33 Years NEET-AIPMT Chapterwise Solutions - Physics 2020

All previous year questions , and these are downloaded from the sources in the internet. I don't own these resources and these are copyrighted by MTG. All previous year questions , and these are downloaded from the sources in the internet. I don't own these resources and these are copyrighted by MTG.

24.06.2022 Views

Motion in a Plane 4. (d) : Let the two vectors be Aand B. Then, magnitude of sum of Aand B, 2 2| A+ B| = A + B + 2ABcosθ and magnitude of difference of AandB 2 2| A− B|= A + B − 2ABcos θ, | A+ B| = | A− B|( given)or A 2 + B 2 + 2AB cosθ= A 2 + B 2 − 2ABcosθ⇒ 4 AB cosq = 0Q 4 AB ≠ 0, \ cosq = 0 or q = 90°5. (b) : Let q be angle between A and B 2 2| A+ B| = | A− B|, then | A+ B| = | A−B|A 2 + B 2 + 2ABcosq = A 2 + B 2 – 2ABcosqor 4ABcosq = 0 or cosq = 0 or q = 90°6. (c) : A + B = A + B if A B. θ = 0°7. (a) : Let q be angle between A and B .Given: A= | A|= 3 unitsB= | B|= 4unitsC= | C|= 5units | A+ B| = | C |A 2 + 2ABcosq + B 2 = C 29 + 2ABcosq + 16 = 25 or 2ABcosq = 0or cosq = 0 \ q = 90º.8. (b) : x = 5t – 2t 2 , y = 10tdx= 5− 4t, dy = 10 ∴ vx= 5− 4t,vy= 10dt dtdv dvxy=− 4, = 0 ∴ ax=− 4,ay= 0dt dt ^ ^ ^Acceleration, a= a i+ a j=−4ixy\ The acceleration of the particle at t = 2 s is –4 m s –2 .^^9. (a) : Here, R= 4sin( 2πt) i+4cos( 2πt)jThe velocity of the particle is dR dv = = [ sin( t) ^^4 2π i+4cos( 2πt)]jdt dt= 8πcos( 2π ) ^^t i−8πsin( 2πt)jIts magnitude is2 2| v| = ( 8πcos( 2πt)) + ( −8πsin( 2πt))2 2 2 2= 64π cos ( 2πt) + 64π sin ( 2πt)2 2 2= 64π [cos ( 2πt) + sin ( 2πt)]Telegram @unacademyplusdiscounts2 2 2= 64π ( As sin θ+ cos θ = 1)= 8p m/s10. (d) : At time t = 0, the position vector of the particleis r ^1 = 2i + 3^. j21At time t = 5 s, the position vector of the particle is ^r2 = 13 i + 14^. jDisplacement from r r1 to 2 is∆r r r ^ ^ ^ ^ ^ ^= 2 − 1 = ( 13 i + 14 j) − ( 2i + 3j)= 11i + 11 j\ Average velocity, ^ ^ r i jvav = ∆i jt= 11 + 11 11 ^ ^= ( + )∆ 5−0 511. (d) :Velocity towards east direction, v ^1 = 30 i ms /Velocity towards north direction, v 2 = 40^m/s jChange in velocity, ∆v v v ^ ^= 2 − 1 = ( 40 j−30i)∴ | | = | ^ ^∆v 40 j− 30 i | = 50 ms /Change in velocityAverageacceleration, a av = Time interval v v vaav = 2 − 1 ∆=∆t∆t | ∆v| 50 ms / 2| aav| = = = 5 ms /∆t10 sx12. (b) : x= asinωtor = sinωtayy= acosωtor = cosωtaSquaring and adding, we get2 2x y2 2+ = 1 ( Q cos ωt+ sin ωt= 1)2 2a aor x 2 + y 2 = a 2This is the equation of a circle. Hence particle follows acircular path.13. (b) : Let q be the anglewhich the particle makeswith an x-axis.From figure,3tanθ= = 33−1or, θ= tan ( 3)= 60°14. (a) : v 1 = 50 km/hr due northv 2 = 50 km/hr due west W−v 1 = 50 km/hr due southMagnitude of change in velocity = | v − v | = | v + ( − v )| = v + ( −v)2 1 2 1 2 2 1 2NSE

Telegram @unacademyplusdiscounts22 NEET-AIPMT Chapterwise Topicwise Solutions Physics2 2= ( 50) + ( 50) = 70. 7 km / hr1 km21. (a) : v Resultant = = 4 km/hrv = 70.7 km/hr along south-west direction1/4 hr15. (d) : v 2 – u 2 = 2ax2 2∴ vRiver= 5 − 4 = 3 km/hrFor case I : v 2 = u 2 – 2( g sin q 1 ) x 122. (a) : Let v be the velocity of river water. As shown in[ a = –g sin q]figure,2ux1=2gsinθ[ v = 0]sin30°= v 105 .0.5 m/sFor case II :or, v = 0.5 sin30°v 2 = u 2 – (2g sin q 2 ) x 22q= 0.5 × (1/2) = 0.25 m/sux2=2gsinθg cos q 23. (d) : Let particle B move upwards with velocity v,2gthenx1sinθ2sin30°∴ = =x° = 12 sinθ1sin60tan 60°= v ; v = 3× 10=173 . m/s.310^ ^ ^ ^16. (b) : Here, u= 2i + 3j, a= 03 . i + 02 . j,t = 10 sAs v = u + at24. (b) : Let the velocity of river be v R and velocity ofboat is v B . ^ ^ ^ ^2 2∴ v = ( 2i + 3j) + (. 03i + 02 . j)( 10 )∴ Resultantvelocity = vB + vR + 2vBvRcosθ^ ^ ^ ^ ^ ^= 2 i + 3j+ 3i + 2j= 5i + 5j( 10) = v 2 B + vR 2 + 2vBvRcos90° 2 2| v | = () 5 + () 5 = 5 2 units( 10) = () 8 2 + vR2 or ( 10) 2 = () 82 + vR2 ^ ^217. (b) : Here, Initialvelocity, u= 3i + 4 jvR= 100 − 64 or vR= 6 km / hr ^ ^25. (a) : The equation of trajectory isAcceleration, a= 04 . i + 03 . j ; time, t = 10 sLet v 2gxbe velocity of a particle after 10 s.y= xtanθ−2 2 2ucos θUsing, v = u+atwhere q is the angle of projection and u is the velocity ^ ^ ^ ^∴ v = ( 3i + 4 j) + (. 04i + 03 . j)( 10)with which projectile is projected.^ ^ ^ ^ ^ ^For equal trajectories and for same angles of projection,= 3i + 4 j+ 4i + 3j= 7i + 7 jgSpeed of the particle after 10 s = | v |u 2 = constantAs perquestion, 98 .= g ′2 22 2= () 7 + () 7 = 7 2 units5 3where g′ is acceleration due to gravity on the planet.18. (c) : Vertical acceleration in both the cases is g,98 . × 9whereas horizontal velocity is constant.′ = =−g35 . ms 225v19. (b) :r = 10 m/s26. (a) : At point B, Xfcomponent of velocityremains unchanged while Yv s = 20 m/scomponent reverses itsqdirection.\ The velocity of the projectile^ ^10 1at point B is 2i− 3jm/s.cosφ= = or φ= 60 °20 227. (b) : Horizontal range, R u 2sin2θ=⇒ q = 180° – (90° + 60°) = 30°ga awhere u is the velocity of projection and q is the angle of20. (d) : t = =v ′ 2v − v1 2 projection.sinMaximumheight, H u 2 2θ=2gg sin qu avAccording to question R = H

Motion in a Plane

4. (d) : Let the two vectors be Aand B.

Then, magnitude of sum of Aand B,

2 2

| A+ B| = A + B + 2AB

cosθ

and magnitude of difference of Aand

B

2 2

| A− B|= A + B − 2AB

cos θ,

| A+ B| = | A− B|( given)

or A 2 + B 2 + 2AB cosθ

= A 2 + B 2 − 2AB

cosθ

⇒ 4 AB cosq = 0

Q 4 AB ≠ 0, \ cosq = 0 or q = 90°

5. (b) : Let q be angle between A

and B

2 2

| A+ B| = | A− B|, then | A+ B| = | A−

B|

A 2 + B 2 + 2ABcosq = A 2 + B 2 – 2ABcosq

or 4ABcosq = 0 or cosq = 0 or q = 90°

6. (c) : A + B = A + B if A B

. θ = 0°

7. (a) : Let q be angle between A

and B

.

Given: A= | A|

= 3 units

B= | B|

= 4units

C= | C|

= 5units

| A+ B| = | C |

A 2 + 2ABcosq + B 2 = C 2

9 + 2ABcosq + 16 = 25 or 2ABcosq = 0

or cosq = 0 \ q = 90º.

8. (b) : x = 5t – 2t 2 , y = 10t

dx

= 5− 4t, dy = 10 ∴ vx

= 5− 4t,

vy

= 10

dt dt

dv dv

x

y

=− 4, = 0 ∴ ax

=− 4,

ay

= 0

dt dt

^ ^ ^

Acceleration, a= a i+ a j=−4

i

x

y

\ The acceleration of the particle at t = 2 s is –4 m s –2 .

^

^

9. (a) : Here, R= 4sin( 2πt) i+

4cos( 2πt)

j

The velocity of the particle is

dR d

v = = [ sin( t) ^

^

4 2π i+

4cos( 2π

t)]

j

dt dt

= 8πcos( 2π ) ^

^

t i−8πsin( 2πt)

j

Its magnitude is

2 2

| v| = ( 8πcos( 2πt)) + ( −8πsin( 2πt))

2 2 2 2

= 64π cos ( 2πt) + 64π sin ( 2πt

)

2 2 2

= 64π [cos ( 2πt) + sin ( 2πt

)]

Telegram @unacademyplusdiscounts

2 2 2

= 64π ( As sin θ+ cos θ = 1)

= 8p m/s

10. (d) : At time t = 0, the position vector of the particle

is r ^

1 = 2i + 3

^. j

21

At time t = 5 s, the position vector of the particle is

^

r2 = 13 i + 14

^. j

Displacement from r

r

1 to 2 is

∆r r r ^ ^ ^ ^ ^ ^

= 2 − 1 = ( 13 i + 14 j) − ( 2i + 3j)

= 11i + 11 j

\ Average velocity,

^ ^

r i j

vav = ∆

i j

t

= 11 + 11 11 ^ ^

= ( + )

∆ 5−

0 5

11. (d) :

Velocity towards east direction, v

^

1 = 30 i ms /

Velocity towards north direction, v

2 = 40

^m/s j

Change in velocity, ∆v v v ^ ^

= 2 − 1 = ( 40 j−30

i)

∴ | | = | ^ ^

∆v 40 j− 30 i | = 50 ms /

Change in velocity

Averageacceleration, a av =

Time interval

v v v

aav = 2 − 1 ∆

=

∆t

∆t

| ∆v

| 50 ms / 2

| aav

| = = = 5 ms /

∆t

10 s

x

12. (b) : x= asinωt

or = sinωt

a

y

y= acosωt

or = cosωt

a

Squaring and adding, we get

2 2

x y

2 2

+ = 1 ( Q cos ωt

+ sin ωt

= 1)

2 2

a a

or x 2 + y 2 = a 2

This is the equation of a circle. Hence particle follows a

circular path.

13. (b) : Let q be the angle

which the particle makes

with an x-axis.

From figure,

3

tanθ= = 3

3

−1

or, θ= tan ( 3)

= 60°

14. (a) : v 1 = 50 km/hr due north

v 2 = 50 km/hr due west W

−v 1 = 50 km/hr due south

Magnitude of change in velocity

= | v − v | = | v + ( − v )| = v + ( −v

)

2 1 2 1 2 2 1 2

N

S

E

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!