />

Karlsruhe<br />

Cell free, <strong>in</strong> vitro<br />

Matthias Rögner, Bochum<br />

Bärbel Friedrich, Berl<strong>in</strong><br />

Wolfgang Lubitz, Mülheim


National German Programme<br />

about hydrogenases and hydrogen production<br />

f<strong>in</strong>anced by<br />

BMBF<br />

(Bundesm<strong>in</strong>isterium für Bildung und Forschung)<br />

Federal M<strong>in</strong>istry for Education and Research


University Bochum<br />

M. Rögner<br />

Th. Happe<br />

H.-J.Wagner<br />

University Köln<br />

A. Berkessel<br />

MPI Mülheim<br />

W. Lubitz<br />

BMBF-Project<br />

FZ Jülich<br />

University Bielefeld<br />

J. Heberle<br />

HU Berl<strong>in</strong><br />

B. Friedrich<br />

FU Berl<strong>in</strong><br />

H.Dau<br />

/Haumann<br />

MPI Marburg<br />

R. Thauer<br />

S. Shima


- Optimization of the photosynthesis module<br />

- Development of artificial systems<br />

- Technical system analysis and balanc<strong>in</strong>g of the various systems<br />

- Optimization of the hydrogenase module


PBS-mutants to <strong>in</strong>crease PS2 content<br />

Antenna-mutants also yield higher cell density<br />

WT ∆apcE Olive PAL<br />

WT OL-Mutant<br />

> 40% <strong>in</strong>crease <strong>in</strong> cell density possible !


Cell system for max. coupl<strong>in</strong>g of PS-ET to H 2 -ase<br />

WT<br />

MUT<br />

(S.-cystis 6803 as model system)<br />

PARAMETERS :<br />

A) ET<br />

•PS2 / PS1 ratio<br />

•PBS-antenna size<br />

•Cyclic / l<strong>in</strong>ear ET<br />

•Coupled / uncoupled ET<br />

•Coupl<strong>in</strong>g of Fd to H2ase &<br />

to CO2-fixation B) H2ase •Biogenesis of "foreign" H2ase •O2 tolerance of H2ase


O 2<br />

H 2<br />

Semiartificial<br />

"bio-battery" for<br />

optimization of<br />

prote<strong>in</strong>-prote<strong>in</strong><br />

<strong>in</strong>teractions<br />

PS1-H 2 ase<br />

fusion prote<strong>in</strong><br />

• Optimization of "design" components (PS2, H 2ase, electron carrier) before<br />

<strong>in</strong>sertion <strong>in</strong> model organism<br />

• Comb<strong>in</strong>ation of <strong>in</strong>dividual components from various organisms <strong>in</strong> vitro


Photobioreactordesign<br />

25 L foil reactor<br />

5 L flat bed reactor (coop. KSD)<br />

• Transparent polymer;<br />

chem. sterilisation possible<br />

• Costs < 10 % of commercial<br />

photobioreactors!<br />

≤ 30% more PS2<br />

by "red" LED


The ma<strong>in</strong> german research groups<br />

Synechocystis<br />

for solar biohydrogen<br />

PSI<br />

<strong>Rüdiger</strong> <strong>Schulz</strong>, Kiel<br />

Jens Appel, Kiel<br />

Chlamydomonas<br />

Olaf Kruse, Bielefeld<br />

Clemens Posten,<br />

Karlsruhe<br />

Cell free, <strong>in</strong> vitro<br />

Matthias Rögner, Bochum<br />

Bärbel Friedrich, Berl<strong>in</strong><br />

Wolfgang Lubitz, Mülheim


www.solarbiofuels.org


The next generation high H 2 production stra<strong>in</strong><br />

Stm6glc4<br />

Stm6glc4<br />

Anja Döbbe, Julia Beckmann, Jens Rupprecht, Arm<strong>in</strong> Hallmann, Ben Hankamer, Olaf Kruse, J.Biotech. 2007


Beckmann et al. 2009<br />

The third generation: Stm6glc4T7<br />

with a more efficient sun light collection system


The ma<strong>in</strong> german research groups<br />

Synechocystis<br />

for solar biohydrogen<br />

PSI<br />

<strong>Rüdiger</strong> <strong>Schulz</strong>, Kiel<br />

Jens Appel, Kiel<br />

Chlamydomonas<br />

Olaf Kruse, Bielefeld<br />

Clemens Posten,<br />

Karlsruhe<br />

Cell free, <strong>in</strong> vitro<br />

Matthias Rögner, Bochum<br />

Bärbel Friedrich, Berl<strong>in</strong><br />

Wolfgang Lubitz, Mülheim


Bidirectional NiFe-Hydrogenase of the unicellular<br />

cyanobacterium Synechocystis spec. PCC 6803<br />

Kle<strong>in</strong>ig and Sitte, „Zellbiologie“, Gustav Fischer<br />

2 H + +<br />

2e ‐<br />

H 2<br />

hoxH<br />

NAD(P)H +<br />

H +<br />

NiFe<br />

hoxY<br />

4xFeS<br />

FeS 2xFeS<br />

Hydrogenase Diaphorase<br />

hoxE hoxF ORF 3 hoxU hoxY ORF 6,7 hoxH<br />

FeS 2xFeS NAD FMN 4xFeS FeS<br />

NiFe<br />

hox-gene cluster<br />

NAD(P) + + 2H +<br />

hoxU hoxF<br />

hoxE<br />

FeS


McIntosh et al. (2011) J Am Chem Soc. 133:11308-11319


Screen<strong>in</strong>g for microalgae <strong>in</strong> natural environments<br />

Molecular Ecology and Monitor<strong>in</strong>g of the Enzyms<br />

Hydrogenase and Nitrogenase <strong>in</strong> the Plancton of<br />

Northatlantic, North- and Baltic Sea and Fresh Water Lakes<br />

Falkowski et al. (1998)<br />

<strong>Botanical</strong> <strong>Institute</strong>, CAU Kiel<br />

<strong>Institute</strong> for General Microbiology, CAU Kiel<br />

Leibniz <strong>Institute</strong> of Mar<strong>in</strong>e Sciences, Kiel<br />

Research and Technology Centre, FTZ Büsum


Distribution of bidirectional NAD(P)-l<strong>in</strong>ked hydrogenases <strong>in</strong> samples taken form the North Sea<br />

(Norderpiep), the Baltic Sea (Stollergrundr<strong>in</strong>ne), and two Lakes (Westensee and Selenter See).


Microalgae Screen<strong>in</strong>g:<br />

Bio-H 2 , Biomass, Biodiesel,<br />

Biogas, Bioproducts, etc.<br />

With presently 2213 stra<strong>in</strong>s (represent<strong>in</strong>g 510 genera<br />

and 1273 species) the SAG is among the three largest<br />

culture collections of algae <strong>in</strong> the world.<br />

http://www.epsag.uni-goett<strong>in</strong>gen.de/html/sagstatistics_2002.htm)


Microalgae: Biotechnology / Bioenergie<br />

(Sun-)Light<br />

Water<br />

CO 2<br />

Nutrients<br />

Microalgae<br />

Biomass<br />

50-100 t DW /ha/a<br />

Energy<br />

Biogas<br />

Biodiesel<br />

Bioethanol<br />

Biohydrogen<br />

Heat Bioproducts<br />

Food/Feed<br />

Pharmaceuticals<br />

Cosmetics<br />

Enzymes<br />

6 CO 2 + 6 H 2 O C 6 H 12 O 6 + 6 O 2


Screen<strong>in</strong>gprogramm<br />

- Wachstumsgeschw<strong>in</strong>digkeit / Biomasseproduktion<br />

- Optimierung der Kulturbed<strong>in</strong>gungen<br />

- Untersuchung der Biomasse:<br />

• Farbstoffe, wie z.B. Carot<strong>in</strong>oide Rosafarbe von Lachs<br />

• Tocopherole (Vitam<strong>in</strong> E) Lebensmitteln<br />

• Pharmzeutische Produkte Medikamente<br />

• Fette und Öle Biodiesel<br />

• Fettsäuren Lebensmittel<br />

• „antifoul<strong>in</strong>g“ Wirkung Unterwasseranstriche<br />

• Wasserstoffproduktion Biowasserstoff<br />

• Biomasse / CO 2-Senke Biogasanlagen


300x 0,25 Liter<br />

10 Liter<br />

Microalgae cultures <strong>in</strong> Kiel<br />

4 Klimakammern<br />

Glasgewächshaus<br />

30 Liter<br />

Foliengewächshaus<br />

60 / 480 Liter<br />

300 Liter<br />

8x 3000 Liter


X<br />

nmol H 2 /µg Chl/m<strong>in</strong> Biohydrogen production


Water<br />

<strong>Solar</strong> Biohydrogen Production<br />

O 2<br />

Bioreactor<br />

with<br />

Algae or Cyanobacteria<br />

Biomass<br />

CO 2<br />

H 2<br />

as Energy Source for<br />

- fuel cells<br />

H 2 and O 2<br />

- combustion eng<strong>in</strong>es<br />

Thank you!<br />

- Mar<strong>in</strong>e organism<br />

- Oxygen tolerant hydrogenase<br />

- Very active hydrogenase<br />

- Reduced antenna size<br />

- Easy cultivation<br />

(axenic without sterilization)<br />

- Reduced biomass production<br />

- Low cost photobioreactor

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!