24.12.2012 Views

SPE 119242 How to Use and Misuse Proppant Crush Tests – E i th ...

SPE 119242 How to Use and Misuse Proppant Crush Tests – E i th ...

SPE 119242 How to Use and Misuse Proppant Crush Tests – E i th ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>SPE</strong> <strong>119242</strong><br />

<strong>How</strong> <strong>to</strong> <strong>Use</strong> <strong>and</strong> <strong>Misuse</strong><br />

<strong>Proppant</strong> <strong>Crush</strong> <strong>Tests</strong> <strong>–</strong><br />

EExposing i <strong>th</strong>e <strong>th</strong> Top T 10 My<strong>th</strong>s M <strong>th</strong><br />

John Kullman, CARBO Ceramics<br />

T. T. Palisch, M. Chapman, R. Duenckel, <strong>and</strong> S.<br />

Woolfolk Woolfolk, CARBO Ceramics Ceramics, Inc Inc.<br />

M. C. Vincent, Insight Consulting


Outline<br />

• Introduction/Motivation<br />

• <strong>Crush</strong> Test Procedure<br />

• MMy<strong>th</strong>s <strong>th</strong>s<br />

<strong>–</strong><strong>Misuse</strong>/misapplication pp<br />

• Summary


The Big Picture<br />

• Fracs must provide:<br />

<strong>–</strong> Reservoir contact (leng<strong>th</strong>, height) <strong>to</strong> contact <strong>and</strong><br />

collect oil <strong>and</strong> gas<br />

• Related <strong>to</strong> volume of proppant<br />

<strong>–</strong> Flow capacity <strong>to</strong> carry oil <strong>and</strong> gas <strong>to</strong> <strong>th</strong>e wellbore<br />

• Related <strong>to</strong> proppant permeability <strong>and</strong> frac wid<strong>th</strong> <strong>–</strong><br />

described as conductivity<br />

• O<strong>th</strong>er Important <strong>Proppant</strong> Characteristics<br />

<strong>–</strong> Durability<br />

<strong>–</strong> Temperature Resistance<br />

<strong>–</strong> Transportability<br />

<strong>–</strong> Fluid Compatibility<br />

<strong>–</strong> Flowback Control<br />

<strong>–</strong> Environmentally Benign


• GGas Well W ll<br />

<strong>–</strong> 7500 psi stress<br />

Question…<br />

<strong>–</strong> You can successfully place a 16/20 or 16/30<br />

sized proppant<br />

• Two choices of proppant<br />

<strong>–</strong> <strong>Proppant</strong> A <strong>–</strong> 16/20 Ceramic, 14% <strong>Crush</strong> (7.5k)<br />

<strong>–</strong> <strong>Proppant</strong> B <strong>–</strong> 16/30 Ceramic, 7.5% <strong>Crush</strong> (7.5k)<br />

<strong>–</strong> Which proppant would you choose?<br />

<strong>–</strong> What if I <strong>to</strong>ld you y <strong>th</strong>at <strong>th</strong>ey y had <strong>th</strong>e same MPD?<br />

<strong>–</strong> What would you be willing <strong>to</strong> pay for your choice?


Introduction/Motivation<br />

• API RP56 & 60 original <strong>–</strong> updated in ISO<br />

13503-2 (2006)<br />

<strong>–</strong> “improve quality…delivered proppants”<br />

<strong>–</strong> “enable…<strong>to</strong> compare physical properties”<br />

<strong>–</strong> OOriginal i i l iintent t t t<strong>to</strong> help h l qualify lif s<strong>and</strong> d sources<br />

• “<strong>Crush</strong> results” <strong>and</strong> proppant selection<br />

<strong>–</strong> “ “qualified lifi d engineering i i analysis….required l i i d ffor<br />

<strong>th</strong>eir application <strong>to</strong> a specific situation”<br />

<strong>–</strong> <strong>SPE</strong> 11634 <strong>–</strong> Conductivity comparisons cannot<br />

be made on <strong>th</strong>e basis of crush tests<br />

**Yet Yet many still choose <strong>th</strong>eir proppants based on<br />

crush results **


ISO 13503-2 <strong>Crush</strong> Test Procedure<br />

• P<strong>Proppant</strong> t is i pre-sieved i d t<strong>to</strong><br />

remove particles outside of<br />

stated mesh range.<br />

• DDry proppant t placed l d iin steel t l<br />

cell at ~4 lb/sq ft (s<strong>and</strong><br />

equivalent)<br />

• Room temperature<br />

• <strong>Proppant</strong> evenly distributed<br />

wi<strong>th</strong> level surface<br />

• LLoad d applied li d at t uniform if rate t<br />

• Constant stress maintained for<br />

two minutes<br />

• <strong>Proppant</strong> is sieved. The weight percent which falls<br />

below <strong>th</strong>e primary screen is reported.<br />

<strong>–</strong> For 16/20 proppant all material < 20 mesh is reported as “fines” fines<br />

<strong>–</strong> For 30/50 proppant all material < 50 mesh is reported as “fines”


ISO 13503-2 <strong>Crush</strong> Test Procedure<br />

Do <strong>th</strong>ese reflect realistic conditions?<br />

• <strong>Proppant</strong> is pre-sieved.<br />

• <strong>Proppant</strong> Loading <strong>–</strong> s<strong>and</strong>/RCS/LWC ~4 lb/ft2 ,<br />

IDC 4.8 lb/ft2 , Bauxite ~5.2 lb/ft2 • Smoo<strong>th</strong>, steel plates <strong>–</strong> embedment?<br />

• “Carefully y loaded”<br />

• Dry, room temperature<br />

• 2000 psi/min, psi/min relaxed after 2 minutes<br />

• Only <strong>th</strong>e particles smaller <strong>th</strong>an bot<strong>to</strong>m screen<br />

are considered “fines” fines or “crush” crush


Are <strong>th</strong>e results repeatable/reliable?<br />

<strong>Crush</strong> Cell Loading critical<br />

• “variance in crush results….associated wi<strong>th</strong><br />

me<strong>th</strong>od of loading…”<br />

• Significant efforts ongoing on ISO Committee<br />

<strong>and</strong> StimLab <strong>to</strong> alleviate variations in results<br />

<strong>–</strong> Loading technique <strong>th</strong>ought <strong>to</strong> be <strong>th</strong>e cause<br />

<strong>–</strong> Lab <strong>to</strong> lab, technician <strong>to</strong> technician, equipment <strong>to</strong><br />

equipment


Perrcent<br />

<strong>Crush</strong>h<br />

26<br />

24<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

9.118<br />

10.663<br />

10.995<br />

Are <strong>th</strong>e results repeatable?<br />

16/30 Brown S<strong>and</strong> H<strong>and</strong> Loaded Weight Percent <strong>Crush</strong> at 4000psi<br />

25.221<br />

23.660<br />

24.229<br />

16.770<br />

14.660<br />

16.770<br />

24.552<br />

14.771<br />

17.886<br />

15.774<br />

17.552<br />

18.445<br />

9.220<br />

9.880<br />

10.110<br />

23.226<br />

23.229<br />

24.775<br />

6.004<br />

5.992<br />

6.442<br />

14.8% Avg<br />

8.440<br />

8.990<br />

8.660<br />

Test#1<br />

Test#2<br />

Test#3<br />

17.778<br />

19.888<br />

18.443<br />

9.110<br />

9.550<br />

9.110<br />

1 2 3 4 5 6 7 8 9 10 11<br />

Lab Number ISO Subcommittee Results


Perrcent<br />

<strong>Crush</strong>h<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

9. .79<br />

9. .40<br />

9. .26<br />

Are <strong>th</strong>e results repeatable?<br />

16/30 Brown S<strong>and</strong> Mechanical Loaded Weight Percent <strong>Crush</strong> at<br />

4000psi<br />

Test#1<br />

8. .96<br />

16. .66<br />

11. .41<br />

12. .00<br />

12. .00<br />

12. .80<br />

10. .32<br />

10. .89<br />

10. .79<br />

10.<br />

9.<br />

9.<br />

.53<br />

.07<br />

.85<br />

7. .80<br />

8. .40<br />

7. .76<br />

10. .49<br />

10. .22<br />

9. .94<br />

10.0% Avg<br />

No data<br />

reported<br />

8. .40<br />

8. .20<br />

8. .40<br />

7. .50<br />

7. .50<br />

9. .23<br />

Test#2<br />

Test#3<br />

10. .10<br />

10. .80<br />

10. .60<br />

1 2 3 4 5 6 7 8 9 10 11<br />

Lab Number ISO Subcommittee Results


Does Fracture Wid<strong>th</strong> Affect <strong>Crush</strong>?<br />

• Interior grains loaded “evenly”<br />

• Exterior grains g have fewer<br />

load points<br />

• <strong>Crush</strong> increases significantly<br />

as proppant loading<br />

decreases<br />

• For a 20/40 proppant, <strong>th</strong>ere are approximately<br />

24 layers of proppant in st<strong>and</strong>ard crush test. test<br />

<strong>–</strong> 8% are exterior grains<br />

1 lb/ft2 • 1 lb/ft i 6 l f 20/40 t<br />

2 is ~6 layers of 20/40 proppant<br />

<strong>–</strong> 33% are exterior grains


<strong>Crush</strong> Depends p Upon p Frac Wid<strong>th</strong>!<br />

<strong>Crush</strong><br />

Percent<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0 4 lb/sq ft 2 lb/sq ft 1 lb/sq ft 0.5 lb/sq ft 0.25 lb/sq ft<br />

Monolayer<br />

~ 0.2 lb/sq ft


% <strong>Crush</strong><br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

<strong>Crush</strong> vs # Layers<br />

<strong>Crush</strong> at 10,000 psi<br />

20/40 <strong>Proppant</strong>s<br />

40%<br />

1lb/ft 2<br />

1 lb/ft 2<br />

40% B it 1 lb/ft 2<br />

Bauxite<br />

ELWC<br />

30%<br />

20%<br />

10%<br />

0%<br />

1 lb/ft 2<br />

S<strong>and</strong> &<br />

RCS<br />

White S<strong>and</strong><br />

ELWC<br />

RCS<br />

BBauxite it Ceramic C i<br />

0 1 2 3 4 5 6 7 8 9 10<br />

# of Layers


% <strong>Crush</strong>h<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

<strong>Crush</strong> vs # Layers<br />

<strong>Crush</strong> at 1000 psi<br />

All 20/40 <strong>Proppant</strong>s<br />

1 lb/ft 2<br />

Bauxite<br />

1 lb/ft 2<br />

ELWC<br />

White S<strong>and</strong><br />

RCS<br />

ELWC<br />

Bauxite Ceramic<br />

1 lb/ft 2<br />

S<strong>and</strong> &<br />

RCS<br />

0 1 2 3 4 5 6 7<br />

# of Layers<br />

Partial<br />

Monolayer


RANGE OF FRACTURE COMPLEXITY<br />

<strong>SPE</strong> 77441<br />

Simple p Fracture Complex p Fracture<br />

Very Complex Fracture Network<br />

Complex fracs are<br />

believed <strong>to</strong> provide less<br />

cumulative conductivity<br />

<strong>th</strong>an simple, simple wider<br />

fractures


16<br />

Vertical Complexity<br />

DDue TTo Joints J i t<br />

Physical evidence of<br />

fractures nearly<br />

always complex<br />

NEVADA TEST SITE<br />

HYDRAULIC FRACTURE<br />

MINEBACK


Uniform Packing<br />

Is <strong>th</strong>is ribbon laterally y<br />

extensive <strong>and</strong><br />

continuous for<br />

hundreds or<br />

<strong>th</strong>ous<strong>and</strong>s of feet?<br />

17<br />

Arrangement?<br />

Pinch out, proppant<br />

pillars, ill iirregular l<br />

distribution?


Are Large Particles weaker <strong>th</strong>an Small?<br />

Pounds P of Force F <strong>to</strong> CPF cru ush one pell let<br />

80.00<br />

70.00<br />

60.00<br />

50.00<br />

40.00<br />

30.00<br />

20 20.00 00<br />

10.00<br />

Si y = l 1488 1488.2x P 2 2ll - 18 18.714 t C 714 h<br />

R 2 y = 1488.2x - 18.714<br />

R = 0.7765<br />

2 y = 1488.2x - 18.714<br />

R = 0.7765<br />

2 Single Pellet <strong>Crush</strong><br />

= 0.7765<br />

18<br />

16<br />

20/40<br />

16/20<br />

12/18<br />

0.00<br />

14<br />

0.0000 0.0100<br />

12<br />

0.0200 0.0300 0.0400 0.0500 0.0600<br />

<strong>Proppant</strong> Size inches Courtesy Stim-Lab<br />

Percent<br />

<strong>Crush</strong><br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

NO!!<br />

30/50 LWC 20/40 LWC 16/20 LWC 12/18 LWC


For all proppant types, larger grains have<br />

greater individual streng<strong>th</strong> streng<strong>th</strong>.<br />

CPF<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

20/40<br />

12/18<br />

0 0.02 0.04 0.06 0.08 0.1 0.12<br />

<strong>Proppant</strong> pp Size, , inches<br />

Source: Stim-Lab Consortium, July 2001 1.8-16<br />

CarboLite<br />

Hi Hickory k<br />

Interprop<br />

CoSilica<br />

Jordan<br />

ResinPR


Ano<strong>th</strong>er Look at Single Grain Streng<strong>th</strong>s…<br />

CPF<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

20/40<br />

12/18<br />

0 0.02 0.04 0.06 0.08 0.1 0.12<br />

<strong>Proppant</strong> pp Size, , inches<br />

Source: Stim-Lab Consortium, July 2001 1.8-16<br />

CarboLite<br />

Hi Hickory k<br />

Interprop<br />

CoSilica<br />

Jordan<br />

ResinPR<br />

Note <strong>th</strong>at application of<br />

resin does not improve p<br />

grain streng<strong>th</strong>, but ra<strong>th</strong>er<br />

improves distribution of<br />

stress between grains<br />

<strong>and</strong> encapsulates fines.


So why does crush increase<br />

• Streng<strong>th</strong> in numbers?<br />

wi<strong>th</strong> i<strong>th</strong> llarge proppants? t ?


“There’s Streng<strong>th</strong> in Numbers”<br />

Smaller mesh sizes distribute <strong>th</strong>e load <strong>to</strong> across<br />

more particles compared <strong>to</strong> larger mesh sizes


<strong>Proppant</strong> Type<br />

• Natural quartz crystals (s<strong>and</strong>), manufactured ceramics, <strong>and</strong><br />

resin-coated proppants crush differently<br />

• S<strong>and</strong><br />

<strong>–</strong> QQuartz t crystals t l tend t dt <strong>to</strong> result lti in a greater t number b of ffi fine shards h d<br />

• Ceramics<br />

<strong>–</strong> Tend <strong>to</strong> cleave or part p in<strong>to</strong> relatively y few, , larger g ppieces<br />

• Resin Coated Products<br />

<strong>–</strong> Resin does not significantly change single grain streng<strong>th</strong>, but<br />

improves distribution of stress stress. If <strong>th</strong>e particles can be<br />

encapsulated, <strong>th</strong>ey will not be measured as “crush” regardless of<br />

whe<strong>th</strong>er <strong>th</strong>e substrate fails<br />

<strong>SPE</strong> 11634 - conductivity comparisons cannot be made on <strong>th</strong>e basis of<br />

crush tests.


Do all <strong>Proppant</strong>s Fail in <strong>th</strong>e Same Manner?<br />

Brown S<strong>and</strong><br />

at t6k 6k psi. i<br />

RCS at 8k psi.<br />

When <strong>th</strong>ey fail fail…<br />

<strong>–</strong> S<strong>and</strong>s shatter like a glass<br />

<strong>–</strong> CCeramics i cleave l lik like a bbrick i k<br />

<strong>–</strong> Resin Coated products<br />

“deform”; deform ; fines captured<br />

IDC at<br />

8k psi.


Do fines affect all proppants similarly?<br />

RRemember… b<br />

• All proppants do not fail in <strong>th</strong>e same manner<br />

<strong>–</strong> The fines generated by one proppant may look<br />

drastically different <strong>th</strong>an <strong>th</strong>ose generated by<br />

ano<strong>th</strong>er. <strong>th</strong><br />

• The packing arrangement for similarly sized<br />

proppants are not <strong>th</strong>e same for all types of<br />

proppants.<br />

<strong>–</strong> i.e. <strong>th</strong>e packing arrangement for a 20/40<br />

ceramic, 20/40 RCS <strong>and</strong> 20/40 S<strong>and</strong> will be<br />

diff different t even at t comparable bl stresses.<br />

t


ht Perceent<br />

in Siize<br />

Rangge<br />

Weig<br />

Post <strong>Crush</strong> Sieve Distribution<br />

100<br />

75<br />

50<br />

25<br />

0<br />

98<br />

After crushing 20/40<br />

EconoProp at 6000 psi<br />

St<strong>and</strong>ard API technique<br />

1.18 0.43 0.2 0.13 0.08 0<br />

-20/+40 -40/+50 -50/+70 -70/+100 -100/+200 -200/+325 Pan<br />

Source: CARBO Analyses Nov 1998


A Closer Look at <strong>th</strong>e <strong>Crush</strong>ed Fraction<br />

Percent P <strong>Crush</strong> C<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

1.18<br />

“2% fines” reported wi<strong>th</strong> st<strong>and</strong>ard<br />

testing could mean 2 cleaved grains<br />

per 100 (4 immobile pieces), or it could<br />

represent 400 mobile fragments in <strong>th</strong>e<br />

100-mesh range<br />

Immobile cleaved grains It makes a difference!<br />

0.43<br />

0.2<br />

Potentially mobile in 20/40 pack<br />

(<strong>SPE</strong> 24008)<br />

0.13<br />

0.08<br />

-40/+50 -50/+70 -70/+100 -100/+200 -200/+325 Pan<br />

Source: CARBO Analyses Nov 1998<br />

0


Fluid Effects<br />

• <strong>Crush</strong> testing is performed dry. What if <strong>th</strong>e proppant<br />

is saturated?<br />

Percentt<br />

<strong>Crush</strong><br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Modified <strong>Crush</strong> Test Results<br />

EEconoProp P at t 6000 psi i<br />

Dry API Moisten in cell<br />

Moistenincell Moisten in cell Moisten wi<strong>th</strong><br />

Moisten wi<strong>th</strong><br />

wi<strong>th</strong> water wi<strong>th</strong> min. oil water, <strong>th</strong>en min. oil, <strong>th</strong>en<br />

add <strong>to</strong> cell add <strong>to</strong> cell<br />

Source: CARBO Tech Brochure 3/4/96


Is one set of Test Conditions superior <strong>to</strong> ano<strong>th</strong>er?<br />

Cruush<br />

%<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

St<strong>and</strong>ard<br />

Loadingg<br />

Dry, y, wet, , hot, , room temperature, p , water or oil…<br />

is one me<strong>th</strong>od more realistic <strong>th</strong>an ano<strong>th</strong>er?<br />

Load by<br />

h<strong>and</strong> <strong>and</strong><br />

rotate<br />

pis<strong>to</strong>n<br />

Load by<br />

h<strong>and</strong> <strong>and</strong><br />

do not<br />

rotate<br />

pis<strong>to</strong>n<br />

6k <strong>Crush</strong> @ 2#/ft2<br />

S<strong>and</strong><br />

ELWC<br />

RCS<br />

St<strong>and</strong>ard St<strong>and</strong>ard St<strong>and</strong>ard Wet wi<strong>th</strong> Wet wi<strong>th</strong> St<strong>and</strong>ard St<strong>and</strong>ard<br />

<strong>th</strong>en tapp<br />

<strong>th</strong>en wet <strong>th</strong>en wet water <strong>th</strong>en mineral oil but heat <strong>to</strong> but heat <strong>to</strong><br />

cell wi<strong>th</strong> water wi<strong>th</strong> load in<strong>to</strong> <strong>th</strong>en load 200F dry 200F wet<br />

mineral oil cell in<strong>to</strong> cell


Can <strong>Crush</strong> results be Correlated <strong>to</strong> Conductivity?<br />

More Realistic Conditions in a Conductivity Test<br />

What’s <strong>th</strong>e Difference?<br />

• <strong>Proppant</strong>s pp evaluated as received<br />

• <strong>Tests</strong> equivalent mass loading, <strong>and</strong> 2 lb/ft2<br />

• Utilizes S<strong>and</strong>s<strong>to</strong>ne shims<br />

• Flow water <strong>th</strong>rough pack<br />

• Elevated temperatures (150° (150 or 250° 250 F)<br />

• Stress held for at least 50 hours


Disassembled API <strong>Proppant</strong> Cell<br />

<strong>Proppant</strong> Bed<br />

Ports for Measuring<br />

Differential Pressure<br />

Temperature Port<br />

S<strong>and</strong>s<strong>to</strong>ne Cores<br />

Flow Through<br />

<strong>Proppant</strong> Bed


Long Term Conductivity Cells


Can <strong>Crush</strong> results be Correlated <strong>to</strong> Conductivity?<br />

<strong>Crush</strong> C %<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

St<strong>and</strong>ard<br />

Loading<br />

The “crush” measured after a Conductivity test<br />

significantly higher <strong>th</strong>an <strong>Crush</strong> test.<br />

6k <strong>Crush</strong> Results vs <strong>Crush</strong> after Conductivity Testing at 6k psi<br />

Load by<br />

h<strong>and</strong> <strong>and</strong><br />

rotate<br />

pis<strong>to</strong>n<br />

Load by<br />

h<strong>and</strong> <strong>and</strong><br />

do not<br />

rotate<br />

pis<strong>to</strong>n<br />

St<strong>and</strong>ard St<strong>and</strong>ard St<strong>and</strong>ard<br />

<strong>th</strong>en tap <strong>th</strong>en wet <strong>th</strong>en wet<br />

cell wi<strong>th</strong> water wi<strong>th</strong><br />

mineral oil<br />

Wet wi<strong>th</strong> Wet wi<strong>th</strong><br />

water <strong>th</strong>en mineral oil<br />

load in<strong>to</strong> <strong>th</strong>en load<br />

cell in<strong>to</strong> cell<br />

S<strong>and</strong><br />

ELWC<br />

RCS<br />

St<strong>and</strong>ard St<strong>and</strong>ard<br />

but heat <strong>to</strong> but heat <strong>to</strong><br />

200F dry 200F wet<br />

All tests at 2 lb/ft 2 loading


Embedment<br />

More wid<strong>th</strong> retained,<br />

but lower perm


Spalling


Spalling


Example of Conductivity Loss<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

CONDUCTIVITY VS. CLOSURE STRESS<br />

Stim -Lab Inc.<br />

P redkF02<br />

`<br />

YME=5E6psi<br />

YME=1E6psi<br />

YME=.5E6psi<br />

YME=.1E6psi<br />

0 2000 4000 6000 8000 10000 12000<br />

CLOSURE STRESS - PSI<br />

11.0lb/sqft 0lb/ ft 20/40B 20/40Badger150°F d 150°F 11.0lb/sqft 0lb/ ft 20/40B 20/40Badger150°F<br />

d 150°F<br />

1.0lb/sqft 20/40Badger150°F 1.0lb/sqft 20/40Badger150°F<br />

Source: Stim-Lab Consortium, Feb 2002 1.6-46


In <strong>th</strong>e real world:<br />

<strong>Proppant</strong> Durability<br />

- Fractures are subjected <strong>to</strong> high stresses<br />

(increasing) for extended periods of time<br />

- Stress levels fluctuate (cyclic stress) wi<strong>th</strong><br />

wellwork ll k <strong>and</strong> d changes h iin li line pressure<br />

Therefore:<br />

• All proppants appear <strong>to</strong> lose conductivity over<br />

ti time<br />

• Traditional resins do not appear <strong>to</strong> protect<br />

proppants p oppa s from o deg degradation. ada o<br />

• Many data suggest degradation is a mechanical<br />

failure, not chemical attack. 38


<strong>Proppant</strong> Durability<br />

• Traditional “long term” conductivity tests maintain<br />

stress on proppant for 50 hours<br />

<strong>–</strong> It is known <strong>th</strong>at proppants continue <strong>to</strong> degrade beyond<br />

50 hours, but <strong>th</strong>is was a practical compromise between<br />

labora<strong>to</strong>ry expense <strong>and</strong> accuracy accuracy. Fig 4, 4 <strong>SPE</strong> 16415<br />

Longer test captures a portion of<br />

<strong>th</strong>e time-dependent decline. We<br />

know degradation continues<br />

beyond y <strong>th</strong>is, , but modern “50 hour”<br />

tests include correction for initial<br />

repacking/etc.<br />

This phenomenon occurs even<br />

wi<strong>th</strong> silica saturation<br />

Reference: <strong>SPE</strong> 16415 Nor<strong>to</strong>n <strong>and</strong> Stim-Lab<br />

Conducctivity<br />

(mdd-ft)<br />

1000<br />

100<br />

20/40 Jordan s<strong>and</strong>,<br />

8000 psi<br />

0 25 50 75 100<br />

Hours at Constant Stress


% Original O Conductiv<br />

C vity<br />

Extended duration tests:<br />

1984<br />

(75 & 250F)<br />

API “short term” cell: Metal plates, continuous flowing 2% KCl,<br />

Non Non-silica silica saturated<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Fig 19, <strong>SPE</strong> 12616 between metal plates<br />

20/40 S<strong>and</strong> at 75F<br />

10/20 S<strong>and</strong> at 250F<br />

0 30 60 90 120 150 180 210 240 270 300<br />

Days at Constant Stress, 5000 psi<br />

Reference: <strong>SPE</strong> 12616 by Montgomery, Steanson, Schlumberger<br />

40


Permmeability<br />

Ratio R<br />

Published extended duration tests:<br />

1986<br />

93C (200F)<br />

All non-corrodible surfaces, prop in<br />

Teflon tube, continuous flowing 2% KCl<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Fig 4, <strong>SPE</strong> 14133<br />

CarboPROP at 10,000 psi (69 MPa)<br />

CarboLITE at 10,000 psi (69 MPa)<br />

S<strong>and</strong> at 5000 psi (35 MPa)<br />

0 15 30 45 60 75<br />

Days at Constant Stress<br />

Connductivity<br />

(mmd-ft)<br />

1986<br />

(300F)<br />

Teflon tube, continuous flowing 2% KCl,<br />

Non-silica saturated<br />

10000<br />

1000<br />

100<br />

<strong>SPE</strong> Drilling, April 1986, page 5<br />

Interprop<br />

Proflow<br />

RCS<br />

Ottawa S<strong>and</strong><br />

0 10 20 30 40 50<br />

Days at Constant Stress, 8500 psi<br />

References: <strong>SPE</strong> 14133 by CARBO, <strong>SPE</strong> Drilling article by Nor<strong>to</strong>n-Alcoa <strong>Proppant</strong>s <strong>and</strong> TerraTek Research<br />

41


Temperature Correction for White S<strong>and</strong><br />

Connductivity<br />

Correction C from f 150 deeg<br />

F, fac<strong>to</strong>rr<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

150 deg F<br />

200 degF<br />

250 deg F<br />

300 deg F<br />

350 deg F<br />

At 6500 psi <strong>and</strong> 250F, 20/40 White S<strong>and</strong> loses<br />

40% of f it its conductivity d ti it compared d <strong>to</strong> t 150F. 150F<br />

20/40 Premium White S<strong>and</strong><br />

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000<br />

Stress, psi StimLab PredictK


Cyclic Loading of <strong>Proppant</strong> Packs<br />

• All proppants appear <strong>to</strong> be damaged by<br />

continued stress cycling<br />

Connductivity<br />

(mmd-ft)<br />

5,000<br />

4,000<br />

3,000<br />

2,000<br />

1,000<br />

-<br />

Effect of Stress Cycling on <strong>Proppant</strong>s<br />

Three cycles, 6000 <strong>to</strong> 1000 psi<br />

CARBO Tech Rpt 99-062<br />

50 hrs at 6000 psi<br />

3 cycles, 6000 <strong>to</strong> 1000<br />

23% loss<br />

32% loss<br />

Source: CARBO Tech Rpt 99-062<br />

15% loss<br />

RCS #1 RCS #2 EconoProp<br />

<strong>Proppant</strong> Type (all 20/40)


Condductivity<br />

(md-ft) (<br />

10,000<br />

9,000<br />

88,000 000<br />

7,000<br />

66,000 000<br />

5,000<br />

4,000<br />

3,000<br />

2,000<br />

1,000<br />

-<br />

Effect of Stress Cycling on <strong>Proppant</strong> Conductivity<br />

(Stim-Lab July 2000 data)<br />

St Stress (psi) ( i)<br />

LWC<br />

RCS<br />

Ceramic loses 26%, 26%<br />

RCS loses 35% due <strong>to</strong> 25 cycles<br />

0 100 200 300 400<br />

Hours


Perccent<br />

Crrush<br />

(wt% ( smmaller<br />

<strong>th</strong>an t 400<br />

mesh)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

CARBO Tech Rpt 99-062<br />

-<br />

Effect of Stress Cycling<br />

on <strong>Proppant</strong> <strong>Crush</strong> (6000 psi)<br />

1.37 1.52<br />

10.44<br />

Single <strong>Crush</strong> at 6000 psi<br />

Triple Cycle Dry <strong>Crush</strong><br />

Triple Cycle <strong>Crush</strong> in Long Term Cell<br />

3333.83 3.33<br />

15.79<br />

302 3.02<br />

1.92<br />

8.47<br />

RCS #1 RCS #2 EconoProp<br />

<strong>Proppant</strong> Type (all 20/40)


Options <strong>to</strong> reduce crush:<br />

Action <strong>Crush</strong> Conductivity<br />

Rename 16/20 <strong>to</strong> 16/30<br />

⇓ ~50% No change<br />

Add 30 mesh material <strong>to</strong> 16/20 <strong>and</strong> rename <strong>to</strong> 16/30<br />

⇓ ~60% ⇓ ~30%<br />

Reduce average proppant size or produce broader distribution<br />

⇓ ⇓<br />

Sticky additive <strong>to</strong> agglomerate fines<br />

⇓ ~100% ⇓<br />

Pre-cured or curable resins<br />

⇓ often ⇓ at low stress,<br />

⇑ at high g stress<br />

Include deformable “cushioning” agents<br />

⇓ ⇓


The Correct Way <strong>to</strong> Test <strong>Proppant</strong><br />

• Remember, proppant must achieve two goals:<br />

<strong>–</strong> Reservoir contact (proppant (p pp volume) )<br />

<strong>–</strong> Ability <strong>to</strong> conduct hydrocarbons wi<strong>th</strong> minimal pressure loss<br />

• These characteristics can be directly measured wi<strong>th</strong><br />

a conductivity test<br />

<strong>–</strong> <strong>Proppant</strong> confined between s<strong>and</strong>s<strong>to</strong>ne core<br />

<strong>–</strong> Realistic temperatures<br />

<strong>–</strong> Flowing brine, oil, <strong>and</strong>/or gas<br />

<strong>–</strong> 50 hour duration (or longer)<br />

<strong>–</strong> Cyclic stress, embedment, fines migration, non-Darcy <strong>and</strong><br />

o<strong>th</strong>er issues can be investigated g in specialized p tests<br />

<strong>–</strong> Directly measures parameters of interest [frac wid<strong>th</strong> <strong>and</strong><br />

flow capacity]


<strong>SPE</strong> <strong>119242</strong><br />

<strong>How</strong> <strong>to</strong> <strong>Use</strong> <strong>and</strong> <strong>Misuse</strong><br />

<strong>Proppant</strong> <strong>Crush</strong> <strong>Tests</strong> <strong>–</strong><br />

Exposing <strong>th</strong>e Top 10 My<strong>th</strong>s<br />

Questions?


Darcy’s Darcy s Law vs vs. Forchheimer Equation<br />

• Δ P/L = μ v /k / k<br />

<strong>–</strong> Pressure drop is proportional <strong>to</strong> fluid<br />

velocity l it<br />

<strong>–</strong> Applicable only at low flowrates<br />

• Δ P/L = μ v / k + β ρv 2<br />

<strong>–</strong> Pressure drop is proportional <strong>to</strong> square of<br />

fluid velocity<br />

<strong>–</strong> Applicable at realistic fracture flowrates


DDoes FFracture t Wid<strong>th</strong> Affect Aff t <strong>Crush</strong>? C h?<br />

• <strong>Crush</strong> increases significantly in narrow<br />

fractures<br />

Interior grains are loaded<br />

“evenly” evenly on 6 sides<br />

Exterior grains are not<br />

stressed uniformly


Long g Term Conductivity y Test<br />

Procedure<br />

• Load 63 g (equivalent <strong>to</strong> 2 lbs/sq ft) of proppant in<br />

each cell.<br />

• Install cells in <strong>th</strong>e press.<br />

• Purge 2% KCl solution wi<strong>th</strong> oxygen-free nitrogen.<br />

• Apply a vacuum for 45 minutes <strong>to</strong> remove air in<br />

cells.<br />

• Flow 2% KCl solution <strong>th</strong>rough heated silica s<strong>and</strong>,<br />

<strong>and</strong> d cells. ll<br />

• Ramp <strong>to</strong> an initial stress of 1000 psi <strong>and</strong> <strong>to</strong> a 500<br />

psi fluid pressure.<br />

• After checking equipment is working properly, heat<br />

cells <strong>to</strong> 250ºF.


Long Term Conductivity Test<br />

Procedure<br />

• Increase stress <strong>to</strong> 2,000 psi.<br />

• Flow fluid at rates of 33, 4 <strong>and</strong> 6 ml/min ml/min.<br />

Measure Δ p 30 minutes after each step<br />

change in flow rate.<br />

• Measure frac wid<strong>th</strong> <strong>and</strong> temperature. Maintain<br />

stress for 50 hr.<br />

• Increase stress in 22,000 000 psi increments for 50<br />

hours each.<br />

• Continue measuring Δ p at 3, 4 <strong>and</strong> 6 ml/min of<br />

fluid flow, frac wid<strong>th</strong> <strong>and</strong> temperature until<br />

12,000 psi stress is reached.


AB A Better tt Test T tt <strong>to</strong> Select S l tP <strong>Proppant</strong> t<br />

• Long term conductivity testing<br />

• Direct measurement of flow capacity of<br />

proppant pack<br />

• Can account for:<br />

<strong>–</strong> Embedment<br />

<strong>–</strong> Temperature<br />

<strong>–</strong> Fluid Effects<br />

<strong>–</strong> Fines Migration g ( (wi<strong>th</strong> appropriate pp p flowrates) )


54<br />

Chudnovsky, Univ of Ill, Chicago<br />

Is complexity<br />

solely attributed<br />

<strong>to</strong> “rock rock fabric”? fabric ?<br />

Unconsolidated 200 mesh s<strong>and</strong>, 35 lb XLG,<br />

Flow � <strong>SPE</strong> 63233<br />

Many o<strong>th</strong>er examples! [TerraTek, Baker, Weijers, CSM FAST consortium]


Frac Wid<strong>th</strong> <strong>–</strong> wi<strong>th</strong> CrossLinked Gel<br />

Diffuse slurry<br />

Modest concentration<br />

w f<br />

TSO + high concentration<br />

We don’t envision <strong>th</strong>ick<br />

filtercakes in very tight rock,<br />

but it doesn’t take much <strong>to</strong><br />

damage a narrow frac!<br />

Diffuse slurry<br />

Low concentration<br />

2 ppa [240 kg/m3 pp [ g ] s<strong>and</strong> slurry y is<br />

about 1 part solids <strong>to</strong> 7 parts liquid.<br />

Final frac wid<strong>th</strong> could be ~1/7 <strong>th</strong> <strong>th</strong>e<br />

pumping wid<strong>th</strong>!<br />

Navigation menu

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!