33 Years NEET-AIPMT Chapterwise Solutions - Physics 2020

All previous year questions , and these are downloaded from the sources in the internet. I don't own these resources and these are copyrighted by MTG. All previous year questions , and these are downloaded from the sources in the internet. I don't own these resources and these are copyrighted by MTG.

24.06.2022 Views

Telegram @unacademyplusdiscounts110 NEET-AIPMT Chapterwise Topicwise Solutions PhysicsANSWER KEY1. (c) 2. (d) 3. (c) 4. (c) 5. (c) 6. (b) 7. (a) 8. (c) 9. (a) 10. (c)11. (a) 12. (a) 13. (a) 14. (b) 15. (b) 16. (d) 17. (c) 18. (c) 19. (d) 20. (b)21. (d) 22. (d) 23. (d) 24. (d) 25. (a) 26. (c) 27. (*) 28. (d) 29. (a) 30. (c)31. (c) 32. (a) 33. (c) 34. (b) 35. (c) 36. (b) 37. (a) 38. (b) 39. (c) 40. (b)41. (b) 42. (d) 43. (d) 44. (c) 45. (a) 46. (c) 47. (d) 48. (c) 49. (b) 50. (a)51. (a) 52. (d) 53. (a) 54. (a) 55. (a) 56. (b) 57. (d) 58. (d) 59. (d) 60. (d)61. (d) 62. (a) 63. (b)Hints & Explanations1. (c) : y = A 0 + Asinwt + Bcoswt.or (y – A 0 ) = Asinwt + Bcoswtor y′ = Asinwt + Bcoswt= ⎛ π ⎞−⎝⎜ ω t ⎠⎟ + ω2tAmplitude= 2 2 π ⎡ π⎤A + B + 2ABcos ⎢Qφ =2⎥⎣ 2⎦2 2= A + B2. (d)3. (c) : y = sinwt – coswt=⎡ 1 1 ⎤⎢ − ⎥⎣⎦⎛⎝⎜ − π ⎞2 sinωt cosωt 2 sin ωt⎠⎟2 24It represents a SHM with time period, T = 2π ω .y= sin 3 ω t = 1 [ sin t − sin t]4 3 ω 3ωIt represents a periodic motion with time period T = 2πωbut not SHM.⎛ 3π⎞ ⎛ 3π⎞y= 5cos− t⎝⎜ 3ω ⎠⎟ = 5cos−4⎝⎜3ωt⎠⎟4[ Q cos( − θ) = cos θ]It represents a SHM with time period, T = 2 π3ω .y = 1 + wt + w 2 t 2It represents a non-periodic motion. Also it is notphysically acceptable as y → ∞ as t → ∞.4. (c) :The time taken by the particle to travel fromA Tx= 0 to x=is2 12The time taken by the particle to travel fromA Tx= A to x = is2 6T T TTime difference = + =6 6 32πPhasedifference, φ = × TimedifferenceT2πT 2π= × =T 3 32 ⎛1−cos2ω t ⎞ a acos2ωt5. (c) : x= asinωt = a⎝⎜⎠⎟ = −2 2 2(Q cos2q = 1 – 2sin 2 q)dx 2ωasin2ωt∴ Velocity, v = = = ωasin2ωtdt 2dv 2Acceleration, a = =2ωacos2ωtdtFor the given displacement x = asin 2 wt,a ∝ – x is not satisfied.Hence, the motion of the particle is non simple harmonicmotion.The given motion is a periodic motion with a time period2ππT = =2ωω6. (b) : x(t) = asinwt (from the equilibrium position)At x(t) = a/2aa t2 = sin( ω ) ⇒ sin ⎛ ⎞⎝⎜π 6 ⎠⎟π 2πt= sin( ωt)or, =6 Tor t = T/127. (a)8. (c) : x = a sinwty = asin(wt + p/2) = acoswtx 2 + y 2 = a 2It is an equation of a circle.9. (a) : For S.H.M., x = ⎛ 2πAsin⎝⎜T t ⎞⎠⎟when x = A A = ⎛A⎝⎜T t ⎞, sin 2π⎠⎟⎛ 2π ⎞∴ ⋅⎝⎜⎠⎟ = ⇒ ⎛ 2π ⎝⎜ ⋅ ⎞⎠⎟ = ⎛ π ⎞sin 1 sin sinT t T t ⎝⎜2 ⎠⎟⇒ t = (T/4)

OscillationsTelegram @unacademyplusdiscounts111A AWhen x = = ⎛ 2πA⎝⎜T ⋅t⎞, sin2 2⎠⎟π ⎛ 2π⎞or sin = sin or ( / 12)6 ⎝⎜⎠⎟ =T t t TNow, time taken to travel from x = A to x = A/2= T/4 – T/12 = T/610. (c) : x = asinwtand y = bsin(wt + p) = –bsinwt.x yor ora=− byb=− a xIt is an equation of straight line.11. (a) : Here T = 4 s, A = 3 mTime period T = 2π ω ⇒ 4 2π= ⇒ ω =πω 2As the time is noted from the extreme position,so, y = A cos (wt) ⇒ y = 3cos( π t2 )12 (a) : Displacement of the particle, y = a sin wt,v = dy = aw cos wtdtAcceleration, a = dvdt = –aw2 sin wtSo, phase difference between displacement andacceleration is p.13. (a) : Since the displacement for a complete vibrationis zero, therefore the average velocity will be zero.14. (b) : Given, A = 3 cm, x = 2 cmThe velocity of a particle in simple harmonic motion is2 2given as v= ω A − xand magnitude of its acceleration is a = w 2 xGiven |v| = |a| ∴ ω A 2 − x 2 = ω2 xωx= 2 2A − x2 2 2 2or ω x = A −xω 2 2 2A − x 9 4 5= = − = or ω= 52x 4 4 22π2 4πTime period, T = = 2π. = sω 5 515. (b) : If A and w be the amplitude and angularfrequency of vibration, thena = w 2 A...(i)and b = wA...(ii)Dividing eqn. (i) by eqn. (ii), we get2α ω A= =ωβ ωA\2π2π2πβTime period of vibration is T = = =ω ( α/ β)α16. (d) : In SHM, velocities of a particle at distances x 1and x 2 from mean position are given byV1 = ω 2 ( a − x1 ) …(i)V2 2 = ω 2 ( a 2 − x2 2 ) …(ii)From equations (i) and (ii), we getV1 2 − V2 2 = ω 2 ( x2 2 − x1 2 )V1 2 − V2 2x2 2 − x1 2ω=⇒ T = πx2 2 − x1 2 2V1 2 − V2 217. (c) : Here, X = AcoswtdX d∴ Velocity, v = = ( Acos ωt) =−Aωsinωtdt dtdv dAcceleration, a = = ( −Aωsin ω t)= –Awdt dt2 coswtHence the variation of a with t is correctly shown bygraph (c).x18. (c) : x= asinωtor = sinωt…(i)adxVelocity, v = = aωcosωtdtvp= cosωtor, = cosωt…(ii)aωmaωSquaring and adding (i) and (ii), we get2 22 2x p 2 2 x p+ = sin ωt+ cos ωt;+ =12 2 2 22 2 2 2a maωa maωIt is an equation of ellipse.19. (d) : w 1 = 100 rad s –1 ; w 2 = 1000 rad s –1 .Maximum acceleration of (1) = –w 12 AMaximum acceleration of (2) = –w 22 Aaccln () 1 ω1 2 2( 100)1∴ = = =accln () 2 ( 1000)1002 2 2ωa(1) : a(2) = 1 : 100.20. (b) : x = asin(wt + p/6)dx= aωcos( ωt+ π / 6)dtMax. velocity = awaω1∴ = aωcos( ωt+π / 6); or, cos( ωt + π/ 6)=222π 2π π⇒ = ⋅ +6 T t 6⇒ 2 π ⋅ = 2 π 6 − π 6 =+ πTt6π T T∴ t =+ × = +6 2π1221. (d) : Let y = Asinwtdy⎛ ⎞= Aωcosωt = Aωsint+dt⎝⎜ω π 2 ⎠⎟Acceleration = –Aw 2 sinwtThe phase difference between acceleration and velocityis p/2.22. (d) : a = 5 cm, v max = 31.4 cm/sv max = wa ⇒ 31.4 = 2pu × 5⇒ 31.4 = 10 × 3.14 × u ⇒ u = 1 Hz23. (d) : In SHMv = Awsin(wt + p/2),a = Aw 2 sin (wt + p). From this wecan easily find out that when v ismaximum, then a is zero.

Oscillations

Telegram @unacademyplusdiscounts

111

A A

When x = = ⎛ 2π

A

T ⋅t

, sin

2 2

π ⎛ 2π

or sin = sin or ( / 12)

6 ⎝

⎟ =

T t t T

Now, time taken to travel from x = A to x = A/2

= T/4 – T/12 = T/6

10. (c) : x = asinwt

and y = bsin(wt + p) = –bsinwt.

x y

or or

a

=− b

y

b

=− a x

It is an equation of straight line.

11. (a) : Here T = 4 s, A = 3 m

Time period T = 2π ω ⇒ 4 2π

= ⇒ ω =

π

ω 2

As the time is noted from the extreme position,

so, y = A cos (wt) ⇒ y = 3cos( π t

2 )

12 (a) : Displacement of the particle, y = a sin wt,

v = dy = aw cos wt

dt

Acceleration, a = dv

dt = –aw2 sin wt

So, phase difference between displacement and

acceleration is p.

13. (a) : Since the displacement for a complete vibration

is zero, therefore the average velocity will be zero.

14. (b) : Given, A = 3 cm, x = 2 cm

The velocity of a particle in simple harmonic motion is

2 2

given as v= ω A − x

and magnitude of its acceleration is a = w 2 x

Given |v| = |a| ∴ ω A 2 − x 2 = ω

2 x

ωx= 2 2

A − x

2 2 2 2

or ω x = A −x

ω 2 2 2

A − x 9 4 5

= = − = or ω= 5

2

x 4 4 2

2 4π

Time period, T = = 2π

. = s

ω 5 5

15. (b) : If A and w be the amplitude and angular

frequency of vibration, then

a = w 2 A

...(i)

and b = wA

...(ii)

Dividing eqn. (i) by eqn. (ii), we get

2

α ω A

= =ω

β ωA

\

2πβ

Time period of vibration is T = = =

ω ( α/ β)

α

16. (d) : In SHM, velocities of a particle at distances x 1

and x 2 from mean position are given by

V1 = ω 2 ( a − x1 ) …(i)

V2 2 = ω 2 ( a 2 − x2 2 ) …(ii)

From equations (i) and (ii), we get

V1 2 − V2 2 = ω 2 ( x2 2 − x1 2 )

V1 2 − V2 2

x2 2 − x1 2

ω=

⇒ T = π

x2 2 − x1 2 2

V1 2 − V2 2

17. (c) : Here, X = Acoswt

dX d

∴ Velocity, v = = ( Acos ωt) =−Aωsinωt

dt dt

dv d

Acceleration, a = = ( −Aωsin ω t)

= –Aw

dt dt

2 coswt

Hence the variation of a with t is correctly shown by

graph (c).

x

18. (c) : x= asinωt

or = sinωt

…(i)

a

dx

Velocity, v = = aωcosωt

dt

v

p

= cosωt

or, = cosωt

…(ii)

maω

Squaring and adding (i) and (ii), we get

2 2

2 2

x p 2 2 x p

+ = sin ωt+ cos ωt;

+ =1

2 2 2 2

2 2 2 2

a maω

a maω

It is an equation of ellipse.

19. (d) : w 1 = 100 rad s –1 ; w 2 = 1000 rad s –1 .

Maximum acceleration of (1) = –w 12 A

Maximum acceleration of (2) = –w 22 A

accln () 1 ω1 2 2

( 100)

1

∴ = = =

accln () 2 ( 1000)

100

2 2 2

ω

a(1) : a(2) = 1 : 100.

20. (b) : x = asin(wt + p/6)

dx

= aωcos( ωt

+ π / 6)

dt

Max. velocity = aw

1

∴ = aωcos( ωt+

π / 6); or, cos( ωt + π/ 6)

=

2

2

2π 2π π

⇒ = ⋅ +

6 T t 6

⇒ 2 π ⋅ = 2 π 6 − π 6 =+ π

T

t

6

π T T

∴ t =+ × = +

6 2π

12

21. (d) : Let y = Asinwt

dy

⎛ ⎞

= Aωcosωt = Aωsin

t+

dt

⎜ω π 2 ⎠

Acceleration = –Aw 2 sinwt

The phase difference between acceleration and velocity

is p/2.

22. (d) : a = 5 cm, v max = 31.4 cm/s

v max = wa ⇒ 31.4 = 2pu × 5

⇒ 31.4 = 10 × 3.14 × u ⇒ u = 1 Hz

23. (d) : In SHM

v = Awsin(wt + p/2),

a = Aw 2 sin (wt + p). From this we

can easily find out that when v is

maximum, then a is zero.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!