24.12.2012 Views

AREVA's Actiflo-Rad water treatment system for the

AREVA's Actiflo-Rad water treatment system for the

AREVA's Actiflo-Rad water treatment system for the

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Inhalt | Content<br />

Internationale Zeitschrift für<br />

Kernenergie<br />

5<br />

Mai 2012 Offizielles Fachblatt der Kerntechnischen Gesellschaft<br />

Fukushima Daiichi waste <strong>water</strong> <strong>treatment</strong><br />

scenario (from June to September 2011)<br />

(Seite 308)<br />

Ausschnitte des hybriden Rechengitters<br />

(Seite 322)<br />

Cover: Inspection of an emergency diesel<br />

generator at <strong>the</strong> Santa María de Garoña NPP in<br />

Spain. The current license <strong>for</strong> <strong>the</strong> 466 MWe gross<br />

boiling <strong>water</strong> reactor will expire in 2013.<br />

According to a new safety review of <strong>the</strong> facility in<br />

2012 by <strong>the</strong> Spanish safety authority CSN, <strong>the</strong><br />

plant should operate <strong>for</strong> fur<strong>the</strong>r 10 licensed years<br />

until 2019 (Courtesy: Nuclenor)<br />

A. Petersen 303 Grußworte zur<br />

R. Güldner Jahrestagung Kerntechnik 2012<br />

in Stuttgart<br />

Content in brief 306<br />

T. Prevost 308 Areva’s <strong>Actiflo</strong> TM -<strong>Rad</strong><br />

M. Blase Wasserbehandlungs<strong>system</strong> für das<br />

H. Paillard Kernkraftwerk Fukushima<br />

H. Mizuno Areva’s <strong>Actiflo</strong> TM -<strong>Rad</strong> Water Treatment<br />

System <strong>for</strong> <strong>the</strong> Fukushima Nuclear<br />

Power Plant<br />

W. Timpf 313 Lastwechselfähigkeiten von<br />

M. Fuchs Kernkraftwerken – Erfahrungen<br />

und Ausblick<br />

The Load Follow Capability of Nuclear<br />

Power plants – Experience and Outlook<br />

F. Blömeling 318 CFD-Analysen in Aufsichts- und<br />

P. Pandazis Genehmigungsverfahren<br />

A. Schaffrath CFD Analyses in Regulatory Practice<br />

J.-U. Klügel 325 Risikobeurteilung komplexer<br />

Unfallszenarien<br />

Risk Assessment of Complex Accident<br />

Scenarios<br />

C. Bühler 331 Sicherheitsanalytik für den Einsatz neuer<br />

digitaler Sicherheits-Leittechnik<strong>system</strong>e<br />

Safety Analysis <strong>for</strong> <strong>the</strong> Use of New<br />

Digital Safety I&C Systems<br />

H. Bienia 337 Brennilis – Erster Einsatz von<br />

Th. Noll Industrierobotern für den Rückbau eines<br />

französischen Kernkraftwerks<br />

Brennilis – First Use of Industrial Robots<br />

in <strong>the</strong> Demolition of a French Nuclear<br />

Power Plant<br />

304 atw 57. Jg. (2012) Heft 5 | Mai


International Journal <strong>for</strong><br />

Nuclear Power<br />

H. Völzke 343 Aktuelle Entwicklungen auf dem Gebiet<br />

G. Nieslony der Behälter-Bauartprüfungen für das<br />

V. Noack Endlager KONRAD<br />

P. Hagenow Current Developments in Container<br />

O. Kovacs Design Testing <strong>for</strong> <strong>the</strong> Konrad Repository<br />

K. Büttner 347 Alternative Lösungen für Abfallbehand-<br />

lungszentren bei Neubauten von<br />

Kernkraftwerken (russischen Typs)<br />

Alternative Solutions <strong>for</strong> Waste<br />

Management Centres Designed <strong>for</strong><br />

New Nuclear Power Plants Under<br />

Construction (Russian Type NPPs)<br />

Redaktion 350 Tagungsbericht: Endlagerexperten trafen<br />

sich in Essen – Reges Interesse am<br />

1. Fachgespräch Endlagerbergbau von<br />

DMT und GNS<br />

Conference Report: Repository Experts<br />

Met in Essen – Keen Interest in <strong>the</strong> 1st<br />

Technical Discussion of Repository<br />

Mining Organized by DMT and GNS<br />

Redaktion 352 Kernenergie Online: Forschungsreaktoren<br />

Nuclear Power On line: Research Reactors<br />

Impressum 353<br />

Nachrichten 353<br />

Marktdaten 365<br />

Veranstaltungshinweise 367<br />

KTG-Mitteilungen 369<br />

DAtF-Mitteilungen 370<br />

atw 57. Jg. (2012) Heft 5 | Mai<br />

Unfallmodell nach Bowtie<br />

Inhalt | Content<br />

(Seite 326)<br />

Roboter mit Werkzeugmagazinen links und<br />

oberhalb der Türöffnung zum Reaktorraum<br />

(Seite 342)<br />

Brüdenverdichter-Verdampfer der Firma LOFT<br />

(Seite 349)<br />

305


Content in brief<br />

Areva’s <strong>Actiflo</strong> TM -<strong>Rad</strong> Water<br />

Treatment System <strong>for</strong> <strong>the</strong> Fukushima<br />

Nuclear Power Plant (Page 308)<br />

T. Prevost, M. Blase, H. Paillard and H. Mizuno<br />

In <strong>the</strong> wake of <strong>the</strong> March 11 th 2011 earthquake<br />

and tsunami and <strong>the</strong> subsequent flooding of<br />

several of <strong>the</strong> Fukushima Daiichi reactor units,<br />

Japan and <strong>the</strong> Japanese utility Tepco faced a<br />

crisis situation with incredible challenges.<br />

Sea <strong>water</strong> and later desalted sea <strong>water</strong> used<br />

<strong>for</strong> open circuit post-accident reactor cooling<br />

accumulated in <strong>the</strong> basements of four reactor<br />

buildings as well as in <strong>the</strong> basements of <strong>the</strong><br />

turbine buildings on <strong>the</strong> site. The <strong>water</strong> had<br />

been heavily contaminated due to <strong>the</strong> fact that<br />

it had been in contact with molten fuel assemblies<br />

in <strong>the</strong> reactor cores. The <strong>water</strong> from<br />

flooding and subsequent cooling needed to be<br />

collected, along with rain<strong>water</strong>. Despite <strong>the</strong><br />

use of additional <strong>water</strong> storage <strong>system</strong>s<br />

brought to <strong>the</strong> site, a shortage of <strong>water</strong> storage<br />

capacity was expected in a 3-month timeframe,<br />

especially in view of <strong>the</strong> coming rain<br />

season in Japan. The overall <strong>water</strong> inventory<br />

was estimated at around 110,000 tons with a<br />

contamination up to <strong>the</strong> order of 1 Ci/l<br />

(3.7×10 10 Bq/l). To avoid an over-flow of highly<br />

contaminated <strong>water</strong> into <strong>the</strong> sea Tepco envisaged<br />

establishing a <strong>water</strong> <strong>treatment</strong> <strong>system</strong>.<br />

This article focuses on <strong>the</strong> <strong>Actiflo</strong>-<strong>Rad</strong><br />

<strong>water</strong> <strong>treatment</strong> project implemented by Areva<br />

as part of <strong>the</strong> Tepco general <strong>water</strong> <strong>treatment</strong><br />

scheme. It presents a detailed look at <strong>the</strong> functional<br />

principle of <strong>the</strong> <strong>Actiflo</strong>-<strong>Rad</strong> process,<br />

related on-<strong>the</strong>-fly research and development,<br />

an explanation of <strong>system</strong> implementation<br />

challenges and a brief summary of operation<br />

results.<br />

The Load Follow Capability of Nuclear<br />

Power plants – Experience and<br />

Outlook (Page 313)<br />

W. Timpf and M. Fuchs<br />

The notion that nuclear power plants are unflexible<br />

machines that cannot be operated in<br />

load-following mode has constantly been<br />

spread by anti-nuclear activists over <strong>the</strong> last<br />

years. But actually, <strong>the</strong> opposite is true. Nuclear<br />

Power Plants are able to adjust <strong>the</strong>ir power output<br />

over a wide range within a short period of<br />

time. High power flexibility was already implemented<br />

into <strong>the</strong> original design of German nuclear<br />

power plants from <strong>the</strong> very beginning.<br />

In <strong>the</strong> past, nuclear power plants demonstrated<br />

<strong>the</strong>ir load-following capability <strong>for</strong> decades<br />

in practice. But <strong>for</strong> many years, <strong>the</strong>re was<br />

no economic incentive and no technical need to<br />

make use of this capability and thus, it was almost<br />

<strong>for</strong>gotten. The situation has changed due<br />

to <strong>the</strong> development of renewable energies.<br />

Fluctuations in <strong>the</strong> offer from volatile energy<br />

sources will cause an increasing need <strong>for</strong> <strong>the</strong><br />

flexibility of <strong>the</strong> power plant fleet. Just recently,<br />

nuclear power plants were employed to balance<br />

fluctuations in wind energy production. Since<br />

nuclear power plants are highly flexible and do<br />

not emit any carbon-dioxide, <strong>the</strong>y are ideal<br />

partners of <strong>the</strong> renewable energies.<br />

CFD Analyses in Regulatory Practice<br />

(Page 318)<br />

F. Blömeling, P. Pandazis and A. Schaffrath<br />

Numerical software is used in nuclear regulatory<br />

procedures <strong>for</strong> many problems in <strong>the</strong> fields<br />

of neutron physics, structural mechanics, <strong>the</strong>rmal<br />

hydraulics etc. Among o<strong>the</strong>r things, <strong>the</strong><br />

software is employed in dimensioning and designing<br />

<strong>system</strong>s and components and in simulating<br />

transients and accidents. In nuclear technology,<br />

analyses of this kind must meet strict<br />

requirements.<br />

Computational Fluid Dynamics (CFD) codes<br />

were developed <strong>for</strong> computing multidimensional<br />

flow processes of <strong>the</strong> type occurring in<br />

reactor cooling <strong>system</strong>s or in containments. Extensive<br />

experience has been accumulated by<br />

now in selected single-phase flow phenomena.<br />

At <strong>the</strong> present time, <strong>the</strong>re is a need <strong>for</strong> development<br />

and validation with respect to <strong>the</strong> simulation<br />

of multi-phase and multi-component flows.<br />

As insufficient input by <strong>the</strong> user can lead to<br />

faulty results, <strong>the</strong> validity of <strong>the</strong> results and an<br />

assessment of uncertainties are guaranteed only<br />

through consistent application of so-called<br />

Best Practice Guidelines.<br />

The authors present <strong>the</strong> possibilities now<br />

available to CFD analyses in nuclear regulatory<br />

practice. This includes a discussion of <strong>the</strong> fundamental<br />

requirements to be met by numerical<br />

software, especially <strong>the</strong> demands upon computational<br />

analysis made by nuclear rules and regulations.<br />

In conclusion, 2 examples are presented<br />

of applications of CFD analysis to nuclear<br />

problems: Determining deboration in <strong>the</strong> condenser<br />

reflux mode of operation, and protection<br />

of <strong>the</strong> reactor pressure vessel (RPV) against<br />

brittle failure.<br />

Risk Assessment of Complex Accident<br />

Scenarios<br />

(Page 325)<br />

J.-U. Klügel<br />

The use of methods of risk assessment in accidents<br />

in nuclear plants is based on an old tradition.<br />

The first consistent <strong>system</strong>atic study is<br />

considered to be <strong>the</strong> Rasmussen Study of <strong>the</strong><br />

U.S. Nuclear Regulatory Commission, NRC,<br />

WASH-1400. Above and beyond <strong>the</strong> realm of<br />

nuclear technology, <strong>the</strong>re is an extensive range<br />

of accident, risk and reliability research into<br />

technical-administrative <strong>system</strong>s. In <strong>the</strong> past,<br />

it has been this area of research which has led<br />

to <strong>the</strong> development of concepts of safety precautions<br />

of <strong>the</strong> type also introduced into nuclear<br />

technology (barrier concept, defense in<br />

depth, single-failure criterion), where <strong>the</strong>y are<br />

now taken <strong>for</strong> granted as trivial concepts. Also<br />

<strong>for</strong> risk analysis, nuclear technology made use<br />

of methods (such as event and fault tree analyses)<br />

whose origins were outside <strong>the</strong> nuclear<br />

field. One area in which <strong>the</strong> use of traditional<br />

methods of probabilistic safety analysis is encountering<br />

practical problems is risk assessment<br />

of complex accident scenarios in nuclear<br />

technology.<br />

A definition is offered of <strong>the</strong> term "complex<br />

accident scenarios" in nuclear technology. A<br />

number of problems are addressed which arise<br />

in <strong>the</strong> use of traditional PSA procedures in risk<br />

assessment of complex accident scenarios.<br />

Cases of complex accident scenarios are presented<br />

to demonstrate methods of risk assessment<br />

which allow robust results to be obtained<br />

even when traditional techniques of risk analysis<br />

are maintained as a matter of principle.<br />

These methods are based on <strong>the</strong> use of conditional<br />

risk metrics.<br />

Safety Analysis <strong>for</strong> <strong>the</strong> Use of New<br />

Digital Safety I&C Systems<br />

(Page 331)<br />

C. Bühler<br />

Age-induced replacement or modernization of<br />

safety I&C <strong>system</strong>s by digital equipment technology<br />

has been one of <strong>the</strong> topical subjects in<br />

nuclear technology <strong>for</strong> more than a decade.<br />

Digital equipment technology in this case<br />

means microcontroller- or microprocessorbased<br />

<strong>system</strong>s which implement I&C functions<br />

in software (SW) and, on <strong>the</strong> o<strong>the</strong>r hand, <strong>system</strong>s<br />

with programmed hardware (HW) components,<br />

such as Application-specific Integrated<br />

Circuits (ASIC), Field Programmable Gate<br />

Arrays (FPGA) or Programmable Logic Devices<br />

(PLS), which can be developed only by<br />

means of sophisticated SW development environments.<br />

The switch to digital equipment technology<br />

is more than a mere change in equipment technology<br />

even though <strong>the</strong> I&C functions remain<br />

almost identical in most cases. The switch not<br />

only leads to a different approach in equipment<br />

qualification, but also requires new focal points<br />

in plant design when it comes to assessing plant<br />

design, and needs new or adapted methods of<br />

analysis and evaluation. The main reason lies<br />

in <strong>the</strong> greater possibilities of <strong>system</strong>atic errors<br />

caused mainly by software-based development,<br />

manufacture and maintenance. New and adapted<br />

methods of analysis and evaluation <strong>for</strong> I&C<br />

atw Vol. 57 (2012) No. 5<br />

»atomwirtschaft-atomtechnik« is published<br />

monthly by INFORUM GmbH,<br />

Robert-Koch-Platz 4, 10115 Berlin, Germany<br />

phone +49 30 498555-10<br />

fax +49 30 498555-19<br />

Publisher:<br />

e-mail: atw@atomwirtschaft.de<br />

Editorial:<br />

e-mail: editorial@atomwirtschaft.com<br />

www.atomwirtschaft.de<br />

306 atw 57. Jg. (2012) Heft 5 | Mai


<strong>system</strong>s are presented and explained. It is safe<br />

to say that safety I&C technology in <strong>the</strong> highest<br />

category of requirements necessitates a<br />

very far reaching realignment in design and<br />

evaluation as well as <strong>the</strong> use of new analytical<br />

techniques. This meets <strong>the</strong> claim of an I&C<br />

technology fit <strong>for</strong> use, reliable and comparable<br />

to <strong>the</strong> technology it replaces.<br />

Brennilis – First Use of Industrial<br />

Robots in <strong>the</strong> Demolition of a French<br />

Nuclear Power Plant (Page 337)<br />

H. Bienia and Th. Noll<br />

A share of approx. 80 % nuclear electricity<br />

makes France <strong>the</strong> country with <strong>the</strong> world's<br />

largest proportion of nuclear electricity. A considerable<br />

number of French plants were commissioned<br />

more than 30 years ago. At <strong>the</strong><br />

present time, 58 nuclear power plants out of<br />

this population are in operation, twelve have<br />

already been decommissioned and are about<br />

to be, or are being, demolished. France thus is<br />

one of <strong>the</strong> most interesting and most dynamic<br />

countries as far as future demolition projects<br />

are concerned. Current demolition projects in<br />

France have a kind of model or pilot character<br />

<strong>for</strong> <strong>the</strong> future French demolition strategy and<br />

are under particularly close supervision and<br />

inspection by <strong>the</strong> operator, Electricité de<br />

France. One of <strong>the</strong>se projects is <strong>the</strong> current<br />

demolition of <strong>the</strong> CO 2-cooled heavy <strong>water</strong> reactor<br />

(EL 4) of Brennilis in Brittanny which<br />

was decommissioned in 1985. Demolition of<br />

<strong>the</strong> reactor, its primary <strong>system</strong> and ancillary<br />

<strong>system</strong>s is handled by a Franco-German consortium<br />

composed of ONET Technologies<br />

Grands Projets, France, and NUKEM Technologies,<br />

Germany.<br />

Because of <strong>the</strong> special design features of<br />

<strong>the</strong> Brennilis reactor and <strong>the</strong> boundary conditions<br />

this created, it was not possible in many<br />

cases to transfer directly German demolition<br />

techniques.<br />

The demolition technique adopted is based<br />

on <strong>the</strong> use of remotely operated robot <strong>system</strong>s<br />

not only per<strong>for</strong>ming disassembly but, step by<br />

step, also building up infrastructure of <strong>the</strong>ir<br />

own in <strong>the</strong> reactor compartment as demolition<br />

progresses.<br />

Besides <strong>the</strong> special technical features and<br />

challenges arising in this project <strong>the</strong>re are also<br />

differences in licensing regulations and cultural<br />

differences which play a major role. The<br />

report concludes with a brief summary of experience<br />

accumulated.<br />

Current Developments in Container<br />

Design Testing <strong>for</strong> <strong>the</strong> Konrad<br />

Repository (Page 343)<br />

H. Völzke, G. Nieslony, V. Noack, P. Hagenow<br />

and O. Kovacs<br />

In 2002, <strong>the</strong> Konrad repository was licensed as<br />

a repository <strong>for</strong> radioactive waste generating<br />

atw 57. Jg. (2012) Heft 5 | Mai<br />

no heat. That permit subsequently became <strong>the</strong><br />

object of litigation and was confirmed by a<br />

court of last resort as late as in 2007.<br />

The Federal Office of <strong>Rad</strong>iation Protection<br />

(BfS) <strong>the</strong>n started planning and converting<br />

<strong>the</strong> <strong>for</strong>mer iron ore mine into a repository. The<br />

licensed repository volume is 303,000 m 3<br />

based on estimates of expected waste arisings.<br />

The mine proper would offer a much larger<br />

volume. However, cask emplacement can be<br />

started only after completion of <strong>the</strong> repository<br />

which, according to <strong>the</strong> present status, will<br />

not be be<strong>for</strong>e <strong>the</strong> end of this decade.<br />

Never<strong>the</strong>less, <strong>the</strong>re is great interest even<br />

now in conditioning and packaging <strong>for</strong> repository<br />

storage of <strong>the</strong> radioactive waste planned<br />

<strong>for</strong> Konrad, which also requires casks type<br />

tested by <strong>the</strong> Federal Institute of Materials<br />

Testing (BAM) and approved by <strong>the</strong> BfS. The<br />

key items in <strong>the</strong> license <strong>for</strong> <strong>the</strong> repository are<br />

comprehensive requirements to be met by<br />

waste <strong>for</strong>ms and casks. As far as continuous<br />

revision of repository requirements and consideration<br />

of materials hazardous to <strong>water</strong><br />

are concerned, it is assumed that <strong>the</strong> key requirements<br />

applying to type tests of casks<br />

with respect to waste <strong>for</strong>ms and casks will be<br />

affected by this ei<strong>the</strong>r not at all or only very<br />

slightly.<br />

Alternative Solutions <strong>for</strong> Waste<br />

Management Centres Designed <strong>for</strong><br />

New Nuclear Power Plants Under<br />

Construction (Russian Type NPPs)<br />

(Page 347)<br />

K. Büttner<br />

Today, designers of new VVER reactors as well<br />

as companies operating Russian NPP favour<br />

direct methods of waste management <strong>for</strong><br />

treating wastes of different categories generated<br />

during plant operation. The objective is<br />

to achieve <strong>the</strong> amount of 50 m 3 of conditioned<br />

waste per 1 reactor unit per year,<br />

which is currently being discussed internationally.<br />

NUKEM Technologies has reviewed<br />

<strong>the</strong> existing waste management concepts and<br />

proposed improved waste management technologies.<br />

The first step was to identify <strong>the</strong> waste prevention<br />

policies. The waste management concept<br />

focuses on subjecting different liquid<br />

wastes to different <strong>treatment</strong> methods. Ano<strong>the</strong>r<br />

objective was to minimise <strong>the</strong> organic<br />

content in conditioned waste. The <strong>treatment</strong><br />

methods <strong>for</strong> solid radioactive waste include<br />

high <strong>for</strong>ce compaction and incineration. The<br />

new concept also features a tracking <strong>system</strong><br />

which is used <strong>for</strong> classifying <strong>the</strong> incoming<br />

waste and ensuring its traceable documentation<br />

at different stages throughout <strong>the</strong> entire<br />

<strong>treatment</strong> process. Additionally, each waste<br />

package prepared <strong>for</strong> final storage is monitored<br />

be<strong>for</strong>e it leaves <strong>the</strong> <strong>treatment</strong> building<br />

and provided with an individual certificate<br />

containing all data about <strong>the</strong> treated waste including<br />

its radiological characteristics and <strong>the</strong><br />

place of storage.<br />

Content in brief<br />

Conference Report: Repository<br />

Experts Met in Essen – Keen Interest<br />

in <strong>the</strong> 1st Technical Discussion of<br />

Repository Mining Organized by DMT<br />

and GNS (Page 350)<br />

The Editor<br />

In mid-March 2012, more than 200 participants<br />

met at <strong>the</strong> Essen technology service<br />

provider's, DMT GmbH & Co. KG, <strong>for</strong> <strong>the</strong><br />

“1 st Essen Technical Discussion of Repository<br />

Mining.” In cooperation with GNS Gesellschaft<br />

für Nuklear-Service mbH of Essen,<br />

DMT had invited to a lecture event about<br />

this very topical subject. A new plat<strong>for</strong>m<br />

was to be created <strong>for</strong> exchanges of experience<br />

and discussions with colleagues in <strong>the</strong> field<br />

and with representatives of <strong>the</strong> competent<br />

authorities of <strong>the</strong> federal and state administrations.<br />

The 5 lectures presented by Georg Arens<br />

(Federal Ministry <strong>for</strong> <strong>the</strong> Environment, Nature<br />

Conservation and Nuclear Safety – BMU), Dr.<br />

Ute Blohm Hieber (Nuclear Power, Transport,<br />

Demolition and Waste Management Unit of <strong>the</strong><br />

EU Commission – DG ENER-D.2), Matthias<br />

Ranft (Federal Office of <strong>Rad</strong>iation Protection –<br />

BfS), Wilhelm Bollingerfehr (DBE Technology),<br />

and Dr. Philipp Birkhäuser (Nationale Genossenschaft<br />

für die Lagerung radioaktiver Abfälle<br />

– Nagra, Switzerland) discussed both national<br />

German and European as well as international<br />

topics and aspects of final storage of radioactive<br />

waste.<br />

Nuclear Power On line:<br />

Research Reactors (Page 352)<br />

The Editor<br />

Presentation of <strong>the</strong>se contents in <strong>the</strong> World<br />

Wide Web (WWW):<br />

• Forschungsreaktoren MMM (Research<br />

Reactors MMM): www.<strong>for</strong>schungsreaktoren.eu<br />

• Forschungs-Neutronenquelle Heinz Maier-<br />

Leibnitz FRM II: www.frm2.tum.de<br />

• TRIGA Mainz: www.kernchemie.unimainz.de<br />

• Helmholtz-Zentrum Berlin BER-II: www.<br />

helmholtz-berlin.de/zentrum/grossgeraete/ber2/index_de.html<br />

�<br />

atw Vol. 57 (2012) No. 5<br />

»atomwirtschaft-atomtechnik« is published<br />

monthly by INFORUM GmbH,<br />

Robert-Koch-Platz 4, 10115 Berlin, Germany<br />

phone +49 30 498555-10<br />

fax +49 30 498555-19<br />

Publisher:<br />

e-mail: atw@atomwirtschaft.de<br />

Editorial:<br />

e-mail: editorial@atomwirtschaft.com<br />

www.atomwirtschaft.de<br />

307


Water Treatment System <strong>for</strong> Fukushima<br />

Als Folge des Erdbebens und des Tsunamis<br />

am 11. März 2011 wurden mehrere der Reaktorblöcke<br />

des Kernkraftwerks Fukushima<br />

Daiichi überflutet. Japan und der japanische<br />

Betreiber Tepco sahen sich daraufhin einer<br />

Krisensituation mit unglaublichen Heraus<strong>for</strong>derungen<br />

gegenüber.<br />

Meerwasser und später entsalztes Wasser,<br />

das in einem offenen Kreislauf zur Reaktorkühlung<br />

im Störfall verwendet wurde, sammelte<br />

sich in den Untergeschossen von 4 Reaktorgebäuden<br />

sowie den Maschinenhäusern<br />

am Standort. Dieses Wasser war stark<br />

kontaminiert, da es in Kontakt mit den geschmolzenen<br />

Brennelementen in den Reaktorkernen<br />

stand. Das Wasser aus der Überflutung<br />

und der anschließenden Kühlung<br />

musste, zusammen mit Regenwasser, gesammelt<br />

werden. Trotz der Nutzung zusätzlicher<br />

Speicher war ein Engpass bei der Wasserspeicherung<br />

innerhalb von 3 Monaten zu erwarten,<br />

insbesondere im Hinblick auf die kommende<br />

Regenzeit in Japan. Das gesamte Wasserinventar<br />

wurde auf rund 100.000 t geschätzt,<br />

mit einer Kontamination bis zur<br />

Größenordnung von 1 Ci/l (3,7×10 10 Bq/l).<br />

Um ein Überlaufen dieses hoch kontaminierten<br />

Wassers in das Meer zu verhindern, sah<br />

Tepco vor, ein Wasseraufbereitungs<strong>system</strong><br />

einzusetzen.<br />

Dieser Beitrag berichtet über das von<br />

Areva durchgeführte <strong>Actiflo</strong> TM -<strong>Rad</strong>-Wasseraufbereitungsprojekt<br />

als Teil des allgemeinen<br />

Wasseraufbereitungsschemas von Tepco. Detailliert<br />

wird über das Funktionsprinzip des<br />

<strong>Actiflo</strong> TM -<strong>Rad</strong>-Prozesses sowie die durchgeführte<br />

kurzfristige Forschung und Entwicklung<br />

in<strong>for</strong>miert. Die Heraus<strong>for</strong>derungen bei<br />

der Systemimplementierung werden zusammengefasst<br />

und die Betriebsergebnisse vorgestellt.<br />

Anschriften der Verfasser:<br />

Thierry Prevost and Michael Blase<br />

AREVA NC<br />

1, place Jean Miller<br />

92084 Paris la Défense<br />

France<br />

Herve Paillard<br />

Veolia Water<br />

1 B, rue Giovanni Battista Pirelli<br />

94410 Saint Maurice<br />

France<br />

Hisamatsu Mizuno<br />

Veolia Water Japan<br />

Yokoso Rainbow Tower 11F, 3-20-20 Kaigan,<br />

Minato-Ku<br />

Tokyo 108-0022<br />

Japan<br />

Areva’s <strong>Actiflo</strong> TM -<strong>Rad</strong><br />

Water Treatment<br />

System <strong>for</strong> <strong>the</strong> Fukushima<br />

Nuclear Power Plant<br />

Thierry Prevost and Michael Blase, Paris/France,<br />

Herve Paillard, Saint Maurice/France, and<br />

Hisamatsu Mizuno, Tokyo/Japan<br />

Introduction<br />

In <strong>the</strong> wake of <strong>the</strong> March 11 th 2011 earthquake<br />

and tsunami and <strong>the</strong> subsequent<br />

flooding of several of <strong>the</strong> Fukushima Daiichi<br />

reactor units, Japan and <strong>the</strong> Japanese utility<br />

Tepco faced a crisis situation with incredible<br />

challenges.<br />

Sea <strong>water</strong> and later desalted sea <strong>water</strong><br />

used <strong>for</strong> open circuit post-accident reactor<br />

cooling accumulated in <strong>the</strong> basements of 4<br />

reactor buildings as well as in <strong>the</strong> basements<br />

of <strong>the</strong> turbine buildings on <strong>the</strong> site.<br />

The <strong>water</strong> had been heavily contaminated<br />

due to <strong>the</strong> fact that it had been in contact<br />

with molten fuel assemblies in <strong>the</strong> reactor<br />

cores. The <strong>water</strong> from flooding and subsequent<br />

cooling needed to be collected, along<br />

with rain<strong>water</strong>. Despite <strong>the</strong> use of additional<br />

<strong>water</strong> storage <strong>system</strong>s brought to <strong>the</strong> site,<br />

a shortage of <strong>water</strong> storage capacity was expected<br />

in a 3-month timeframe, especially<br />

in view of <strong>the</strong> coming rain season in Japan.<br />

The overall <strong>water</strong> inventory was estimated<br />

at around 110,000 tons with a contamination<br />

up to <strong>the</strong> order of 1 Ci/l (3.7×10 10<br />

Bq/l). To avoid an over-flow of highly contaminated<br />

<strong>water</strong> into <strong>the</strong> sea Tepco envisaged<br />

establishing a <strong>water</strong> <strong>treatment</strong> <strong>system</strong>.<br />

The schedule had been extremely challenging:<br />

Design, installation and commissioning<br />

of <strong>the</strong> <strong>system</strong> were to be realised<br />

within less than 3 months.<br />

Global <strong>treatment</strong> scheme defined<br />

by Tepco<br />

Tepco decided to implement a <strong>water</strong> <strong>treatment</strong><br />

<strong>system</strong> which will be able to decontaminate<br />

and to recycle <strong>the</strong> bulk of <strong>the</strong> <strong>water</strong><br />

used <strong>for</strong> cooling of <strong>the</strong> reactors with a<br />

throughput of 50 m 3 /h, i.e. 1,200 m 3 /d.<br />

For this purpose Tepco requested a multi<br />

stage <strong>treatment</strong> process (Figure 1) to handle<br />

<strong>the</strong> radioactive <strong>water</strong> consisting of:<br />

Fig. 1. Fukushima Daiichi waste <strong>water</strong> <strong>treatment</strong> scenario (from June to September 2011).<br />

308 atw 57. Jg. (2012) Heft 5 | Mai


Water Treatment System <strong>for</strong> Fukushima<br />

• de-oiling<br />

• pre-<strong>treatment</strong><br />

• decontamination<br />

• desalinization.<br />

The de-oiling stage had been supplied by<br />

Toshiba, <strong>the</strong> pre-<strong>treatment</strong> stage based on<br />

a Cs adsorption on zeolite by Kurion and<br />

<strong>the</strong> decontamination based on a co-precipitation<br />

by Areva in co-operation with Veolia<br />

(<strong>Actiflo</strong>TM -<strong>Rad</strong> <strong>system</strong>). The first desalinization<br />

stage based on reverse osmosis<br />

had been realised by Hitachi and <strong>the</strong> final<br />

desalinization stage based on evaporation<br />

had been realised partly by Toshiba and<br />

partly by Areva in co-operation with Veolia<br />

(supply of 3 evaporators with an overall<br />

throughput of 100 m 3 /d).<br />

ACTIFLO TM -RAD principles and<br />

facility layout<br />

Based on <strong>the</strong> Areva know-how related to<br />

radionuclide precipitation from fuel cycle<br />

plants in France, Areva considered <strong>the</strong> use<br />

of <strong>the</strong> precipitation process <strong>for</strong> <strong>the</strong> decontamination<br />

of <strong>the</strong> <strong>water</strong>. To deal with <strong>the</strong><br />

high flow capacity requested by Tepco<br />

and <strong>the</strong> narrowness of potential installation<br />

areas, Areva selected compact mixer<br />

settlers from Veolia instead of a vessel cascade<br />

as used in <strong>the</strong> fuel cycle plants in<br />

France.<br />

Contaminated <strong>water</strong> that passed through<br />

<strong>the</strong> pre-<strong>treatment</strong> stage enters <strong>Actiflo</strong> TM -<br />

<strong>Rad</strong>, which is a 2-stage process comprising<br />

2 Veolia Water Multiflo TM and <strong>Actiflo</strong> TM mixer-settlers<br />

units (Figure 2). In <strong>the</strong>se units<br />

<strong>the</strong> co-precipitation process developed by<br />

Areva is implemented. It is used to decontaminate<br />

so that <strong>the</strong> treated <strong>water</strong> can enter<br />

<strong>the</strong> desalinization units.<br />

The <strong>water</strong> is mixed with several reagents<br />

in pre-contact tanks (2 40 m 3 tanks<br />

<strong>for</strong> each <strong>treatment</strong> process stage) to capture<br />

<strong>the</strong> different radioactive elements, so<br />

that <strong>the</strong>y can be recovered from <strong>the</strong> solu-<br />

Fig. 4. Two-stage <strong>Actiflo</strong> TM -<strong>Rad</strong> process implemented in Fukushima Daiichi.<br />

Fig. 3. Co-precipitation and flocculation principle.<br />

Fig. 2. <strong>Actiflo</strong> TM -<strong>Rad</strong>: Decontamination by co-precipitation.<br />

tions. Reagents used at Fukushima Daiichi<br />

are nickel ferro cyanide (ppFeNI) to adsorb<br />

cesium and barium chloride to precipitate<br />

strontium as strontium sulfate in a mixed<br />

crystal with barium sulfate.<br />

The <strong>water</strong> is <strong>the</strong>n transferred into <strong>the</strong><br />

mixer-settlers, which comprises four tanks.<br />

The first one is <strong>the</strong> coagulation tank, where<br />

<strong>the</strong> <strong>water</strong> is mixed with coagulant and undergoes<br />

pH adjustment; in a second tank<br />

<strong>the</strong> <strong>water</strong> can be mixed with micro sand and<br />

in a third tank, <strong>the</strong> maturation tank, <strong>the</strong> <strong>water</strong><br />

is mixed with a polymer (Figure 3). All<br />

<strong>the</strong>se tanks are mechanically stirred.<br />

The solid material settles to <strong>the</strong> bottom<br />

of <strong>the</strong> fourth tank, <strong>the</strong> settling tank, while<br />

<strong>the</strong> decontaminated <strong>water</strong> overflows into<br />

storage tanks. A rack of inclined metal<br />

plates, called lamella, is used to improve<br />

<strong>the</strong> flocculated material separation from<br />

<strong>water</strong> that flows across <strong>the</strong> plates. The <strong>Actiflo</strong><br />

TM -<strong>Rad</strong> process consists of two stages<br />

of mixer settlers including upstream precontact<br />

tanks (Figure 4).<br />

The <strong>system</strong> had been implemented in<br />

<strong>the</strong> radwaste building of Fukushima Daiichi,<br />

including also o<strong>the</strong>r process parts<br />

such as e.g. <strong>the</strong> waste <strong>water</strong> and waste <strong>water</strong><br />

retention tanks, treated <strong>water</strong>, sludge<br />

and reagents storage tanks as well as a disc<br />

filter (Figure 5 and Figure 6).<br />

A part of <strong>the</strong> auxiliary equipment <strong>for</strong> <strong>the</strong><br />

<strong>Actiflo</strong>-<strong>Rad</strong> <strong>system</strong>, namely some of <strong>the</strong><br />

reagents storage tanks, including pumps,<br />

310 atw 57. Jg. (2012) Heft 5 | Mai


Fig. 5. Layout of <strong>the</strong> <strong>Actiflo</strong> TM -<strong>Rad</strong> unit implemented in Fukushima Daiichi.<br />

Fig. 6. <strong>Actiflo</strong> TM -<strong>Rad</strong> unit during installation in <strong>the</strong> radwaste building at Fukushima Daiichi.<br />

pipes, valves and instrumentation had<br />

been installed outside <strong>the</strong> radwaste building<br />

(Figure 7).<br />

The sludge had been discharged into a<br />

concrete pit below <strong>the</strong> process area, which<br />

had been equipped with an air bubbling to<br />

avoid hydrogen accumulation, heat exchangers<br />

to remove <strong>the</strong> decay heat and different<br />

pumps <strong>for</strong> removal of sludge and supernatant<br />

<strong>water</strong>. The reagents storage and<br />

injection <strong>system</strong> had been realised outdoor<br />

in front of <strong>the</strong> radwaste building. Outside<br />

<strong>the</strong> radwaste building also fur<strong>the</strong>r equipment<br />

such as <strong>the</strong> process ventilation <strong>system</strong>,<br />

air injection <strong>system</strong> <strong>for</strong> air bubbling of<br />

<strong>the</strong> pit as well as <strong>for</strong> flushing <strong>the</strong> <strong>system</strong> it-<br />

atw 57. Jg. (2012) Heft 5 | Mai<br />

self to avoid hydrogen accumulation and<br />

<strong>the</strong> cold <strong>water</strong> generation <strong>system</strong> had been<br />

installed. Safety related measures had been<br />

drawn up with redundancies respectively<br />

diversification, e.g. <strong>for</strong> air bubbling using a<br />

compressor and pressurized air cylinders.<br />

Schedule <strong>for</strong> <strong>the</strong> implementation<br />

As with <strong>the</strong> beginning of <strong>the</strong> rainy season<br />

in Japan, Tepco expected an overflow of<br />

contaminated <strong>water</strong> to <strong>the</strong> sea by mid of<br />

June, <strong>the</strong> schedule had been extremely<br />

challenging. There<strong>for</strong>e <strong>the</strong> highest priority<br />

had been to implement a <strong>water</strong> <strong>treatment</strong><br />

Water Treatment System <strong>for</strong> Fukushima<br />

facility <strong>for</strong> recycling <strong>the</strong> treated <strong>water</strong> <strong>for</strong><br />

cooling of <strong>the</strong> reactors.<br />

After a corresponding call of <strong>the</strong> Japanese<br />

government on 27 th March (Figure 8),<br />

Areva, within days, developed a specific solution<br />

<strong>for</strong> Fukushima Daiichi, combining<br />

Areva experience related to precipitation of<br />

radionuclides with <strong>the</strong> Veolia know-how <strong>for</strong><br />

precipitation of pollutants <strong>for</strong> conventional<br />

industrial waste <strong>water</strong>. Immediately laboratory<br />

tests had been started <strong>for</strong> process verification.<br />

These tests consisted in hot tests at<br />

Areva’s La Hague site and CEA (Commissariat<br />

à l’énergie atomique et aux énergies alternatives)<br />

premises in Marcoule, to assure <strong>the</strong><br />

per<strong>for</strong>mance of <strong>the</strong> precipitation in <strong>the</strong> salty<br />

<strong>water</strong>, as well as in cold tests at Veolia premises,<br />

where <strong>the</strong> compatibility of <strong>the</strong> Areva<br />

process with <strong>the</strong> equipment of Veolia had<br />

been assured. Benefit had been taken from<br />

<strong>the</strong> R&D led continuously by CEA and Areva<br />

during many years on <strong>the</strong> precipitation process<br />

to decontaminate radioactive liquid effluents.<br />

For hot tests Fukushima Daiichi’s waste<strong>water</strong><br />

had been simulated by mixing sea<strong>water</strong><br />

with boric acid and fission products from<br />

La Hague recycling plant. Tests showed <strong>the</strong><br />

efficiency of nickel ferro cyanide (ppFeNi)<br />

and barium chloride reagents to decontaminate<br />

cesium and strontium from <strong>the</strong> salted<br />

waste<strong>water</strong>.<br />

After <strong>the</strong> feasibility tests, a design optimization<br />

R&D was conducted on a large<br />

range of waste<strong>water</strong> with different characteristics<br />

(presence of chloride, high salinity,<br />

pH, effluents temperature range from<br />

20 to 60 °C) which proved that <strong>the</strong>re was<br />

no significant impact on <strong>the</strong> decontamination<br />

factors <strong>for</strong> cesium and strontium. Collateral<br />

benefits i.e. decontamination factors<br />

on o<strong>the</strong>r radionuclides than cesium<br />

and strontium were assessed (Ru ~10; Rh<br />

~10; Eu ~100; Ce ~10; Am ~20; Cm ~2;<br />

Ba-140 ~10). The optimal concentration of<br />

each reagent in industrial configuration<br />

with recycled sludge was determined. It led<br />

to an optimization of <strong>the</strong> sludge quantities<br />

by a factor 10 compared to <strong>the</strong> sludge production<br />

in <strong>the</strong> La Hague tests. The optimal<br />

contact time between waste <strong>water</strong>s and reagents<br />

was determined (more than 1 hour)<br />

<strong>for</strong> <strong>the</strong> design of <strong>the</strong> unit (leading to <strong>the</strong> installation<br />

of pre-contact tanks).<br />

The efficiency of coagulation in <strong>the</strong> <strong>Actiflo</strong><br />

TM -<strong>Rad</strong> process was assessed through<br />

jar tests in Veolia laboratories in France<br />

and Japan. These tests validated <strong>the</strong> compatibility<br />

of Areva and Veolia reagents and<br />

determined <strong>the</strong> settling speed and <strong>the</strong> turbidity<br />

of supernatant. They proved that a<br />

2-stage <strong>Actiflo</strong> TM -<strong>Rad</strong> would achieve a decontamination<br />

factor on cesium between<br />

1,000 and 10,000 and a decontamination<br />

factor on strontium between 10 and 100.<br />

Finally, pilot tests <strong>for</strong> <strong>the</strong> validation of <strong>the</strong><br />

chemical engineering were conducted in<br />

311


Water Treatment System <strong>for</strong> Fukushima<br />

Fig. 7. <strong>Actiflo</strong> TM -<strong>Rad</strong> unit: auxiliary equipment during installation outside <strong>the</strong> radwaste building at<br />

Fukushima Daiichi.<br />

Fig. 8. Overall schedule <strong>for</strong> <strong>Actiflo</strong> TM -<strong>Rad</strong> implementation at Fukushima Daiichi.<br />

Veolia Kawasaki (Japan) plant on a 1/10<br />

scale model.<br />

The technical solution had <strong>the</strong>n been<br />

presented on 7 th April to Tepco.<br />

During <strong>the</strong> following period, design and<br />

equipment modification had been per<strong>for</strong>med<br />

by teams working in Europe and<br />

Japan. At Areva, more than 200 engineers<br />

had been working in Europe and more<br />

than 20 engineers had been in Tokyo,<br />

working 7 days a week, to co-ordinate <strong>the</strong><br />

interfaces with <strong>the</strong> third parties mentioned<br />

above contributing to <strong>the</strong> project and with<br />

Tepco.<br />

Schedule was not <strong>the</strong> only issue: <strong>the</strong> activity<br />

levels of <strong>the</strong> contaminated <strong>water</strong>,<br />

outside of a crisis situation, would have required<br />

<strong>the</strong> design and construction of a<br />

dedicated building <strong>for</strong> <strong>the</strong> <strong>water</strong> <strong>treatment</strong>,<br />

with remote operation and maintenance.<br />

Instead <strong>the</strong> <strong>water</strong> <strong>treatment</strong> unit<br />

was based on existing <strong>Actiflo</strong> TM and Multiflo<br />

TM units that had to be dismantled from<br />

<strong>the</strong> industrial site where <strong>the</strong>y were used,<br />

<strong>the</strong>n modified in Veolia workshops and finally<br />

installed in <strong>the</strong> radwaste building on<br />

Fukushima site. This created added complexity<br />

in <strong>the</strong> design and implementation.<br />

Areva, Veolia as well as partner JGC (Japanese<br />

Gasoline Company, responsible <strong>for</strong><br />

<strong>the</strong> installation and commissioning of <strong>the</strong><br />

<strong>Actiflo</strong>-<strong>Rad</strong> <strong>system</strong>) toge<strong>the</strong>r with Tepco<br />

and partners worked to design an emergency<br />

unit, making <strong>the</strong> most of 3 keywords: robust,<br />

simple, and efficient. The ALARA<br />

principle (as low as reasonably achievable)<br />

guided <strong>the</strong> adaptation of <strong>Actiflo</strong> TM equipment<br />

to a nuclear environment: <strong>the</strong> equipment<br />

was modified (e.g. valves were doubled,<br />

replaced and/or moved) and shielded<br />

to improve <strong>the</strong> maintainability of <strong>the</strong> unit<br />

and limit <strong>the</strong> dose rate to workers. Each<br />

maintenance operations have been studied<br />

individually with maintenance experts<br />

from La Hague fuel recycling plant, <strong>the</strong> goal<br />

was to prepare guidelines to operators, and<br />

assess <strong>the</strong> operator dose rate thus defining<br />

<strong>the</strong> minimum amount of radiological<br />

shielding.<br />

For supervision of commissioning of <strong>the</strong><br />

<strong>system</strong> Areva deployed a team of 45 experienced<br />

employees to Fukushima Daiichi,<br />

supported by staff of Veolia Japan.<br />

ACTIFLO TM -RAD operation<br />

results to-date<br />

Water decontamination at Fukushima Daiichi<br />

is a success: <strong>the</strong> highly radioactive <strong>water</strong><br />

decontamination emergency facility<br />

operated by Atox proved essential in Fukushima<br />

Daiichi crisis mitigation. It prevented<br />

any overflow or non-mastered release of<br />

contaminated <strong>water</strong> to <strong>the</strong> sea.<br />

As of 20 September, 2011 a total of<br />

77,400 tons of highly radioactive <strong>water</strong> has<br />

been decontaminated through <strong>the</strong> <strong>Actiflo</strong><br />

TM -<strong>Rad</strong> unit enabling a closed circuit<br />

cooling of <strong>the</strong> Fukushima Daiichi reactor<br />

units and used fuel pools with decontaminated<br />

and desalted <strong>water</strong> (Table 1). The cesium<br />

decontamination factor <strong>for</strong> <strong>the</strong> <strong>Actiflo</strong><br />

TM -<strong>Rad</strong> unit is above 10 4 .<br />

Conclusion<br />

Tab. 1. Operational results of <strong>the</strong> <strong>water</strong> <strong>treatment</strong> (September 2011).<br />

Areva’s response to <strong>the</strong> Fukushima Daiichi<br />

crisis was multi-phased: emergency aid and<br />

relief supply was sent within days after <strong>the</strong><br />

312 atw 57. Jg. (2012) Heft 5 | Mai


accident; joint Areva and Veolia engineering<br />

teams designed and implemented a<br />

<strong>water</strong> <strong>treatment</strong> solution in record time,<br />

less than 3 months; and Areva continues to<br />

support Tepco and propose solutions <strong>for</strong><br />

waste management, soil remediation and<br />

decontamination of <strong>the</strong> Fukushima Daiichi<br />

site.<br />

Despite <strong>the</strong> huge challenges, <strong>the</strong> <strong>Actiflo</strong><br />

TM -<strong>Rad</strong> project has been a success: <strong>the</strong><br />

<strong>water</strong> <strong>treatment</strong> unit started on time and<br />

per<strong>for</strong>med as expected. The per<strong>for</strong>mance<br />

is <strong>the</strong> result of many key elements: Areva<br />

expertise in radioactive effluents decontamination,<br />

Veolia know-how in <strong>water</strong><br />

<strong>treatment</strong> equipments in crisis environ-<br />

_____________________________________<br />

Die Vorstellung, Kernkraftwerke seien unflexible<br />

Maschinen, die nicht im Lastfolgebetrieb<br />

eingesetzt werden können, wurde über<br />

Jahre hinweg von Kernenergiegegnern verbreitet.<br />

Doch tatsächlich trifft genau das Gegenteil<br />

zu. Kernkraftwerke sind in der Lage,<br />

innerhalb kurzer Zeit ihre Leistung über einen<br />

weiten Bereich anzupassen. Ihre Lastwechselfähigkeit<br />

ist nicht etwa das Ergebnis<br />

nachträglicher Ertüchtigungen – Flexibilität<br />

ist eine Eigenschaft der Kernkraftwerke, die<br />

sie bereits seit ihrer Konstruktion besitzen.<br />

In der Vergangenheit konnten die Kernkraftwerke<br />

jahrzehntelang ihre Lastwechselfähigkeit<br />

in der Praxis unter Beweis stellen.<br />

Für viele Jahre gab es aber weder einen wirtschaftlichen<br />

Anreiz noch die technische Notwendigkeit,<br />

von dieser Fähigkeit Gebrauch<br />

zu machen. Durch den Ausbau der erneuerbaren<br />

Energien ist die Flexibilität der Kernkraftwerke<br />

jedoch erneut in den Fokus gerückt.<br />

Erst kürzlich wurden die Kernkraftwerke<br />

zum Ausgleich der fluktuierenden Einspeisung<br />

aus regenerativen Energiequellen<br />

eingesetzt. Ihre hohe Flexibilität und ihre<br />

CO 2-freie Stromerzeugung machen sie zum<br />

idealen Partner der erneuerbaren Energien.<br />

Anschriften der Verfasser:<br />

Wolfgang Timpf<br />

Sparte Kernkraftwerke<br />

Leiter Anlagenbetrieb RWE Power AG<br />

Huyssenallee 2, 45128 Essen<br />

Dr. Michael Fuchs<br />

Leiter Technik<br />

E.ON Kernkraft GmbH<br />

Tresckowstraße 5, 30457 Hannover<br />

Überarbeitete Fassung eines Vortrags gehalten auf<br />

dem VGB-Kongress „Power Plants 2011“, Bern/<br />

Schweiz, 21. bis 23. September 2011. Mit freundlicher<br />

Genehmigung des VGB PowerTech e.V.<br />

atw 57. Jg. (2012) Heft 5 | Mai<br />

ment, and of course Areva and Veolia<br />

teams’ creativity. Benefit had been taken<br />

from <strong>the</strong> R&D led continuously by CEA and<br />

Areva during many years on <strong>the</strong> precipitation<br />

process to decontaminate radioactive<br />

liquid effluents. This success also had been<br />

possible thanks to <strong>the</strong> involved Japanese<br />

companies, JGC doing <strong>the</strong> installation,<br />

ATOX operating <strong>the</strong> <strong>system</strong>, JNFL (Japan<br />

Nuclear Fuel Limited) advising Tepco, Hitachi<br />

and last but not least Tepco itself.<br />

The project success is also due to Areva<br />

and Veolia teams’ reactivity and high level<br />

of commitment with engineering teams<br />

working 24/7 in Japan, France and Germany.<br />

Areva’s and Veolia’s deep knowledge<br />

Water Treatment System <strong>for</strong> Fukushima<br />

of <strong>the</strong> Japanese industry ensured that <strong>the</strong><br />

multi-cultural exchanges were not an issue.<br />

Finally <strong>the</strong> excellent overall project<br />

management and execution by Tepco and<br />

o<strong>the</strong>r Japanese stakeholders as mentioned<br />

above was very efficient.<br />

The emergency <strong>water</strong> <strong>treatment</strong> was a<br />

key step of <strong>the</strong> roadmap towards restoration<br />

from <strong>the</strong> accident at Fukushima Daiichi<br />

that Tepco designed and keeps executing<br />

with success. Based on <strong>the</strong> experience<br />

ga<strong>the</strong>red during <strong>the</strong> crisis Areva is in <strong>the</strong> position<br />

to offer mobile <strong>treatment</strong> units <strong>for</strong><br />

waste <strong>water</strong> in emergency situations, based<br />

on <strong>the</strong> <strong>Actiflo</strong> TM -<strong>Rad</strong> principle but also<br />

based on adsorption on solid adsorbents. �<br />

Lastwechselfähigkeiten<br />

von Kernkraftwerken –<br />

Erfahrungen und Ausblick<br />

Wolfgang Timpf, Essen, und Michael Fuchs, Hannover<br />

Einleitung<br />

Eine Behauptung, die in regelmäßigen Abständen<br />

von Kernenergiegegnern kolportiert<br />

wird, lässt sich etwa folgendermaßen<br />

zusammenfassen: „Kernkraftwerke sind<br />

träge Grundlastkraftwerke und verstopfen<br />

die Netze.“ Beispielsweise schrieb im Juni<br />

2009 das damals noch von Sigmar Gabriel<br />

geführte Bundesministerium für Umwelt,<br />

Naturschutz und Reaktorsicherheit:<br />

„Kraftwerke, die die Schwankungen der<br />

Energiegewinnung aus Wind und Sonne<br />

ausgleichen sollen, müssen vor allen Dingen<br />

eines sein: flexibel. Atomkraftwerke<br />

sind jedoch genau das Gegenteil, nämlich<br />

unflexibel und nur begrenzt regelbar. Sie<br />

sind dafür konstruiert, möglichst gleichmäßig<br />

mit 100 % Auslastung zu fahren,<br />

also immer gleich viel Strom zu produzieren<br />

– unabhängig davon, ob er gebraucht<br />

wird oder nicht“ [1].<br />

Unter all den kuriosen My<strong>the</strong>n, die sich um<br />

die Kernenergie ranken und bei Experten<br />

Kopfschütteln hervorrufen, nimmt dieser<br />

eine Sonderstellung ein, denn tatsächlich<br />

Kernkraftwerksbetrieb: Lastwechselverhalten<br />

trifft genau das Gegenteil zu. Kernkraftwerke<br />

gehören zu den flexibelsten Anlagen<br />

im Kraftwerkspark. Insbesondere die deutschen<br />

Kernkraftwerke sind hochflexibel<br />

und konnten ihre Fähigkeiten sowohl unter<br />

Testbedingungen als auch in der Praxis<br />

unter Beweis stellen.<br />

Vor dem Hintergrund der im Jahr 2010<br />

beschlossenen Laufzeitverlängerung erlangte<br />

das Thema besondere Bedeutung.<br />

Mit Blick auf die europäischen Klimaziele<br />

erschien ein zukünftiges Zusammenspiel<br />

der Kernkraftwerke mit den erneuerbaren<br />

Energien als ideal. Die Kernkraftwerke hätten<br />

auch bei einem hohen Anteil erneuerbarer<br />

Energien die Möglichkeit, Schwankungen<br />

in der volatilen regenerativen Einspeisung<br />

auszugleichen und damit eine sichere,<br />

bezahlbare und CO 2-freie Stromversorgung<br />

zu gewährleisten. Durch die mit<br />

der 13. Novelle des Atomgesetzes beschlossene<br />

Rücknahme der Laufzeitverlängerung<br />

und vorzeitige Abschaltung der Kernkraftwerke<br />

wird dies nur in begrenztem Maß<br />

möglich sein. Dennoch bleibt das Thema<br />

aktuell und soll im Folgenden näher beleuchtet<br />

werden.<br />

313


Subscription<br />

Yes, I would like order a subscription of atw beginning with <strong>the</strong> next available issue.<br />

Unless terminated with a notice period of one month to <strong>the</strong> end of <strong>the</strong> subscription<br />

period, this sub scription will be extended <strong>for</strong> a fur<strong>the</strong>r year in each case.<br />

________________________________________________________<br />

Name, First Name<br />

______________________________________________________________________<br />

Company, Institute, Organisation<br />

______________________________________________________________________<br />

Street<br />

______________________________________________________________________<br />

Postal Code City Country<br />

______________________________________________________________________<br />

Telephone/E-mail VAT ID (if applicable)<br />

______________________________________________________________________<br />

Date 1st Signature<br />

Cancellation: This order may be cancelled within 14 days. A notice must be sent to<br />

INFORUM GmbH, Robert-Koch-Platz 4, 10115 Berlin, Germany within this period. The<br />

deadline will be observed by due mailing. I agree to <strong>the</strong> terms with my 2nd signature.<br />

______________________________________________________________________<br />

Date 2nd Signature<br />

Payment (please sign one option):<br />

�<br />

�<br />

Credit card<br />

� American Express � Master Card � Visa � Diners Club<br />

Card No ________________________ Exp. date ______________<br />

Signature _______________________<br />

Per invoice<br />

Please send your order to:<br />

INFORUM GmbH<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

GERMANY<br />

Fax-No. +49 30 498555-19<br />

Online: www.atomwirtschaft.com<br />

Guarantee<br />

� You receive <strong>the</strong> atw <strong>for</strong> of subscription price of:<br />

Germany 142.- € (incl. postage and VAT),<br />

all o<strong>the</strong>r countries 132.71 € (without postage<br />

and VAT). Air mail on request.<br />

� Cancellation of <strong>the</strong> subscription must be sent to<br />

<strong>the</strong> publisher 4 weeks to <strong>the</strong> end of <strong>the</strong><br />

subscription period.<br />

� Guarantee:<br />

This order may be cancelled within 14 days.<br />

A notice must be sent to INFORUM GmbH,<br />

Robert-Koch-Platz 4, 10115 Berlin , Germany<br />

within this period.


Abo-Bestellschein<br />

Ja, ich abonniere die atw ab der nächst möglichen Ausgabe.<br />

Das Abonnement verlängt sich jeweils um ein weiteres Jahr zu den dann gültigen Abobedingungen,<br />

wenn ich es nicht bis 4 Wochen vor Ablauf des Bezugszeitraumes kündige.<br />

________________________________________________________<br />

Name, Vorname<br />

______________________________________________________________________<br />

Firma<br />

______________________________________________________________________<br />

Straße<br />

______________________________________________________________________<br />

PLZ Wohnort<br />

______________________________________________________________________<br />

Telefon/E-Mail<br />

______________________________________________________________________<br />

Datum 1. Unterschrift<br />

Dieser Auftrag kann innerhalb einer Woche nach Eingang dieser Bestellung bei<br />

der INFORUM GmbH, Robert-Koch-Platz 4, 10115 Berlin, widerrufen werden. Zur<br />

Fristwahrung genügt die rechtzeitige Absendung des Widerrufs.<br />

______________________________________________________________________<br />

Datum 2. Unterschrift<br />

Gewünschte Zahlungsweise (bitte ankreuzen):<br />

� bequem und bargeldlos per Bankabbuchung<br />

______________________________________________________________________<br />

Geldinstitut<br />

______________________________________________________________________<br />

BLZ Konto-Nummer<br />

� gegen Rechnung. Rechnung abwarten, keine Vorauszahlung leisten.<br />

Ihre Bestellung richten Sie bitte an:<br />

INFORUM GmbH<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Fax-Nr. 030 498555-19<br />

Online-Shop: www.atomwirtschaft.de<br />

GARANTIE<br />

� Sie erhalten die atw zum derzeitigen Abonnementpreis:<br />

Inland 142,- € (einschl. Versandkosten und USt),<br />

Ausland 142,- € (zuzügl. Versandkosten). Luftpostgebühren<br />

auf Anfrage.<br />

� Abonnementskündigungen sind nur mit einer Frist<br />

von 4 Wochen zum Ende der berechneten Bezugszeitraumes<br />

möglich.<br />

� WIDERRUFSGARANTIE: Dieser Auftrag kann innerhalb<br />

einer Woche nach Eingang dieser Bestellung bei<br />

der INFORUM GmbH, Robert-Koch-Platz 4, 10115<br />

Berlin, widerrufen werden. Zur Fristwahrung genügt<br />

die rechtzeitige Absendung des Widerrufs.


atw-digital<br />

- 12 Jahre Kernenergie international auf einer DVD<br />

atw-digital:<br />

12 Jahrgänge der atw – Internationalen Fachzeitschrift für Kernenergie – mit den Fachbeiträgen,<br />

Hintergrundberichten, Interviews und Nachrichten über Entwicklungen und Trends aus allen wichtigen<br />

Bereichen der internationalen Kernenergietechnik und -wirtschaft.<br />

atw-digital:<br />

Systematischer Zugriff auf alle 132 Ausgaben der atw vom<br />

Jahrgang 2000 bis zum Jahrgang 2011.<br />

Navigieren Sie schnell zu gesuchten Ausgaben, Autoren,<br />

Beiträgen und Nachrichten.<br />

Lesen Sie die Beiträge bequem am Bildschirm oder<br />

drucken diese in hoher Qualität aus.<br />

atw-digital:<br />

Bequeme, schnelle Recherche über alle Dokumente.<br />

Der atw-digital-Index unterstützt Sie bei der Recherche<br />

nach Begriffen über die kompletten Jahrgänge.<br />

�<br />

Bitte kopieren, ausfüllen und per Post oder Fax zusenden<br />

Ich bestelle die atw-digital-DVD 2000 bis 2011<br />

(Einzelplatzversion):<br />

�<br />

�<br />

�<br />

248,- Euro (Inland, einschließlich Versandkosten<br />

und USt.)<br />

248,- Euro (Ausland, zuzüglich Versandkosten)<br />

Netzwerklizenz für Unternehmen, Forschung und<br />

Lehre auf Anfrage<br />

INFORUM GmbH<br />

Robert-Koch-Platz 4<br />

10115 Berlin<br />

Fax-Nr. 030 498555-19<br />

International Journal<br />

<strong>for</strong> Nuclear Power<br />

Internationale Zeitschrift für Kernenergie<br />

www.atomwirtschaft.de<br />

atw-digital<br />

2000 bis 2011<br />

_________________________________________________<br />

Name, Vorname<br />

_____________________________________________________________<br />

Straße<br />

_____________________________________________________________<br />

PLZ Wohnort<br />

_____________________________________________________________<br />

Telefon/Fax<br />

_____________________________________________________________<br />

Datum 1. Unterschrift<br />

Dieser Auftrag kann innerhalb einer Woche nach Eingang dieser Bestellung bei<br />

der INFORUM GmbH, Robert-Koch-Platz 4, 10115 Berlin, widerrufen werden. Zur<br />

Fristwahrung genügt die rechtzeitige Absendung des Widerrufs.<br />

_____________________________________________________________<br />

Datum 2. Unterschrift

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!