14.03.2022 Views

Meccanica Magazine n.3

Meccanica Magazine, a year of the Department of Mechanical Engineering of Politecnico di Milano “in print”. Our research, achievements, culture, and a glance to the future.

Meccanica Magazine, a year of the Department of Mechanical Engineering of Politecnico di Milano “in print”. Our research, achievements, culture, and a glance to the future.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.



meccanica magazine


Meccanica Magazine

Periodico Annuale

meccanica magazine

Direttore Responsabile

Marco Bocciolone

Responsabile Editoriale

Riccardo Casati

meccanica magazine

2

Meccanica Magazine, un anno

del Dipartimento di Meccanica

del Politecnico di Milano “in

stampa”. La nostra ricerca, i nostri

risultati, la nostra cultura e il

nostro sguardo verso il futuro.

Comitato Editoriale

Marina Carulli

Ali GÖkhan Demir

Alessandra Di Palo

Andrea Manes

Paolo Schito

Gisella Tomasini

Emanuele Zappa

Editore e Proprietario

Politecnico di Milano - Dipartimento di Meccanica

Meccanica Magazine, a year of

the Department of Mechanical

Engineering of Politecnico di

Milano “in print”. Our research,

achievements, culture, and a

glance to the future.

Dipartimento di Meccanica

via La Masa, 1 - Milano

www.mecc.polimi.it

meccpolimi

Pubblicazione annuale n.3

Febbraio 2022

Registrazione presso il Tribunale

di Milano n° 238 del 06/11/2019

Stampa: Editoria Grafica

Colombo - Valmadrera (LC)

03

Meccanica Magazine è realizzato

in collaborazione con:

Francesca Brambilla Comunicazione


meccanica magazine

3


Governance

Head of Department: Prof. Marco Bocciolone

Deputy Head: Prof. Bianca Maria Colosimo

Head of Administration: Dr. Alessandro Tosi Giorcelli

Scientific Commission

Prof. Marco Bocciolone

Prof. Bianca Maria Colosimo

meccanica magazine

4

Facts and Figures

Prof. Massimiliano Gobbi (Coordinator)

Prof. Gaetano Cascini

Prof. Alfredo Cigada

Prof. Giorgio Colombo

Prof. Roberto Corradi

Prof. Marco Giglio

Prof. Carlo Mapelli

Prof. Michele Monno

Prof. Giovanni Moroni

Prof. Paolo Pennacchi

Prof. Bortolino Saggin

Prof. Maurizio Vedani

Department Board

Prof. Marco Bocciolone

Prof. Bianca Maria Colosimo

Prof. Francesco Braghin: international affairs

Prof. Riccardo Casati: communication and Alumni

Prof. Francesco Ferrise: culture, sport, equal opportunities, social responsibility

Prof. Stefano Foletti: young researchers, research lines and department interactions

Prof. Stefano Manzoni: education

Prof. Barbara Previtali: “Department of Excellence” and “Competence Center Made” projects

Dr. Alessandro Tosi Giorcelli

Research Lines

Dynamics and Vibration of Mechanical Systems and Vehicles: Head Prof. Roberto Corradi

Machine and Vehicle Design: Head Prof. Marco Giglio

Manufacturing and Production Systems: Head Prof. Giovanni Moroni

Materials: Head Prof. Maurizio Vedani

Measurements and Experimental Techniques: Head Prof. Bortolino Saggin

Methods and Tools for Products Design: Head Prof. Giorgio Colombo

Faculty and Staff (as of December 2021)

Full Professors: 36

Associate Professors: 53

Assistant Professors: 34

Research fellows (not PhD): 63

PhD Candidates: 219

Technical and administrative staff: 47


Facts and Figures

Advisory Board

Roberto Beltrame: Managing Director at Microelettrica Scientifica and CEO at KBRSI (Knorr-Bremse

Rail System Italia)

Paolo Braghieri: Business Owner at G.B.C. s.a.

Lorena Capoccia: CEO and Board Member at Sicme Motori

Paolo Cederle: Italian Executive Chairman and Country Manager at Everis SpA

Lucia Chierchia: Managing Partner at Gellify

Alessio Facondo: CEO at Fimer S.p.A

Marco Fainello: CTO at Danisi Engineering and Executive Director at Addfor SpA

Tommaso Ghidini: Head of the Structures, Mechanisms and Materials Division at TEC-MS Mechanical

Department, ESA - European Space Agency

Paolo Manzoni: Co-Founder NEGOCO Srl - QUIGO

Bartolomeo Pescio: SVP, Head BU Nordics atYara International

Andrea Zanella: Global Marketing Director at Kedrion Biopharma and Vice Chairman at Dianax Srl

Department of Excellence

The Department of Mechanical Engineering is one of the 180 “Departments of Excellence” selected in

January 2018 by Italian MIUR, Ministry of Education, University and Research. Chosen among over 750

competing departments, DMEC will benefit of a five-year dedicated funding for recruitment of faculty

and staff, infrastructures and education, linked to the development of the project Lis4.0 Lightweight

and Smart Structures for Industry 4.0.

Rankings

In 2021 our Department achieved the 15th position in the world, 6th in Europe and 1st in Italy according

to QS World University Ranking by Subject – Mechanical, Aeronautical and Manufacturing Engineering.

National and international research projects

28 H2020 EU-funded projects currently active

39 Other European/National/Regional projects currently active

meccanica magazine

5

0,12

0,06

0,01

1,31

1,21

Fundings

FUNDING [M€]

1,95

2,08

2,01

2,37

2,24

4,05

8,36

7,78

8,15

9,27

2018 (JAN-DEC) 2019 (JAN-DEC) 2020 (JAN-DEC) 2021 (JAN-NOV)

YEAR

Private

Public and similar UE Teaching


Patents / Inventions Publications and Conferences

289

meccanica magazine

346

9

240

235

21

260

230

34

11

187

12

35

171

8

21

6

6

4

5

6

3

2017 2018 2019 2020

International journal paper National journal paper

International conference paper

National conference paper International book contribution

20

29

11

12

23

15

29

44

12

24

36

2017 2018 2019 2020

Inventions DMEC

Patents DMEC

Total


meccanica magazine

7

SCARICANDO LA VERSIONE DIGITALE DELLA RIVISTA TROVERAI

A PARTIRE DA PAGINA 128 ANCHE LE PUBBLICAZIONI DEL NOSTRO

DIPARTIMENTO.

DOWNLOAD THE DIGITAL ISSUE OF THE MAGAZINE TO CHECK THE LIST

OF THE ARTICLES PUBLISHED BY OUR DEPARTMENT (FROM P.128).


La parola al Direttore


Non quia difficilia sunt non audemus,

sed quia non audemus difficilia sunt.

Lucio Anneo Seneca

Epistulae morales ad Lucilium

Marco Bocciolone

Direttore del Dipartimento di Meccanica

meccanica magazine

ITA

Care Amiche, Cari Amici,

è con grande piacere che scrivo queste righe in occasione dell’usci-

ENG

Dear Friends,

It is my greatest pleasure to write these few words as falls the publi-

9

ta del terzo numero di Meccanica Magazine.

shing of the third issue of Meccanica Magazine.

Ripercorrendo nella memoria quello che è stato l’anno trascorso mi

As I remembered what we lived in the past year, this quotation of

è venuta in mente questa frase di Seneca: “Non quia difficilia sunt

Seneca just came to my mind: “Non quia difficilia sunt non audemus,

non audemus, sed quia non audemus difficilia sunt.”

sed quia non audemus difficilia sunt.”

Audere, difficilia – saper osare per superare le avversità: verbo e so-

Audere, difficilia - be able to dare to overcome challenges: a verb

stantivo che parafrasano/materializzano il tanto usato e forse abu-

and a noun that explain/make tangible the overused - or even abu-

sato concetto di resilienza; anche quest’anno abbiamo dovuto es-

sed - meaning of resilience. This year as in 2020, because the pan-

sere resilienti perché la pandemia non ha mollato la sua presa dalle

demic was still a burden on our daily life and community, we had to

nostre vite e dalle nostre comunità; per quanto ci riguarda ha ancora

be resilient. Concerning our community, it still radically affected the

fortemente influito sull’organizzazione e sulla logistica dell’attività

organisation and logistics of the teaching activities (lectures, lab

didattica (lezioni, esercitazioni, laboratori, esami) ma l’esperienza

activities, exams). However, the know-how acquired in 2020 made us

acquisita dal 2020 ci ha resi “resilienti” e credo che siamo stati in

“resilient” and, I believe, able to deliver the courses to our students

grado di offrire ai nostri studenti una didattica all’altezza della tradi-

meeting the standards of Politecnico as per our tradition.

zione del Politecnico.

Audere, difficilia - willing to dare in order to put the heart at ease as

Audere, difficilia – voler osare per buttare il cuore oltre l’ostacolo:

you leave the obstacles behind.

di fatto è quello che ci chiede l’essere ricercatori, osare a guardare

As a matter of fact, this is what it means to be a researcher: to dare

oltre quello che a prima vista non si vede e non si comprende ma

to look beyond what you may not see or understand at first, but you

solo si intuisce e appare difficile, mettendoci passione e curiosità;

may only imagine and might appear difficult, facing it with passion

gli indicatori DMEC sulla ricerca (valore dell’autofinanziamento, nu-

and curiosity. The research parameters at DMEC (value of self-fun-

mero delle pubblicazioni, iscritti ai corsi di dottorato, …) certificano

ding, number of published articles, number of PhD students) are

anche per il 2021 l’estrema vivacità della comunità del Dipartimento

proof of how vibrant the community of the Department of Mechani-

di Meccanica sul fronte della ricerca di base e applicata sia in ambito

cal Engineering was in 2021 in terms of classic and applied research,

nazionale sia in quello internazionale.

both nationally and internationally.

Con queste le premesse mi sento di poter consapevolmente aude-

Based on these assumptions, I honestly believe I can audere to be

re ad essere ottimista e avere la certezza che le difficilia saranno

optimistic as I am sure that difficilia will be peacefully and efficiently

serenamente affrontate e efficacemente superate anche nel 2022.

faced even in 2022.


COSTRUZIONE

DI MACCHINE

E VEICOLI

meccanica magazine

10

ITA

Membro della Commissione Scientifica

Prof. Massimiliano Gobbi

La sezione di Costruzione di Macchine e Veicoli svolge attività di ricerca

legate alla progettazione di sistemi con un ampio spettro di

applicazioni. Negli ultimi anni sono stati aperti nuovi filoni di ricerca

su aspetti legati a monitoraggio strutturale, modellazione avanzata

in condizioni estreme, studi di materiali e metamateriali multifunzionali,

creazione di un simulatore dinamico di guida integrato con

i sistemi di misura del laboratorio LaST, modellazione di materiali

compositi e incollaggi, tecniche NDT, progettazione ottimale di

motori elettrici, progettazione bio-inspired, etc.; questo anche

attraverso una stretta collaborazione con enti industriali e istituzionali.

Il laboratorio integrato di Lis4.0 ha consentito l’acquisizione

di nuove apparecchiature. Il nuovo simulatore dinamico di guida,

operativo da fine 2020, ha permesso di sviluppare attività di ricerca

relative alla Human Machine Interface e alla qualità percepita di

componenti di veicoli (digital-twin). Sempre rimanendo nell’ambito

strumentazione, si segnala la nascita laboratorio HSR (High Strain

Rate) e l’acquisizione di una nuova unità di Cold Spray ad alta pressione.

Sono stati potenziati e sviluppati gli approcci legati a metodologie

avanzate di Health Monitoring, Big Data Analytics, Machine

Learning e Artificial Intelligence nello studio di sistemi meccanici,

con immediate ricadute nella progettazione e produzione di prodotti

industriali. La mobilità e il training internazionale è promosso

attraverso progetti di PhD congiunti con altre università e PhD industriali.

Sono già attivi due dottorati congiunti con Northwestern

Polytechnical e TU Delft. Sono attivi progetti EU sui temi propri della

sezione: ATLAS, IP4MaaS, Al@EDGE, ThermoDust.

ENG

Machine and Vehicle Design Research Line carries out research

activities focused on the design of systems with a broad range of

applications. In the past few years, new research opportunities

opened up on topics related to SHM (Structural Health Monitoring),

advanced modelling under extreme conditions, investigations

into multifunctional materials and metamaterials, creation

of a dynamic driving simulator integrated with the measurement

systems available in the LaST laboratory, composite materials

and bonding modelling, NDT techniques, optimal electric motors

design, bio-inspired design, and so on. Strong co-operations with

Institutions and companies are active on these topics.

The integrated Lis4.0 lab enabled the acquisition of new equipment.

Operational since the end of 2020, the new dynamic driving

simulator allowed the development of new research activities on

Human Machine Interfaces and quality perception of vehicle components

(digital-twin). We also launched a new HSR (High Strain

Rate) Lab and installed a new High-Pressure Cold Spray unit. Moreover,

we implemented and developed approaches on advanced

SHM methods, Big Data Analytics, Machine Learning and AI (Artificial

Intelligence) to investigate mechanical systems, immediately

applied to the design and production of industrial products. We

also enhance international mobility and training, thanks to PhD

Joint Programmes in collaboration with Universities and Industries.

Two PhD Joint Programmes are active with Northwestern

Polytechnical and TU Delft. Last but not least, many EU projects

are active on specific topics: ATLAS, IP4MaaS, Al@EDGE and

ThermoDust.


MATERIALI PER

APPLICAZIONI

MECCANICHE

ITA

Membro della Commissione Scientifica

Prof. Carlo Mapelli

L’ambito di ricerca della sezione interessa la progettazione e la simulazione

di nuovi processi di produzione, lo sviluppo di materiali

e la definizione delle modifiche indotte sui materiali dai processi

di trasformazione e dalle condizioni di utilizzo, in un’ottica di valutazione

della loro sostenibilità, secondo un orizzonte che comprende

la sintesi del materiale, l’utilizzo del componente, fino allo

smaltimento e al riciclo del materiale stesso.

I materiali di riferimento sono le leghe metalliche strutturali, ferrose

e non ferrose, spesso studiate ed ottimizzate in un’ottica

di lightweight design, per mettere a punto materiali, processi e

prodotti finalizzati ad una maggiore sostenibilità. In parallelo si

affrontano temi sulla sintesi di nuovi materiali, non solo metallici,

ma anche ceramici o compositi, con specifiche proprietà funzionali

e strutturali. Un ulteriore tema di ricerca molto rilevante per la

Sezione risiede nella capacità di modellazione dei materiali e dei

processi produttivi.

Da quest’anno è stato possibile introdurre tecniche di didattica innovativa,

soprattutto alla laurea magistrale. Le attività di ricerca

sono proseguite con regolarità e quest’anno hanno iniziato il loro

percorso sette nuovi studenti di dottorato grazie a borse finanziate

sia da aziende sia dal MIUR e una di queste è legata PNRR.

Nel 2022, con l’ovvio auspicio di poter riconsolidare in modo stabile

le attività in presenza e le relazioni con l’estero, prenderanno

avvio nuovi progetti finanziati EU e importanti collaborazioni con

partner industriali.

ENG

The research topics of our Research Line deal with the design

and simulation of new production processes, development of

materials and definition of the variations originating from the

transformation processes to usage conditions of the materials.

The aim is to evaluate their level of sustainability in terms of

material design, use of the components, material disposal and

recycling. In particular, these activities concern ferrous and

non-ferrous structural alloys usually studied for their optimisation

in terms of lightweight design and to define materials, processes

and products with improved sustainability. Alongside our

research activities include the design of innovative non-metal,

ceramic and composite materials with specific functional and

structural features. Another important topic covered is the modelling

of both materials and manufacturing processes.

Moreover, starting this year, we implemented more innovative

teaching techniques, especially in courses for postgraduates.

On the other hand, our research activities were carried out regularly

as seven new PhD students joined our PhD programme

with scholarships offered by private companies and by the Italian

Ministry of Education, University and Research (MIUR) - one of

which was funded through the PNRR funds. In 2022, as our hopes

rely on the possibility to return permanently to participate in

person and re-establish our relationships with foreign partners,

the activities of new European Projects and collaboration with

industrial partners will take off.

meccanica magazine

11


MECCANICA

DEI SISTEMI

meccanica magazine

12

ITA

Membro della Commissione Scientifica

Prof. Paolo Pennacchi

Le aspettative hanno sempre diretto i comportamenti umani e

l’ambiente. Inteso in senso più ampio, li hanno da sempre vincolati.

Queste considerazioni filosofiche spiegano in qualche modo

come le attività che verranno intraprese dalla Sezione di Meccanica

dei Sistemi nell’immediato futuro siano influenzate non solo

da una lunga storia e tradizione di ricerca, ma anche da nuovi temi

proposti dalle più recenti politiche europee (quali ad esempio

quelle volte a rendere i sistemi energetici e di mobilità più sostenibili,

intelligenti, sicuri, resilienti, competitivi ed efficienti) e dagli

obiettivi del Piano Nazionale di Ripresa e Resilienza (PNRR), e, in

egual misura, imposti dalle recenti emergenze sociali, sanitarie

ed infrastrutturali. La Sezione mantiene la sua struttura articolata

su più aree tematiche (Condition Monitoring, Diagnostics and Prognostics,

Mechatronics and Robotics, Railway Engineering, Road

Vehicle Dynamics and Control, Rotordynamics, Sound and Vibration,

Sports Engineering, Wind Engineering and Wind Energy) tra

di loro interagenti attraverso una struttura organizzativa flessibile

ed efficiente, che favorisce l’interazione e la cross-fertilizzazione

di idee e permette sinergie e proattività. Per rendere più concreta

questa visione del futuro, oltre a perseguire una politica di continuo

arricchimento e rinnovamento dell’infrastruttura sperimentale

di laboratorio e di simulazione numerica, abbiamo investito nelle

risorse umane, con la presa di servizio di 2 nuovi ricercatori e di 2

professori associati che vanno a completare l’organico composto

da 40 docenti e oltre 80 ricercatori a tempo determinato (assegnisti

e dottorandi).

ENG

Expectations have always influenced human behaviour and the

environment. Even constrained them, looking from a different

and deeper perspective. These philosophical thoughts somehow

explain why the research activities that the Dynamics and Vibration

Research Line will carry out in the immediate future

are driven by both a long history and tradition in Research and

inspired by new topics, resulting from the latest enforced European

policies (such as making energy and mobility systems

more sustainable, intelligent, safe, resilient, competitive, and

efficient), the objectives set by the National Recovery and Resilience

Plan (PNRR) and, equally, imposed by recent social, health

and infrastructural emergencies. The Research Line maintains

its structure divided into several thematic areas (Condition Monitoring,

Diagnostics and Prognostics, Mechatronics and Robotics,

Railway Engineering, Road Vehicle Dynamics and Control,

Rotordynamics, Sound and Vibration, Sports Engineering, Wind

Engineering and Wind Energy). Each area interacts thanks to a

flexible and efficient organizational structure, favouring interaction

and cross-fertilization of ideas while allowing synergies

and proactivity. To make its vision more concrete, pursuing a policy

of continuous enrichment and renewal of the experimental

laboratory and numerical simulation infrastructure, we decided

to invest in human resources. The newly-hired 2 new researchers

and 2 associate professors complete our staff made of 40 Full

Professors and over 80 temporary researchers fellows (postdocs

and PhD students).


MISURE

E TECNICHE

SPERIMENTALI

ITA

Membro della Commissione Scientifica

Prof. Alfredo Cigada

L’attività di ricerca verte sullo sviluppo e qualificazione di strumenti

e tecniche di misura per applicazioni in nuovi settori, vista

la natura ampiamente multidisciplinare del gruppo.

Le attività trainanti riguardano nuovi sensori. Questi sono sviluppati

per lo spazio, con la partecipazione a missioni che saranno

avviate nel 2022 (Exomars, HERA). Vi sono i sensori per la salute,

nell’ambito del progetto ERC sui trattamenti ablativi dei tumori e

per la riabilitazione. Ampie le ricerche su sistemi di misura per l’industria,

che vanno dai sistemi IIoT alle strategie per la gestione di

grandi moli di dati secondo le più moderne tecniche di Intelligenza

Artificiale, anche sul sensore. Attenzione è poi dedicata alle misure

di vibrazioni, sul corpo umano, le macchine, le strutture: per il

loro controllo con materiali intelligenti o come strumento diagnostico

per il monitoraggio strutturale. I principali ambiti applicativi

sono stadi, edifici alti, ponti e beni culturali.

L’utilizzo di sistemi di visione per le misure, statiche e dinamiche,

in ambito industriale, civile, medicale, anche da droni, e le misure

acustiche completano il quadro delle attività in corso e da proseguire

nel 2022.

ENG

Our research activities are about the development and qualification

of new instruments and techniques to be applied in many

fields, considering high-level multidisciplinarity as the leading

feature of our research group. Our main activity involve new sensors.

They are developed for space applications, as we will be

taking part in missions starting in 2022 (Exomars, HERA). Sensors

for medical applications are also developed, specifically for

the activities of an ERC project for tumour ablation therapy and

physical medicine and rehabilitation. Several research activities

focus on measurement instrumentation for industrial applications,

from IIoT systems to managements strategies for big data,

according to the latest AI techniques, also on board the sensors.

Another trend is vibration measurements on human bodies, machines,

and structures: the aim is to control them via smart materials

or diagnostic instruments for Structural Health Monitoring

(SHM). Most applications are for stadia, tall buildings, bridges,

and cultural heritage.

Moreover, our research activities involve vision systems and drones

to carry out static and dynamic measurements in industrial,

civil and medical fields. Acoustic measurements complete the

overview of the activities currently being carried out by our Research

Line, which will continue in 2022.

meccanica magazine

13


PROGETTO

E DISEGNO

DI MACCHINE

meccanica magazine

14

ITA

Membro della Commissione Scientifica

Prof. Gaetano Cascini

Nel corso del 2021, la sezione di Disegno e Progetto delle Macchine

ha integrato il suo organico di 11 docenti con 3 nuovi ricercatori. A

questi si aggiungono oltre 20 fra dottorandi e postdoc che contribuiscono

alle attività di ricerca e di didattica. Nel complesso, la

sezione si distingue per la giovane età media dei suoi componenti

e per la dinamicità dei temi di ricerca trattati.

Il gruppo ha da sempre fatto leva su competenze ICT specialistiche

a supporto dello sviluppo prodotto quali Realtà Virtuale e

Aumentata, Digital Human-Modelling, sistemi di Knowledge Management

e di Intelligenza Artificiale, tecnologie di Fabbricazione

Additiva ecc. seguendo l’impronta data dal Prof. Umberto Cugini

tristemente scomparso proprio in quest’ultimo anno. L’anno 2021

è stato marcato da un’altra tragica scomparsa, quella del giovane

collega Prof. Francesco Rosa che proprio alla progettazione di

componenti da realizzare mediante fabbricazione additiva ha dedicato

i suoi ultimi studi.

Alle competenze tecnologiche il gruppo ha inoltre sempre accompagnato

un attento studio dei fattori umani, dagli aspetti psicologici

e cognitivi nella progettazione e nell’uso di artefatti, delle implicazioni

nelle attività collaborative in presenza e da remoto.

A questi si aggiunge una sempre maggiore attenzione al tema della

sostenibilità, con una delle nuove posizioni dedicate al design

for circularity ed uno spazio più ampio alla progettazione sostenibile

negli insegnamenti di laurea triennale e magistrale.

ENG

In 2021, our Research Team added 3 more researchers to the 11

Full and Associate Professors. Moreover, around 20 PhD students

and research fellows give their contribution in carrying out research

and teaching activities. Overall, the main features of our

Research Line are the young age on average of our members and

the dynamical topics covered by our research.

Following the steps of Prof. Cugini, who sadly passed away at the

beginning of the year, our group always leveraged on advanced

competencies on ICT technologies for product development,

such as Augmented (AR) and Virtual Reality (VR), Digital Human-Modelling,

Knowledge Management and AI systems, Additive

Manufacturing, etc. Unfortunately, another dreadful event

marked our 2021. Our young colleague Prof. Francesco Rosa, who

covered the design of components produced via additive manufacturing

in his latest research studies, passed away.

Along with technological skills, the group pays close attention to

human factors, from the psychological and cognitive aspects linked

to the design and usage of artefacts to the impact of in-person

and online collaborative activities.

Moreover, grows the attention on sustainability as one of the new

researchers will work on design for circularity; as well, sustainable

design has become a topic covered more and more in our

undergraduate and postgraduate courses.


TECNOLOGIE

MECCANICHE

E PRODUZIONE

ITA

Membro della Commissione Scientifica

Prof. Michele Monno

Oltre che come secondo anno di convivenza con la pandemia, il

2021 sarà ricordato per l’attivazione di Horizon Europe, il nuovo

programma quadro della UE che mette al centro dell’attenzione le

ricadute della ricerca e dell’innovazione sulla qualità della vita e del

lavoro dei cittadini. Per le difficoltà nella didattica ed anche nella

ricerca, si è trattato dunque di un anno di transizione nel quale alcuni

progetti attivi si sono avvicinati alla conclusione mentre cresce

l’interesse verso nuovi obiettivi. Tra questi, particolare rilievo

assume l’impiego di tecniche di modellazione e di analisi dei dati

per la manutenzione predittiva di macchinari e di sistemi di produzione

con importanti coinvolgimenti per tutte le tecnologie di

trasformazione di materie prime e semilavorati in prodotti finiti, e

quindi per la quasi totalità delle attività di ricerca sviluppate presso

la sezione Tecnologie Meccaniche e Produzione del DMEC. Tale

evoluzione, che incrocia le tematiche proposte dal Cluster 4 “Digital

Industry and Space”di HEU, si lega ad una inarrestabile spinta

verso la digitalizzazione del manifatturiero che, a livello globale,

riguarda larga parte delle attività industriali e che, per il nostro

Paese si prospetta come una rivoluzione particolarmente divisiva

– tra aziende che ne trarranno vantaggio ed aziende che verranno

espulse dal mercato – e, nell’ambito della stessa impresa, tra addetti

che, per propensione/cultura/età, riusciranno a rimanere al

passo e chi, per gli stessi vincoli, ne sarà escluso. Una riflessione

sui contenuti di alcuni insegnamenti sarà conseguenza diretta.

ENG

In addition to being our second year of coexistence with the pandemic,

2021 will be remembered for the activation of Horizon

Europe, the new EU framework program that focuses on the effects

of research and innovation on the quality of life and work of

citizens. Due to the difficulties in teaching and also in research,

it was therefore a transitional year in which some active projects

were nearing completion while interest in new objectives grew.

Among these, particular importance assumes the use of modelling

and data analysis techniques for the predictive maintenance

of machinery and production systems with important involvement

for all technologies of transformation of raw materials and

semi-finished into finished products, and therefore for almost

all of the research activities developed in the Manufacturing and

Production Systems research line of the DMEC. This evolution,

which crosses the themes proposed by the HEU Cluster 4 “Digital

Industry and Space”, is linked to an unstoppable run towards the

manufacturing digitalization which, on a global level, concerns a

large part of industrial activities and, for our country, seems to

be a particularly divisive revolution - between companies that will

benefit from it and companies that will be expelled from the market

- and, within the same company, between employees who, by

propensity/culture/age, will be able to keep up and who, for the

same constraints, it will be excluded. A reflection on the contents

of some teachings will be a direct consequence.

meccanica magazine

15


Progetto MISTICO:

monitoraggio di materiali compositi

mediante network di nanotubi

al carbonio

meccanica magazine

ITA

I materiali compositi stanno progressivamente sostituendo i più

tradizionali materiali metallici, anche in applicazioni safety-critical,

grazie alle eccellenti proprietà meccaniche, quali un miglior rapporto

forza-peso e rigidezza-peso, nonché ad una maggiore resistenza

catori. Il team, guidato dal Prof. Claudio Sbarufatti nel ruolo di principal

investigator, raccoglie un background di esperienze da diverse

sezioni del Dipartimento: la sezione di Costruzione di Macchine e

Veicoli (Prof. Claudio Sbarufatti e Flavia Libonati) per le tecniche di

16

alla corrosione, alle proprietà ignifughe ed ai costi ridotti del ci-

monitoraggio strutturale, il degrado dei materiali e lo studio di ma-

clo-vita. Tuttavia, in presenza di impatti e carichi di compressione, i

teriali nanocompositi; la sezione di Misure (Dr. Diego Scaccabaroz-

materiali compositi sono soggetti a complessi meccanismi di cedi-

zi) per la progettazione dei sensori e l’ottimizzazione dell’analisi dei

mento, tra cui l’insorgere di cricche nella matrice e delaminazioni.

segnali; la sezione di Meccanica dei Sistemi (Prof. Simone Cinque-

Tali fenomeni sono peraltro strettamente legati alla configurazione

mani) per lo sviluppo di materiali intelligenti e tecniche di controllo

del materiale e alla sua condizione di utilizzo, fattori che rendono la

strutturale.

previsione dell’integrità strutturale particolarmente aleatoria, tra-

L’idea alla base di MISTICO è quella di sfruttare le proprietà multi-

ducendosi in un possibile aumento dei costi operativi, nello speci-

funzionali dei materiali nanocompositi epossidici rinforzati con na-

fico di manutenzione.

noparticelle di carbonio al fine di creare una struttura self-sensing.

Ad oggi, molteplici studi si sono dedicati all’implementazione di si-

Questa è in grado di percepire potenziali meccanismi di deteriora-

stemi di monitoraggio strutturale, tipicamente basati sull’installa-

mento all’interno del materiale stesso attraverso la misurazione

zione di sensori permanenti in grado di fornire un flusso continuo

di informazioni circa l’integrità della struttura monitorata. Tali dati

sono processati da algoritmi di elaborazione del segnale e intelligenza

artificiale per il rilevamento, la valutazione e la prognosi del

danno durante la vita operativa di un componente o di una parte

strutturale. Tuttavia, nella maggior parte dei casi riportati in letteratura

scientifica, la diagnosi e prognosi strutturale è basata sulla

misura di variabili esclusivamente locali (per esempio, di deformazione)

correlabili alle caratteristiche del danno ma richiedono un numero

elevato di sensori per sopperire alla natura locale della misura.

Ciò comporterebbe un significativo aumento del peso, annullando il

vantaggio dell’utilizzo di materiali compositi.

Per superare questi limiti, il Dipartimento di Ingegneria Meccanica

del Politecnico di Milano ha avviato il progetto di ricerca MISTICO

(Monitoring of composite material structures with carbon nanotubes

- 2016-2019), inserito nel quadro del programma Giovani Ricer-


della sua piezoresistenza, rinnovando il concetto di sensor network.

L’aggiunta di nanotubi di carbonio (CNTs) nella matrice del materiale

composito ha un duplice effetto. In primo luogo, si nota un aumento

della resistenza a fatica poiché i nanotubi, a livello microstrutturale,

tendono a connettere le superfici di frattura nella matrice, limitandone

la propagazione, come mostrato in figura.

In secondo luogo, aggiungendo una quantità limitata di nanotubi

di carbonio nella resina di un materiale composito, quest’ultima di

per sé non conduttiva, il materiale assume proprietà piezo-resistive

che possono appunto essere utilizzate per il rilevamento di anomalie,

tramutando il materiale stesso in un sensore ed eliminando

la necessità di doverne installare di esterni. La figura mostra come

l’effetto tunnel e il contatto tra i nanotubi di carbonio favoriscono il

passaggio di corrente nella struttura. In caso di danno, per esempio

a seguito di un impatto, la distribuzione dei nanotubi vicino all’area

danneggiata cambia, così come la distanza relativa tra di essi. Ciò si

tradurrà in una variazione di impedenza elettrica e, quindi, di tensione

misurata mentre una corrente costante attraversa il materiale.

L’approccio è stato inizialmente verificato su provini in materiale

composito rinforzati con fibra di vetro e soggetti a carichi di rottura

(come mostrato in figura), identificando la presenza di micro-danneggiamenti

validati per mezzo di misurazioni effettuate con termocamera.

In seguito, i nanotubi di carbonio sono stati distribuiti

su una pellicola adesiva e usati per monitorare lo scollamento di un

giunto strutturale soggetto a carichi di fatica (come mostrato in figura),

dimostrando come il metodo sia applicabile non solo per individuare

il danno ma anche per identificare la variazione di carico

su tutto il provino. Infine, sono stati realizzati test d’impatto a bassa

velocità su provini in materiale composito rinforzato con fibra di

vetro e nanotubi di carbonio, correlando i segnali acquisiti direttamente

dal materiale durante l’impatto con la forza e lo spostamento

misurati, come in figura. Ciò ha permesso di verificare la possibilità

di poter allo stesso tempo identificare l’insorgere di delaminazioni

durante l’impatto e monitorare le vibrazioni post-impatto subite dal

provino stesso.

Grazie ai promettenti risultati ottenuti, il team dedicherà la ricerca

futura a migliorare la solidità dell’approccio, facendo leva sull’ottimizzazione

del processo tecnologico di realizzazione al fine di ottenere

misure ripetibili ed aprire la strada ad una potenziale applicazione

nell’ambito del controllo strutturale.

meccanica magazine

17


meccanica magazine

18

ENG

Self-sensing of composite materials based on a network of carbon

nanotubes: the MISTICO project

Composite materials are increasingly replacing traditional metallic

materials even in safety-critical structures, due to their excellent

specific mechanical properties, i.e. higher strength-to-weight and

stiffness-to-weight ratios, as well as due to their improved resistance

to corrosion, their fire-retardant properties, and the reduced

lifecycle costs. However, especially in the case of out-of-plane

(impact) and compression loads, composite materials are subjected

to complex degradation mechanisms including, for example, matrix

cracking and delamination. This behaviour strongly depends on the

material configuration and the operating condition, thus making damage

evolution less predictable, and potentially turning into increased

operative costs for maintenance.

A lot of research is devoted to the implementation of structural

health monitoring systems, typically based on the installation of

permanent sensors providing a continuous stream of data. Signal

processing and artificial intelligence algorithms are then used for

detection, assessment, and prognosis of damage during the operative

life of a component or a structural part. However, on one hand,

the application of dense sensor networks over structures often

induces significant weight increase hampering the advantage of

adopting composite materials; on the other hand, many sensor technologies

only provide a local measure of some variables (e.g. the

strain) that are correlated with damage features.

To overcome these limitations, the Department of Mechanical engineering

of Politecnico di Milano, in the framework of the Young

Researcher program, has funded the research project MISTICO (Monitoring

of composite material structures with carbon nanotubes -

2016-2019). The project team, led by Prof. Claudio Sbarufatti as Principal

Investigator, combines the background experience in different

research lines within the department, including Machine and Vehicle

Design (Proff. Claudio Sbarufatti and Flavia Libonati) for structural

health monitoring, damage degradation and nanocomposites, Measurements

(Dr. Diego Scaccabarozzi), for sensor design and signal

processing optimisation and Dynamics and Vibration (Prof. Simone

Cinquemani), for smart materials and structural control.

The ground idea of MISTICO is that of exploiting the multifunctional

properties of epoxy-based nanocomposites reinforced with carbon

nanoparticles to create a composite self-sensing structure. This is

capable of detecting potential deterioration mechanisms within the

material by a measure of its piezo-resistivity, potentially revolutionizing

the concept of sensor network design. Adding carbon nanotubes

(CNTs) into the matrix of composite material can have a dual

effect. First, an increase of the fatigue life is noticed as nanotubes

tend to “bridge” the crack edges limiting its evolution, as depicted

in figure. Second, the addition of a very small quantity of CNTs into

the non-conductive resin will provide piezo-resistive properties that

can be exploited for self-sensing, without the installation of any sensor

but turning the bulk material into a sensor itself. The latter concept

is depicted in figure: tunnelling effect and contact among the

CNTs allow the current flowing through the structure. When damage

occurs, the CNTs distribution around the damage area changes,

as the relative distance between the CNTs. Therefore, if a constant

DC current is imposed, a change in the voltage will be noticed close

to the damaged area, e.g. before and after the occurrence of an

impact, which is related to the piezo-resistive variation across the

specimen.

The approach has been first verified on fiber-reinforced composite

specimens subjected to tensile loading as shown in figure, where the

onset of micro damages was detected and validated with measurements

by a thermal camera. Secondly, CNTs have been sprayed on a

film adhesive and used to monitor debonding on a lap joint subject to

fatigue loads as shown in figure, proving the method is suitable not

only to identify damage but also to capture the load variation across

the specimen. Thirdly, low-velocity impact tests were implemented

to correlate the signals from multiple channels on a single composite

plate specimen doped with multi-walled CNTs with the simultaneous

measures of displacement and forces (as shown in figure),

proving the possibility of identifying the delamination onset during

damage and the dynamic oscillation after impact occurrence.

Thanks to the very promising results obtained, future activity by the

team is devoted to the increase of robustness of the approach, leveraging

the optimisation of the manufacturing process to obtain

repeatable performance, thus paving the way towards potential implementation

of self-sensing for structural control.


Progetto Custodian:

il ruolo di DMEC

ITA

Il progetto Custodian, acronimo per “Customized photonics devices

for defectless laser-based manufacturing”, è un Progetto EU finanziato

nel quadro dell’azione Research and Innovation di Horizon 2020

(H2020-ICT-2018-2020) per il periodo 2018-2021.

Il tema centrale della ricerca riguarda la definizione dei più opportuni

cicli termici in grado di mitigare la formazione di difetti di processo

in alcune leghe tipicamente riconosciute come critiche per i processi

laser. Si fa riferimento a specifiche leghe base Nichel per il tema

dell’additive manufacturing ed a particolari acciai inossidabili per la

saldatura laser.

Una volta stabiliti i cicli termici ideali per i materiali e processi, questi

vengono “tradotti” con il supporto di accurate simulazioni numeriche

in adatte strategie di apporto termico, con l’ausilio di dispositivi di

beam splitting e beam shaping sviluppati ad hoc da partner industriali

specializzati. La sezione Materiali del Dipartimento di Meccanica

è stata coinvolta nel progetto per le competenze necessarie alla

definizione dei cicli termici ottimali e della verifica dell’efficacia delle

soluzioni implementate.

ENG

The Custodian project: the role played by DMEC

The Custodian project (the acronym stands for Customized Photonics

Devices For Defectless Laser-Based Manufacturing) is one of the

EU projects funded within the framework Research and Innovation

Program Horizon 2020 (H2020-ICT-2018-2020) for the years 2018-

2021.

The main research activity involves defining the optimal temperature

cycles required to limit occurring process defects in some critical

alloys during laser processing. In particular, the project focused on

some high-strength Nickel-based alloys used in additive manufacturing

and on some specific type of stainless steel used in laser welding.

Once identified, the ideal temperature cycles for both materials

and processes are translated into specific strategies for heat input

delivery supported by numerical simulations, exploiting beam splitting

and beam shaping strategies, and using devices developed ad

hoc by qualified industrial partners.

The Materials Research Group of our Department was directly involved

in the Custodian project for its expertise, which is needed to

identify the optimal temperature cycles and verify the efficiency of

the implemented solutions.

meccanica magazine

19


Progetto VITAE:

nuove strategie per la

valorizzazione sostenibile del

patrimonio archeologico in Eritrea

meccanica magazine

20

ITA

È ufficialmente partito il progetto VITAE “sustainable valorisation of

the eritrean heritage adulis archaeological site project” promosso

e finanziato dall’Agenzia Italiana per la Cooperazione allo Sviluppo

(AICS) e dal Ministero per gli Affari Esteri e la Cooperazione Internazionale

(MAECI). L’obiettivo specifico del progetto è di valorizzare

l’impatto della ricerca archeologica a lungo termine e legarla alla

promozione dello sviluppo sostenibile a livello locale usando il sito

archeologico Adulis in Eritrea come banco di prova.

Due sono i pilastri della ricerca:

• dal punto di vista archeologico: un approccio interdisciplinare con

l’uso prevalente di tecniche non invasive come la fotogrammetria e

la geomatica;

• dal punto di vista delle operazioni in situ: la progettazione e la realizzazione

di un parco archeologico sperimentale in cui la salvaguardia

delle testimonianze culturali è direttamente legata alla protezione

dell’ambiente attraverso l’utilizzo di energie rinnovabili e la

gestione sostenibile delle risorse idriche e della mobilità.

Con il raggiungimento del suo obiettivo specifico, l’azione progettuale

contribuirà ad ideare nuove strategie di sviluppo sostenibile

nella valorizzazione patrimonio culturale. L’azione porterà alla creazione

di valore socio-economico e culturale. Lo schema sta prendendo

forma dalla comprensione del potenziale delle civiltà passate

a supporto della risoluzione dei problemi della società attuale e suggerirà

alternative attuabili per la pianificazione territoriale, creando

condizioni di vita migliori per le persone e contemporaneamente

preservando il pianeta e le sue risorse.

Principali attività e relativi risultati attesi

In base a questa analisi dei problemi, i risultati principali per le azioni

proposte sono quattro:

• COMPRENSIONE E ANALISI DEL CONTESTO TERRITORIALE

Completamento della valutazione a tutto tondo del contesto territoriale

dal punto di vista ambientale e culturale.

• IL PARCO NATURALE E ARCHEOLOGICO SOTENIBILE ADULIS

Apertura del parco naturale e archeologico sostenibile Adulis, primo

nel suo genere in tutta l’Africa Subsahariana e dotato delle giuste infrastrutture

per provvedere energia, acqua, accessibilità e mobilità.

• IL SITO ARCHEOLOGICO ADULIS: SCAVI, CONOSCIENZA E TUTELA

Messa a punto e adozione di un approccio metodologico sostenibile

per la realizzazione degli scavi e per la gestione del sito archeologico

Adulis.

• EMPOWERMENT E BUILDING CAPACITY, GOOD PRACTICE

Messa a disposizione di una squadra di una nuova generazione di

funzionari e ricercatori sul territorio in grado di assicurare padronanza

e sostenibilità a lungo termine del processo.

Il progetto è multi- e inter-disciplinare e vede come attori il Dipartimento

di Architettura e Studi Urbani (prof. Susanna Bortolotto,

arch. Nelly Cattaneo, in collaborazione con la prof.ssa Serena Massa

dell’Università Cattolica del Sacro Cuore di Milano), il Dipartimento

di Ingegneria Civile e Ambientale (proff. Alberto Guadagnini, Matteo

Colombo), il Dipartimento di Energia (proff. Fabio Inzoli, Emanuela

Colombo, Riccardo Mereu) e Dipartimento di Ingegneria Meccanica

(proff. Marco Bocciolone, Emanuele Zappa e Simone Cinquemani).

Il progetto è coordinato da DMEC ed ha un valore di 2.3 M€ di cui 1,97

M€ finanziati direttamente da AICS.


ENG

VITAE Project: new strategies for a sustainable valorisation of

the Eritrean heritage

Sponsored and founded by AICS (Italian Agency for Development

Cooperation) of the MAECI (Italian Ministry of Foreign Affairs and

International Cooperation), VITAE - sustainable valorisation of the

eritrean heritage adulis archaeological site project - has officially kicked

off. The specific objective of this project is to boost the impact

of long-term archaeological research and link it to the promotion of

sustainable development at local level using the Adulis Archaeological

Site in Eritrea as a test case.

The research activities rely on two pillars:

• from the archaeological perspective: an interdisciplinary model

with the prevalent use of remote sensing and non-invasive techniques,

such as photogrammetry and geomatic;

• from the point of view of in situ activities: designing and creating

a sustainable archaeological park, in which the preservation of cultural

testimonies is linked to the protection of the environment by

renewable energy and sustainable management of water supplies

and mobility.

By achieving its specific objective, the action will contribute to the

overall aim of this project to design new strategies of heritage sustainable

development.

The action will lead to the achievement of socio economic and cultural

value. This pattern will come from understanding the potential

of past civilization to support problem solving for the present society

and suggest viable alternatives for territorial planning, creating

better lives for the people, while preserving the planet and its

resources.

Main activities and related expected outcomes

Based on this problem analysis, four are the main results of the proposed

action:

• TERRITORIAL CONTEXT KNOWLEDGE AND ANALYSIS

A Comprehensive assessment of the territorial context from the

cultural and environmental perspective is completed.

• ADULIS SUSTAINABLE ARCHAEOLOGICAL AND NATURAL PARK

The Adulis Sustainable Archaeological and Natural Park is open as

the first of its kind in Sub Saharan Africa and equipped with the right

infrastructure to provide energy, water, accessibility and mobility.

• ADULIS ARCHAEOLOGICAL SITE: EXCAVATION, KNOWLEDGE AND

PRESERVATION

A sustainable methodological approach to site excavation and management

is set up and applied to Adulis Archaeological Site.

• EMPOWERMENT AND CAPACITY BUILDING, GOOD PRACTICES

A new generation of officers and researchers is available within the

country to assure ownership and long-term sustainability of the process.

The inter and multi-disciplinary project involves partners like the

Department of Architecture and Urban Studies (Prof. Susanna Bortolotto,

the architect Nelly Cattaneo, in collaboration with Prof. Serena

Massa from the Università Cattolica del Sacro Cuore di Milano),

the Department of Civil and Environmental Engineering (Prof. Alberto

Guadagnini, Prof. Matteo Colombo), the Department of Energy

(Prof. Fabio Inzoli, Prof. Emanuela Colombo, Prof. Riccardo Mereu)

and the Department of Mechanical Engineering (Prof. Marco Bocciolone,

Prof. Emanuele Zappa, Prof. Simone Cinquemani).

Coordinated by DMEC, the project values 2.3 million euros, of which

1.97 million euros granted directly by AICS.

meccanica magazine

21


meccanica magazine

22

ITA

Monitoraggio

strutturale di ponti

ferroviari:

collaborazione tra DMEC e RFI

Il monitoraggio strutturale rappresenta un fattore chiave nei sistemi

di gestione delle infrastrutture in termini di sicurezza e affidabilità,

e assume una valenza ulteriore quando le opere prese in considerazione

rivestono un ruolo di primo piano nei sistemi di trasporto di

persone e merci. Si tratta infatti di strutture che impattano in modo

profondo sulle attività economiche (ma anche sulle dinamiche sociali

e più in generale sulla valenza complessiva) del territorio nel quale

sono inserite: è questo il caso, in particolare, delle infrastrutture ferroviarie,

che rappresentano uno dei principali vettori per il trasporto

nazionale e internazionale.

La ricerca che il Dipartimento di Meccanica e il Dipartimento di Ingegneria

Civile e Ambientale stanno attualmente portando avanti per

Rete Ferroviaria Italiana si inserisce in questo contesto, con l’obiettivo

di realizzare lo studio e la messa in opera di tre differenti sistemi

di monitoraggio strutturale, applicati a tre diverse tipologie di ponte.

Il progetto, coordinato da Marco Belloli, docente presso il Dipartimento

di Meccanica, prevede la creazione di prototipi che servano

da benchmark per la progettazione e realizzazione di sistemi di monitoraggio

e per definire la loro interazione con i gemelli digitali dei

manufatti, in modalità compatibili con le architetture e i protocolli di

telecomunicazione propri del committente.

In accordo con RFI sono stati selezionati tre ponti appartenenti alla

DT di Venezia come dimostratori paradigmatici, perché ben rappresentativi

delle diverse tipologie di manufatto che fanno parte del patrimonio

del committente: ponte di Livenza, travata metallica; ponte

della Priula, ad arco in cls; ponte di Piave, ad impalcato in cemento

armato.

ENG

DMEC and RFI working together on structural health monitoring

of railway bridges

Structural Health Monitoring (SHM) represents a key factor in infrastructure

management systems, with particular reference to their

safety and reliability. It assumes further relevance when the bridges

considered are leading elements in the carriage of people and goods.

These structures, in fact, usually have a profound impact not

only on the economic activities of the environment considered,

but also on the social and overall value. This applies in particular to

railway infrastructures, being one of the main carriers for national

and international transport.

Within this regard, the Departments of Mechanical Engineering and

of Civil and Environmental Engineering of Politecnico di Milano are

currently developing a research activity in collaboration with RFI -

Rete Ferroviaria Italiana, with the aim of carrying out the study and

implementation of three different structural monitoring systems,

adopted in three different types of bridges. The project, coordinated

by Marco Belloli, full professor at MeccPolimi, foresees the realization

of prototypes that will serve as benchmarks for the design

and implementation of monitoring systems on the whole railway

network; it will also define their interaction with the digital twins of

the considered structures, complying with the customer’s own IT

architectures and protocols.

In agreement with RFI, the research group selected three bridges

belonging to the Venice DT railway line as paradigmatic demonstrators,

as they were considered representative of the customer’s

diverse assets: Livenza brige, metal girder; Priula bride, arched concrete;

Piave bridge, with reinforced concrete deck.


meccanica magazine

23


Al via il progetto

ATLAS

meccanica magazine

24

ITA

La Commissione Europea, nell’ambito del programma Horizon

2020-SPACE, ha finanziato con 3 milioni di euro il progetto, coordinato

dal Dipartimento di Meccanica del Politecnico di Milano (Prof. Mario

Guagliano), “ATLAS” (Advanced Design of High Entropy Alloys Based

Materials for Space Propulsion, GA n. 101004172), che punta a sviluppare

nuovi materiali in grado di assicurare proprietà superiori in condizioni

ambientali estreme, consentendo un importante avanzamento

nella progettazione e costruzione dei propulsori spaziali.

Uno dei maggiori problemi legati a queste missioni è, infatti, la necessità

di realizzare sistemi capaci di lavorare senza cedimenti in

ambienti estremi, con temperature variabili da valori profondamente

sottozero a picchi termici di centinaia di gradi. In particolare, i sistemi

di propulsione sono severamente sollecitati e necessitano di dimensionamenti

adeguati a resistere in tali condizioni, il che non va nella

stessa direzione del massimo contenimento dei pesi. La soluzione a

questo problema è lo sviluppo di materiali ad hoc, capaci di coniugare

le diverse proprietà richieste e mantenerle in ambienti estremi, quali

quelli in cui le missioni spaziali si svolgono.

Il progetto ATLAS vuole dare una risposta a questi problemi e si pone

come obiettivo lo sviluppo di nuovi materiali, basati sulle leghe ad alta

entropia (High Entropy Alloys, HEA), in grado di coniugare, in condizioni

estreme, bassa densità, alta resistenza e duttilità, resistenza all’ossidazione,

buone proprietà a fatica e al creep.

Le HEA sono una classe di materiali relativamente nuova che si propone

di sostituire le superleghe per applicazioni estreme, grazie a

proprietà superiori a queste ultime. Tuttavia, la loro applicazione non

ha ancora avuto un reale seguito a causa di aspetti ancora irrisolti, ai

quali ATLAS ambisce a dare una risposta, e rimuovere i motivi che ancora

limitano l’impiego di questi materiali.

Attraverso un approccio multidisciplinare, reso possibile dalla complementarità

dei partner, si intende progettare e realizzare leghe ad

alta entropia e materiali compositi con le HEA come matrice e materiali

ceramici come rinforzo, in grado di ottimizzare le proprietà richieste

per l’applicazione in camere di combustione di propulsori spaziali.

I passi previsti per arrivare a questo ambizioso risultato sono: definizione

e classificazione delle proprietà di interesse, progettazione

delle leghe HEA attraverso approcci multiscala e multidisciplinari, definizione

delle soluzioni ibride/composite attraverso la combinazione

di HEA con materiali ceramici e/o con compositi a matrice ceramica

per creare materiali funzionali leggeri, resistenti in temperatura.

Per la costruzione di rivestimenti e componenti con tali materiali si

utilizzeranno due tecniche di manifattura additiva tra loro diverse e

complementari; una di natura termica (PBD, Powder Bed Fusion), l’altro

di natura dinamica, il Cold Spray.

Il ruolo del Dipartimento di Meccanica, oltre a quello di coordinare il

progetto, si concentra proprio sull’applicazione del Cold Spray. Questo

processo sfrutta il fenomeno dell’adesione delle polveri allo stato solido,

ottenuto accelerando il flusso di polveri a velocità supersoniche

superiori a un valore critico. Oltre questo limite si attiva il fenomeno di

adesione per effetto delle elevate deformazioni plastiche e dell’elevata

velocità di deformazione, costruendo, per strati successivi, rivestimenti

superficiali o pezzi tridimensionali. La sfida è particolarmente

ambiziosa, in quanto sono rari i tentativi fatti per depositare con il

Cold Spray le HEA, e ancora nessuno si è cimentato con compositi a

base di HEA.

Sarà, quindi, di grande interesse seguire la messa a punto dei parametri

di processo ottimali e i risultati, le proprietà che i nuovi materiali

mostreranno, la loro applicazione su un propulsore spaziale curato da

uno dei partner e il confronto con quanto ottenuto con le altre tecnologie

studiate.

Oltre al Politecnico, il consorzio include il Deutsches Zentrum fÜr Luft

und Raumfahrt (DLR), ben noto centro di ricerca aerospaziale tedesco,

l’Università di Derby (UK), e le SME ad alto contenuto tecnologico

Arceon (NL), Dawn Aerospace (NL), Questek Europe (SE), Tisics (UK).

YourscienceBC (UK) si occuperà della disseminazione dei risultati.


ENG

Launching the Atlas Project!

Within the programme Horizon2020-SPACE, the European Commission

issued 3 million euros to fund the ATLAS project, coordinated by

the Department of Mechanical Engineering of Politecnico di Milano

(prof. Mario Guagliano). “ATLAS” - Advanced Design of High Entropy

Alloys Based Materials for Space Propulsion (GA n. 101004172) – aims

at developing new materials capable of ensuring high-performing

properties in extreme environmental conditions, allowing a considerable

step forward in designing and construction of space propulsion

systems. In fact, one of the major problems linked to these missions

is to create systems able to perform without yielding in extreme environments

with sudden temperature variations, rising from below zero

to more than hundreds degrees. In particular, the space propulsion

systems work under severe stress conditions and need adequate design

to resist these conditions, which doesn’t necessarily meet the

requirements to maximise weight reduction. The solution to this problem

is to develop ad hoc materials that combine all requested properties

and maintain them in extreme environments, namely the ones

typical of space exploration missions.

The ATLAS project aims at solving such problems. Its objective is to

develop new materials made of High Entropy Alloys (HEA) capable of

enduring harsh conditions by combining low density, high resilience,

high ductility, high oxidation resistance, good mechanical properties

under stress and creep. HEAs are part of a relatively new class of materials

aimed at replacing superalloys in harsh applications, thanks to

their higher-performing properties. However, they haven’t been widely

applied yet because of some unsolved issues. Finding a solution

is precisely what the ATLAS team ambitiously aims to do and, in so

doing, also wiping out all reasons still limiting the usage of these materials.

By the multidisciplinary approach taken thanks to the involved

partners complementing one-another, the team wants to design and

produce high entropy alloys and composite materials with a HEA matrix

and ceramic materials as reinforcement, allowing to optimize the

requested properties for their application into the combustion chambers

of space propulsion systems.

The planned steps to reach such ambitious results are: defining and

classifying the properties of interest; designing HEAs with multi-scales

and multidisciplinary approaches; defining hybrid/composite solutions

by combining HEAs with ceramic materials and/or ceramic

matrix composites to create functional, light and high-temperature

resistant materials. Using these materials for coatings and manufactory

of components requires two different and complementary additive

manufacturing techniques: Powder Bed Fusion (PBD), a thermal

nature process, and Cold Spay, a dynamic process.

Other than coordinating the project, DMEC focuses on Cold Spray

applications. This process exploits the phenomenon of adhesion of

solid powders obtained by accelerating the powder spray rate to a

supersonic speed, higher than its critical value. Overcoming this limit

activates the phenomenon because of the severe plastic deformations

occurring and the high strain rate, building through more layers

of superficial coatings and 3D pieces. It is indeed a highly-ambitious

challenge because the attempts to use cold spray on HAS are very

few, and nobody has yet tried on HEA composites.

Besides, it will be of great interest to follow the definition of the optimal

parameters and results, defining the properties the new materials

will show, seeing their application on a space propulsion system

by one of our partners, and confronting the obtained results with

other technologies being studied. Other than Politecnico di Milano,

the consortium includes the Deutsches Zentrum fÜr Luft und Raumfahrt

(DLR), a well-known German Aerospace Research Centre, the

University of Derby (UK), and a few highly-specialised technical SMEs:

Arceon (NL), Dawn Aerospace (NL), Questek (SE), Tisics (UK). YourscienceBC

(UK) will handle the dissemination of the results.

meccanica magazine

25


DriSMi:

il simulatore di guida del

Politecnico di Milano

meccanica magazine

26

ITA

Il Politecnico di Milano ha presentato la prima installazione al mondo

di DiM400, il modello più innovativo di simulatore di guida ad oggi esistente

sul mercato, cofinanziato da Regione Lombardia e progettato

e ingegnerizzato da VI-grade.

Si tratta di un’acquisizione di valore fondamentale per la ricerca scientifica

in ambito automotive, perché da oggi l’Ateneo avrà uno strumento

unico per lo sviluppo della mobilità sostenibile. Il simulatore di guida

servirà per la progettazione e costruzione di nuovi veicoli ecologici,

per lo sviluppo di componenti con impiego innovativo di materiali, per

le applicazioni relative alla dinamica del veicolo, l’ottimizzazione dei

consumi, per verificare il funzionamento di sistemi di sicurezza attiva

(ADAS), per applicazioni di connessione tra veicoli ed infrastrutture e

per applicazioni di guida autonoma. Anche lo sviluppo del motorsport

sostenibile sarà possibile. Il sistema, costato 5 milioni di euro di cui 2

milioni finanziati da Regione Lombardia, è stato installato nel nostro

Campus di Bovisa, e rappresenta la punta di diamante di un progetto

promosso da Cluster Lombardo della Mobilità. Un progetto che ha l’obiettivo

di creare un Polo al servizio delle aziende automotive del cluster

regionale lombardo, quarto a livello europeo.

Ma lasciamo la parola al Rettore Prof. Ferruccio Resta e ai colleghi

DMEC Prof. Giampiero Mastinu e Prof. Federico Cheli che tanto hanno

fatto per raggiungere questo traguardo.

Prof. Ferruccio Resta - Rettore: Le infrastrutture sperimentali e i

laboratori d’avanguardia sono elementi essenziali per la ricerca internazionale

e lo sviluppo con le imprese. Attraverso l’installazione del simulatore,

il Politecnico di Milano si confronta con alcune delle maggiori

realtà a livello internazionale, contribuendo a rendere l’area di Bovisa

un ecosistema dell’innovazione in chiave europea. Questa è la dimensione

alla quale punta l’Ateneo per affrontare le grandi sfide dei prossimi

anni, prima fra tutte quella della mobilità.


Prof. Giampiero Mastinu: L’idea di promuovere un simulatore di guida

al PoliMi è venuta quasi per caso. Il Presidente del Cluster Lombardo

della Mobilità (CLM) mi chiamò e amabilmente mi ‘costrinse’ ad intervenire

ad una cena ‘importante’ a Brescia: parlando con un collega

accademico discutemmo di come promuovere le attività di ricerca e

sviluppo a favore delle aziende di componentistica automotive. Un simulatore

di guida sembrò essere una buona proposta. Nella successiva

assemblea generale del Cluster Lombardo della Mobilità (novembre

2017) presentai il progetto INRIMOS. Raccogliemmo subito adesioni

alla iniziativa da parte di importanti aziende lombarde. Individuai subito

in VI-grade un potenziale fornitore eccellente, benché il prodotto

di punta fosse solo un progetto, non ancora realizzato. Con il Rettore

decidemmo di giocare la carta della installazione di un simulatore unico

ed originale. Ovviamente il simulatore del PoliMi sarebbe stata una

risorsa per molte ricerche su differenti campi, per quanto riguarda

specificamente i temi della Sezione Costruzione di Macchine e Veicoli:

Costruzione di Veicoli, Ottimizzazione tramite Intelligenza Artificiale,

Lightweight Construction, Affidabilità e tanti altri. Seguirono una serie

di attività di promozione del progetto INRIMOS, sia da parte del CLM, sia

da parte del PoliMi. Dovevamo convincere i funzionari ed i politici della

Regione della bontà della idea. Abbiamo trovato in Regione Lombardia,

presso l’assessorato alla Istruzione, Università, Ricerca, Innovazione e

Semplificazione una sensibilità assolutamente non comune per i temi

automotive a noi cari e molto rilevanti per la economia lombarda. Per

portare avanti una iniziativa tanto complessa, era necessaria una condivisione

degli sforzi, anche economici. Ne parlai con i colleghi, prima

il prof. Gobbi, poi il prof. Cheli. Tutti convenimmo di procedere con la

proposta. Senza il supporto dei colleghi, il simulatore non si sarebbe

mai concretizzato.

Prof. Federico Cheli: La passione per i veicoli e per la guida è sicuramente

alla base dell’attività di ricerca portata avanti da un gruppo di

ragazzi (più o meno giovani) della sezione di Meccanica dei Sistemi.

Negli anni abbiamo acquisito sempre più esperienza nella modellazione

del veicolo e dei suoi componenti, nella sperimentazione e, in tempi

più recenti, nello sviluppo di sistemi di controllo attivi e per la guida

autonoma. Ricerche volte a migliorare le prestazioni, la sicurezza, l’affidabilità

e l’efficienza dei veicoli che utilizziamo tutti i giorni. Ma, nonostante

in questi anni abbiamo sviluppato modelli sempre più precisi

ed affidabili, un elemento è sempre rimasto piuttosto aleatorio e “ostico”.

La persona alla guida di un veicolo è l’elemento più complesso da

descrivere attraverso modelli matematici e, incidentalmente, è quello

più importante. Siamo diversi per carattere, attitude alla guida, riflessi.

L’ottimizzazione della risposta del veicolo, particolarmente per quanto

attiene ai sistemi di guida autonoma, non può prescindere dalle reazioni

di chi guida. La loro accettazione da parte degli utenti richiede degli

studi molto precisi in cui non può mancare l’elemento umano. DriSMi

rappresenta lo stato dell’arte dei simulatori di guida dinamici: offre un

ambiente di simulazione estremamente realistico ed immersivo in cui

la persona sperimenta direttamente le reazioni di un veicolo ai suoi comandi.

È quindi quello che mancava e che ci consentirà di progettare i

veicoli dei prossimi anni dove elementi come elettrificazione, connettività

e guida autonoma verranno ritagliati sull’utente stesso.

Il DriSMi potrà essere utile per potenziare la didattica innovativa di diversi

corsi della Laurea in Ingegneria Meccanica. Gli studenti Formula

SAE e Shell-Eco Marathon potranno giovarsi di un sistema non disponibile

in molte altre sedi universitarie.

meccanica magazine

27


meccanica magazine

28


ENG

DriSMi – the driving simulator of Politecnico di Milano

Politecnico di Milano has just presented the first installation of

DiM400 in the world. Co-sponsored by Regione Lombardia and designed

and engineered by VI-grade, DiM400 is the most innovative

driving simulator existing on the market today. Acquiring the simulator

represents a milestone for automotive scientific research,

considering that, from now on, the University owns a unique tool to

develop sustainable mobility. The driving simulator will be used: to

design and build new eco-friendly vehicles, to develop components

using innovative materials, for applications about vehicle dynamics,

to optimise consumptions, to verify that the Advanced Driver-Assistance

Systems (ADAS) work properly, for applications connecting

vehicles and infrastructures, and for applications of autonomous

driving. Moreover, it will make sustainable motorsport possible. This

5-million euro system, in which Regione Lombardia invested 2 million

euros, has been installed in our Bovisa campus and is the main

asset of a project enhanced by Cluster Lombardo della Mobilità. The

objective of this project is to create a centre - the fourth in Europe -

accessible to all automotive companies part of the Lombardy region

cluster. Here follow the words of the rector Ferruccio Resta and our

DMEC colleagues Prof. Giampiero Mastinu and Prof. Federico Cheli,

which made an enormous effort to reach such incredible goal.

The Rector, Prof. Ferruccio Resta said: “Experimental infrastructures

and cutting-edge laboratories are key elements of international

research and business development. Installing the driving simulator

will allow Politecnico di Milano to have an open discussion with some

of the most important international players, meanwhile turning Bovisa

into a European innovation ecosystem. That is how the University

aims to tackle the challenges of the future, mobility first of all”.

Regione Lombardia, namely the Department of Education, University,

Research, Innovation, and Simplification, was particularly caring

about automotive research themes, which are remarkable for both us

and the economy of Lombardy. To pursue such a complicated task, it

was necessary to share resources, especially funds. I also discussed

with my colleagues Prof. Gobbi and Prof. Cheli, and everyone agreed

on bringing forward the proposal. Without their support, none of this

today would have been possible”.

Prof. Federico Cheli added: “Our passion for vehicles and driving are

the foundations on which relies the research activities carried out

by a group of (young and less younger) fellows of the Dynamics and

Vibrations Research Line. Over the years, we gained experience in

modelling vehicles and their components, experimenting, and, more

recently, developing active control systems and autonomous driving.

Our research aims at improving the performance, safety, reliability,

and efficiency of the vehicles we use daily. However, even though in

the past few years we developed more precise and reliable models,

there is still an element that remains uncertain and “tricky”. The person

behind the wheel is the most difficult to describe through math

models but definitely the most important. Optimising the vehicle

responsiveness, particularly when it comes to self-driving vehicles,

can not ignore the driver’s reactions. Being accepted by their users

requires specific research that must include the human factor. Dri-

SMi is the state of the art of dynamic driving simulators: it offers a

high-realistic and immersive simulation environment where the person

directly experiences the vehicle’s response to its commands. It is

what was missing and will allow in the following years to design vehicles

with their electrification, connectivity, and autonomous driving

customized on their users”.

meccanica magazine

29

Prof. Giampiero Mastinu explained: “The idea of promoting a driving

simulator at PoliMi occurred by chance. The president of the Cluster

Lombardo della Mobilità (CLM) called me one day and kindly persuaded

me to participate in a very important dinner in Brescia. I was

talking with an academic colleague discussing how to promote R&D

activities in automotive companies. The driving simulator sounded

like a great idea. On the occasion of the next CLM assembly (November

2017), I presented the project INRIMOS. Many important Lombardy

companies immediately endorsed the initiative. Sooner than later, I

realised VI-grade could be an excellent supplier, even though the product

was merely a project still far from its accomplishment. In agreement

with our rector, we decided to bet on the installation of a unique

and original simulator. Surely the PoliMi simulator would also be a

resource for research activities in many different fields, but mostly

addresses the research themes of the Machine and Vehicle Design

Research Line: Vehicle construction, AI optimisation, Lightweight

Construction, Reliability, and so much more. Later followed a series

of promotional events for the INRIMOS project, sponsored by CLM and

PoliMi. We had to convince administrative officers and regional politicians

that this was indeed a good idea. Surprisingly, it turned out that

The DriSMi could also be useful to boost innovative teaching for

our Mechanical Engineering Undergraduate and Postgraduate Programmes.

The Formula SAE and Shell-Eco Marathon teams can profit

from a system that is not available in many other Universities.


Metodi progettuali per la nuova

generazione di eliche navali:

il progetto NextProp

meccanica magazine

30

ITA

Nel dicembre 2020 si è tenuto online l’incontro di partenza del progetto

“NextProp” (Next Generation of Propellers). NextProp è un

progetto Ad Hoc R&T sotto l’egida dell’Agenzia Europea per la Difesa

(European Defence Agency). Le attività vengono supervisionate, a

livello delle singole nazioni dai relativi Ministeri della Difesa: il Ministero

della Difesa della Repubblica Italiana, il Ministero della Difesa

del Regno di Norvegia e il Ministero della Difesa Nazionale della Repubblica

di Polonia.

L’obiettivo principale del progetto è quello di sviluppare e realizzare

software di modellazione idro-elastico e tool di progettazione

richiesti per definire la prossima generazione di eliche navali con

basso livello di emissione sonora. Nel progetto saranno valutati modelli

avanzati per materiali innovativi per il settore, come i materiali

compositi; tali modelli saranno integrati in metodi numerici e permetteranno

di progettare eliche innovative in materiale composito.

La progettazione di eliche navali contempla una vasta gamma di

aspetti, in particolare l’efficienza, il peso, la resistenza nel tempo,

i costi e il livello di emissione sonora. La possibilità di usare materiali

compositi per questo tipo di componenti potrebbe consentire

il miglioramento di molti di questi aspetti, nello specifico il peso e

il livello di emissione sonora. Il programma di lavoro include la fluidodinamica

computazionale (CFD - Computational Fluid Dynamics),

analisi strutturali agli elementi finiti (FEA - Finite Element Analysis),

l’interazione fluido-struttura (FSI - Fluid–Structure Interaction) e

modelli più teorici. I modelli saranno validati attraverso prove sperimentali

su prototipi sia a livello di singoli profili che di eliche.

All’obiettivo principale si aggiungono una serie di obiettivi secondari

legati alle eliche navali: migliorare l’attuale capacità di comprensione

dei meccanismi primari di produzione e propagazione del suono;

migliorare la prestazione di eliche in composito focalizzandosi

sui criteri di progettazione e produzione; studiare l’integrazione di

sensori nel componente in ottica di un programma di manutenzione

basata sull’effettivo stato del componente (CBM – Condition-Based

Monitoring); migliorare le metodologie di test e i set-up sperimentali.

Il progetto è coordinato da Forsvarets Forskningsinstitutt (Istituto di

Ricerca per la Difesa della Norvegia) e vede l’ampia partecipazione

di industrie e centri di ricerca: FiReCo (Norvegia), Light Structures

(Norvegia), SINTEF Ocean AS (Norvegia), Centro per gli Studi di Tecnica

Navale – CETENA S.p.A., (Italia), Consiglio Nazionale delle Ricerche

– Istituto di Ingegneria del Mare (CNR-INM, Italia), Politecnico

di Milano (Italia), Polish Naval Academy (Polonia).

Il Politecnico di Milano partecipa al progetto grazie al coinvolgimento

della squadra di ricerca del Dipartimento di Ingegneria Meccanica

guidata dal Prof. Andrea Manes e dal Prof. Marco Giglio. Le principali

competenze messe in gioco dal team di ricerca sono nel campo della

modellazione strutturale di materiali compositi in condizioni di carico

estreme. Il contributo principale verrà offerto nell’ambito della

caratterizzazione delle proprietà meccaniche dei materiali coinvolti,

grazie a prove sperimentali, e nell’ambito della modellazione strutturale

numerica non lineare. L’ampia variabilità delle proprietà meccaniche

e dei parametri di progettazione, legati ai materiali compositi,

rende fondamentale la definizione e l’utilizzo di metodi di progettazione

basati su modelli e analisi per la definizione di eliche navali innovative.

Nel contempo tali metodi di progettazione permetteranno

anche una miglior comprensione dei materiali compositi in questo

ambito di utilizzo.


ENG

Design methods for the next generation of naval propellers:

NextProp project

Kick-off meeting of “NextProp” (Next Generation of Propellers)

project has been held in remote December 2020. NextProp is an Ad

Hoc R&T Project with European Defence Agency (EDA) serving as

the Contracting Authority. The Contributing Members to the Project

under this Contract are the Ministry of Defence of the Italian Republic,

the Ministry of Defence of the Kingdom of Norway and the Minister

of National Defence of the Republic of Poland.

The main objective of the Project under this Contract is to develop

and establish the required hydro-elastic software and design tools

for the modelling of next generation low noise naval propellers. Advanced

models for new and modern materials, such as composite

materials, will be integrated in the numerical tools, to aid the design

of innovative composite propellers. Naval propeller design involves

a wide range of aspects, including efficiency, weight, durability,

cost, and signature. The emerging field of composite propellers

has the potential to improve several of these aspects, in particular

weight and signature. The work program include computational fluid

dynamics (CFD), finite element analysis (FEA), fluid-structure interaction

(FSI), and theoretical models. The models will be validated

through controlled prototype experiments on a generic foil and a

typical propeller.

A number of secondary goals follow from the main objective: improve

the current understanding of the primary mechanisms for sound

generation and propagation; improve the competence on composite

propellers with focus on manufacturing and design of such propellers;

study integration of sensors as part of a condition-based

maintenance program; and improve test methods and the experimental

set-up for modern propellers.

The project is coordinated by Forsvarets Forskningsinstitutt

(Norwegian Defence Research Establishment) (Norway) with large

partecipation of industrial and research entities:

FiReCo (Norway), Light Structures (Norway), SINTEF Ocean AS

( Norway), Centro per gli Studi di Tecnica Navale – CETENA S.p.A.,

(Italy), Consiglio Nazionale delle Ricerche – Istituto di Ingegneria del

Mare (CNR-INM, Italy), Politecnico di Milano (Italy), Polish Naval Academy

(Poland).

Politecnico di Milano will participate to the project by a research

team inside Department of Mechanical Engineering lead by Prof.

Andrea Manes and Prof. Marco Giglio. Key expertise of the research

team for the project are in the fields of structural modelling of

composite materials under extreme loading conditions. Main contribution

will be in the area of material testing and characterization

and nonlinear structural numerical modelling. The wide range of

material properties and design parameters related to composite

materials also points to modelling capabilities as crucial in the propeller

design process, and in the understanding of the behavior of

proposed composite material designs.

meccanica magazine

31


meccanica magazine

32

ITA

La propagazione di onde e vibrazioni in strutture meccaniche è fondamentale

per applicazioni di rilevanza tecnologica, tra cui i controlli

non-distruttivi e il monitoraggio strutturale, che sono applicazioni

con forte impatto sulla sicurezza ed affidabilità delle infrastrutture.

Oggigiorno la ricerca si focalizza sullo sviluppo di nuove strategie per

l’identificazione di difettosità e cricche in strutture, specialmente per

quelle applicazioni in cui l’ispezione visiva o le tecniche di controllo più

convenzionali non sono pratiche o non possono essere impiegate per

il monitoraggio real-time.

Monitoraggio

strutturale basato

sulla propagazione di

onde meccaniche

A questo scopo, il Dipartimento di Meccanica del Politecnico di Milano

ha in atto un’attività di ricerca in collaborazione con RFI – Rete Ferroviaria

Italiana. L’attività si focalizza sull’analisi della propagazione di

onde meccaniche lungo i binari a frequenze sonore ed ultrasoniche,

con il fine di identificare cricche e difetti che possono essersi nucleati

nel tempo a causa di molteplici fattori come corrosione e fatica, per

fare alcuni esempi. Mentre esistono metodi affermati per studiare e

caratterizzare questi fenomeni a livello di laboratorio, l’implementazione

in campo è stata più sfuggente ed è più sfidante dal punto di

vista pratico. La campagna sperimentale è situata a Bologna e consiste

in una rotaia equipaggiata con un sito di input, dove più patch

piezoelettriche sono state incollate rigidamente sulla rotaia per generare

un’onda. Molteplici sensori piezoelettrici sono invece situati a

distanze differenti dall’input per misurare le onde trasmesse e riflesse.

È atteso che la storia temporale di riflessione e trasmissione delle

onde possa essere utilizzata per prevedere la rottura o la nucleazione

di cricche nelle rotaie, o più in generale in strutture meccaniche.

Allo stato di avanzamento attuale dell’attività, la riflessione e trasmissione

delle onde senza presenza di difetti è stata acquisita con successo

fino a 350 m dalla sorgente di input. I prossimi step prevedono

la realizzazione di tipologie differenti di difetti e sull’impatto che essi

avranno sul comportamento dinamico della rotaia.

L’attività è coordinata dal Prof. Giorgio Diana, professore emerito, e

dal Prof. Francesco Braghin, professore ordinario al Dipartimento di

Meccanica del Politecnico di Milano.


ENG

Guided wave based health monitoring of rails

Elastic wave propagation and vibrations are fundamental in applications

technologically relevant, including the nondestructive evaluation

and structural health monitoring, which have a strong impact

on infrastructure safety and reliability. Indeed, the current research

activities focus on finding novel strategies to detect imperfections

and cracks in infrastructures, especially for the applications based

on visual inspection or more conventional strategies less-practical

or not-usable in real-time monitoring.

To this end, the Department of Mechanical Engineering of Politecnico

di Milano is carrying out research activities in collaboration with

RFI – Rete Ferroviaria Italiana. The activities focus on the analysis

of wave propagation in railway systems at sonic and ultrasonic frequencies

to detect cracks and defects developed over time due to

multiple causes, such as corrosion and fatigue, among others. While

there are established tools to study and characterize such phenomena

at laboratory level, the on-field implementation has been so

far elusive from the practical perspective.

The experimental campaign is located in Bologna and consist in a

railway system equipped with one input site, in which a set of smart

piezoelectric devices is bonded on the rail to generate a wave. Several

output sites are then placed at difference distances from the

input in order to measure the transmitted and reflected waves. It

is expected that the scattering pattern contains information about

defect size and coordinate. This, in combination with a suitable management

system can be employed as a new platform to foresee

failures in railway systems or, in general, in mechanical and civil

structures.

At the current progress of the activity, the reflection pattern without

the presence of defects has been successfully acquired up to a distance

of 350 m from the input source. The following steps are thus

focused on the generation of different types of defects and on the

study of their influence on the dynamic behavior of the rail.

The activity is coordinated by Prof. Giorgio Diana, emeritus professor,

and Prof. Francesco Braghin, full professor at the Department

of Mechanical Engineering of Politecnico di Milano.

meccanica magazine

33


CIRC-eV

Sviluppo tecnologico e catene di

processo innovative per il recupero

di componenti da veicoli elettrici

post-uso

meccanica magazine

34

ITA

Il laboratorio interdipartimentale CIRC-eV “Fabbrica Circolare per i

Veicoli Elettrici del Futuro” raccoglie competenze dai Dipartimenti di

Meccanica (Coordinatore), Energia, Chimica, Ambientale, Elettronica

e Gestionale per supportare l’industria manifatturiera nel recupero e

riuso ad alto valore aggiunto di materiali e funzioni da componenti di

veicoli ibridi ed elettrici post-uso, favorendo l’introduzione di nuovi

modelli di economia circolare per una transizione sostenibile all’e-mobility.

L’industria automobilistica, la più importante industria manifatturiera

in Europa che offre posti di lavoro a 12 milioni di persone con un fatturato

di circa 780 miliardi di euro e un valore aggiunto di 140 miliardi,

sta subendo una fondamentale trasformazione relativa alla transizione

dai tradizionali veicoli con motore a combustione interna (ICEV -

Internal Combustion Engine Vehicles) a veicoli elettrici (EV - Electric

Vehicles) e ibridi (HEV - Hybrid Electric Vehicles). Nel 2020, il numero

di vendite di auto ibride in Italia è più che triplicato rispetto all’anno

precedente e quadruplicato quello delle elettriche [Fonte dati: UN-

RAE]. Si stima inoltre che entro il 2040 le vendite mondiali di veicoli

elettrici ed ibridi supereranno quelle dei veicoli con motore a combustione

interna.

Questa rivoluzione è accompagnata da una trasformazione fondamentale

nella progettazione dell’auto, caratterizzata da un’evoluzione

sostanziale dei componenti e dei materiali critici della vettura.

Ad esempio, le batterie agli ioni di litio (LiB – Lithium Ion Batteries),

elemento fondante dei veicoli elettrici, costituiscono il 35-50% del

loro costo complessivo, mentre le componenti meccatroniche, l’elettronica

intelligente ed i sensori ne sono divenuti componenti imprescindibili

e predominanti. Si stima altresì che i materiali compositi ed

i tecnopolimeri trovino applicazioni sempre più massicce nei veicoli

elettrici e ibridi con l’obiettivo di mitigare l’aumento di peso dovuto alle

batterie e all’elettronica, senza comprometterne la sicurezza e le prestazioni

meccaniche.

Opportunità e nuove sfide: la missione di CIRC-eV

Il sostanziale cambiamento nella progettazione del prodotto porta,

allo stesso tempo, una sfida per il trattamento di post-uso del prodotto

ed una grande opportunità per nuove imprese orientate all’economia

circolare, interessando in tal modo l’intera filiera del settore automobilistico.

Le attuali pratiche di gestione dei prodotti a fine vita nel

settore automobilistico sono dominate dal riciclo e solo una piccola

parte dei componenti post-uso viene rigenerata e riutilizzata come

ricambi nel mercato postvendita, ovvero unità di controllo e componenti

meccatronici. Il mercato è regolato dalla direttiva CE [2000/53/

CE] relativa ai veicoli a fine vita (ELV - End-of-Life Vehicles) che fissa

gli obiettivi per il recupero e riuso dei materiali. Sebbene questi obiettivi

siano soddisfatti nella maggior parte degli Stati membri europei,

la transizione in corso verso veicoli elettrici e ibridi potrebbe seriamente

minare il raggiungimento di tali obiettivi in futuro. Attualmente,

la mancanza di soluzioni di trattamento post-uso sostenibili per le

componenti critiche di veicoli elettrici e veicoli ibridi costituisce un

serio ostacolo all’e-mobility ed è necessario progettare e verificare

una nuova e sistemica strategia circolare per l’intera filiera.

La missione del Laboratorio CIRC-eV “Fabbrica Circolare per i Veicoli

Elettrici del Futuro” è lo sviluppo di un nuovo concetto di Fabbrica Circolare

per supportare l’industria manifatturiera nel recupero e riuso

ad alto valore aggiunto di materiali e funzioni da componenti di veicoli

ibridi ed elettrici post-uso, favorendo l’introduzione di nuovi modelli di

economia circolare per una transizione sostenibili all’e-mobility.

Prodotti e sfide tecnologiche

CIRC-eV sarà il primo laboratorio europeo dedicato al concetto di

Fabbrica Circolare, integrando funzioni di disassemblaggio, testing,

riassemblaggio e riciclo dei materiali nella stessa struttura, per progettare

e rendere possibili nuove soluzioni di economia circolare sostenibile

per il settore dell’e-mobility. CIRC-eV sarà equipaggiato con

le tecnologie abilitanti fondamentali (KET – Key Enabling Technologies)

per implementare tali funzioni, concentrandosi, nella sua prima


configurazione, sul componente più critico per un’e-mobility sostenibile,

ovvero le batterie agli ioni di litio.

Il pacco batteria è il componente più importante di un veicolo ibrido

(HEV) o elettrico (BEV), poiché garantisce la potenza e la capacità necessarie

al motore. Nonostante esso sia il componente più impattante

sull’intera spesa per i costi dei materiali, attualmente la tecnologia

agli ioni di Litio è ritenuta, di comune accordo dalla comunità scientifica

che da quella industriale, la migliore alternativa per le applicazioni

a breve e medio termine nel settore della mobilità. Grazie a un mix

di alta densità energetica, alta efficienza, lunga durata e affidabilità,

le batterie agli ioni di litio costituiranno la principale fonte di energia

nella mobilità elettrica per almeno i prossimi 10 anni. Indipendentemente

dalle sue dimensioni, una cella agli ioni di litio ha una tensione

nominale di 3,6 V - 3,8 V. Per questo motivo, la tensione finale del pacco,

che per i veicoli elettrici è quasi sempre maggiore di 300 V, deve

essere raggiunta tramite la connessione in serie di stringhe di celle.

Inoltre, molte delle celle commerciali agli ioni di litio non possono

fornire le capacità richieste dal veicolo per un’adeguata autonomia e

pertanto le celle sono usualmente collegate, al livello gerarchico più

basso, in stringhe in parallelo atte ad aumentare la capacità globale.

Particolarità fondamentale delle celle agli ioni litio è, fra le altre, la

curva di degradazione elettrochimica e dunque prestazionale, che è

sbilanciata ed unica per ogni cella, e restituisce, dopo un ciclo di vita

che può variare fra gli 8 e i 10 anni, un pacco batteria le cui celle sono

contraddistinte da uno stato di salute (SOH - state-of-health) diverso

per ciascuna.

CIRC-eV: obiettivi, focus di ricerca

L’obiettivo specifico di CIRC-eV sarà dimostrare la fattibilità tecnica

ed economica della catena di processo circolare rappresentata in Figura

2 (Catena di processo circolare CIRC-eV per batterie agli ioni di litio.

I passaggi funzionali in blu sono integrati nel laboratorio CIRC-eV):

i moduli batteria subiscono una prima fase di caratterizzazione, dopodiché

le singole celle vengono liberate attraverso un processo di disassemblaggio

automatizzato, selettivo, non distruttivo ed intelligente.

Le proprietà elettriche residue di ciascuna cella vengono stimate

attraverso il testing elettrochimico con tecnologie all’avanguardia

(EIS - Electrochemical Impedance Spectroscopy). Le celle con proprietà

residue non adeguate ad un loro riutilizzo subiscono pretrattamenti

meccanici per liberare e concentrare i materiali target. Questo

agevola e rende più efficiente e sostenibile il riciclo idro-metallurgico

a valle. Le celle con buone proprietà residue vengono ri-assemblate in

batterie second life.

Le macro-sfide a livello tecnico del laboratorio CIRC-eV sono legate

ai seguenti aspetti:

• Progettazione e sviluppo di un processo e un sistema di disassemblaggio

delle celle sicuro ed economico, con l’adeguato livello di flessibilità

atto a gestire l’elevata varietà di tipologie di batterie.

• Definizione di metodi e procedure per valutare lo stato di salute delle

celle, caratterizzarne le modalità di degradazione e stimarne la vita

utile residua, consentendone l’applicazione in moduli second life con

prestazioni certificate.

• Sviluppo di sistemi di supporto decisionale knowledge-based e data-driven

volti ad indirizzare le batterie all’applicazione secondaria più

adeguata e ad assicurarne la configurazione adatta tramite opportuni

sistemi di controllo (BMS - Battery Management System), soddisfando

i requisiti specifici richiesti e le condizioni post-uso.

• Progettazione e sviluppo di un pretrattamento meccanico selettivo

per raccogliere e separare gli ossidi metallici (Black Mass), con l’obiettivo

di supportare il riciclo dei materiali chiave attraverso successivi

trattamenti chimici.

meccanica magazine

35

Per questi particolari prodotti, la strategia più interessante è legata al

remanufacturing e al riutilizzo delle celle disassemblate. Quelle dotate

di adeguate proprietà residue, infatti, saranno reimpiegate in applicazioni

second-life stazionarie sfruttando un approccio cross-settoriale:

pacchi batteria rigenerati potranno ad esempio essere sfruttati

per lo stoccaggio di energia in impianti da fonti rinnovabili o all’interno

di ambienti abitativi (casa, ufficio). Al contrario, quelle celle che non

mantengono proprietà post-uso sufficienti ad applicazioni secondarie

saranno destinate al riciclo con l’obiettivo di recuperare i materiali

ad alto valore aggiunto. Lo sviluppo delle fondamentali tecnologie

abilitanti e dei sistemi di supporto decisionale per la combinazione di

entrambe le soluzioni tecnologiche consentirà di scegliere la strategia

migliore per la gestione delle batterie post-uso, sbloccando così

un processo di commercio circolare per i veicoli elettrici.

L’impianto pilota CIRC-eV sosterrà attività di ricerca ed innovazione

multidisciplinari, mirate a risolvere queste sfide sviluppando tecnologie

ad elevato potenziale per il trasferimento industriale e la società

nel suo insieme.

Il Dipartimento di Meccanica è capofila dell’iniziativa, coordinata dal

Prof. Marcello Colledani, ed ospita CIRC-eV presso l’edificio B23. Il

team di ricerca inoltre annovera anche le competenze dei Dipartimento

di Energia, Dipartimento di Ingegneria Civile e Ambientale, Dipartimento

di Elettronica, Informazione e Bioingegneria, Dipartimento di

Chimica, Materiali e Ingegneria Chimica “Giulio Natta” e Dipartimento

di Ingegneria Gestionale.


meccanica magazine

36

ENG

Innovative technologies and process chains for post-use e-mobility

components

The inter-departmental Laboratory CIRC-eV “Circular Factory for the

Electrified Vehicles of the Future” merges competences from the

Mechanical (coordinator), Energy, Chemical, Environment, Electronics

and Management departments to support the manufacturing

industry in the high added-value recovery and reuse of materials and

functions from electric and hybrid electric vehicles, enhancing the

introduction of innovative circular economy business models for a

sustainable transition to e-mobility.

The automotive industry, the most important manufacturing industry

in Europe providing jobs to 12 million people with a turnover

of about € 780 billion Euro and a value added of 140 billion, is

undergoing a fundamental transformation pervaded by the transition

from traditional Internal Combustion Engine Vehicles (ICEV)

to Electric (EV) and Hybrid (HEV) vehicles. In 2020, the number of

hybrid electric vehicles sold in Italy more than tripled with respect

to the year before. Sells of full electric vehicles have been four times

the ones of 2019 [source: UNRAE]. It is also predicted that from

2040, the number of electric and hybrid vehicles sold will be higher

than internal combustion ones.

This revolution is accompanied by a fundamental transformation in

the car design, featuring a substantial evolution in the critical car

components and materials. For example, Lithium-Ion Battery (LiB –

Lithium Ion Batteries) packs constitute one the most important car

components, making up 35%-50% of the cost of the EVs. Moreover,

mechatronics, smart electronics and sensors are predominant

components in EVs and HEVs. Furthermore, composite materials

and techno-polymers are expected to find more and more massive

application in EVs and HEVs with the objective to mitigate the car

weight increase caused by batteries and electronics, without compromising

in safety and mechanical performance.

Opportunities and challenges: the CIRC-eV mission

The substantial change in product design brings at the same time

a challenge for post-use product treatment and a huge opportunity

for new circular economy-oriented businesses, affecting the entire

automotive value-chain. Current waste management practices in

automotive are dominated by recycling and only a small fraction of

components is remanufactured and re-used as spares in the aftermarket,

namely control units and mechatronic components. The

market is regulated by the ELV (End-of-Life Vehicles) legislation

EC Directive [2000/53/EC] fixing targets for re-use and material

recovery. Although these targets are met in most of the European

member states, the ongoing transition to EVs and HEVs and the related

new product design may seriously undermine the achievement

of these targets in the future. Currently, the lack of a sustainable

post-use treatment routes for EVs and HEVs critical components

constitutes a serious barrier to e-mobility and a new disruptive circular

strategy needs to be designed and demonstrated.

The mission of the CIRC-eV Laboratory is to develop a new concept

of Circular Factory to support the manufacturing industry in the recovery

and reuse of functions and value from post-use Hybrid and

Electric Vehicles, boosting the introduction of new circular economy

models for sustainable e-mobility.

Products and technological challenges

The CIRC-eV will be the first European Lab dedicated to the concept

of Circular Factory, integrating disassembly, testing, reassembly

and material recycling functions in the same facility, to design and

demonstrate new sustainable circular economy solutions for the

e-mobility sector. CIRC-eV will integrate the key enabling technologies

to implement these functions, focusing, in its first configuration,

on the most critical component for sustainable e-mobility,

namely Li-Ion Batteries.

The battery pack is the most important component of a hybrid (HEV)

or full electric vehicle (EV), since it has to guarantee the power and

capacity needed by the electric motors. For both HEVs and EVs, the

battery pack is the most impacting component on the whole bill of

material costs. There is general agreement, both in the scientific

and industrial communities, to consider the lithium ion (Li-Ion) battery

technology as the state-of-the-art best application for current

production as well as for short and middle term future applications

in the mobility sector. For its mix of high energy density, high efficiency,

long lifespan and reliability, Li-Ion batteries will be the dominant

power source technology in electric mobility for at least the

next 10 years. Regardless its dimension, a Li-Ion battery cell has a

nominal voltage of 3.6 V – 3.8 V. For this reason, the final voltage of

the pack, which for EVs is almost always greater than 300 V, has to

be achieved by the series assembly of cell strings. Moreover, many

of the commercial Li-Ion cells can’t provide the energy capacity to

achieve the needed final autonomy, for this reason, very often, at

the lowest hierarchical level cells are connected in parallel strings to

increase the capacity.

A fundamental peculiarity if lithium-ion cells is their electrochemical

degradation curve, which is unbalanced and unique for each cell

and, after a lifecycle which can vary from eight to ten years, returns a

battery pack whose cells are characterized by a unique state-of-health

(SOH), different for each one.

The most interesting strategy for automotive LiBs is related to the

remanufacturing and re-use of the disassembled cells with proper

residual characteristics into second-life stationary applications

exploiting a cross-sectorial approach, for example dedicated to the

storage in renewable energy installations or within living environments

(home, office). On the contrary, those battery cells that do not

maintain sufficient post-use properties suitable to a second-life application

are sent to recycling with the objective to recover high-value

materials for re-use. The development of the key enabling technologies

and decision support systems to combine both strategies

will make it possible to achieve a sustainable strategy for post-use

management of automotive Li-Ion batteries, thus unlocking a circular

business for electric vehicles.


CIRC-eV: objectives, research focus

The specific goal of CIRC-eV is to demonstrate the technical and

economic feasibility of the circular process chain presented in Fig.2

(CIRC-eV circular process-chain for Li-Ion Batteries. The functional

steps in blue are integrated in the CIRC-eV Lab): battery modules

undergo a first characterization phase. Then single cells are disassembled

exploiting an automated, selective, non-destructive and

intelligent process. The residual electric properties of each cell are

estimated through innovative technologies (EIS - Electrochemical

Impedance Spectroscopy). Cells without residual properties suitable

for reuse are mechanically pre-treated to release and sort the

target materials. This facilitates and increases the efficiency of the

downstream hydrometallurgical recycling process. Cells with appropriate

residual properties are reassembled in second-life battery

modules.

The macro technical challenges of the CIRC-eV Lab are related to:

• Design and development of a safe and cost-effective battery cells

disassembly process and system, with the required level of flexibility,

enabling to handle a large variety of battery designs.

• Definition of methods and procedures to estimate the State of Health

(SoH) and characterize the degradation modes and the residual

useful life of battery cells to enable their application in second-life

modules with certified performance.

• Development of knowledge-based and data-driven decision support

systems to select and configure second-life battery modules

and their Battery Management System (BMS) depending on the

specific second-use requirements and the post-use conditions of

re-usable cells.

• Design and development of a selective mechanical pre-treatment

to gather and separate the black mass, with the objective to support

the recycling of key materials through downstream chemical treatments.

The CIRC-eV pilot plant will support multi-disciplinary research and

innovation activities targeted to these technical challenges with

high technology transfer potentials to the industry and the society

as a whole.

The Department of Mechanical Engineering is leader of the initiative,

coordinated by Prof. Marcello Colledani, and hosts CIRC-eV in the

B23 building. The research team also includes the competences of

the Energy Department, the Department of Civil and Environmental

Engineering, the Department of Electronics, Information and Bioengineering,

the Department of Chemistry, Materials and Chemical

Engineering “Giulio Natta” and the Department of Management, Economics

and Industrial Engineering.

meccanica magazine

37

Mechanical

Treatment

Chemical

Treatment

Materials

certification

Critical raw

materials

(Co, Li), Metals

(AI, Cu) and

Polymers.

E-mobility

Li-Ion battery

pack

Pack Collection

and dismantling

Module

characterization

Module

disassembly

Cell testing and

characterization

Remanufacturing

Module

Re-assembly

Module

certification

Second-life

stationery

system

(renewable

energy, home,

office)


Installata presso DMEC una

nuova unità di Cold Spray

meccanica magazine

38

ITA

È stata recentemente installata presso i laboratori del Dipartimento

di Meccanica una unità di Cold Spray ad alta pressione Impact Innovations

5/8 sotto la responsabilità scientifica del Prof. Mario Guagliano.

Il cold spray, o spruzzatura a freddo, è una tecnica di deposizione delle

polveri che, a differenza delle altre tecnologie, non sfrutta l’energia

termica ma l’energia cinetica e non richiede, quindi, la fusione delle

polveri. Infatti, il processo di cold spray si basa sull’accelerare le polveri

metalliche a velocità supersoniche, superiori a un valore critico,

per le quali, grazie alla elevata velocità di deformazione plastica

e a meccanismi microstrutturali ancora oggetto di dibattito in sede

scientifica, si attiva il fenomeno della adesione allo stato solido. Attraverso

tale meccanismo le polveri che impattano il substrato rimangono

adese e formano progressivamente un rivestimento con spessore

crescente. L’unica proprietà richiesta affinché l’adesione abbia luogo

è che il materiale sia deformabile plasticamente e presenti, quindi,

caratteristiche di duttilità. Ciò rende il cold spray particolarmente attraente

in quanto applicabile a alla gran parte dei metalli.

In Figura 1 è schematicamente illustrato il processo: un gas precompresso

e preriscaldato viene immesso in un condotto di De Laval e

alimenta il flusso di polveri nelle condizioni desiderate per ottenere

l’adesione al substrato e costruire progressivamente uno strato con

spessore che non presenta limitazioni. Il processo ben si presta, quindi,

alla generazione sia di sottili rivestimenti superficiali sia alla costruzione

di pezzi massivi. Il cold spray presenta molte caratteristiche

che lo rendono interessante in diversi settori e ne stanno estendendo

l’applicazione: ad esempio, l’elevato tasso di deposizione, unitamente

al fatto che non c’è bisogno di camere in atmosfera controllata, lo

rendono adatto come processo di manifattura additiva, anche per

pezzi di grandi dimensioni e materiali sensibili alla temperatura. La

possibilità di miscelare polveri differenti, metalliche e non metalliche,

permette inoltre lo sviluppo di nuovi materiali con proprietà funzionalizzate.

È poi possibile metallizzare superfici polimeriche senza alcun

processo chimico. Inoltre, è una tecnica che permette di riparare pezzi

danneggiati, localmente o in maniera diffusa, ripristinando o migliorando

le proprietà iniziali. Per tale motivo ben si colloca nei processi di

remanufacturing e di sensorizzazione dei componenti, in ottica Industria

4.0. “Il mio gruppo di ricerca - dice il prof. Guagliano – si occupa

di cold spray ormai da diversi anni, dapprima per la simulazione del

processo e la sua ottimizzazione in funzione del materiale, poi per la

caratterizzazione sperimentale delle proprietà dei rivestimenti e pezzi

ottenuti con il cold spray. Abbiamo coordinato un progetto europeo

con tredici partner, tra cui Airbus, per l’applicazione del cold spray per

la riparazione di elementi strutturali in campo aeronautico. In questo

progetto ci siamo occupati della caratterizzazione meccanica di elementi

strutturali danneggiati e riparati con il cold spray, evidenziando

la possibilità di ripristinare le originali prestazioni dei componenti.

Recentemente abbiamo avviato, con la supervisione della dott.ssa

Sara Bagherifard, ricerche per valutare le proprietà di materiali bimodali

spruzzati con il cold spray e per applicazioni di additive manufacturing.

L’installazione dell’impianto 5/8 presso il Dipartimento di

Meccanica, permette di completare le nostre competenze sull’argomento

e di allargare il cerchio dei programmi di ricerca e delle collaborazioni

in cui possiamo dare il nostro contributo.” Al riguardo, è

da poco iniziato il progetto ATLAS (Advanced Design of High Entropy

Alloys Based Materials for Space Propulsion), finanziato nell’ambito

del programma EC-H2020, in cui il Prof. Guagliano è coordinatore. Il

Progetto si occuperà di sviluppare e caratterizzare il processo di cold

spray per la deposizione di polveri HEAs (High Entropy Alloys) per migliorare

prestazioni ed efficienza dei propulsori spaziali di prossima

generazione. Inoltre, è arrivato a metà tragitto il progetto COSMEC

(Cold Spray of Metal-to-Composite, responsabile Prof.ssa Chiara

Colombo), finanziato dal MIUR nell’ambito dei progetti di ricerca di

interesse nazionale (PRIN). Sono anche iniziate le attività di ricerca

con Lucchini RS Group per valutare l’impiego del cold spray in ambito

ferroviario per la deposizione di rivestimenti anticorrosione e di riparazione

di componenti danneggiati. Infine, il gruppo di ricerca, con

Sara Bagherifard, Chiara Colombo, Asghar Heydari e alcuni studenti

PhD, sta anche studiando l’applicazione del cold spray per progettare

materiali bimodali con proprietà funzionalizzate e per la generazione

di rivestimenti a porosità controllata, per protesi ortopediche, al fine

di facilitarne l’osseointegrazione.


meccanica magazine

39


meccanica magazine

40

ENG

A new cold spray unit installed at dmec

A new high-pressure Impact Innovations 5/8 cold spray unit has

been recently installed in our labs at the Department of Mechanical

Engineering, with Prof. Mario Guagliano as scientific supervisor.

Cold Spray is a powder deposition technique exploiting kinetic energy.

It differs from other technologies because it doesn’t use thermal

energy to melt the powder.

Indeed, the cold spray process is based on the supersonic acceleration

of the metal powder over the critical value. Even though the

matter is still discussed within the scientific community, the high

strain rate of plastic deformation and microstructural mechanisms

allow the adhesion phenomenon to occur when the powder in its

solid state. Through this mechanism the powder adheres when colliding

with the substrate and progressively create a thicker coating.

Materials able to undergo plastic deformation, meaning it must be

ductile, is the only requirement for adhesion to occur. Cold spray

turns out to be very appealing since it finds its application to most

of the metals.

Picture 1 represents a schematic illustration of the process: a

pre-compressed and heated gas is injected in a de Laval nozzle to

maintain the powder flux to its optimal conditions, so to adhere to

the substrate and gradually build a layer without limits of thickness.

This process can benefit both to the creation of thin coatings and to

the manufacturing of bulk components.

The cold spray has features that make it appealing for diverse industries,

and its applications are increasing. For example, the high

rate of deposition and the lack of needing a controlled atmosphere

chamber make it also suitable for additive manufacturing to produce

massive components along with temperature-sensitive materials.

On the other hand, it also allows mixing different powders, like

metal and non-metal, to create materials with customised features

according to its functions. It also allows metallising polymeric surfaces

without undergoing any chemical process.

Moreover, it allows to repair locally or widespread fractured pieces

to reset and improve their original properties. For this reason, it

turns out to be excellent in re-manufacturing and sensoring components

in the Industry 4.0 framework.

“My research group – said Prof. Guagliano – has been working with

cold spray for several years now. We started by simulating and optimising

the process according to the material. Later on, we moved

to experimental customisation of the coating properties and components

manufactured by cold spray. Along with other 13 partners,

including Airbus, we also coordinated a European Project to apply

cold spray when repairing aeronautical structural components. In

particular, we dealt with the mechanical characterisation of damaged

components and repaired via cold spray, underling whether

possible to reset the original performance status of components.”

“We recently started new research activities supervised by PhD.

Sara Bagherifard, on bimodal materials obtained with cold spray and

by additive manufacturing applications” – he added. “The installation

of the 5/8 plant at the Department of Mechanical Engineering allows

us to complete the competence we have on this matter and to increase

the number of research projects and collaborations to which we

can give our contribution”.

As a matter of fact, the project ATLAS (Advanced Design of High Entropy

Alloys Based Materials for Space Propulsion) has just started,

coordinated by Prof. Guagliano and founded through the programme

EC-H2020. The project objective is to develop and customise

the cold spray process for HEAs (High Entropy Alloys), which should

improve the performance and efficiency of the next generation of

space propulsion systems.

Moreover, sponsored by MIUR as part of the project relevant at

a domestic level (PRIN), the project COSMEC (Cold Spray of Metal-to-Composite,

scientific manager Prof. Chiara Colombo) has reached

its midterm.

New activities with Lucchini RS Group have also just started to evaluate

the usage of cold spray in the railway field to repair damaged

structural components and develop controlled porosity coatings for

orthopaedic implants to facilitate osseointegration.

Finally, the research group, with Sara Bagherifard, Chiara Colombo,

Asghar Heydari and some PhD students, is also studying the application

of cold spray to design bimodal materials with functionalized

properties and for the generation of controlled porosity coatings for

orthopedic prostheses, in order to facilitate osseointegration.


Progetto

Interreg TRIBUTE:

ITA

Si è svolto venerdì 12 febbraio il kick-off meeting del progetto TRIBU-

TE (“inTegRated and Innovative actions for sustainaBle Urban mobiliTy

upgrade”), un progetto Interreg transnazionale ADRION per la cooperazione

territoriale Europea nella regione Adriatico-Ionica.

Il progetto, selezionato nell’ambito della seconda call dell’asse 3 (trasporti)

del programma ADRION, durerà 30 mesi e terminerà a Giugno

2023.

per una mobilità urbana più equa

ed inclusiva nella regione

adriatico-ionica

TRIBUTE intende affrontare le sfide della mobilità urbana, poste dalla

rapida diffusione delle nuove tecnologie e dai cambiamenti socioeconomici

e demografici, attraverso l’utilizzo di strumenti innovativi (living

lab) per l’individuazione di piani di azioni integrate per la mobilità

sostenibile, nelle 8 città partner del progetto: Milano (IT), Maribor (SI),

Lubiana (SI), Zagabria (HR), Patrasso (GR), Novi Sad (RS), Sarajevo (BiH)

and Podgorizza (MN). A tal fine, TRIBUTE seguirà un approccio partecipativo

(cosiddetto a “quadrupla elica”) che coinvolgerà istituzioni,

imprese, accademia e cittadini nell’individuazione e nella sperimentazione

di soluzioni in linea con i nuovi comportamenti di viaggio e i

fabbisogni di infrastrutture e servizi di mobilità nelle città.

Il Dipartimento di Meccanica del Politecnico di Milano fornirà il supporto

per lo sviluppo di otto azioni pilota (una per ogni partner di progetto)

che riguarderanno sistemi di trasporto a chiamata customizzati per

utenze deboli (anziani e diversamente abili), sistemi di informazione

all’utenza del trasporto pubblico, ciclo-mobilità e veicoli elettrici, sistemi

di gestione integrata del trasporto urbano in presenza di grandi

eventi. I risultati di tali sperimentazioni permetteranno di definire una

strategia transnazionale per promuovere una mobilità più equa e inclusiva

nelle agende urbane delle città della Regione Adriatico-Ionica.

Coordinatore del progetto: Prof. Pierluigi Coppola DMEC

ENG

TRIBUTE Interreg Project for innovative and inclusive urban mobility

in the adriatic-ionian region

The kick-off meeting of the TRIBUTE (“inTegRated and Innovative

actions for sustainaBle Urban mobiliTy upgrade”) project took place

on the 12th of February 2021. TRIBUTE is a transnational Interreg

ADRION project to enhance European Territorial Cooperation (ETC)

in the Adriatic-Ionian region. Selected under the second call for axis

3 (transportation) of the ADRION programme, this project will last 30

months and will end in June 2023.TRIBUTE aims to face the challenges

related to urban mobility, which rise with the spreading of new

technologies and the occurring socio-economic and demographic

changes, by using innovative tools (living lab) to identify integrated

action plans to support sustainable mobility in the eight cities: Milano

(IT), Maribor (SI), Ljubljana (SI), Zagreb (HR), Patras (GR), Novi Sad (RS),

Sarajevo (BiH) and Podgorica (MN). Therefore, TRIBUTE will adopt a

participatory approach (the ‘quadruple helix’ approach) engaging administrations,

enterprises, academics, and citizens in order to identify

and to test new solutions for urban mobility that meet new travel

habits and behaviours, and the needs of our cities. The Department

of Mechanical Engineering of Politecnico di Milano will support the

development of 8 pilot actions (one per each project partner) about:

Demand-Responsive Transport Systems for vulnerable users (elderly

and disabled); Advanced travellers Information systems for public

transportation, cycling mobility, and electric vehicles; integrated management

systems for urban transportation for occurring big events.

The results of these experiments will allow defining a transnational

strategy to boost equity and inclusion in the urban mobility agendas

of the cities of the Adriatic-Ionian region.

Scientific manager of the project: Prof. Pierluigi Coppola DMEC

meccanica magazine

41


MetaMAT-Lab

meccanica magazine

42

ITA

Il laboratorio interdipartimentale MetaMAT-Lab nasce nel 2017 dalla

sinergia tra i dipartimenti di Meccanica (DMEC), Energia (DENG), Matematica

(DMAT), Elettronica Informazione e Bioingegneria (DEIB) e Design

con l’intento di combinare le competenze specifiche nello studio

dei metamateriali.

Combinando opportunamente composizione chimica e geometria

realizzativa, i metamateriali consentono di estendere lo spettro di

proprietà fisiche dei materiali tradizionali e di ottenere proprietà elettromagnetiche,

acustiche, termiche e meccaniche non esistenti in

natura. Sono quindi adatti a tutte quelle applicazioni in cui le proprietà

fisiche dei materiali convenzionali costituiscono un vincolo attivo nella

fase di progettazione di un componente.

Centralità del MetaMAT-Lab è l’unione trasversale di competenze multidisciplinari

finalizzata allo studio e alla comprensione del comportamento

fisico e meccanico dei metamateriali, alla ricerca di nuove

possibilità applicative e alla realizzazione concettuale di componenti.

In questo contesto, il Dipartimento di Meccanica contribuisce attivamente

alla caratterizzazione meccanica dei metamateriali, tramite

attività sperimentali e numeriche e focalizzandosi sulla resistenza

statica (monoassiale e multiassiale), a fatica e alla frattura. Queste attività

sono affiancate da analisi di conformità della geometria tramite

tomografia computerizzata e analisi ottiche.

Il laboratorio è impegnato sia sul fronte della ricerca accademica, sia

sul fronte della ricerca industriale. Recentemente, ha svolto diverse

collaborazioni con importanti partner industriali nella realizzazione

di componenti aeronautici e aerospaziali con specifiche richieste di

proprietà meccaniche, termiche e di permeabilità. Scambiatori di calore

a fluido, deoilers, heat pipes e staffe di supporto con funzione di

isolamento termico (domanda di brevetto per invenzione industriale

nr. 102020000024331) sono alcuni esempi.

Attrezzatura a disposizione del laboratorio:

• Macchina di prova Deben per micro-campioni (capacità 5kN)

• Macchina di prova Instron E10000 ElectroPuls (capacità 10 kN), per

prove statiche e a fatica con camera ambientale (temperatura: - 100

°C/+ 350 °C).

• Microscopici ottici per analisi di correlazione di immagini digitali (Digital

Image Correlation, DIC) per monitorare lo stato di deformazione

dei campioni durante i test

• Sistema DIC Aramis GOM, per la misura dinamica di coordinate, spostamenti

e deformazioni superficiali tridimensionali

• Sistema per il rilievo della conduzione termica su piccoli campioni

con un range da 0.0005 m2K/W fino a 0.05 m2K/W, con prova secondo

tecnica Heat Flow Meter

• Micro-fresatrice per lavorazione prototipi antenne RF e PCB

workstations.

Servizi offerti:

• Realizzazione di campioni mediante diverse tecniche (lavorazioni additive

per materiali metallici e polimerici e microfusione)

• Misura delle proprietà meccaniche statiche a trazione e compressione

• Misura della resistenza a fatica e della resistenza a frattura

• Misura delle micro-geometria del campione tramite tomografia e ricostruzione

di un modello solido

• Misura della conducibilità termica del campione

• Misura delle proprietà elettromagnetiche del campione

• Simulazioni multi-fisica su geometria ricostruita

• Ottimizzazione topologica della micro-geometria per raggiungere

target di proprietà meccaniche e termiche.

Personale coinvolto:

Prof. Stefano Beretta, Prof. Stefano Foletti, Ing. Marco Pisati, Ing.

Matteo Gavazzoni, Ing. Laura Boniotti


ENG

MetaMAT-Lab

The inter-departmental MetaMAT-Lab was born in 2017 thanks to the

collaboration among the Department of Mechanical Engineering,

the Department of Energy, the Department of Electronics, Information

and Bioengineering, and the Department of Design to share

specific knowledge on metamaterials.

By combining their chemical composition and geometry, metamaterials

allow the extension of the range of the physical properties of

ordinary materials and the creation of materials with electromagnetic,

acoustic, thermal, and mechanical properties that do not exist

in nature. Therefore, they happen to be perfect for such applications

where conventional materials represent an active constraint when

designing a new component.

At the heart of the MetaMAT-Lab lays the cross-cutting convergence

of multidisciplinary skills to study and understand the physical

and mechanical behaviour of metamaterials, search for new possible

applications and conceptual designs of components. Within this

context, the Department of Mechanical Engineering plays an active

role in characterising the mechanical behaviour of metamaterials

through experimental and numerical activities, focusing on fatigue,

fracture and (mono and multi-axial) static resistance. Along with

these activities, researchers also carry out conformity analysis of

geometry through CT (computed tomography) and optical analysis.

The Lab is involved in both academic and industrial research activities.

We recently collaborated with different industrial partners

to create aeronautical and aerospace components with specific

mechanical, thermal and permeability properties. Here some examples:

heat exchangers, deoilers, heat pipes, and isostatic mounting

device for thermal insulation (patent for industrial invention application

n°102020000024331).

Lab equipment:

• Deben micro-samples testing machine (capacity 5kN);

• Instron E10000 testing machine (capacity 10kN) for static and fatigue

tests with environmental chamber (temperature - 100 °C/+ 350 °C);

• Optical microscopes to carry out Digital Image Correlation (DIC)

analysis to monitor the strain of samples during tests;

• DIC Aramis GOM system to dynamic measure of coordinates, displacements,

and 3D superficial strain;

• Thermal conduction detection system on small samples from

0.0005 m2K/W to 0.05 m2K/W tested with the Heat Flow Meter technique;

• Micro-milling to machine RF and PCB aerial prototypes;

• Workstations.

Offered services:

• Sample creation through diverse techniques (additive manufacturing

for metals, polymers, and micro-founded materials);

• Measurement of static mechanical properties through tension and

compression;

• Measurement of fatigue and damage strength;

• Measurement of the microgeometry of the samples via tomography

and reconstruction of the solid model;

• Measurement of the electromagnetic properties of the sample;

• Multiphysics simulations on reconstructed geometry;

• Topologic optimization of the micro-geometry to reach the thermal

and mechanical target properties.

Involved Faculty Members:

Prof. Stefano Beretta, Prof. Stefano Foletti, Dr. Marco Pisati, Dr.

Matteo Gavazzoni, Dr. Laura Boniotti

meccanica magazine

43


Un nuovo approccio

alla progettazione:

il laboratorio “Bio-Inspired Systems”

meccanica magazine

44

ITA

Nei primi anni del 1500 Leonardo da Vinci scriveva il suo “Codice sul

volo degli uccelli”. L’osservazione delle uniche creature all’epoca in

grado di solcare il cielo suggeriva al genio italiano quali caratteristiche

avrebbe dovuto avere una ipotetica macchina in grado, finalmente, di

far volare un uomo. L’Aquila meccanica, in realtà, non prese mai il volo,

ma fu il punto di partenza per lo sviluppo di macchine che, qualche

secolo più avanti, ci avrebbero permesso di spostarci velocemente da

una parte all’altra del globo. Nonostante Leonardo non abbia potuto

sperimentare la soddisfazione di sollevarsi da terra come un uccello,

certamente possiamo dire che la sua opera ingegnosa fu la prima

macchina bio-ispirata della storia.

Da quel giorno, l’osservazione della Natura e la rielaborazione delle

soluzioni da essa adottate per lo sviluppo di idee innovative ha visto

un susseguirsi di interessanti storie di successo. Dal progettista Eiji

Nakatsu che rivoluzionò l’aerodinamica dei treni ad alta velocità prendendo

spunto dal profilo di alcuni uccelli acquatici, fino a George de

Mestral che inventò il velcro prendendo spunto da dei piccoli fiori che

rimanevano tenacemente ancorati ai suoi pantaloni quando andava a

caccia.

Solo pochi decenni fa, nel 1969, Otto H. Schmitt coniò il termine Biomimetics

per formalizzare un approccio alla progettazione che imitasse

(mimesis) la vita (bios). Negli ultimi anni, il tema di ricerca legato

al Bioinspired Design ha suscitato grande interesse sia nel mondo

accademico, che in quello industriale, per l’enorme potenzialità che

esso offre nella risoluzione di problemi difficilmente approcciabili con

le tradizionali tecniche di progettazione.

L’approccio “bioinspired” o “bio-ispirato”, punta infatti a progettare e

sviluppare nuove soluzioni tecnologiche prendendo ispirazione dalla

Natura. L’obiettivo è raggiunto attraverso l’osservazione delle caratteristiche

morfologiche e funzionali dei modelli biologici, lo studio dei

materiali, delle capacità sensoriali, decisionali e comportamentali.

All’osservazione segue la capacità di intuire i principi alla base di tale

funzionamento, di modellarne i tratti essenziali e di declinare tali caratteri

in applicazioni tecniche utili alla soluzione di un problema.

L’interesse ad approfondire questa disciplina ha portato alla nascita

del laboratorio sperimentale “Bioinspired Systems” presso il campus

di Lecco. Per il Prof. Simone Cinquemani: “E’ uno spazio dedicato alla

ricerca con una connotazione fortemente multidisciplinare, con una

chiara origine meccanica, ma con una vocazione ad accogliere e sviluppare

competenze nei settori dell’architettura, del design, della bioingegneria,

della biologia e delle neuroscienze”.

Attualmente le attività di ricerca sviluppate nel laboratorio sono focalizzate

su applicazioni di robotica. Più nel dettaglio, le attività riguardano

lo sviluppo di robot autonomi in grado di muoversi in ambienti

terrestri e acquatici con un interesse a sviluppare soluzioni caratterizzate

da elevata efficienza, manovrabilità e capacità di muoversi in ambienti

non strutturati. Attività fortemente multidisciplinari che hanno

richiesto competenze non solo meccaniche, ma anche elettroniche,

fluidodinamiche e in ambito biologico. Parallelamente, la ricerca è

indirizzata su tematiche di manipolazione e di interazione dei robot

con operatori umani. In questo campo, la cosiddetta “soft-robotics” ha

introdotto nuovi approcci per la progettazione di artefatti biomimetici

in grado di imitare la naturale capacità delle strutture biologiche di

adattarsi all’ambiente circostante grazie alla loro elevata cedevolezza.

Il laboratorio collabora strettamente con il gruppo di ricerca di “Micro-

BioRobotics” dell’IIT coordinato dalla Dott.ssa Barbara Mazzolai con il

quale si stanno sviluppando sinergie in ambiti di ricerca e di didattica.

A settembre partirà infatti la prima edizione del corso di dottorato

“Bioinspired systems”, già preceduto dal corso “Bioinspired robotics”,

di natura più divulgativa, inserito nel percorso “Passion in Action”.


ENG

A new design approach: DMEC presents the “Bio-Inspired Systems”

Lab

In the first years of the XVI century, Leonardo da Vinci wrote the

“Codex on the Flight of Birds”. Observing the only creatures capable

of going to the sky suggested to the Italian genius which characteristics

should have a piece of machinery finally allowing men to fly.

Truth be told, the mechanic eagle never really took off but, for sure,

became the starting point to design some centuries later machines

allowing us to travel fast around the globe. Even though Leonardo

never felt the satisfaction to “fly like a bird”, he for sure designed the

first bio-inspired machine in history.

From that moment on, observing Nature and re-thinking its applied

solutions to think of innovative ideas led to many success stories.

Like the one of the designer Eiji Nakatsu, who radically transformed

the aerodynamic of high-speed trains inspired by some aquatic

birds. Or, the one of George de Mestral, who invented Velcro getting

the input from small burdock seeds clinging to his trousers when

hunting.

Just a few decades ago - precisely in 1969 - Otto H. Schmitt coined

the word “Biomimetics” to standardise the new design approach imitating

(mimesis) life (bios). During the past few years, the research

topics linked to Bioinspired Design caught the interest of the academic

and industrial worlds because of the enormous potential in

offering solutions to hard-solving problems by adopting a traditional

design approach.

The “bioinspired” approach aims at designing new technological

solutions inspired by nature. Reaching the objective is possible by

observing the morphological and functional features of biosystems,

studying materials, sensing, deciding and behavior abilities. Nevertheless,

to reach the next level it is necessary to understand the

basic principles that make these systems operate, customize their

essential features, and transform them into several different technical

problem-solving applications.

The interest to know further the discipline led to creating the experimental

“Bioinspired Systems” Lab, located on our campus in Lecco.

Prof. Simone Cinquemani explained: “it is a space devoted to multidisciplinary

research activities, originating in mechanics leaning

towards including architecture, design, bioengineering, biology, and

neuroscience”.

The lasts lab activities focus on robotic applications. In particular,

the activities aim at developing autonomous robots able to move

on the grounds and underwater, putting an extra effort into coming

up with highly efficient and easy to maneuvers solutions able

to move in hostile environments. These are highly multidisciplinary

activities that require not only skills in mechanics but also electrical

engineering, fluid dynamics, and biology. At the same time, the

research activities also focus on topics such as robot manipulation

and human interaction. Therefore, what is known as “soft-robotics”

introduces in this field new viable approaches to design biomedical

devices that imitate the natural ability of bio-systems to adapt to the

surrounding environment, thanks to their compliance.

Our lab researchers closely cooperate with the “MicroBioRobotics”

IIT research group, coordinated by Dr. Barbara Mazzolai and with

whom we are creating new teaching and research synergies. Moreover,

the first edition of the “Bioinspired systems” PhD course will

start next September, on the same path as the previous dissemination

“Bioinspired robotics” course part of the Passion In Action

initiative.

meccanica magazine

45


Progetto “Tech Bus”:

l’innovazione ci guida verso una

mobilità urbana assistita e connessa

meccanica magazine

46

ITA

Il Comune di Milano, Atm e il Politecnico di Milano, insieme a Vodafone

e IBM, hanno presentato il progetto TECH BUS, il primo filobus

sviluppato attraverso un innovativo progetto di ricerca sulla mobilità

che implementa tecnologie cloud ibride per la guida assistita e connesso

alla rete 5G.

Si tratta del primo step del percorso verso la guida autonoma con

l’obiettivo di elevare ancora di più i livelli di regolarità e sicurezza del

trasporto pubblico locale.

TECH BUS è uno dei primi risultati del progetto sviluppato nell’ambito

del JRL, Joint Research Lab per la mobilità urbana: un’iniziativa

di ricerca per una Milano sempre più città intelligente e green, sperimentando

una mobilità connessa, elettrica e semi-autonoma e lavorando

in partnership con i leader in ricerca, tecnologia e trasporti

con l’obiettivo di migliorare l’integrazione e la sicurezza degli spostamenti

dei cittadini e dei visitatori della città.

Il primo TECH BUS guidato dall’innovazione sarà in circolazione sulla

linea filoviaria 90/91: i sensori intelligenti a bordo, sfruttando la

comunicazione V2I (Vehicle-to-Infrastructure) permetteranno al

mezzo di dialogare costantemente lungo il percorso con i semafori

e l’infrastruttura stradale, contribuendo a creare un ecosistema di

mobilità cooperativa in cui le tecnologie permettono di migliorare la

sicurezza stradale e un domani porteranno alla nuova frontiera della

guida autonoma.

Un team di ricercatori, ingegneri e tecnici del JRL ha installato a bordo

del filobus Atm strumentazioni sofisticate che consentono grazie

alla rete 5G e alle Interfacce applicative, basate sulla piattaforma di

integrazione aperta IBM Watson IoT, il dialogo e uno scambio continuo

di informazioni tra veicolo e infrastrutture stradali.

In questa prima fase del progetto si stanno raccogliendo dati per la

messa a punto di sistemi cooperativi di guida assistita basati su sistemi

V2I che verranno testati su una prima serie di use cases:

• Precedenza semaforica (indicazione di “onda verde” al conducente)

• Gestione degli incroci e le informazioni sul traffico

• Controllo delle fermate (conteggio passeggeri)

Il responsabile di progetto lato DMEC Federico Cheli racconta:

“DMEC ha curato la sensorizzazione del veicolo e sta collaborando

con gli altri partner del progetto alla messa a punto del sistema di

comunicazione V2I e dei sistemi di guida assista cooperativi che ne

traggono vantaggio. Ad esempio, in relazione al primo use-case, si

sta mettendo a punto un algoritmo che suggerisce al guidatore del

filobus quale velocità tenere per sincronizzarsi all’onda verde semaforica,

sulla base delle informazioni provenienti dai dispositivi posti

sull’infrastruttura, così da migliorare il comfort dei passeggeri e l’efficienza

del servizio.”


ENG

The “Tech Bus” project: innovation for an assisted and connected

urban mobility

Comune di Milano, ATM and Politecnico di Milano, along with Vodafone

and IBM, recently presented the TECH BUS project about the

very first trolleybus developed during an innovative research project

on mobility implementing cloud hybrid technologies supporting assisted

driving and connected to the 5G network.

This represents the first step towards fully autonomous driving in

the framework of the Joint Research Lab (JRL) for Urban Mobility. A

research project to make Milan smarter and greener, experimenting

on a connected, eclectic and semi-autonomous mobility working

with partners leader in research, technology and transportation to

improve the integration and security of people and tourists moving

around the city.

The first innovation-driven trolleybus will travel on route 90/91. The

smart sensors onboard will exploit the V2I (Vehicle to Infrastructure)

communication, which will allow a constant dialogue between the

bus and the traffic lights and the road infrastructures. This interaction

will contribute to creating a cooperative mobility ecosystem

where technologies improve road safety and a step closer towards

the new frontier of fully autonomous driving of tomorrow.

The team - made of researchers, engineers, and technicians of the

JRL -has recently installed onboard an ATM trolleybus the sophisticated

equipment. Thanks to the 5G network and applicative interactive

user interfaces based on the open integration platform IBM

Watson IoT, this equipment allows the dialogue and continuous information

exchange between the vehicle and the road infrastructure.

During this first phase, the team has collected data to develop assisted

driving cooperative systems based on V2I communication to be

tested via a series of use cases:

• Communication with traffic lights (notify a green wave to the bus

driver);

• Crossroads monitoring;

• Bus stop control (number of passengers).

Prof. Federico Cheli, head of the DMEC part of the project, explained:

“DMEC was in charge of the vehicle sensorization. At the moment,

we are working along with our partners of the project to develop V2I

communication systems, which will later support cooperative intelligent

transport systems for driver assistance.

For example: about the first use case, we are working on an algorithm

that, by processing the information collected from the devices

installed on the infrastructures, suggests to the bus driver the running

speed to “catch” the traffic lights green wave to offer a more

efficient and comfortable service to the passengers”.

meccanica magazine

47


Stampa di rame

puro abilitata

grazie al processo BMD

meccanica magazine

48

ITA

Produrre componenti in rame puro dalla geometria complessa

è adesso possibile grazie al processo BMD utilizzato dal sistema

Studio System+ installato al Dipartimento di Meccanica. Con il

rame puro si amplia la gamma di materiali disponibili in dipartimento,

che comprende gli acciai inossidabili 17-4 PH e AISI 316L.

I componenti vengono stampati attraverso un processo di estrusione

del feedstock polimerico che viene poi lavato e sinterizzato

in forno sotto l’azione lavante e protettiva di un mix di gas (Argon

più un 3% di Idrogeno). Questo permette di raggiungere una bassa

porosità (<3-4%) e delle eccellenti proprietà conduttive pari

a circa l’85% della conduttività (valore IACS) del rame lavorato.

Grazie ad un ugello del diametro di 0.25mm, la risoluzione della

stampa garantisce la possibilità di produrre geometrie finissime

e componenti sinterizzati di elevata precisione che possono arrivare

a dimensioni che superano i 150 mm e un peso superiore

al chilogrammo. Tra le più interessanti applicazioni di stampa 3D

di rame puro per l’industria pesante e prodotti di largo consumo

si trovano i radiatori, gli scambiatori di calore, i motori elettrici, i

componenti per le reti elettriche e i componenti per l’utensileria. Il

gruppo di ricerca guidato dalla Prof.ssa Colosimo sta al momento

lavorando sul progetto di nuovi componenti che integrino strutture

alleggerite ad alte prestazioni (basate su reticoli lattice di tipo

“Strut” e “TPMS” – Triply Periodic Minimal Surface), con un’attenzione

particolare alle canalizzazioni interne per il raffreddamento

conformale, difficilmente realizzabili con tecniche manifatturiere

tradizionali. Inoltre, si stanno conducendo ulteriori attività di ricerca

che studiano il possibile impiego di questi componenti in

rame stampato 3D in applicazioni spaziali.

ENG

Pure copper 3d printing at dmec through bmd process

Copper printing enabled with the Studio System+ installed at DMEC

at Polimi. Pure Copper expands the currently available material portfolio

including 17-4 Ph Steel and 316L steel. The research group led

by Prof. Colosimo is now testing new high-performance designs

components made of copper, that support the incorporation of lightweight

structures or internal conformal cooling channels not

achievable with traditional manufacturing, to improve heat transfer.

Research is also conducted to study the applicability of these 3d

printed components for spatial application.

Manufacturing parts featuring complex geometries and made by

pure copper is now possible with the BMD process implemented in

the Studio System+ system installed at DMEC Pure Copper expands

the currently available material portfolio including 17-4 Ph Steel and

316L steel. The parts are printed by using feedstock extrusion process

and then are debound and sintered in furnace using a gas mix of

Argon+3%Hydrogen, reaching low porosity and excellent conductive

properties. Thanks to the 0.25 mm nozzle diameter, the achievable

printing resolution guarantees the printability of fine features and

highly accurate components, that can be bigger than 150 mm and

1kg in sintered state. Heat sinks, Heat Exchangers, Electrical Motor

and Power-Grid components or Tooling components are among the

most interesting 3D printing applications of pure copper for heavy

industries and consumer products. The research group led by prof.

Colosimo is now testing new high-performance designs components

made of copper, that support the incorporation of lightweight

structures or internal conformal cooling channels not achievable

with traditional manufacturing, to improve heat transfer. Research

is also conducted to study the applicability of these 3D printed components

for spatial application.


meccanica magazine

49


The Blue Growth Farm

Project

meccanica magazine

50

ITA

Dal giugno 2018 un team di ricercatori del Dipartimento di Meccanica

del Politecnico di Milano è impegnato all’interno del progetto europeo

“The Blue Growth Farm Project”, finanziato nel programma Horizon

2020. Il progetto prevede la realizzazione di un modello scalato

1 a 15 di una piattaforma offshore multifunzione per l’acquacoltura in

mare aperto e la produzione di energia dal vento e dai moti ondosi.

Il Politecnico è in particolare incaricato di progettare e costruire una

turbina eolica in scala che deve essere installata sulla piattaforma

galleggiante, deve riprodurre le stesse funzionalità di un generatore

a scala naturale e deve funzionare in condizioni meteo-marine non

controllabili. Negli ultimi mesi il progetto è giunto alla sua fase finale:

l’integrazione di tutte le tecnologie sulla piattaforma, il varo del modello

e l’inizio della campagna sperimentale.

La mattina del 26 febbraio 2021 la turbina eolica di progettazione Polimi

è arrivata al porto di Reggio Calabria per essere integrata sulla

piattaforma, giunta via nave da Ancona nei giorni immediatamente

precedenti. La piattaforma è costituita da un cassone di acciaio di

forma rettangolare lungo 14 metri e largo 10, con un’altezza di 2 metri

e con un pescaggio di 1,8. Il centro della piattaforma è occupato da

una vasca comunicante con l’esterno, progettata per ospitare le reti

dell’acquacoltura. Uno dei lati corti dal cassone ospita una batteria di

wave energy converters, che nel modello a scala naturale produrranno

energia dal moto ondoso. La turbina eolica, alta 8 metri e con un

rotore di 7 metri di diametro, è stata assemblata sulla banchina del

porto e nella stessa giornata la torre di acciaio è stata fissata sullo

scafo del galleggiante; immediatamente dopo è stato integrato anche

l’armadio contenente i sistemi di alimentazione elettrica, controllo e

monitoraggio necessari a mettere in funzione il generatore eolico.

A questo punto l’intero prototipo è stato calato nelle acque del porto

di Reggio per provarne il corretto galleggiamento. In seguito all’esito

positivo della verifica una gru a pontone ha finalmente trasportato la

piattaforma nel suo luogo definitivo di ormeggio, a circa sessanta metri

dalle coste di Reggio Calabria, nelle acque di pertinenza del NOEL

(Natural Ocean Engineering Laboratory), il laboratorio naturale di ingegneria

marittima dell’università Mediterranea di Reggio Calabria.

Durante le giornate del 27 e del 28 febbraio il prototipo è stato varato e

ancorato al fondo del mare con quattro ancore.

Nel mese di aprile 2021 è iniziata la campagna sperimentale, che fornisce

dati preziosi per la comprensione e il miglioramento delle tecnologie

offshore per la produzione di risorse sostenibili dagli oceani.

É di particolare interesse lo studio della dinamica del galleggiante, di

come questa sia influenzata dalla presenza dall’estrazione dell’energia

dal moto ondoso e dal funzionamento del generatore eolico. Inoltre è

allo studio la capacità del galleggiante di attutire il moto ondoso nella

vasca interna, così da permettere l’allevamento di pesci.

La turbina eolica rappresenta invece un modello unico per il miglioramento

delle tecnologie legate alla produzione di energia eolica su

galleggiante. Come prima cosa è interessante stabilire l’efficacia di

logiche di controllo che abbiano come obiettivo ad esempio la massimizzazione

della potenza estratta o la riduzione dei carichi dinamici

agenti sul prototipo. Inoltre, la sensoristica installata sulla turbina

permette di svolgere un monitoraggio continuo sui carichi agenti sulle

pale e sulla torre, nonché dei livelli di vibrazioni a cui è sottoposta una

macchina di questo genere.


meccanica magazine

51


meccanica magazine

52

ENG

The Blue Growth Farm Project

Since 2018 a group of researchers of the Department of Mechanical

Engineering has been involved in the European project called “THE

BLUE GROWTH FARM PROJECT”, founded by the Horizon 2020 Programme.

The project revolves around creating a model of a multipurpose

offshore platform scaled 1 to 15 for open-sea aquaculture

and wind/wave energy production. The role of Politecnico was to

design and build a scaled wind turbine to be installed on a floating

platform to perform as a full scale generator and work under unpredictable

environmental conditions. Over the past few months, the

project reached almost its final stage: the platform was integrated

with all technologies, the model launched, and the experimental

campaign took off.

In the morning of February 26th, the turbine designed at POLIMI reached

the harbour of Reggio Calabria to be installed on the platform,

shipped from Ancona a few days before. The platform is a fourteen-meter

long and ten-meter wide rectangular steel caisson of the

height of two meters and with a draft of 1.8. Inside there is a big basin

communicating with the open sea designed to contain the nets

for aquaculture. On one of the short sides of the caisson there is a

row of wave energy converters meant to produce wave power in the

full scale model. The eight-meter tall wind turbine, with a rotor diameter

of seven meters , was assembled on the pier and, on the same

day, the steel tower was fixed on the floater hull; afterwards, the

integration of the electrical cabinet with the power supply, control

and monitoring systems necessary to operate the wind power generator.

Once assembled, the floating stability of the prototype got

tested by putting it into the waters of the harbour of Reggio. After

the testing, a crane barge transported the installation to the correct

mooring site about sixty meters from the shore of Reggio Calabria

in the waters supervised by the Natural Ocean Engineering Laboratory

(NOEL) of the Mediterranea University of Reggio Calabria. On

the 27th and 28th of February, the prototype was launched and was

anchored to the seabed with four anchors.

Last April started the experimental campaign, which provides crucial

data to understand and improve offshore technologies to get

sustainable resources from the oceans. Studying the dynamic

behaviour of the floater is of particular interest, especially how wave

energy harvesting and the operating wind turbine affect it. Moreover,

it is also under evaluation the ability of the floater to reduce the

wave motions inside the basin to allow fish farming.

Besides, the wind turbine is a unique model that might lead to improving

the technologies linked to wind energy production on floaters.

Firstly, it is interesting to evaluate the efficiency of the control logics

with the objective to maximize the power of the energy harvested

and reduce the dynamic loads affecting the prototype. Moreover,

the sensors installed on the turbine allow continuous monitoring of

both the loads acting on the rotor blades and tower and the level of

the vibrations to which such machinery is exposed.


meccanica magazine

53


Conclusione del progetto

triennale Erasmus+ ELPID

meccanica magazine

54

ITA

Il progetto Erasmus+ ELPID (E-Learning Platform for Innovative product

Development) è finalmente giunto a conclusione dopo 3 anni

di iniziative educative di successo che hanno coinvolto più di cento

studenti provenienti da 4 nazioni. Il Politecnico di Milano (Italia), assieme

all’Università di Lubiana (Slovenia) e all’Università Tecnica di

Vienna (Austria), con il coordinamento dell’Università di Zagabria ed

il supporto tecnico del suo Centro computazionale SRCE (Croazia), ha

cominciato a lavorare sulle questioni riguardanti il blended learning

(apprendimento misto) molto prima dello scoppio della pandemia da

COVID-19 avvenuto ad inizio 2020.

Infatti era ancora la seconda metà del 2018 quando l’agenzia nazionale

croata per il programma Erasmus+ decise di finanziare la proposta

di progetto presentata dal consorzio, con lo scopo di sviluppare una

piattaforma di e-learning capace di coniugare modalità di insegnamento

tradizionali (lezioni frontali, ex-cathedra) con l’approccio pedagogico

del Project Based Learning (PBL) in un contesto internazionale

finalizzato allo sviluppo di prodotti innovativi. Il kick-off meeting del

progetto si tenne a Zagabria nel novembre dello stesso anno e nessuno

dei partecipanti poteva lontanamente prevedere che in quella

riunione stavano anticipando e prefigurando soluzioni a molte delle

problematiche che il mondo dell’educazione avrebbe avuto la necessità

di affrontare a circa un anno e mezzo di distanza.

La piattaforma di e-learning ha subito progressivi cambiamenti durante

i tre anni del progetto, assieme all’approccio educativo che ne

prevede l’utilizzo. Mentre, da una parte, lo svolgimento di lezioni tradizionali

ha richiesto minimi aggiustamenti rispetti ai contenuti erogati

ed alle modalità di interazione docente/studente, con un semplice

spostamento delle lezioni dalla modalità in presenza a quella in remoto;

le attività collaborative che i team di studenti hanno dovuto svolgere

hanno richiesto al consorzio l’integrazione di diversi applicativi e

strumenti metodologici disponibili on line per raggiungere i risultati di

apprendimento attesi.

Durante il primo anno del progetto, durante il secondo semestre

dell’anno accademico 2018/2019, circa 40 studenti di ingegneria meccanica

(triennali e magistrali) provenienti dalle quattro università hanno

avuto la possibilità di collaborare a distanza su un vero progetto

industriale proposto da Bosch Siemens Hausgeräte Slovenia (BSH

Nazarje). Gli studenti hanno lavorato per sviluppare un cestino per la

raccolta differenziata che fosse innovativo ed intelligente. La prima

versione prototipale della piattaforma di e-learning si appoggiava

a Moodle, usato in combinazione con strumenti per la modellazione

CAD e la prototipazione virtuale delle soluzioni. Inoltre, Adobe Connect

era lo strumento privilegiato per l’erogazione delle lezioni e per

la comunicazione a distanza tra i membri del team di progetto nelle

varie attività da svolgere, mentre un sistema per lo storage dei file su

cloud permetteva agli studenti di scambiare informazioni e contenuti

con facilità. Dopo un intero semestre di collaborazione a distanza, gli

studenti hanno finalmente avuto la possibilità di incontrarsi personalmente

a Lubiana per uno workshop in presenza e per una visita all’impianto

produttivo di BSH a Nazarje, dove hanno presentato la loro soluzione

di fronte al top management dell’azienda.

Nell’anno accademico 2019/2020, poco prima dello scoppio della pandemia

da COVID-19, un nuovo gruppo di 40 studenti, 10 da ciascuna

delle quattro università partner, ha partecipato alla seconda edizione

del corso ELPID basato su Project Based Learning. Si sono incontrati

per la prima volta con un evento in presenza, organizzato dal Prof. Gaetano

Cascini e dall’Ing. Niccolò Becattini del Dipartimento di Meccanica,

presso il campus del Polo Territoriale di Lecco del Politecnico di

Milano, una settimana dopo la metà di febbraio. In quella sede gli studenti

internazionali hanno avuto modo di familiarizzare gli uni con gli

altri e frequentare un breve ciclo di lezioni dal vivo, tenute dai professori

provenienti dalle quattro università partner. Gli studenti, suddivisi

in 5 team da 8 persone ciascuno, hanno cominciato a collaborare

sotto la supervisione di coach delle 4 università per fare pratica con

i metodi e gli strumenti da utilizzare per tutto il resto del semestre.

Anche in questo caso, gli studenti ELPID hanno avuto la possibilità

di cimentarsi su dei veri progetti industriali. Electrolux Innovation

Factory e la sua divisione Open Innovation (Porcia, PN, Italia), in collaborazione

con Elettrotecnica Rold (Nerviano, MI, Italia), ha proposto

agli studenti di cimentarsi in una gara di progettazione su due temi

progettuali. Nello specifico, i 5 team di studenti si sono sfidati nella

progettazione di un sistema innovativo per lo svolgimento della fase

di asciugatura in una lavastoviglie e di un sistema per lavatrice capace

di sanificare l’acqua dell’ultimo risciacquo e renderla disponibile per


un ciclo successivo. L’evento in presenza della durata di una settimana,

posizionato all’inizio del semestre ELPID, ha agevolato le attività

tra gli studenti che, beneficiando di una piattaforma di e-learning

rinnovata ed arricchita, hanno dimostrato una maggiore coesione e

più frequenti opportunità di collaborazione, potenzialmente stimolati

dall’isolamento e dalle condizioni dettate dalla pandemia. Per il 2020,

infatti, la piattaforma è stata infatti arricchita da strumenti di comunicazione

aggiornati che gli studenti hanno comunque avuto modo di

utilizzare nelle rispettive università di provenienza per le loro lezioni

tradizionali (i.e. Microsoft Teams), così come ulteriori strumenti online

idonei a completare quelli già messi a disposizione durante il primo

anno di attività. Nello specifico gli studenti hanno potuto organizzare

il proprio lavoro attraverso l’uso di spazi condivisi di lavoro (e.g.

lavagne e bacheche) su Miro, assegnare task di progetto con Trello e

sfruttare strumenti di messaggistica istantanea come chat di gruppo

su WhatsApp o simili. Le restrizioni ancora attive al termine del semestre

ELPID non hanno permesso lo svolgimento dell’evento finale pianificato

preso la sede dell’Electrolux Innovation Factory a Porcia. Per

questo l’evento si è comunque svolto in remoto, con la partecipazione

dei quadri e della dirigenza della compagnia, dove il team che ha prodotto

l’idea più innovativa e convincente è stato proclamato vincitore

della sfida di progettazione da parte dell’azienda.

Per l’edizione 2020/21 del corso ELPID, il consorzio ha dovuto continuare

ad erogare le lezioni e, parimenti, permettere lo svolgimento

delle attività di collaborazione tra studenti in remoto, sempre a causa

delle restrizioni dovute alla pandemia da COVID. Questo significa

che per questa edizione gli studenti dalle 4 nazioni non hanno avuto

la possibilità di svolgere in presenza l’evento di avvio di una settimana,

il cui svolgimento era pianificato a Vienna, replicando l’esperienza

di successo registrata l’anno precedente presso il campus di Lecco.

Con la stessa struttura di strumenti integrati che ha costituito la piattaforma

nell’anno precedente, gli studenti hanno collaborato sin dai

primi giorni in modalità remota, svolgendo le attività di socializzazione

a distanza. Per lo workshop iniziale, infatti, gli studenti hanno potuto

cominciare a costruire lo spirito di gruppo con i membri del proprio

team collaborando e sfidando gli altri a sfuggire da una escape room

online nel più breve tempo possibile, girando assieme per le strade di

Vienna in un tour virtuale guidato dai coach di TU Wien e condividendo

l’ora dell’aperitivo, brindando assieme su Gather.Town. Come per l’anno

precedente, anche nel 2020/21 gli studenti si sono cimentati in una

gara progettuale proposta da Siemens Mobility Austria. Hanno dovuto

riprogettare gli interni di un treno metropolitano, focalizzandosi su

una specifica area geografica che avevano facoltà di scegliere. Così

come successo nel 2019 e nel 2020, anche in questa edizione l’azienda

che ha proposto la gara di progettazione ha fornito un robusto supporto

agli studenti attraverso tutto il semestre, con sessioni di revisione

progettuale frequenti che hanno permesso ai team di studenti

di familiarizzare con un contesto professionale. Infine, lo scorso 9

giugno, tutti gli studenti si sono riuniti per lo workshop finale con Siemens

Mobility Austria. In questa occasione hanno presentato i propri

concept di prodotto e le relative simulazioni, per poi ricevere la valutazione

finale della compagnia che ha sancito anche il team vincitore

della gara di progettazione.

Dopo 3 anni di esperienza, il consorzio può dire di aver completamente

raggiunto con successo gli obiettivi prefissati per il temine del progetto:

la piattaforma di e-learning, presentata come un set integrato

di strumenti e materiali educativi sviluppati ad hoc per attività di

Project Based Learning in contesti di sviluppo di prodotti innovativi, è

adesso disponibile sul sito web di ELPID per le finalità educative della

comunità scientifica interessata. Tuttavia, il risultato raggiunto più

importante è l’elevatissima soddisfazione di tutti gli studenti che hanno

partecipato all’attività. Tutti hanno riferito di aver vissuto un’incredibile

opportunità che gli ha permesso di conoscere persone diverse,

diverse culture, fare pratica con l’inglese e “sporcarsi le mani” in un

vero ambiente industriale con aziende di grande rilievo nei rispettivi

settori produttivi e, sopra tutto, trovare nuovi amici attraverso l’Europa.

meccanica magazine

55


meccanica magazine

56

ENG

The ELPID Erasmus+ project

The Erasmus+ project ELPID (E-Learning Platform for Innovative

product Development) has finally come to its conclusion after three

successful years of education initiatives that involved more than

one hundred students from 4 countries. Politecnico di Milano (Italy),

together with the University of Ljubljana (Slovenia) and Technische

Universitaet Wien (Austria), under the coordination of the University

of Zagreb (Croatia) and the technical support by SRCE - its Computing

Center, started working on the issues of blended learning long

before the outbreak of the COVID-19 pandemic at the beginning of

2020.

Indeed, it was about the end of 2018 when the Croatian national

agency for the Erasmus+ program awarded the consortium with

the grant to set up an e-learning platform to combine the traditional

ex-cathedra teaching and Problem-Based Learning (PBL) for innovative

product development in an international context. The kickoff

meeting took place in Zagreb in November 2018 and none of the participants

could by far foresee that they were somehow going to anticipate

most of the issues that the world of education needed to face

because of the social restrictions enforced due to the pandemic a

year and a half later.

The e-learning platform progressively changed over the three years

of the project, along with the related educational approach. If delivering

ex-cathedra lectures required just few adjustments on contents

and modalities of teacher/student interaction, as they simply

shifted from live to remote lectures, it wasn’t the same for collaborative

activities of teams of students. Since they were held in a remote

setting, the consortium had to integrate different online tools and

methodological instruments in order to achieve the desired learning

outcomes.During the first year of the project, second semester of

AY 2018/2019, approximately 40 mechanical engineering students

(both graduate and undergraduate) from the four universities had

the chance to collaborate from home on a real industrial project

proposed by Bosch Siemens Hausgeräte Slovenia (BSH Nazarje).

They worked on the development of an innovative and smart waste

bin that facilitate recycling. The early version of the e-learning platform

relied on Moodle, used in combination of CAD modeling tools

for the virtual prototyping of solutions, on Adobe Connect to deliver

lectures and for distant communication in project activities and on

a cloud-based repository for file sharing. After a whole semester of

remote collaboration, the students finally had the chance to meet

all together in Ljubljana for a live workshop and a factory visit at the

plant of BSH in Nazarje, where they presented their solution in front

of the top management of the plant.

In the academic year 2019/2020, right before the COVID-19 outbreak,

a new group of 40 students, 10 from each partner university, enrolled

in the second edition of the PBL-based ELPID class. They met

for a live event organized by Prof. Gaetano Cascini and Ass. Prof.

Niccolò Becattini, held at the Lecco Campus for one week after

the mid of February. There, the international students familiarized

with each other and attended live lectures on design methods

and tools held by university professors from the different involved

institutions. The students, in 5 teams of 8 members, started collaborating

under the supervision of academic coaches to practice

the design methods and tools they had to work with for the whole

semester. For the second year of ELPID, as well, the students had

the chance to address real industrial projects. Electrolux Innovation

Factory and its Open Innovation division (Porcia, PN, Italy), in collaboration

with Elettrotecnica Rold (Nerviano, Milano, Italy), provided

the students with two project themes presented as a design challenge.

Specifically, the 5 teams competed against each other for the

design of an innovative system for the drying phase in a domestic

dishwasher and a system to clean up the rinsing water of a washing

machine and make it suitable for reuse in other washing cycles. The

one-week live event at the beginning of the semester facilitated the

activities between students that, with a partially renewed and enriched

e-learning platform demonstrated a stronger cohesion and

more frequent opportunities of collaborations, potentially triggered

by the conditions and the isolation set by the COVID pandemic. This

year the platform was, in fact, enriched by updated communication

tools that students also had the chance to use during their standard

classes (i.e. Microsoft Teams) as well as additional online tools that

complemented the ones already made available during the first year

of activities. In detail, students organized their work on shared whiteboards

with Miro, planned and assigned tasks with Trello and use

instant messaging systems (e.g. WhatsApp group chats or similar).

The restrictions still in place at the end of the semester did not allow

the student to participate to the final event planned at the Electrolux

Innovation Factory in Porcia, but the event took place online in

front of the top management of the company, where the best team

received a special mention as winner of the design challenge.

For the edition 2020/21 of the ELPID course, the consortium still

had to deliver lectures and allow students to collaborate in the PBL

setting under the constrained setting due to the COVID pandemic.

This means that the students from the four countries did not have

the chance to kick off the class with a one-week long live meeting

in Wien, to replicate the extremely positive experience introduced

in 2020 in Lecco. With the same structure of integrated tools

constituting the e-learning platform used in the previous year, the

students started collaborating since the very first days remotely,


with additional opportunities for socialization. The students started

building the team spirit playing together and challenging the others

with an online escape room, running a virtual visit of the city of Wien

and sharing the time of the happy hour with a virtual toast from their

home on Gather.Town. As for the previous year, the teams participated

a design challenge proposed by Siemens Mobility Austria. They

had to redesign the interior elements of an urban metro train, focusing

on a specific geographical area they had the freedom to choose.

As it happened in 2019 and 2020, also in the last edition the company

involved in the challenge provided a strong support to students

for the whole duration of the semester, with frequent design review

meetings that enabled the international teams of students to familiarize

with a professional context. Eventually, last June 9th, all the

students gathered for the virtual final workshop with the company,

to present their concepts and the related simulations and receive

the final company evaluation, which decided the team winning the

design challenge.

After three years of experience, the consortium fully addressed the

initial targets they planned to achieve at the end of the project: the

platform, presented as in integrated set of tools and educational

materials tailored for Project Based Learning in innovative product

development contexts, becomes available to the scientific and educational

community on the ELPID website. However, the most important

result achieved is the extremely high satisfaction of all the

students that participated in the activities. All of them mention this

as an extremely valuable opportunity to know different people, different

cultures, practice English and get their hands dirty in a real

industrial environment with top companies in their respective industrial

sectors and, above all, find new friends across Europe!

meccanica magazine

57


MeccE guarda al futuro

meccanica magazine

58

ITA

“MeccE” è un team di studenti del Politecnico di Milano che partecipa

alla competizione Shell Eco-Marathon. L’obiettivo è quello di

realizzare un veicolo ad altissima efficienza energetica, in grado di

percorrere il maggior numero di chilometri consumando il minor

quantitativo di energia.

Il veicolo, progettato e realizzato interamente dagli studenti del

team, compete nella categoria “urban concept” alimentazione elettrica

a batteria ed è chiamato “Leto”. Leto è stato realizzato nel 2019

e, alla sua prima apparizione alla Shell Eco Marathon Europe, ha conquistato

il quarto posto con una prestazione di 184 km/kWh, a soli 2

km/kWh dal podio.

La pandemia di Covid-19 ha fermato la competizione in pista per

i due anni successivi. Nonostante ciò, il team ha proseguito, tra le

numerose difficoltà, il lavoro di sviluppo sul proprio veicolo. In questo

periodo vi è stata un’intensa attività di test sul veicolo al fine di

migliorare e ottimizzare la strategia di gara. In parallelo, numerosi

componenti sono stati riprogettati impiegando metodi di ottimizzazione

strutturale, al fine di minimizzarne la massa e massimizzarne

la rigidezza. La principale area di intervento ha riguardato il gruppo

mozzo-ruota del veicolo: la progettazione ottima dei mozzi e dei cerchi

ha portato una diminuzione della massa del 30% rispetto ai componenti

esistenti. Ulteriori interventi di alleggerimento sono stati effettuati

sulla carenatura e sulle portiere, portando ad una riduzione

di oltre il 10% della massa complessiva del veicolo.

Nella speranza di tornare alle competizioni in pista nella stagione

2022, il team ha eseguito intense sessioni di test per messa a punto

ed ulteriore miglioramento della vettura, con l’obiettivo di conquistare

il podio alla prossima competizione della Shell Eco Marathon

Europe e di guadagnarsi la qualificazione alla “Driver World Championship”,

competizione riservata ai primi tre classificati delle competizioni

continentali (Shell Eco Marathon America, Shell Eco Marathon

Asia e Shell Eco Marathon Europe).

I referenti accademici del Team sono il Prof Gianpiero Mastinu, Il

Prof. Massimiliano Gobbi e il Dr. (RTDA) Federico Ballo.

ENG

MeccE: whatever the future holds

“MeccE” is one of the student teams of Politecnico di Milano competing

in the Shell Eco-Marathon competition. The objective is to create

a high-efficiency vehicle able to run a longer distance with lower

energy consumption. Designed and produced entirely by the student

members of the team, the vehicle, named LETO, competes for the

category “urban concept battery-electric” vehicles. Leto was created

in 2019 and ranked fourth during his first participation at the Shell

Eco Marathon Europe with a performance of 184 km/kWh, differing

from the top-three performance only by 2 km/kWh.

The spread of the Covid-19 pandemic forced the teams to stop competing

on track for the two following years. Nevertheless, despite

all difficulties, the team kept working on the development of their

vehicle. During this time, the team intensively carried out tests on

the vehicle to improve and optimise the racing strategy. Meanwhile,

many components were re-designed, implementing methods for

structural optimisation to reduce their mass and maximise their stiffness.

The greatest intervention area was on the hub-wheel subsystem:

the optimal design of the hub and wheel rim brought to a 30%

mass reduction compared to existing components. Extra actions to

reduce the weight were taken on the fairing and car doors, leading to

a mass reduction of the entire vehicle higher than 10%. Hoping to get

back on track for the 2022 season, the team has carried out intensive

test sessions to assess and provide additional improvements on the

racing car. The aim is to win the next European Shell Eco-Maraton

competition and qualify for the Driver World Championship competition,

where only the best three cars of each of the 3 continental competitions

(Shell Eco-Marathon America, Shell Eco-Marathon Asia e

Shell Eco-Marathon Europe) can race.

The scientific coordinators of the team are Prof Gianpiero Mastinu,

Prof. Massimiliano Gobbi and the researcher Federico Ballo.


meccanica magazine

59


3D Bioprinting:

la nuova frontiera dell’Additive

Manufacturing per la ricerca

biomedica e farmaceutica

meccanica magazine

60

ITA

Il bioprinting è un campo di ricerca multidisciplinare che combina tecnologie

all’avanguardia derivate dall’ Additive Manufacturing, dalla biologia

e dalle scienze dei materiali per creare tessuti viventi. L’interesse

verso la possibilità di riprodurre costrutti biologici con geometrie e

funzioni che imitano quelle dei tessuti viventi è stimolato dal bisogno

sempre crescente di una medicina personalizzata, uno dei principali

obiettivi medici della società del futuro.

Così, nel contesto attuale della ricerca biomedica, il bioprinting sta

guadagnando una crescente attenzione da parte di aziende, università

e istituti di ricerca. La letteratura scientifica in questo campo sta

aumentando esponenzialmente, e anche il Politecnico di Milano sta

portando il suo contributo alla crescita di questo settore. A questo

scopo è stata istituita una nuova collaborazione tra il Dipartimento di

Ingegneria Meccanica e il Dipartimento di Ingegneria Chimica, grazie

al laboratorio “3D Cell lab” guidato dai Prof. Bianca Maria Colosimo e

Prof. Davide Moscatelli.

Le principali applicazioni del 3D bioprinting si possono trovare nella

ricerca di base della biologia cellulare, nella produzione di modelli di

tessuto per la sperimentazione di farmaci e nel campo della medicina

rigenerativa per la futura sostituzione di tessuti e organi per combattere

la carenza di organi da donatore.

L’interesse per il 3D bioprinting sta guadagnando slancio negli ultimi

anni non solo nel mondo accademico ma anche nel mercato. Sempre

più aziende si stanno dedicando al 3D bioprinting, quadro completato

da un fiorente panorama di start-up e spin-off, sia aziendali che universitarie.

La letteratura brevettuale sta esplodendo e si stanno sempre

più diffondendo anche nuove tecnologie e i biomateriali innovativi

adatti al bioprinting.

Il bioprinting potrebbe diventare un nuovo paradigma per la biofabbricazione

dei tessuti e il Politecnico di Milano ha adottato tutte le

principali tecnologie attualmente disponibili: bioprinter basate sulla

deposizione ad ugelli per il bioprinting ad estrusione o inkjet, e bioprinter

che sfruttano i processi di fotopolimerizzazione. Per quanto

riguarda quest’ultima classe di tecnologie, il Politecnico di Milano, in

collaborazione con la Regione Lombardia, sta per installare una delle

prime bioprinter con risoluzione micrometrica e alta velocità per creare

una nuova generazione di tessuti vascolarizzati, in grado cioè di

fornire alle cellule il nutrimento necessario per sopravvivere in tutti i

punti del costrutto biologico.

Nell’ambito del progetto, grazie al trasferimento delle conoscenze

acquisite nel campo dell’additive manufacturing, il Dipartimento di

Ingegneria Meccanica sarà incaricato di migliorare le tecniche di sensorizzazione,

monitoraggio, controllo e ottimizzazione di processo.

Le attività di ricerca saranno coadiuvate dal Dipartimento di Ingegneria

Chimica, che esplorerà lo sviluppo di nuovi biomateriali innovativi

adatti allo scopo.

Con i risultati ottenuti, il Politecnico di Milano potrà contribuire alla

ricerca in quest’ambito proponendo soluzioni innovative che combinano

le tecnologie di 3D printing con i big data e machine learning per

ottenere nuovi tessuti vascolarizzati di nuova generazione.


ENG

3D Bioprinting: the new frontier of Additive Manufacturing for

biomedical and pharmaceutical research

Bioprinting is a multidisciplinary research field combining state-ofthe-art

technologies from additive manufacturing, biology and material

sciences to create living tissues. The interest towards the possibility

of reproducing bioconstructs with geometries and functions

that mimic living tissues ones is boosted by the ever-increasing

need for personalized medicine, one of the main medical objectives

of the society of the future.

Thus, within the actual biomedical research context, bioprinting is

gaining increasing attention from companies, universities, and research

institutes. Scientific literature in this field is exponentially

increasing, and also the Politecnico di Milano is bringing its contribution

to the growth of this sector. For this purpose has been

established a new collaboration between the Mechanical Engineering

Department and the Chemical Engineering Department, with

the joint “3D Cell Lab” co-founded by Prof. Bianca Maria Colosimo

and Prof. Davide Moscatelli.

The main applications of 3D bioprinting can be found in cell biology

research, in the production of tissue models for drug testing and in

the field of regenerative medicine for future replacement of tissues

and organs for fighting the donor organ shortage.

Interest in 3D bioprinting has been gaining momentum in recent years

not only in the academia but also in the market. Numerous 3D

bioprinting companies are welcoming the market as well as startups,

spin-offs and subsidiaries. The patent literature is exploding

and new technologies and innovative biomaterials suitable for bioprinting

are becoming more and more widespread.

Bioprinting could become a new paradigm for the biofabrication

of tissues and the Politecnico di Milano has adopted all the major

technologies currently available to keep up: technologies based on

nozzle-deposition for extrusion-based and inkjet-based bioprinting,

and technologies based on vat photopolymerization processes. Regarding

the last class of optical-based technologies, the Politecnico

di Milano, in collaboration with Lombardy region, is about to install

one of the first bioprinter with micrometric resolution and high speed

based on two-photon polymerization printing process to create

a new generation of vascularized tissues to allow cell survival in any

location of the bioprinted construct.

Within the project, thanks to the transfer of knowledge gained in the

additive manufacturing field, the Mechanical Engineering Department

will be in charge of developing new solutions for in-situ data

sensing, process optimization monitoring and control fostering the

convergence between manufacturing, big data mining for biomedical

research.

Research activities will be also adjuvanted by the Chemical Engineering

Department, which will explore the possibility of studying

innovative biomaterials.

With the results obtained, the Politecnico di Milano will be able to

contribute to research proposing new methods and solutions for

producing a new generation of vascularized bioprinted tissues which

will boost research in this area.

meccanica magazine

61


Progetto Sblink

vincitore del bando ricercatori

DMEC nell’ambito delle attività

del progetto Lis4.0

meccanica magazine

62

ITA

Bando Ricercatori – di Stefano Foletti, Delegato in Giunta alle Politiche

“giovani”

L’iniziativa del Dipartimento di Meccanica “Bando Ricercatori” vuole

finanziare attività di ricerca proposte, coordinate e svolte dai ricercatori.

Si configura, in termini di partecipazione, come un bando competitivo

in cui il proponente, in qualità di responsabile scientifico, deve

identificare l’argomento di studio e dar vita ad un gruppo di ricerca, facendo

convergere diverse competenze. Il requisito fondamentale per

la partecipazione al bando è dunque l’interdisciplinarità e lo scopo è

quello di creare sinergie tra i ricercatori delle varie Sezioni del Dipartimento

di Meccanica ma anche di coinvolgere quelli di altre Università

italiane o estere. Per l’edizione 2020 si è deciso di sostenere progetti

di ricerca legati alle tematiche identificate in Lis4.0 (Lightweight and

Smart Structures for Industry 4.0), progetto finanziato dal MIUR nel

quadro dell’iniziativa “Dipartimenti di Eccellenza”. La sfida è stata raccolta

da quattro ricercatori che hanno saputo dar vita a una proposta

costruendo, attorno ad un’idea, un vero e proprio gruppo di ricerca

con competenze trasversali: Stefano Arrigoni con il progetto “Intelligent

Transportation Services for POLIMI (ITS 4 POLIMI), Marta Gandolla

con il progetto “Smart Bio-inspired Link (SBLINK)”, Ali Gökhan Demir

con il progetto “Laser Induced Forward Transfer based micro to nanometric

multimaterial Additive Manufacturing (LIFT4AM)” e Michele

Vignati con il progetto “Independently driven vehicles dynamics and

control (iWD)”. “Un’iniziativa riuscita”, questa l’opinione comune della

Commissione Giudicatrice che ha avuto il non facile compito di decidere

quale progetto finanziare, data la qualità, l’organizzazione e l’interdisciplinarità

di tutte le proposte ricevute. La selezione, effettuata

sulla base dei criteri di valutazione e dei punteggi indicati a bando, ha

visto vincitore il progetto SBLINK.

Il progetto SBLINK – di Marta Gandolla, Direttore Scientifico

Il “Bando Ricercatori” è stata in primis l’opportunità di creare una rete

di collaborazione tra colleghi all’interno del Dipartimento, specialmente

per me che ho iniziato a Settembre 2020. Il team che lavora al

progetto SBLINK è fortemente multidisciplinare e formato da persone

con solide conoscenze su tecnologie abilitanti diverse e complementari

(Biomeccanica, Design, Materiali, Manufacturing, sensoristica e

Monitoraggio). Il team è composto da me, Marta Gandolla, e altri quattro

giovani ricercatori del Dipartimento di Meccanica del Politecnico

di Milano: Luca Patriarca, Paolo Parenti, Diego Scaccabarozzi e Niccolò

Becattini. Inoltre, il team gode del supporto di una commissione

esterna composta da docenti internazionali esperti del settore.

La maggior parte delle invenzioni, come un tempo fu la ruota, sono

state progettate per ridurre lo sforzo e contemporaneamente migliorare

la produttività e garantire la sicurezza. I Disturbi Muscoloscheletrici

(DMS) legati al lavoro, che colpiscono in particolar modo

la regione lombare, sono la principale causa di infortuni sul lavoro e

rappresentano i costi che gravano maggiormente per l’affiancamento

al lavoratore a causa della ridotta produttività. La pandemia di Covid19

ne ha aumentato l’insorgenza. Prendersi cura dei pazienti ha inciso

particolarmente nell’insorgenza di dolori lombari in coloro che forniscono

assistenza professionalmente e non. Nei magazzini delle grandi

catene di distribuzione, si è verificato un aumento significativo di lavoratori

a rischio con il crescere dell’e-commerce. Il progetto SBLINK

accetta la sfida che ha come obiettivo quello di eseguire una caratterizzazione

della spina dorsale durante un movimento target e definirne

un ambiente di simulazione per testare l’effetto di queste soluzioni

sulla parte lombare umana, ottenute grazie a tecnologie abilitanti.

Seguirà lo sviluppo di un primo prototipo fisico del simulatore concettualmente

formato da tre strati interconnessi che trovano ispirazione

nella modalità di funzionamento della regione lombare dell’uomo.


Lo STRATO OSSEO costituisce funzionalmente il supporto strutturale.

Questo strato sarà composto di mattoncini simili in struttura alle

vertebre, dotate di specifiche caratteristiche meccaniche per il supporto

del peso a livello lombare, grazie a piccole deformazioni e alla

struttura bio-ispirata con specifiche caratteristiche meccaniche che

si adattano al livello della fatica da sopportare.

Lo STRATO SPINALE funzionalmente connette gli elementi dello strato

osseo. La spina dorsale permetterà l’interconnessione tra I mattoncini

che compongono lo strato osseo.

Lo STRATO PERCETTIVO rappresenta funzionalmente l’abilità dei recettori

del corpo umano di mappare il livello di stress meccanico.

Lo strato percettivo permetterà la mappatura costante delle effettive

condizioni di stress a livello della spina dorsale.

Riducendo e modificando il carico muscoloscheletrico, i dispositivi

come SBLINK potrebbero ridurre l’insorgenza di malattie lavorative e

ridurre i costi legati alla salute e della mancata produttività associati

ai disturbi dovuti alla ripetitività dei gesti lavorativi.

meccanica magazine

63


meccanica magazine

64

ENG

Sblink is the winning project of DMEC call for researchers in the

framework of the Lis4.0 project

Call for Researchers – by Stefano Foletti, member of the Board in

charge of Youth policies

The “Call for Researchers” initiative of the Department of Mechanical

Engineering aims to promote research activities suggested, coordinated

and carried out by researchers themselves. It is a competitive

call for which the candidate, also the scientific director of the

project, must choose a research topic and pick a research team to

bring diverse skills to the table. Interdisciplinarity is the main application

requirement as the goal is to make researchers from different

DMEC Research Lines cooperate while involving other Italian

and foreign Universities. The 2020 edition aimed to sponsor the

projects liked to the topics falling under the Lis4.0 - Lightweight

and Smart Structures for Industry 4.0 - a project financed by MIUR

(Italian Ministry for Education, University and Research) in the framework

of the Department of Excellence initiative. Four are the researchers

who took the challenge and brought to life a proposal by

building a research team with traversal skills around a single idea:

Stefano Arrigoni, presenting the Intelligent Transportation Services

for POLIMI (ITS 4 POLIMI) project; Marta Gandolla, presenting

the Smart Bio-inspired Link (SBLINK) project; Ali Gökhan Demir,

presenting the Laser-Induced Forward Transfer based micro to nanometric

multi-material Additive Manufacturing (LIFT4AM) project;

and Michele Vignati, presenting the Independently driven vehicles’

dynamics and control (iWD) project. Despite having the difficult task

to select which project to sponsor, given the quality and high level of

organisation and interdisciplinarity of all proposals, the Evaluation

Committee claimed it was “a huge success”. According to the criteria

indicated in the call, the Committee appointed the SBLINK project

as the winner.

SBLINK PROJECT – by Marta Gandolla, scientific director

The “Call for Researchers” project call was at first the opportunity to

network between peers in the Department, especially for me, since

I arrived in September 2020. The SBLINK project is conducted

by a multidisciplinary team with strong background in different and

complementary enabling technologies (Biomechanics, Design, Materials,

Manufacturing, Sensing and Monitoring). We are five young

researchers of the Mechanical Department of Politecnico di Milano

– Luca Patriarca, Paolo Parenti, Diego Scaccabarozzi e Niccolò

Becattini, and myself – supported by an external advisory board of

international acknowledged professors.

Most of the human inventions, such as the wheel back in time, were

designed to reduce fatigue, while increasing productivity and assuring

safety at the same time. Work-related musculoskeletal disorders

are the leading cause of occupational injuries and represent

the largest burden for worker-compensation costs and reduced productivity,

with most incidence in the lumbar region. Covid-19 pandemic

has even increased this effect. Patients’ assistance produced a

huge incidence of low-back pain in formal and informal caregivers.

Another example of high-risk workers may be those employed in logistics

warehouses, which are known as a booming area of employment

associated with e-commerce.

The SBLINK project accepts the challenge, with the aim of performing

a characterization of the spinal column during target movement,

and definition of a simulation environment where to test the

effect of assistive technologies solutions on human low-back. We

will then realize the physical prototype of a SBLINK demonstrator,

conceptually composed by three interconnected layers, which are

bio-inspired by the human lumbar region from a functional point of

view.

The BONE layer functionally represents the effective structural support.

The BONE layer will be composed by vertebras-like small brick

elements with specific mechanical characteristics aimed at sustaining

the loadings at lumbar level, with small deformation, bio-inspired

in terms of structure with different mechanical characteristics

depending on the stress to be supported.

The SPINAL COLUMN layer functionally represents the link between

the BONE layer elements. The SPINAL COLUMN layer will deal with

the interconnection between the brick elements composing the

BONE layer.

The PERCEPTION layer functionally represents the ability of the human

body receptors to map the level of mechanical stress.

The PERCEPTION LAYER will enable the constant mapping of the

effective stress conditions at spine level.

By reducing or modifying musculoskeletal loading, devices such as

SBLINK can decrease the incidence of workplace injury and reduce

the burden of healthcare and lost productivity costs associated with

occupationally caused repetitive use injuries.


Droni, realtà immersiva e aumentata,

Internet of Things

ITA

La connettività a larghissima banda, bassa latenza ed elevata affidabilità

della tecnologia 5G amplia enormemente il panorama delle

possibili applicazioni: il 5G rappresenta infatti la tecnologia abilitante

per l’interconnessione capillare e pervasiva sia di dispositivi

digitali personali che di dispositivi IoT, consentendo lo sviluppo di

applicazioni che possono trasformare gli ambienti sociali, produttivi,

commerciali e pubblici in luoghi “smart” in grado di interagire con

gli utenti in modo semplice e naturale.

BASE-5G (Broadband InterfAces and services for Smart Environments

enabled by 5G technologies) è uno dei 33 vincitori del bando

di Regione Lombardia “Call Hub Ricerca e Innovazione” e prevede

lo sviluppo di diversi ambienti intelligenti, in grado di offrire servizi

avanzati e personalizzati a cittadini, imprese e pubblica amministrazione.

Il progetto BASE-5G, avviato a gennaio 2020, si pone 3 macro-obiettivi:

• Progettazione di servizi avanzati basati su ambienti intelligenti

• Integrazione verticale della tecnologia 5G con piattaforme IoT per il

supporto di servizi avanzati

• Sviluppo di interfacce semplici e fruibili per l’utente finale.

Tali obiettivi sono declinati in 5 ambiti applicativi: Smart City and

Smart Campus, Smart Mobility and Vehicles, Smart Logistics, Smart

Learning e Sport and Leisure events.

Il Dipartimento di Meccanica, insieme ai Dipartimenti di Design e di

Ingegneria Gestionale, a Vodafone e AKKA, è impegnato nell’ambito

Smart Mobility and Vehicles con l’obiettivo di:

• Migliorare l’esperienza del guidatore e dei passeggeri attraverso lo

studio e lo sviluppo di sistemi avanzati di interazione uomo-macchina

per la sicurezza e l’intrattenimento

• Progettare in maniera innovativa lo spazio abitativo del veicolo

sfruttante le potenzialità della rete 5G

• Sviluppare sistemi di sicurezza attiva cooperativi mediante una

maggiore automatizzazione del veicolo e la sua interazione attiva

con l’ambiente circostante

In questa prima fase del progetto, dalla durata complessiva di 30

mesi, si stanno definendo gli scenari e le applicazioni che meglio dimostrino

i vantaggi della tecnologia 5G. Seguiranno lo sviluppo e la

validazione di questi scenari in ambienti reali e/o realistici.

ENG

BASE-5G PROJECT: drones, immersive and augmented reality,

internet of things

The 5G technologies with their wide-broadband, ultra-low latency,

and ultra-high reliability offer an extensive range of new possible

applications. 5G deep-coverage and ultra-connectivity among personal

and IoT devices are essential elements to develop new applications

making social, production, business, and local administrative

environments more smart and capable of interacting with their

users in simple and natural ways.

BASE-5G (Broadband Interfaces and services for Smart Environments

enabled by 5G technologies) is one of the 33 winners of the

call for projects “Call Hub Ricerca e Innovazione” of Regione Lombardia.

This call for projects aims to develop different smart environments

that can offer citizens, enterprises, and local administration

advanced and customized services.

Officially started in January 2020, BASE-5G has three main goals:

• To provide new advanced services that fit in smart environments;

• To favor vertical interaction between 5G technologies and IoT platforms

which will support such services;

• To develop user interfaces that are simple and user-friendly.

These goals find their implementation in 5 different applications:

Smart City and Smart Campus, Smart Mobility and Vehicles, Smart

Logistics, Smart Learning, e-Sport, and Leisure events.

In collaboration with Vodafone, AKKA, the Department of Design and

the Department of Management, Economics and Industrial Engineering,

the Department of Mechanical Engineering of Politecnico di

Milano is contributing in the field of Smart Mobility and Vehicles to

address the following goals:

• Improve driver and passenger’s experience in terms of safety and

entrainment by designing and developing advanced human-car interaction

systems;

• Design innovative car cockpits capable of exploiting 5G technologies;

• Develop new interactive safety systems by making the vehicle more

autonomous and improving its interaction with the external environment.

The project development will last 30 months. In this first phase, researchers

are defining the best scenarios and the best applications

that better show the advantages of 5G, later developed and translated

into more realistic environments.

meccanica magazine

65


Il nuovo laboratorio

interdipartimentale

High Strain Rate

meccanica magazine

66

ITA

Il laboratorio High Strain Rate è diventato operativo nel 2021 e opera

nel contesto dei laboratori Interdipartimentali. HSR offre competenze

e strumentazioni sul tema del comportamento di materiali e componenti

alle alte velocità di deformazione e vede coinvolti i seguenti

Dipartimenti: Meccanica, Scienze e Tecnologie Aerospaziali, Civile e

Ambientale, Elettronica-Informazione e Bioingegneria.

In particolare, le attività offerte dal laboratorio sono focalizzate sulla

caratterizzazione dinamica di materiali e strutture di varia natura,

con utilizzo nell’ambito dell’ingegneria meccanica, civile, aeronautica

ed elettronica. Tra queste vi è la possibilità di effettuare prove ad

impatto di strutture in materiale polimerico, composito, metallico e

cementizio, eventualmente con la presenza di sensori. Tra le strumentazioni

disponibili si evidenzia la nuova macchina del tipo Drop-

Tower che permette di effettuare prove di caratterizzazione di estrema

importanza in ambiente controllato e con una serie di dispositivi

atti a misurare rilevanti grandezze fisiche legate all’impatto. Il sistema

rappresenta un importante strumento di ricerca nella definizione di

metodi di progettazione avanzati per condizioni di carico estreme. La

possibilità di avere uno strumento che permetta di eseguire prove di

impatto ripetibili e misurabili con estrema accuratezza, consente di

poter disporre di un passaggio intermedio di validazione (nella definizione

di metodi predittivi) tra la calibrazione del materiale e prove

full scale. In particolare, lo strumento si presta molto bene per una

attività legata alla valutazione del danno provocato da impatti a bassa

velocità.

Attrezzatura a disposizione del laboratorio:

• Drop Tower per prove d’impatto a caduta progettata per fornire energie

fino a 700 J. Il sistema è in grado di acquisire le principali grandezze

fisiche in gioco con una frequenza di campionamento fino a 3.5

MHz. È possibile utilizzare masse di impatto fino a qualche decina di

kg con forze massime misurabili dell’ordine di 90 kN. La strumentazione

è munita di differenti percussori strumentati è in grado di eseguire

prove secondo gli standard EN 12390-1/EN 12390-5, ASTM 7136, ASTM

3763, ISO 6603, ISO 8256.

• Macchina di trazione veloce ad inversione. La macchina, inserita

all’interno di una ulteriore torre di caduta, permette di effettuare prove

di trazione veloce (velocità afferraggi 10 m/s energia >30 kJ).

• Cannone per prove di impatto 1. Masse da 20g a 150 g. Dimensioni

fino a 50 mm di diametro. Velocità fino a 200 m/s.

• Cannone per prove di impatto 2. Masse da fino a 2 kg. Dimensioni fino

a 120 mm di diametro. Velocità fino a 200 m/s.

• 3 sistemi di acquisizione Strainbook. Frequenze di campionamento

1Mhz aggregato. 8 canali ciascuno. Condizionamento di segnale per

trasduttori di pressione, accelerazione e deformazione.

• Videocamera ad alta velocità.

Servizi offerti:

• Prove secondo gli standard EN 12390-1/EN 12390-5, ASTM 7136,

ASTM 3763, ISO 6603, ISO 8256

• Prove di impatto ad alta e bassa velocità su coupon e su componenti

Il Dipartimento di Meccanica ha parte attiva nel laboratorio attraverso

il prof. Andrea Manes e i membri del suo gruppo di ricerca sulla tematica

“Structural integrity under extreme loading conditions”. In particolare,

il gruppo è attivo da diversi anni nella definizione di metodi

di simulazione predittivi per progettare strutture sottoposte a carichi

estremi quali, impatti, esplosioni, grandi deformazioni, rotture, etc.

All’interno del gruppo di ricerca, collaborano al laboratorio HSR i dottorandi

Mohammad Rezasefat Balasbaneh, Álvaro González Jiménez,

Luca Lomazzi e Alessandro Vescovini.


ENG

High Strain Rate: a new interdepartmental lab

The High Strain Rate Lab started operating in 2021 and is included in

the interdepartmental lab network. HRS offers skills and equipment

about material and component behaviour under high-speed deformation

(i.e. high strain rate). The Departments involved are the Department

of Mechanical Engineering, the Department of Aerospace

Science and Technology, the Department of Civil and Environmental

Engineering and the Department of Electronics, Information and

Bioengineering.

In particular, the activities offered at the Lab focus on the dynamic

characterisation of different types of materials and structures operative

in the fields of mechanical, civil, aeronautical, and electronics

engineering. More specifically, it is also possible – among others – to

carry out impact tests on structures made of polymeric, composite,

metallic, and cementitious materials, possibly through sensors.

Among the available equipment, a new Drop-Tower machine to carry

out characterisation tests of extreme relevance in controlled environments

and with a series of measurement systems able to monitor

impact-related physical quantities. The system is an important

research instrument when defining advanced design methods for

extreme loading conditions. The possibility to have an instrument

allowing to carry out repeatable impact tests, as well as with a high-accuracy

level of measurements, might turn into having an intermediate

level (in the definition of predictive methods), between the

material calibration phase and full-scale tests. More precisely, the

instrument is highly indicated to carry out activities to evaluate the

damage caused by low-velocity impacts.

• 3 Strainbook acquisition systems. Sample frequency aggregated 1

MHz. Each has eight channels. Signal conditioning for pressure, acceleration,

and deformation.

• High-speed camera.

Offered services:

• Testing according to the following standards: EN 12390-1/EN

12390-5, ASTM 7136, ASTM 3763, ISO 6603, ISO 8256;

• Low and high-speed impact testing on coupons and components.

The Department of Mechanical Engineering plays an active role in

the lab activities thanks to Prof. Andrea Manes and his research

group working on “Structural integrity under extreme loading conditions”.

More specifically, the group is involved in defining predictive

methods to design structures subjected to extreme loadings

like impacts, explosions, extensive deformations, failure, and more.

Here’s the list of our Ph.D. students part of the research group and

active in HSR: Mohammad Rezasefat Balasbaneh, Álvaro González

Jiménez, Luca Lomazzi and Alessandro Vescovini.

meccanica magazine

67

Lab equipment:

• Drop Tower to carry out drop weight impact tests designed up to

700 J of impact energy. The system measures the main physical

quantities involved with a sampling frequency up to 3.5 MHz. It is

possible to use weights of about ten kg with impact forces of about

90 kN. The equipment includes several instrumented strikers that

can carry out tests according to the following standards: EN 12390-

1/EN 12390-5, ASTM 7136, ASTM 3763, ISO 6603, ISO 8256.

• Reversal High-speed tensile testing machine. Also included in a

drop tower, the machine allows to carry out high-speed tensile tests

(speed 10 m/s power >30 kJ).

• Gun for impact testing 1. Masses from 20 kg to 150 g. Size up to 50

mm in diameter. Speed limit to 200 m/s.

• Gun for impact testing 2. Masses up to 2 kg. Size up to 120 mm in

diameter. Speed limit to 200 m/s.


FiberEUse:

dal progetto europeo all’esposizione

della Design Week

meccanica magazine

68

ITA

Il progetto FiberEUse - New circular economy solutions for the reuse

of end-of-life fiber reinforced composites, coordinato da Prof. Marcello

Colledani del Dipartimento di Meccanica del Politecnico di Milano,

finanziato dall’Unione Europea nell’ambito del programma Horizon

2020, rappresenta la realtà di una transizione sostenibile all’economia

circolare nell’ambito dei materiali compositi rinforzati con fibra di vetro

e fibra di carbonio. Coinvolgendo 21 partner provenienti da 7 stati

europei, nei suoi 4 anni di durata il progetto si è posto come obiettivo

quello di dimostrare su larga scala la fattibilità di implementare nuove

catene del valore circolari basate sul riuso dei materiali provenienti da

prodotti a fine vita.

Il focus è quello dei materiali compositi, largamente impiegati in diversi

settori dell’industria manifatturiera, come il settore di produzione

delle pale eoliche, quello delle costruzioni, dell’automotive, del

trasporto (specialmente quello navale), fino ad arrivare agli articoli

sportivi. L’utilizzo di questi materiali è in costante crescita (con un

tasso che va dal 2% per i materiali in fibra di vetro fino al 10-12% per

quelli in fibra di carbonio) ma, al contempo, non esistono attualmente

soluzioni robuste per il trattamento dei prodotti a fine vita, che vengono

così conferiti ed accumulati in discarica. Una transizione verso

un’economia circolare permette di trasformare questi rifiuti in una

risorsa preziosa, diminuendo il loro impatto ambientale e, al contempo,

generando rilevanti benefici economici. Attraverso lo sviluppo e

l’ottimizzazione di processi innovativi lungo l’intera catena del valore,

dal disassemblaggio (sia delle grandi infrastrutture che dei prodotti

di consumo), al riciclo meccanico, al riciclo termico, al resizing, al design

(ed al codesign), fino al riprocessamento ed al reinserimento dei

materiali, è possibile ottenere nuovi prodotti circolari, in particolare

sfruttando un approccio cross-settoriale in cui il materiale riciclato da

un prodotto a fine vita viene reinserito in un nuovo prodotto ad alto

valore aggiunto che richiede caratteristiche meccaniche inferiori.

Il risultato finale del progetto FiberEUse è rappresentato da più di 15

dimostratori da 8 demo-case in diversi settori (in particolare quelli automotive,

delle costruzioni, design, arredamento ed articoli sportivi)

basati sul remanufacturing ed il riuso di materiale riciclato da pale eoliche

e componenti di aeroplani, sviluppando nuove tecnologie e design

di prodotto innovativi, implementando in aggiunta una piattaforma

cloud-based per facilitare il collegamento fra i vari attori della filiera.

Questi dimostratori sono stati il cuore dell’installazione presente alla

Design Week 2021 che si è tenuta dal 4 all’11 settembre. Presso lo spazio

di Superstudio Più in via Tortona 27, il visitatore è stato guidato

attraverso un percorso di forte impatto visivo che partiva dai prodotti

a fine vita, passando per il materiale riciclato, fino ad arrivare ad una

collezione di numerosi oggetti e componenti che esemplificano il potenziale

di un approccio circolare applicato a questo settore. Interagendo

con l’ambiente circostante, il visitatore ha potuto toccare con

mano prodotti di design, ondulati per tetti industriali (che possono

essere utilizzati anche all’interno per creare dei giochi di luce e colore

di forte impatto), elementi d’arredo, sci, componenti automotive, fino

ad arrivare ad un’intera piattaforma innovativa per macchine elettriche,

sedili inclusi, sempre considerando sia l’aspetto funzionale che

quello economico (applicando fino in fondo il concetto di economia

circolare).


ENG

FiberEUse: from the european project to the Design Week exhibition

The Horizon 2020 FiberEUse (New circular economy solutions for

the reuse of end-of-life fiber reinforced composites) project, coordinated

by Prof. Marcello Colledani of the Department of Mechanical

Engineering of Politecnico di Milano, represents the reality of a

sustainable transition to circular economy in composite materials,

mainly based on glass fibers and carbon fibers reinforcements. Involving

21 partners from 7 European Countries, in 4 years the project

aimed to demonstrate at large scale the feasibility of the implementation

of new circular value-chains based on the reuse of end-of-life

fiber reinforced composites.

These materials are widely used in several manufacturing sectors

as wind energy, construction, automotive, transportation, sanitary,

design and aerospace. Even if the usage of composite materials is

constantly increasing, with a growth rate from 2% of glass fibers

fibres reinforced plastics (GFRP) up to 10-12% for carbon fibres fibers

reinforced plastics (CFRP), no robust and reliable solutions for

the treatment of End-of-Life products are currently present on the

market, leading to disposal in landfill. A transition to circular economy

allows to transform this waste into a precious resource, reducing

the environmental impact and, in the meanwhile, generating

relevant economic benefits. Through the development and optimization

of innovative processes along the entire value-chain, from

disassembly (both of large infrastructures and small products), to

mechanical and thermal recycling, resizing, design and codesign,

reprocessing and reinsertion of materials, it is possible to obtain

new circular products. To enable it, the exploitation of cross-sectorial

approach is fundamental, in which materials recovered from an

End-of-Life product is reinserted in a new product with lower mechanical

characteristics with high-added value.

The final result of the project is represented by more than 15 demonstrators

from 8 demo-cases in different sectors (automotive,

construction, design, sanitary and sports equipment) based on remanufacturing

and reuse of recycled materials from wind blades,

aerospace components and industrial scraps, thanks to the development

and optimization of innovative technologies and design of

products, also implementing a cloud-based platform to enable the

link among all the actors of the value-chain.

These demonstrators constituted the core of the installation at

Milan Design Week 2021 from 4th to 11th of September. During this

event, in the Superstudio Più space in via Tortona 27, the visitors

were guided through a path with high visual impact, starting from a

real amount of End-of-Life products, through recycled material to a

collection of products and components showing the potential to apply

a circular approach in this sector. Interacting with the surrounding

environment, the visitors were able to touch with their hands

design products, corrugated sheets for industrial roots (also used as

walls creating high impacting light effects), furniture elements, skis,

automotive components up to an innovative car platform for electric

vehicles (including seats), always considering both functional and

economical effect (really applying circular economy concept).

meccanica magazine

69


meccanica magazine

70

ITA

Dynamis PRC quarti

a Varano e ospiti

dell’esposizione Museo

Storico Alfa Romeo

Dopo lo stop causa pandemia, il Team Dynamis PRC è tornato in pista Il duro lavoro degli studenti del Politecnico di Milano è stato premiato

nel 2021 e questa volta con il primo prototipo elettrico: DP12evo.

da ben due su quattro “Sponsor Awards”:

Il team ha gareggiato nell’ edizione italiana della Formula SAE tenutasi • GEICO TAIKISHA Top Coating Award per prototipo in gara con il migliore

rivestimento esterno della vettura in termini di rifinitura, inno-

a Varano de’ Melegari, Parma.

Organizzato secondo le restrizioni anti Covid-19, l’evento si è svolto in vazione e materiali utilizzati.

modalità ibrida. Mentre le prove statiche, quali Business Plan Presentation,

Cost event e Design event, si sono svolte online, è stato possitrols,

Methods and Architecture Award per aver sviluppato l’impianto

• TEORESI Best Electronics Development Process: Innovative Conbile

svolgere le prove dinamiche in loco, a patto che partecipasse un elettrico del veicolo con il miglior design innovativo.

numero limitato di componenti per ogni team in gara per un massimo Entusiasti per i risultati ottenuti e consapevoli di poterne raggiungere

di 8 persone.

di migliori, il team Dynamis PRC è già al lavoro per progettare e sviluppare

il prototipo per la prossima stagione: DP13e.

Questa competizione ha sempre visto il Politecnico di Milano tra i suoi

più grandi protagonisti. Di fatto il Team Dynamis PRC è salito sul gradino

più alto del podio nell’edizione 2019 per la categoria COMBUSTION una nuova collaborazione tra il team e il Museo Storico Alfa Romeo.

Stagione 2021-22 che è già iniziata con il botto, segnata dall’inizio di

con il prototipo DP11.

Una novità assoluta.

Dynamis PRC, nonostante si sia dedicato allo sviluppo di un prototipo

interamente elettrico da meno di un anno, si è imposto come miporanea,

presso la propria sede ad Arese, che esplora e racconta an-

Il Museo Storico Alfa Romeo ha deciso di allestire una mostra temglior

team italiano della competizione ottenendo il quarto posto nella che la realtà del territorio. Una realtà che in meno di un ventennio si è

classifica genarle Overall Electric. Grandi soddisfazioni sono arrivate sviluppata ed è cresciuta fino a raggiungere risultati importantissimi,

nelle prove statiche nelle quali il prototipo ha ottenuto il primo posto quali il team Dynamis PRC, la “squadra corse” del Politecnico di Milano.

Il team, composto da studenti di vari Corsi di Studio, dal 2004 ad

nella categoria Business Plan Presentation e la medaglia di bronzo

nella categoria Cost Event. “ In realtà siamo molto soddisfatti anche oggi ha all’attivo la costruzione di 14 monoposto e 31 gare disputate in

del risultato ottenuto nelle prove dinamiche” – ha spiegato il team leader

Alberto Testa – “dato che nell’endurance, ovvero nella gara finale, 2006), DP7 (anno 2015), DP9 (anno 2017) e DP11 (anno 2019), offre una

7 diversi Paesi. La mostra, dove sono esposti i prototipi 574 BT (anno

abbiamo non solo concluso il percorso ma abbiamo anche tenuto un panoramica sull’evoluzione del team, che dagli iniziali 12 membri è

buon passo gara”.

passato agli oltre 100 di oggi, che segue ogni aspetto legato al progetto

e ha raggiunto ottimi risultati a livello nazionale e internazionale.

Tuttavia la lista di riconoscimenti non finisce qui.

La mostra temporanea, della durata prevista di 6 mesi, è stata inaugurata

il 22 ottobre 2021.


ENG

Dynamis PRC ranks fourth in Varano and showcases at the exhibition

hosted by the Museo storico Alfa Romeo

After the break due to pandemics, the Dynamis PRC Team is back in

the race in 2021 and, this time, with its first electric prototype. The

team raced in the Italian edition of Formula SAE held in Varano de’

Melegari, Parma.

The event, organized in compliance with the Covid-19 restrictions,

was a blended one. The static tests, such as Business Plan Presentation,

Cost Event and Design Event, were held online while dynamic

tests were held on-site, provided that only a limited number of members

– for a maximum of 8 people - for each competing team did join.

Politecnico di Milano has always been a front runner in this competition.

In fact, Team Dynamis PRC took first place with the DP11 prototype

competing in the COMBUSTION category in 2019.

Despite having started developing a full-electric car prototype just

one year ago, Dynamis PRC finished the race as the best Italian

team, conquering the fourth place in the Overall Electric ranking.

Extremely satisfying were the results of the static tests, where our

prototype triumphed in the Business Plan Presentation category

and won the bronze medal in the Cost Event category. “To be honest,

we are also very proud of what we have accomplished in the dynamic

tests” - explained the team leader Alberto Testa. “In the endurance

race, the final one, we not only crossed the finish line but we also

kept a good race pace”.

Moreover, the list of rewards does not end here. Our PoliMi students’

hard work paid off since they also won two of the four “Sponsor

Awards”.

GEICO TAIKISHA Top Coating Award, having raced with the vehicle

with the best coating in terms of design, materials and finish.

TEORESI Best Electronics Development Process: Innovative Controls,

Methods and Architecture Award, having developed the most

innovative design of the electric system of the vehicle.

Happy for the obtained results and aware of having what it takes to

achieve even better ones, the Dynamis PRC team is already working

to design and develop a new prototype for the upcoming season:

DP13e.

In fact, this 2021-22 Season has already started in the best way possible,

marked by the beginning of a new collaboration between the

team and the Museo Storico Alfa Romeo. An absolute first.

The Museo Storico Alfa Romeo has decided to host a temporary

exhibition at the museum (Arese) to explore and witness the local

reality. A territory that in less than twenty years developed and flourished

so much to achieve very important results, like the creation

of the Dynamis PRC team, one of the “racing teams” of Politecnico

di Milano. The team, made of students attending diverse programmes,

since 2004 has built 14 single-seater cars and raced 31 times

in 7 different countries. The exhibition, where the prototypes 574 BT

(2006), DP7 (2015), DP9 (2017) and DP11 (2019) are displayed, shows

how the team evolved over time, growing from the 12 founding members

to the current over 100 members. A team that can take care of

every aspect of the project and that also achieved excellent results,

both at national and international level.

The opening of the temporary exhibition, lasting 6 months, occurred

on October 22nd, 2021.

meccanica magazine

71


IamSPACE

Italy for Additive Manufacturing

in Space

meccanica magazine

72

ITA

L’ Additive Manufacturing (AM) sta cambiando profondamente il modo

in cui i componenti per le applicazioni spaziali sono progettate e prodotte.

Quasi tutti i principali stakeholder dell’industria spaziale stanno

valutando le potenzialità dell’AM per migliorare le prestazioni dei loro

prodotti in termini di migliore rapporto rigidità-peso, integrazione di

nuove funzionalità, nuovi materiali, ecc. Sebbene oggi gran parte delle

applicazioni AM siano limitate ai componenti non critici, l’industria

spaziale mira ad estendere l’adozione dell’AM ad applicazioni strutturali

e mission-critical, ma la qualifica delle parti strutturali realizzate in

AM richiede una serie di test molto costosa e dispendiosa in termini di

tempo, sia su campioni che su parti full-scale. Tuttavia, questo non è

ancora sufficiente per garantire che le parti prodotte in seguito siano

accettabili. A causa dell’impossibilità di testare un numero sufficiente

di pezzi per garantire i rigorosi requisiti di affidabilità, è fondamentale

determinare il limite massimo di difetto accettabile per la condizione

di servizio più grave (fatica o statica) di un determinato componente ai

fini della sua ispezione e qualificazione. Allo stesso tempo, l’industria

spaziale sta esaminando l’adozione di nuove tecniche di qualifica rapida

per ridurre i tempi ei costi di sviluppo del prodotto. IamSPACE è

un progetto finanziato dall’Agenzia Spaziale Europea (ESA) che si inserisce

in questo quadro e mira ad affrontare in modo sinergico queste

due sfide che attualmente stanno impedendo l’adozione dell’AM su più

larga scala:

• Nella prima parte (fase 1, guidata dal Prof. Stefano Beretta del Politecnico

di Milano), il progetto svilupperà, testerà e convaliderà una

metodologia per caratterizzare gli effetti di alcuni difetti specifici AM

sottoposti a carichi statici elevati e stabilire le dimensioni massime

dei difetti accettabili attraverso metodi della meccanica della frattura.

• La seconda parte (fase 2, guidata dalla Prof.ssa Bianca M. Colosimo

del Politecnico di Milano) del progetto riguarda la riduzione degli sforzi

di ispezione non distruttiva e di misurazione ex-situ nella produzione

additiva di componenti spaziali mission-critical sottoposti ad elevati

carichi statici tramite lo sviluppo e la validazione di un metodo di

monitoraggio di processo (PMM). La produzione additiva strato per

strato offre nuove opportunità per la raccolta di dati in linea tramite

sensori installati in-situ che possono essere utilizzati per tenere sotto

controllo il processo, identificare instabilità e rilevare l’insorgenza di

difetti. Questo apre a nuove strategie di qualifica che possono trarre

vantaggio dai dati raccolti in-situ. A tal fine, il progetto IamSPACE

mira a mettere insieme una rete di eccellenze composta da aziende e

centri di ricerca con strutture, capacità e attrezzature all’avanguardia

nel campo dell’AM. Il progetto IamSPACE, sotto la guida della Prof.ssa

Bianca M. Colosimo del Politecnico di Milano, main contractor, riunisce

un consorzio di sei importanti aziende italiane e istituti di ricerca

sull’AM per applicazioni spaziali. Due utilizzatori finali del processo

(Leonardo e Avio) focalizzati su diversi tipi di prodotto (componenti

strutturali e di propulsione spaziale) porteranno l’attenzione del progetto

sulle sfide dei componenti mission-critical prodotti in modo

additivo con prestazioni target e materiali diversi (leghe a base di

alluminio e nichel). Due università (Politecnico di Milano e Politecnico

di Torino) guideranno le attività di ricerca con i loro team di alto

livello e di fama internazionale impegnati su temi quali: materiali AM,

valutazione strutturale dei prodotti AM e su monitoraggio in-situ dei

processi AM. Il consorzio comprende anche uno dei principali produttori

italiani di sistemi AM a letto di polvere (Prima Industrie) per aiutare

nella sensorizzazione del processo e nella creazioni di soluzioni per

la prossima generazione di macchine AM per applicazioni spaziali. La

Fondazione E. Amaldi (FEA) completa il team con la sua esperienza nel

focus di ricerca a lungo termine sulle sfide AM per lo spazio.

Il progetto IamSPACE è un progetto biennale iniziato nel luglio del

2020 e la cui conclusione è prevista per luglio 2022. Il progetto ha già

prodotto i suoi primi risultati, tra cui:

• La creazione di un catalogo dei difetti aggiornato per i processi di

fusione a letto di polvere

• Due approfondimenti sullo stato dell’arte sui temi principali del progetto:

- Metodi di valutazione strutturale per AM

- Metodi di monitoraggio del processo

Nei prossimi mesi sarà completata la produzione di campioni di verifica

ad hoc utilizzando le strutture del consorzio per fornire dati di

test e validazione per i metodi attualmente in fase di sviluppo sia per

la fase 1 che per la fase 2. Si prevede che i metodi sviluppati all’interno

di IamSPACE verranno implementati in progetti futuri per lo sviluppo

di nuovi componenti spaziali mission-critical, dando una nuova spinta

all’utilizzo dell’AM nell’industria spaziale.


ENG

IamSPACE: Italy for Additive Manufacturing in Space

Additive Manufacturing (AM) is deeply changing the way in which parts

for space applications are designed and manufactured. Almost

every major stakeholder within the space industry is assessing the

potential of AM to enhance the performance of their products in terms

of improved stiffness-to-weight ratio, novel embedded functionalities,

new materials, etc. Although a large part of AM applications

today is limited to non-critical components, the space industry is

aiming to extend the adoption of AM to structural and mission-critical

applications, but the qualification of AM structural parts needs a

very costly and time-consuming series of tests, on both samples and

full-scale parts. However, this is still not sufficient to guarantee that

following parts will be acceptable. Due to the impossibility to test a

sufficient number of parts to ensure the strict reliability requirements,

it is crucial to determine the maximum acceptable defect limit for

the most severe service condition (fatigue or static) of a given component

for the sake of its inspection and qualification. At the same

time, the space industry is looking into the adoption of novel rapid

qualification techniques to decrease the product development time

and costs. IamSPACE is a project funded by the European Space

Agency (ESA) that fits within this framework and aims at tackling in a

synergic way these two challenges that are currently preventing the

widespread adoption of AM:

• In the first part (phase 1, lead by Prof. Stefano Beretta of Politecnico

di Milano), the project will develop, test and validate a methodology

to characterize the effects of AM specific defects under severe static

loads and set maximum acceptable defect sizes through fracture

mechanics methods.

• The second part (phase 2, lead by Prof. Bianca M. Colosimo of Politecnico

di Milano) of the project regards the reduction of non-destructive

inspection and ex-situ measurement efforts in the

additive production of highly loaded mission-critical space components

through the development and validation of a process monitoring

method (PMM). The layerwise production paradigm of AM enables

novel opportunities for in-line data gathering via in-situ sensors that

can be used to keep under control the process, identify unstable states

and detect the onset of flaws in part. This opens to new qualification

strategies that can take advantage of in-situ gathered data.

For this purpose, the IamSPACE project aims at putting together an

excellence network composed by companies and research centers

with state-of-the-art facilities, capacities and equipment in the field

of AM. The IamSPACE project, under the lead of Prof. Bianca M. Colosimo

of Politecnico di Milano, main contractor, gathers a consortium

of six top Italian companies and research Institutions in AM for Space

applications. Two end-users (Leonardo and Avio) focusing on different

product types (space structural and propulsion components)

will bring the project attention to challenges of mission critical components

additively produced with different target performances and

using different materials (Aluminum and Nickel-based alloys). Two

universities (Politecnico di Milano and Politecnico di Torino) will be

driving the research activities with their top-level and internationally

renowned research teams on AM materials, AM process challenges,

structural assessment of AM products and in-situ monitoring of AM

processes. The consortium also includes one of the top Italian producers

of powder bed AM systems (Prima Industrie) to aid in process

sensing and in the creation of solutions for the upcoming generation

of AM machines for space applications. Fondazione E. Amaldi (FEA)

completes the team with its expertise on long-term research focus

on AM challenges for Space.

The IamSPACE project is a two-years project that started in July of

2020 and it is planned to close in July 2022. The project has already

produced its first results, including:

• The establishment of an updated defect catalogue for powder bed

fusion processes

• Two in-depth state-of-the-art reviews on the main topics of the

project:

- Structural assessment methods for AM

- Process monitoring methods

In the upcoming months, the production of ad-hoc verification samples

will be completed using the consortium facilities to provide test

and validation data for the methods that are currently under development

for both phase 1 and phase 2. The methods developed within

IamSPACE are planned to be implemented in future projects for the

development of new mission-critical space components, giving a

new push forward to the application of AM to space industry.

meccanica magazine

73


FOR INDUSTRY 4.0

THE TECHNOLOGICAL

CHALLENGES

ENABLING TECHNOLOGIES

(INDUSTRY 4.0)

Progetto Lis4.0

74

ITA

Smart metal additive

manufacturing for

functionalized 4D structures

For the development of sensorized

AM processes, intelligent materials

with innovative features.

Smart structures in

Intervista a Barbara Previtali,

composite material

For 3D-printed smart free-form

responsabile profiles in high-performance long-

del WP1

fiber composites.

1. Di cosa si occupa il WP1 nell’ambito del Lis4.0? Quali sono le principali

sfide Meta-structures

che affronta?

Artificially created structures with

Il WP1

new

-

characteristics

Smart metal

given

additive

by their

manufacturing per strutture 4D funzionalizzate

geometry that è il can primo be developed dei WP del in progetto Lis4.0 (LIghtweight and

Smart different structures dimensional for industry scales. 4.0). Nel WP1 il tema generale del progetto

Lis4.0, ovvero lo studio di strutture lightweight e smart, integrate,

progettate, realizzate e sensorizzate usando i paradigmi di I4.0

nel settore della mobilità sostenibile è dedicato ai processi Additive

Manufacturing. L’Additive Manufacturing (AM) difatti abilita una nuova

progettazione, che integrando materiali leggeri, con funzionalità

ottimizzate e prestazioni elevate, assicurate anche dall’assenza di difetti

attraverso Autonomous il monitoraggio Systems di processo, consente la realizzazione

For the transport of people with

di componenti

drive systems

non

based

solo

on new

più

highresolution

riguarda localization impatto systems, ambientale and e consumo di risorse.

performanti ma anche più sostenibili per

quanto

Le sfide human-machine del WP1, pertanto, interaction. riguardano tutti gli steps che portano a

questa nuova famiglia di prodotti leggeri, funzionalizzati e smart realizzati

attraverso AM: progettazione, materiali e loro prestazioni, processi

zero-defect grazie al monitoraggio e qualifica.

2. Quale è lo stato delle tecniche di progettazione collegate all’AM?

L’AM è un insieme di processi e tecnologie nuove che liberano i progettisti

LIGHT di AND prodotto HEAVY da MOTORWAY moltissimi dei vincoli dettati dai processi manifatturieri

più RAILWAY tradizionali. Per fare un esempio molto MEANS semplificato

OF TRANSPORT allo stato solido, ma anche sfruttando SPACEla transizione solido/liquido di

non solo grazie ai tradizionali meccanismi di conduzione e convezione

ENERGY

NAVAL

AND INTERMODAL INFRASTRUCTURES

pensiamo ad un componente del telaio di un’auto elettrica. Pensiamo alcune fasi in essi presenti. L’aggiunta BIOMEDICAL

AEREONAUTICAL

di questo meccanismo ulteriore

di asportazione del calore rende gli scambiatori più performanti e

di volerlo progettare e poi realizzare a spessore variabile, ovvero molto

robusto dove deve resistere a carichi sia statici, sia dinamici, sia a consente di ridurne le dimensioni con evidenti vantaggi in termini

APPLICATIONS (TRANSPORT AND MOBILITY)

OTHER SECTORS WITH SIGNIFICANT IMPACT

di

urto e più sottile o leggero dove deve solo sostenere la copertura della

carrozzeria. Realizzare questo componente mediante processi tradizionali

richiede o lo stampaggio di più parti di diverso spessore, per

poi saldarle, o la fusione in stampi molto complessi. Al contrario con

processi AM può essere ottenuto di singolo pezzo a spessore variabile

o ancor meglio densità variabile, senza che questa libertà di progettazione

a spessore variabile abbia un impatto sui costi di produzione.

Innovative materials: metal matrix composites, “smart”

metals, meta-materials, hybrid and functionalized

materials.

Advanced and smart manufacturing technologies:

Additive Manufacturing, Micro Manufacturing, integration

of sensors for on-site and in-line monitoring and control.

New design criteria: topological and multi-criteria

optimization, maintenance on demand,

eco-design approach.

New simulation techniques: spatial and temporal multiscale,

multi-physics, damage modeling.

Alla domanda dovrei rispondere con franchezza sottolineando come

le tecniche di progettazione siano mature da lungo tempo, più di

Smart structures and components: integrated sensors

and actuators, distributed sensors, IoT, low-power and

self-powered sensors.

quanto lo siano i processi AM. Si prendano ad esempio tutti gli strumenti

di ottimizzazione topologica. Non sono strumenti recenti, sono

strumenti oggi resi molto potenti dalle possibilità e dai gradi di libertà

offerti dalla tecnologia AM. Tuttavia, abbiamo bisogno che il progettista

conosca e disponga di una nuova metrica ed ontologia che gli

consenta di progettare forme, funzioni, estetiche nuove amplificando

Innovative strategies for assembly, diagnostics,

prognostics, communication and localization,

autonomous driving.

le potenzialità date dall’AM ma senza cadere nelle trappole dei limiti

che anche le tecnologie AM hanno. Per questo nel WP1 studiamo uno

strumento di design for AM, che consenta la progettazione di prodotto

ottenibile mediate AM e che anticipi ed includa nel processo di progettazione

le regole per la produzione AM.

3. Ci sono dei materiali che state studiando e che giudicate promet-

Big data analytics: data mining, intelligent data fusion,

statistical monitoring and robust product / process

tenti per specifiche applicazioni?

optimization.

Una parte fondamentale del WP1 è dedicata ai nuovi materiali e alle

nuove polveri. Non posso raccontare qui per ragioni di spazio tutto ciò

che si sta indagando. Mi limiterò a fare alcuni esempi. Per cominciare,

stiamo studiando materiali a transizione di fase che applicati alla

realizzazione di scambiatori di calore permettono di asportare calore

alleggerimento del componente. Come secondo esempio possiamo

considerare l’applicazione delle tecnologie additive ai materiali piezoceramici.

Per questa famiglia di materiali il processo di stampa

più adatto è il Binder Jetting, e nel progetto si è partiti dalla sintesi di

polveri di diversi materiali e si è arrivati alla realizzazione di forme difficilmente

ottenibili con i processi tradizionali a meno di ingenti spese

nella realizzazione degli stampi (Fig.1 - Esempio).


Considerando più in generale l’ampia famiglia delle tecnologie additive,

le polveri di partenza sono uno dei principali responsabili della

buona realizzazione del processo di stampa. Per questa ragione, nel

progetto, ampio spazio è riservato alla analisi delle proprietà della polvere

che ne caratterizzano la processabilità. Sono state proposte alcune

composizioni appositamente progettate per la stampa additiva

e si è valutato anche come e in che quantità sia possibile riciclare parte

della polvere coinvolta nel processo di stampa, ma non fusa, così da

avere un processo maggiormente sostenibile ed ecologico.

4. Quali sono i processi AM innovativi che state sperimentando? E

con quali risultati?

Grazie a Lis4.0 il Dipartimento ha arricchito la sua dotazione hardware

di due nuovi sistemi di stampa. Il primo sistema, Studio System+

di Desktop Metal (Fig.2 - Fase di stampa BMD di feedstock metallico

mediante testa di estrusione (componente: manifold, materiale: 316L,

ugello di estrusione: 0.4mm), è basato sul principio, sviluppato in collaborazione

col Massachusetts Institute of Technology, della stampa

mediante estrusione di feedstock metallico (Bound Metal Deposition,

BMD). La deposizione della geometria 3D sfrutta la presenza nel composto

metallico del legante polimerico, mentre la densificazione del

metallo avviene mediante successiva sinterizzazione in forno. Grazie

a questo è possibile ottenere componenti in materiali difficili da

stampare mediante tecniche a fusione, come il rame o gli acciai per

utensili (un esempio di stampa in rame è mostrato in Fig.3 - Parti sinterizzate

in rame puro ottenute mediante tecnica BMD (componenti:

filtri con riempimento a lattice tipo diamante, materiale: rame puro,

ugello di estrusione: 0.25mm)).

Il secondo sistema è una stampante SLM (Selective Laser Melting),

principio sicuramente più consolidato ma con funzionalità uniche

e non commerciali. Si tratta difatti di un sistema di stampa aperto,

ovvero che consente di testare soluzioni innovative, come l’utilizzo

di una sorgente laser modulabile nel tempo, ovvero che può lavorare

in modalità sia pulsata sia continua, o modulabile nello spazio, ovvero

che varia la distribuzione di potenza da gaussiana a multimodo. È

possibile poi strumentare il sistema, integrando diversi sensori di processo

(termocamera off-axis, camera NIR – Near InfraRed - coassiale,

sensore di vibrazione della racla, etc.) e coordinare l’azione dei sensori

con la movimentazione del fascio laser e della racla. In questo modo

si abilita il sensing, il monitoraggio ed eventualmente il controllo durante

la stampa. Un esempio di risultato ottenuto con il sistema SLM

open è la stampa di micro-lattici in Zn puro in Fig. 4 (Strutture lattice

in lega di Zinco stampati mediante tecnologia SLM con strategie di

scansione innovative (spessore delle strutture inferiore a 0,2 mm)),

una lega difficile da processare laser vista la sua bassa temperatura

di vaporizzazione, ottenuta attraverso il controllo del singolo impulso

laser.

5. L’intelligenza artificiale è uno strumento ormai pervasivo; come

trova applicazione nell’AM?

Grazie al paradigma di produzione strato su strato, i processi AM permettono

un livello completamente nuovo di accesso a misure in tempo

reale durante la realizzazione di ogni singolo strato del prodotto. È

infatti possibile acquisire grandi quantità di dati attraverso una varietà

di sensori, tra cui fotocamere e termocamere, per tutta la durata del

processo. È qui che l’intelligenza artificiale gioca un ruolo chiave, in

quanto permette di elaborare questa grande mole di dati, complessi e

variegati, permettendo al sistema di identificare, in modo automatico

e tempestivo, condizioni anomale e instabilità di processo, anticipando

il riconoscimento di difetti nella parte in produzione. Permette inoltre

di intervenire, quando possibile, con azioni correttive e adattative,

per ridurre gli scarti e migliorare qualità e produttività degli impianti.

Lo studio di nuove soluzioni di intelligenza artificiale e analisi di dati

complessi è uno dei temi di ricerca del progetto Lis4.0, che trova applicazione

in processi AM a letto di polvere e basati su estrusione di

materiale.

6. Avete in previsione lo sviluppo di prototipi che rappresentino risultati

dei vostri studi, specialmente nel settore automotive, argomento

principale di Lis4.0?

Uno dei prototipi che stiamo studiando nel WP1 è la camicia di raffreddamento

per un motore elettrico in-wheel della vettura sviluppata

dal team DynamiS per la Formula SAE. Questo componente è stato

progettato per essere prodotto in lega di alluminio tramite SLM ed è

caratterizzato dall’utilizzo di strutture “lattice” per migliorare le caratteristiche

di scambio termico. Allo stato attuale della ricerca le strutture

TPMS (triply periodic minimal surface), ed in particolare la struttura

giroide, sembrano offrire le migliori prestazioni in base ai risultati

ottenuti con analisi numeriche di fluidodinamica (CFD). Tramite il sistema

SLM open di Lis4.0 poi si è ottimizzato il processo SLM in una

modalità di stampa innovativa, che permette l’ottenimento di pareti

molto sottili e di geometrie a sbalzo che non necessitano di supporti.

In questo modo le geometrie ottime delle strutture giroidi risultato

della simulazione CFD sono state realizzate e testate (un’immagine

della struttura soggetta ai test è mostrata in Fig. 5 - Esempio di struttura

giroide stampata SLM in alluminio sottoposta a test meccanico).

meccanica magazine

75


Progetto Lis4.0

76

ENG

Lis4.0 project: interview with Barbara Previtali, head of WP1

1. What is the WP1 of the Lis4.0 project about, and which are the

main challenges it must face?

The WP1 - Smart metal additive manufacturing for functionalised

4D structures is the first of the WPs of the Lis4.0 (LIghtweight and

Smart structures for industry 4.0) project. The general theme of the

Lis4.0 project, which is to investigate lightweight and smart structures

to be integrated, designed, created and equipped with sensors

according to the I4.0 paradigms concerning sustainable mobility,

is covered in the WP1 through Additive Manufacturing processes.

In fact, Additive Manufacturing (AM) enables a new way to design,

which involves using lightweight, optimised and high-performance

materials without defects thanks to the process monitoring

systems, and creating components that are high-performing and

more eco-friendly in terms of environmental impact and resource

consumption. Therefore, the challenges of the WP1 are related to

the AM processes considering all its steps namely, design, material

performance, zero-defect processing via monitoring leading to the

creation of lightweight, functionalised and smart products.

2. What is the status of the design techniques for AM?

AM involves a series of new processes and technologies that free

product designers from many of the limitations imposed by conventional

manufacturing processes. For example, think about one component

of an electric car chassis. Assume that we want to produce

the chasis with a variable thickness, making it thicker wherever it

must resist static and dynamic loads or collisions and thinner or lighter

where only the parts act as a cover to the rest of the car body.

Producing this component through conventional processes requires

stamping and welding of sheet metal parts according to their

thickness, or through casting using highly complex moulds. On the

other hand, AM processes enable to produce the single component

with variable thickness and even variable density, knowing this will

not impact the production costs.

Honestly, these design techniques have been mature for a long time,

longer than the AM processes themselves. The proof is in the many

available instruments for topology optimisation. The design tools

are not completely new but their exploitation to take advantage of

opportunities offered by the AM technology is more recent. However,

it is required that the designers know and can access new metrics

and ontology in order to design new shapes, functions, aesthetics

by increasing the possibilities given by AM. This can allow an

AM based product design process aware of the design for AM rules

starting from the design phase.

Materials), when used in heat exchangers, allow removing the heat

both through conventional thermal conduction mechanisms and solid-state

convection but also exploiting solid/liquid phase transformation.

This additional system to remove the heat allows to improve

the performance of the heat exchangers and also to reduce their dimensions,

which turns out to be an advantage in terms of the weight

of the component. Another example is the application of additive

technologies for piezoceramic materials. For this category of materials,

the most suitable printing technique is Binder Jetting. Within

the project, we studied the synthesis of different powder feedstock

and eventually got to create shapes hardly obtainable by conventional

processes without having to face the high cost to produce the

moulds. It can be highlighted that within the big family of additive

manufacturing technologies, the powder feedstocks play a crucial

role on the success of the printing process. For this reason, the

project deeply focuses on the analysis of the powder characteristics

that has a direct link with the processability. We suggested some

combinations designed ad hoc specifically for additive manufacturing

and evaluated how and in which quantity it is possible to recycle

part of the used powder involved in the printing process, in order to

make the whole process more sustainable and eco-friendly.

FIG. 1

4. Which are the innovative AM processes currently studied? Which

are the results?

Thanks to the Lis4.0 project, the Department expanded its collection

of equipment by adding two new printing systems. The first

one, Desktop Metal Studio System, is based on the extrusion of metallic

feedstocks called Bound Metal Deposition (BMD).

3. Are you examining materials that you feel may be promising for

specific applications?

A fundamental aspect of WP1 is new materials and powders. Given

the limited available space, I cannot provide all the details about

what we are currently investigating. Nevertheless, I will give some

examples. Firstly, we are investigating how PCMs (Phase Changing

FIG. 2


The approach is based on a principle developed by the company in

collaboration with the MIT – Massachusetts Institute of Technology.

The deposition of the 3D geometry exploits the presence of polymeric

binder inside the metal compound, meanwhile, the densification

of the metal occurs by sintering in a furnace. This makes it possible

to obtain components with materials that are hard to print by melting

techniques, such as copper and tools steels (fig. 3: example of a

printed copper component).

5. Nowadays, AI is everywhere. How does it apply to AM?

Thanks to the layer-by-layer production paradigm, AM processes

allow a new level of access to real-time measurements during the

creation of each produced layer. In fact, it is possible to acquire an

enormous amount of data thanks to many sensors, among which visible

range and thermographic cameras, throughout the entire process.

AI plays a crucial role since it allows to elaborate such amount

of complex and diverse data so that the system can immediately and

automatically identify extraordinary and unstable conditions. This

way defects can be detected during the production phase. By applying

the required corrections and adjustments we reduce scrap

generation and improve the overall productivity. Investigating new

AI and complex data analysis solutions is one of the goals of the

Lis4.0 project, which find their application in powder bed and extrusion-based

AM processes.

FIG. 3

The second is an SLM system, working on a well-established principle

but with unique and non-commercial features. It is an open AM

system, allowing to test innovative solutions like a laser source with

temporal and spatial beam shaping capabilities. Hence, the system

can operate with continuous wave or pulsed wave emission, and the

beam shape can be regulated from a Gaussian distribution to a multimodal

one. Moreover, it is possible to further equip the system with

in-situ monitoring sensors (off-axis thermographic camera, coaxial

near infrared camera, recoater vibration sensor) and coordinate

their acquisitions with the beam or recoated movement. We are able

to develop online monitoring and process control solutions this way.

Fig.4 shows an example of one of the results obtained with the open

SLM system. We see highly detailed microlattices in a Zn-alloy, very

difficult to process by a laser given its low vaporization temperature.

We obtained such details by controlling precisely the energy release

of every single laser impulse.

6. Do you plan on developing prototypes that will demonstrate the

results of your work, especially in the automotive industry, as per

one of the main topics covered in Lis4.0?

One of the prototypes under investigation in WP1 is the cooling jacket

for the in-wheel electric motor developed by our Dynamis PRC

Team for the annual FORMULA SAE competition. Designed to be

produced in steel by SLM, the cooling jacket is characterised by the

implementation of lattice structures to improve the heat exchange.

Our current research showed that the TPMS (triply periodic minimal

surface) structures in general, and the gyroid type in particular

seem to perform better based on the results obtained via Computational

Fluid Dynamics (CFD) analysis. Thanks to the open SLM system

of the Lis4.0 project, we optimised a new innovative printing

technique that allows producing extremely thin walls and overhang

geometries without supports. Thanks to this approach, the gyroid

structures optimised through the CFD simulation were successfully

printed and tested (image of a structure undergoing a test).

meccanica magazine

77

FIG. 5

FIG. 4


geometry that can be developed in

different dimensional scales.

and actuators, distributed sensors, IoT, low-power and

self-powered sensors.

Progetto Lis4.0

78

ITA

Autonomous Systems

For the transport of people with

drive systems based on new highresolution

localization systems, and

human-machine interaction.

Intervista LIGHT AND HEAVY MOTORWAYa Stefano Melzi,

RAILWAY

MEANS OF TRANSPORT

professore coinvolto nel WP4

NAVAL

1. Di cosa si occupa il WP4 nell’ambito del Lis4.0? Quali sono le principali

sfide che affronta?

Il WP4 di Lis4.0 è incentrato sullo sviluppo e applicazione di tecnologie

innovative per la mobilità sostenibile delle persone. In particolare, la

ricerca si propone di progettare sistemi per la guida assistita (ADAS) e

per la guida autonoma connessa, attraverso lo sviluppo di algoritmi di

automazione e la creazione di un sistema di comunicazione tra veicoli

e infrastruttura (V2X).

Parallelamente, il WP4 analizza e verifica l’impatto di tecnologie innovative

impiegate per la realizzazione dei veicoli, valutando l’introduzione

di materiali con un migliore rapporto tra peso e resistenza

e maggiori capacità di assorbimento di energia. Tutte le attività del

WP4 sono svolte tenendo sempre presente il ruolo centrale della persona

che si traduce nell’attenzione al comfort e allo sviluppo di interfacce

HMI.

Le attività del WP4 gravitano attorno ad un veicolo dimostratore: si

tratta di un pullmino elettrico a zero emissioni per il trasporto di una

decina di persone che stiamo trasformando in uno shuttle urbano a

guida autonoma.

Gli obiettivi del progetto sono numerosi e ambiziosi e ci troviamo di

fronte a diverse sfide: innanzitutto stiamo sviluppando l’architettura

di controllo del veicolo per implementare logiche che portino ad una

progressiva automatizzazione delle operazioni di guida del veicolo,

comprensive di feature basate sulla connettività V2X. In secondo luogo,

abbiamo sviluppato e stiamo implementando modelli matematici

per valutare l’effetto dell’installazione di componenti alleggeriti su

prestazioni e autonomia e l’impatto di materiali ad alto assorbimento

di energia di deformazione sulla sicurezza passiva. Infine, stiamo costruendo

un’interfaccia uomo-macchina innovativa che consenta agli

utenti di maturare fiducia nel sistema di guida autonomo attraverso

la condivisione delle informazioni che esso impiega per guidare il veicolo

e la comunicazione delle azioni che intraprenderà negli istanti

successivi.

AEREONAUTICAL

APPLICATIONS (TRANSPORT AND MOBILITY)

Innovative strategies for assembly, diagnostics,

prognostics, communication and localization,

autonomous driving.

Big data analytics: data mining, intelligent data fusion,

statistical monitoring and robust product / process

optimization.

AND INTERMODAL INFRASTRUCTURES

2. Quali soluzioni di comunicazione/connettività e localizzazione

sono necessarie a supporto delle logiche di controllo di un sistema

veicolare autonomo?

Questa domanda non ha una risposta semplice: in ambito industriale

ed accademico esistono differenti visioni e linee di pensiero in merito.

Infatti vi sono gruppi di ricerca e aziende che lavorano su sistemi

di localizzazione basati principalmente sul solo utilizzo delle telecamere

(principalmente per limitare i costi) mentre altri utilizzano una

ridondanza di sensori oltre alle telecamere (dai lidar, ai radar, agli ultrasuoni)

processando molti più dati ed eseguendo sensor-fusion per

ottenere risultati più robusti. Dal punto di vista della connettività la

comunità scientifica ed industrial si divide nuovamente in gruppi di

ricerca che sostengono come la connettività V2I e V2V ad alta velocità

ed affidabilità, ottenuta ad esempio tramite il 5G, sia essenziale per

raggiungere I più alti livelli di automazione in sicurezza, mentre altri

sostengono che il singolo veicolo debba essere completamente autosufficiente

come il pilota umano per limitare il più possibile rischi di

cybersecurity. Il nostro prototipo presenta in questo senso una moltitudine

di sensori ridondati e la possibilità di ricevere ed inviare informazioni

proprio allo scopo di comparare e valutare le diverse soluzioni

implementative.

3. Per un’integrazione il più possibile naturale ed immediata con gli

utilizzatori del veicolo e gli utenti esterni, oltre che per migliorare

gli aspetti di sicurezza, quali aspetti di interazione uomo-macchina

avete investigato?

ENERGY

SPACE

BIOMEDICAL

OTHER SECTORS WITH SIGNIFICANT IMPACT

L’interazione con un veicolo autonomo per il trasporto pubblico pone

diversi interrogativi circa la possibilità da parte degli utenti di richiedere

informazioni e di poter impartire istruzioni di controllo. Mentre in

un veicolo tradizionale queste attività sono spesso delegate al conducente,

in questo caso la sua assenza potrebbe creare disagi e soprattutto

risultare pericolosa in caso di emergenza. Bisogna inoltre tener

presente che gli utenti di un mezzo pubblico possono avere diverse


esigenze e richiedere supporto specifico.

Per questo motivo è stato necessario sviluppare un’interfaccia che

potesse supportare le esigenze di utenti eterogenei e questo ha richiesto

l’implementazione di un sistema di interazione che stimoli diversi

aspetti sensoriali dell’essere umano. Il sistema sviluppato sfrutta

principalmente i canali di comunicazione audio video ed integra

un dispositivo di interazione senza contatto con feedback tattile ad

ultrasuoni che, tramite il riconoscimento di specifici gesti delle mani,

abilita diverse funzionalità del mezzo. Oltre all’interazione all’interno

del veicolo si sono analizzate diverse modalità di comunicazione verso

l’esterno. È fondamentale, infatti, che il veicolo possa dare chiara

evidenza delle proprie intenzioni di manovra e allertare gli utenti in

caso di pericolo. In questo caso si è scelto di sfruttare i dispositivi

attualmente installati sul mezzo codificandone opportunamente il

comportamento.

4. Come avete combinato, nei vostri studi, le attività sperimentali in

campo con gli sviluppi in ambiente simulato?

Le tre macro-attività del WP4 seguono percorsi differenti legati in

parte alle loro particolarità e in parte alla situazione sanitaria 2020

che ha spinto ad anticipare alcune attività numeriche rispetto a quelle

sperimentali. L’attività relativa all’impiego di tecnologie innovative nel

veicolo dimostratore viene svolta quasi esclusivamente per via numerica:

è stato sviluppato un modello modulare dello shuttle, comprensivo

di motore elettrico, batterie e logica di controllo della velocità per

prevedere l’autonomia del veicolo in funzione della massa complessiva

e della sua missione, definita in termini di distanza tra le fermate

e profilo di velocità tra le stesse. Le altre due attività hanno come

naturale obiettivo la realizzazione del veicolo dimostratore con tutte

le funzionalità previste. L’architettura di controllo del pullmino è stata

definita e testata in ambiente simulato. Sono stati condotti test per

acquisire i segnali dai sensori installati sul veicolo (telecamera, lidar,

GPS) integrando le informazioni degli stessi per ricostruire l’ambiente

in cui questo si muove. Al momento stiamo realizzando una rete

semaforica portatile che useremo sul campo per testare la comunicazione

del veicolo con l’infrastruttura. Per quanto concerne invece

l’interfaccia uomo macchina, l’intero sistema di interazione è stato

implementato e validato in ambiente di realtà virtuale.

Questo ha permesso di esplorare diverse soluzioni tecniche al fine di

identificare quella più adatta per l’implementazione sul dimostratore

fisico. Il sistema di interazione così sviluppato verrà implementato nei

prossimi mesi sul veicolo per una successiva validazione sul campo

5. Quali sono i principali risultati dei vostri studi sulle logiche di guida

autonoma che avete integrato nella piattaforma sperimentale costituita

dal dimostratore del progetto Lis4.0?

Allo stato attuale abbiamo lavorato alla definizione di una architettura

informatica modulare per l’acquisizione delle informazioni provenienti

da tutti i sensori presenti sul veicolo prototipale e che ne riporti i risultati

in un sistema di riferimento comune fissato con il frame del veicolo.

Tale architettura permette ai diversi sistemi di elaborazioni montati

sul veicolo di poter accedere alle informazioni in ogni momento ed

elaborarle secondo necessità. È stata inoltre realizzata una modalità

di comunicazione digitale tra pc di controllo e sistema PLC montato

sul veicolo per consentire la movimentazione del mezzo mediante una

comunicazione bidirezionale CAN. È invece in via di sviluppo la realizzazione

di un sistema di comunicazione tra l’architettura del prototipo

ed una infrastruttura esterna mediante rete mobile (attualmente 4G)

allo scopo di rendere disponibili informazioni dall’ambiente (es. semafori)

all’interno del veicolo. L’adattamento delle logiche di controllo

progettate in simulazione alla piattaforma del veicolo sono in corso:

esse consentiranno di percepire l’ambiente circostante, decidere le

azioni da compiere e inviare gli input di controllo al sistema di attuazione.

meccanica magazine

79

ENG

What is the WP4 of the Lis4.0 project about? Which are the challenges

it must face?

The WP4 of the Lis4.0 project deals with developing and applying

innovative technologies for the sustainable mobility of people. In

particular, the research aims to design Advanced Driver-Assistance

Systems (ADAS) and systems for Connected Automated Driving

(CAD) by developing automation algorithms and communication systems

among vehicles and infrastructures (V2X). At the same time,

the WP4 aims to analyse and verify the impact of those innovative

technologies implemented in vehicle construction as well as consider

the possibility of introducing new materials with a better weight-resistance

ratio and improved level of energy absorption. All

WP4 activities are carried out keeping in mind the central role of

people, which translates into paying attention to comfort and developing

HMI interfaces.

All WP4 activities revolve around a demonstrator vehicle: a small

zero-emission eclectic bus to transfer about ten people currently

being turned into a self-driving urban shuttle. The objectives of the

project are various and ambitious. And so are the challenges it faces.

First of all, we are developing the architecture of the control

system of the vehicle based on the implementation of dynamics leading

progressively to the complete automation of the driving operations

of the vehicle. These are typical features of V2X connectivity

here included. Secondly, we are implementing mathematical

models developed to evaluate how the installed lightened components

affect both the performance and battery life of the vehicle

and the effect on passive safety of materials with a higher level of

deformation energy absorption. Finally, we are creating an innovative

human-machine interface for users to build their trust in the

autonomous driving system because it shares the information used


Progetto Lis4.0

80

ENG

to move the vehicle around and communicates the actions to take

every step of the way.

2. Which communication/connectivity and localisation solutions

are required to support the approach to control a self-driving system?

This question has no easy answer. At the industrial and academic

level coexist diverse visions and ideas on the matter. Many research

groups and companies are working merely on video-only localisation

systems (mainly to reduce the costs). Instead, others use

an exaggeration of sensors along with cameras (lidar, radar, ultrasound),

which results in having to process a higher quantity of data

and perform sensor-fusions to obtain more reliable results. Moreover,

both the scientific and industrial communities are divided on

connectivity as well. Some research groups support high-reliable

V2I and V2V connections, for example through the 5G network, which

they believe are essential to reach safely the maximum level of

automation. Some others believe the vehicle must be as completely

autonomous, at least just as human pilots are, to limit all cybersecurity

risks. As per what was just described, our prototype is overloaded

with sensors. Consequently, it has just as many opportunities to

receive and send data with the goal to compare and evaluate several

solutions to implement.

3. Other than improving safety, what are other human-machine interaction

aspects you are now investigating to allow the most natural

integration between users and external subjects?

Interaction with a self-driving vehicle used as public transportation

poses many questions about if and how users can ask for information

and give orders. In conventional vehicles, the driver is the person in

charge of carrying out those activities. But in cases where the driver

is missing, problems might occur and a self-driving vehicle can

become dangerous during emergencies. Moreover, it is to remember

that public transportation users may have different needs and

require specific support. Therefore, we developed an interface able

to address the requests of diverse users, meaning having to implement

an interaction system that stimulates several human sensorial

aspects. The developed system exploits mainly communication via

audio-video channels but it is integrated with a contactless device

with ultrasonic tactile feedback that activates features of the vehicle

by recognising specific hand gestures. As well as the interaction

inside the vehicle, other ways to communicate with the external environments

got explored. In fact, it is vital the vehicle is able to clearly

show its intention of movement and warn users when in danger.

In this case, the decision was to use the devices already installed on

the vehicle but with their behaviour conveniently encoded.

health situation started in 2020 that forced us to anticipate some

numerical activities over experiments. The activities related to the

use of innovative technologies on the vehicle are carried out exclusively

via numerical simulations: we developed a modular model of

the shuttle, including eclectic motor, batteries and speed control logic

to foresee its battery life according to the overall mass and mission,

defined in terms of distance and travel speed between each

stop. The other two activities logically aim to build the prototype

complete with all the planned features. The control system of the

bus was defined and tested through a simulator. Tests were carried

out to collect signals from the installed sensors (camera, lidar, GPS),

integrated with other sensor-collected information to recreate the

environment where it moves around. At the moment, we are working

on a portable traffic light network to bring on-site to test how

the vehicle and the infrastructure communicate. About human-machine

interaction, the whole interaction system was implemented

and validated through a virtual reality environment. VR allowed us to

explore different technical solutions to identify the one that better

suits the physical prototype. The fully-developed interaction system

will be implemented on the vehicle during the following months to be

validated on-site later.

5. Which are the most relevant results of your activities on self-driving

dynamics implemented on the experimental platform built

with the simulator of the Lis4.0 project?

We are currently designing a modular computing system to collect

information from onboard sensors of the prototype and report the

results to a referral system fixed on the vehicle frame. This architecture

allows the different elaboration systems on the vehicle to

constantly access and elaborate information according to what is

needed. We also created a digital communication system between

the control computer and PLC system onboard to enable the movement

of the bus via bidirectional CAN communication. On the other

hand, we are currently developing a communication system between

the architecture of the prototype and an external infrastructure

via mobile data (currently 4G) to make information from the environment

available to the vehicle. We are now also implementing

the control dynamics designed via simulation to the platform on the

existing vehicle: this will enable us to improve the perception of the

surrounding environment, decide which actions to take and send

new control inputs to the actuating system.

4. During the activities, how did you combine physical experiments

with the development through environment simulations?

The main three WP4 macro-activities follow different paths on the

one hand linked to their features. And, on the other, linked to the


meccanica magazine

81


meccanica magazine

82


DMEC LABS

meccanica magazine

83


3D Vision

3D acquisition through active and

passive systems and measurement

systems integration

meccanica magazine

84

Description:

3D Vision Lab is part of the Measurement and Experimental Techniques

area, in the Mechanical Engineering Department. Our expertise

focuses on non-contact measurement techniques, with particular

interest in the application of 2D and 3D techniques for computer

vision. A key characteristic of is the capability of designing both innovative

machine vision hardware and novel algorithms for the data

analysis. We cooperate with both academic and industrial partners

to develop new solutions, working prototypes or products ready for

the market.

High flexibility of the inspection techniques is guaranteed also by

the UAVs equipped with 2D and 3D vision system developed in this

laboratory.

References:

ABB, National Instruments, Milan A.C., ISS, Steriline Robotics, North

Sails, Politecnico di Milano Wind tunnel.

Instruments & Facilities:

• Industrial cameras (Hyperspectral Cameras, Near InfraRed cameras,

High Dynamic Range cameras, High Speed cameras, Industrial

smart cameras).

• Lighting solutions to enhance 2D vision-based measurements.

• Stereoscopic systems to perform 3D measurements.

• Structured Light and Time of Flight sensors for dense 3D point

clouds reconstructions.

• Triangulation sensors for profile analyses

• Lenses for dimensional measurements of components


Activities:

Industrial applications

• Development of AI based systems for 3D object recognitions.

• Development of Hyperspectral machine vision systems for food industry

• Development of stereoscopic vision systems for robotic applications.

• Data fusion between NIR and HDR cameras for thermal analyses.

• Development of industrial solutions for high-temperature 2D and 3D

vision applications

• Implementation of algorithms for image processing.

• Development of embedded vision solutions for supporting human

operators.

meccanica magazine

85

Sports

• Dense point cloud reconstructions and geometrical analysis of sail

shapes both in wind tunnel and in full scale conditions.

• Particle images velocimetry (PIV) with high-speed cameras in wind

tunnel.

• Motion analysis and gesture recognition for post traumatic rehabilitation.

• Measurement of cyclist biomechanics in wind tunnel tests.


Additive Manufacturing

3D printing of metals, ceramics,

polymers and biomaterials

meccanica magazine

86

Description:

The research activities carried out in this lab span across different

fundamental and applied disciplines, both using experimental and

computational methods. The lab is equipped with several facilities

for Additive Manufacturing of metals, including Laser Powder

Bed Fusion, Electron Beam Melting, Directed Energy Deposition

of wires and powders, Binder Jetting, and Cold Spray, systems for

bioprinting and for building large structures with fibre-reinforced

composites and polymers. Our research mainly focuses on design

methods for additive manufacturing, development of new materials

and technological solutions, process monitoring, structural/functional

design, post-process treatments, and testing of materials

and components.

Certifications:

•Test “Stockbridge Type Dampers Dynamic Characterisation”

(ISO9001:2008 certification).

• Test “Stockbridge Type Dampers Effectiveness Test” (ISO9001:2008

certification).

References:

BLM group, Fonderia Maspero SrL, Marposs SpA, Sapio SPA, Titalia

SpA, Ansaldo Group, Leonardo Helicopters, Ferrari, Lucchini, GE

Avio.

Instruments & Facilities:

• Renishaw AM250 laser powder bed fusion system, featuring a build

volume of 250 mm × 250 mm × 300 mm

• 3D-NT open laser powder bed fusion system, featuring a build volume

of ø150 mm x 150 mm and 250W Yb:Glass nLIGHT fiber laser with

temporal and spatial beam shaping capability, coaxial and off-axis

monitoring, high temperature preheating

• In-house built LPBF prototypes. Penelope with in-situ monitoring

and defect correction system. Powderful with multi-material depo-


sition capability. Grisù with preheating temperatures up to 1000°C.

• ExOne Innovent+ Binder Jetting system with a build volume of 160 mm

x 65 mm x 65 mm

• Laser - Directed Energy Deposition system with 3 kW IPG fiber laser,

two-cylinder powder feeder, coaxial powder deposition head, coaxial

wire deposition head and ABB anthropomorphic robots with tilting/

rotating table

• Trumpf Powerweld micro laser metal wire deposition (µLMWD) system

with 250 W pulsed wave Nd:YAG laser and lateral wire feeder

• Arcam A2 electron beam melting system with 3500 W beam power,

build volume of 210 mm x 210 mm x 350 mm and 8000 m/s maximum

scan speed

• High-pressure Cold Spray System Impact Innovations 5/8, pre-heating

gas Nitrogen, max gas pressure 50 bar, max gas temperature

800°C, water-cooled nozzle, max powder deposition rate 10 kg/h

• Desktop Metal Studio System+ Bound Metal Deposition (BMD) system

for metal parts with parts up to 150 mm height and 1kg weight sintered

state using 0.25 mm nozzle diameter

• Efesto flexible extrusion based additive manufacturing system

• Lumen X and BioX for bioprinting

• Facility for big area additive manufacturing (BAAM) of fibre-reinforced

composites

• Equipment for mixing, milling, sieving and handling of powder

• Malvern Morphologi 4 automated imaging system for particle characterization

• Freeman Technology FT4 Powder Rheometer for flowability characterization

of metal powder

• 3D X-Ray CT-Scan microtomography equipment that can be operated

with X-ray energies from 10 to 160 keV, in a volume of diameter 15 cm

and height 22 cm

• Materialise Magics to repair/modify 3D models, generate lattice

structures and prepare the builds.

ro-waste AM

• Machine learning, artificial intelligence and statistical methods for

product and process data analysis in Industry 4.0

Development and characterization of alloys for AM

• Design of new alloys for AM

• Characterization of microstructure and physical properties, mechanical

testing (static and dynamic) of AM processed materials

• Design of thermal and mechanical treatments for AM alloys

• Investigation on surface coating and surface finishing of AM parts

Characterization of AM products

• Non-destructive testing of AM parts by X-ray CT-microtomography

• Structural Assessment of complex parts under service conditions

• Static and fatigue test for performance evaluation of full-scale parts

meccanica magazine

87

Activities:

Design and optimization of structural and functional parts produced by

Additive Manufacturing techniques

• Design for Additive Manufacturing: structural/functional design and

optimization of parts and systems

• Light-Weight Design: system inertia reduction with Topological Optimization

and Lattice Structures

• Geometrical restoring and structural repair by cold spray

Process and product optimization, monitoring and control

• Process development and optimization for AM of metals and composites

• Process modeling and simulations by analytical and numerical

methods and experimental validation

• In-situ and In-line monitoring based on big data (signals, images, video-images)

using optical and mechanical systems for Additive Manufacturing

• Closed-loop process control and in-situ defect correction for ze-


Advanced Manufacturing

Laboratory

High performance manufacturing solutions

for Industry 4.0

meccanica magazine

88

Description:

The Advanced Manufacturing Laboratory is equipped with stateof-the-art

research facilities with industrial, prototypal, and experimental

systems, testing and characterization equipment as well

as dedicated software packages. In the laboratory, the complete

material transformation phases are represented from process to its

qualification to the complete production system. Process feasibility,

optimization, and control as well as production systems design

and performance enhancements are covered within the research.

References:

ABB, Alcar Ruote SA, Ansaldo Energia, ASI, ATS Team3D, ATV, Baker

Hughes, BLM Group, Camozzi Ingersoll Machine tools, Carel, CGTech,

CSM Rina, Comau, ESA, GE Avio Aero, Hitachi Rail, Huawei, IMA

Automation ATOP, Intermac, Kern, Kyocera, Lima Corporate, MCM,

R.F. Celada, Saipem, Sandvik Coromant, Siemens, Sovema, Standex,

Technoprobe, Tenova, Trumpf, Yasda, WatAJet

Instruments & Facilities:

• BLM Group Adige Sys LC5 combined laser sheet and tube cutting

system with 6 kW fiber laser

• BLM Group Alfetta flexible robotic laser welding cell with 6 kW fiber

laser and wobbler head

• Lasers for e-mobility cell for remote welding, stripping, cleaning,

and ablation solutions with 1 kW single mode fiber, 100 W green, and

50 W ns-pulsed fiber lasers

• Laser Induced Forward Transfer system for high precision multimaterial

additive manufacturing

• Laser micromachining cell with high power fs, ps, and ns pulsed

laser sources

• Qilin hand-held laser welding system with 3kW fiber laser

• Yasda YMC 650 + RT20 High precision 5 axis CNC machining centre


• KERN EVO Ultra precision 5 axis CNC machining centre

• The Digital Twin Lab for physical simulation of production systems

• Tecnocut IDRO 1740 water Jet cutting system with Flow intensifier

pump up to 380 MPa

• Alicona Infinite Focus micro coordinate measurement system (resolution

up to 10 nm)

• Zeiss Prismo 5 VAST MPS HTG coordinate measuring machine (E0,M-

PE = 2,0 + L/300 μm)

• North Star Imaging NSI X25 micro computed tomography system

• FLIR X690Xsc MWIR high speed thermal camera with acquisition rate

up to 20.000 fps

• Additive manufacturing systems (see “Additive manufacturing” brochure

for more details)

meccanica magazine

89

Activities:

The research topics include the following:

• Additive manufacturing process improvement, monitoring, control,

and novel solutions

• Advanced machining and machine tools

• Deformation of metals with conventional and flexible tools

• De-manufacturing systems for circular economy

• Geometric product specification and verification

• In-situ process monitoring and intelligent data analysis

• MI_crolab – Micro Machining Laboratory

• Performance evaluation and optimization of manufacturing systems

• SITEC - Laboratory for Laser Applications including cutting, welding,

microprocessing, cladding, heat treatment

• Virtual manufacturing and simulations of manufacturing processes

• Water Jet Lab for process improvement and novel solutions


Cable Dynamics Lab

Experimental tests for the evaluation

of the dynamic properties of cables,

dampers, spacers

meccanica magazine

90

Description:

The knowledge of the cable and damping devices mechanical properties

allows to correctly estimate, through numerical models, the

overhead transmission line dynamic response to the wind excitation.

In particular, conductor self-damping together with damper

dynamic stiffness and spacer-damper stiffness and damping properties

are evaluated through laboratory tests and are used in the

numerical models both to assess the conductor + damping devices

dynamic performance and to optimise the damping devices design.

The laboratory allows both customized tests and standard tests

carried out according to the main International Standards.

Certifications:

•Test “Stockbridge Type Dampers Dynamic Characterisation”

(ISO9001:2008 certification).

• Test “Stockbridge Type Dampers Effectiveness Test” (ISO9001:2008

certification).

References:

Enel, Terna, EDF (France), NTDC (Pakistan), Statnett (Norway), ESB

(Ireland),De Angeli Prodotti, TRATOS, LS Cables (Korea), Salvi/Dervaux

(France), Damp/Mosdorfer (Austria), Cariboni/Alstom, Fratelli

Bertolotti, Gorla Morsetterie, Arruti (Spain), SA-RA Energy (Turkey)


Instruments & Facilities:

• 50m long laboratory span

• Programmable Logic Control (PLC)

• Gearing Watson electro-dynamical shaker + amplifier (V617/DSA4-

8k).

• Unholtz&Dickie electro-dynamical shaker + amplifier (SA15-S452).

• B&K 1050 controller.

• Electromechanical actuator UNIMEC TP7010 MBD with electrical

motor 7.5kW 750rpm (conductor tensile load control)

• N. 5 current suppliers TDK Lambda GEN25-400-3P400 (50kW total

power) (conductor heating - thermal tests)

• Load cell U10M/250kN + HBM Scout 55 ( conductor tensile load

measurement)

• Kistler 30 kN piezoelectric load cells.

• Piezo-accelerometers B&K 4508 with power amplifiers PCB

480E09.

• Strain gauges and conditioning modules.

• Laser transducers and other displacement transducers

• Temperature sensors

• Various sizes hydraulic actuators and load cells + MTS Flex Test

Digital Controllers

meccanica magazine

91

Activities:

Cable self-damping test

• Decay Method.

• Power Method.

• Inverse Standing Wave Ratio.

Cable + suspension clamp fatigue test

High temperature conductors thermal tests

• linear coefficient of thermal expansion

• Sag curve/knee-point temperature

Stockbridge dampers dynamic performances

• damper characteristic curve (Mechanical impedance/Dynamic

stiffness with Imposed constant speed or constant displacement)

• damper effectiveness test

Spacer-dampers dynamic characterization

• Stiffness and damping properties

• Stiffness and damping properties at high and low temperature

• Aeolian vibrations and subspan oscillations fatigue tests

• Simulated short circuit test

• Slip test


Electric Drives

Laboratory of electrical drives and

power electronics for industrial and

automotive applications

meccanica magazine

92

Description:

The laboratory of electrical drives and power electronics can test

electric motors, power converter and control system both for industrial

application (traction, grid interface) and automotive applications

(hybrid and full electric vehicles).

Thanks to two different test rigs electric drive of a power up to 100

kW and torque up to 1500 Nm can be tested. In the laboratory, battery

cell life test and identification test can also be performed.

Thanks to our expertise, customized (high-efficiency) power

electronics hardware based either on silicon and wide-bandgap

semiconductors can be developed according to the customer requirements.

Moreover, wired or wireless solutions for condition monitoring of

power electronics equipment are available.

References:

ABB, Siemens, Ansaldo, HSD, CIFA, OEMER, Nice, Bosch Rexroth,

Ferrari, Piusi, Whirpool, Skema, Lucchini RS, Fimer

Instruments & Facilities:

• 100kW Motor test bench (2500Nm/6500 rpm).

• Regenerative Motor Test Bench (35Nm/7500rpm) with PC based

Data Acquisition and Control system and Power Analyzer Yokogawa

PZ4000.

• Power Supply Units (1500W): 600V-2.5A; 300V-15A, 12,5V-120A.

• E4360A Modular Solar Array Simulator Mainframe, E4362A Solar

Array Simulator DC Module, 130V, 5A, 600W.

• dSpace Real-Time board for electrical drives prototyping.

• Electrolyzer for Hydrogen production.

• Active load for battery cells testing.

• Scopes, Current probes, Insulated Voltage probes, Industrial

Electrical Drives, Laboratory Power Supplies.


• Development system for Embedded hardware and software (microchip,

Freescale, TI, STM) and Static Converters.

• 30kW IGBT-based three-level T-type three-phase converter with sensing

interface (ETH, CAN, UART)

• 35kW IGBT-based H-bridge two-level converter module with sensing

interface (aimed to modular connection towards MMC topologies)

• 20kW SiC-MOSFET-based two-level three-phase converter with sensing

interface (ETH, CAN, UART)

• Modular LCL-filter with distributed sensors and related interface

(ETH)

• Teaching kits for university students and/or academic initiatives: motor-control

kit (BLDC, IM), power conversion kit (DC-DC, PV, MPPT)

Activities:

HSD AC motors High efficiency Electric Motor Testing

• No load test and magnetizing curve.

• Parameters identification test.

• Load test, efficiency measurement and thermal behavior.

• Full speed test in field weakening condition.

• Test on ac induction and ac permanent magnet synchronous motor.

Solar Simulator

• MPP Validation.

• Solar Inverter Tests-Rig.

Methods to achieve enhanced reliability of power electronic systems

• Reliability model of most fragile components of power electronic

equipment used in traction drives and grid interface

• Development of wired or wireless solutions (e.g. BLE) for condition

monitoring of power electronics equipment

• Development of customized (high-efficiency) power electronics hardware

based either on silicon and wide-bandgap semiconductors.

meccanica magazine

93

Electric drive test for household application

• Parameters identification test.

• Load test, efficiency measurement and thermal behavior.

• Full speed test in field weakening condition.

• Test on ac permanent magnet synchronous motor with vector sensorless

control.

Battery life cicle test

• Rated current charge/discharge test for cell capacity identification.

• Life test under rated condition.

• Life test under variable current and temperature condition.

• Equivalent Electric circuit identification test.

Battery Power Electric drive for hybrid electric vehicle test

• Traction curve identification.

• Regenerative Braking test.

• Drive cycle test.

• Overall efficiency measurement.

Small PEM Fuel Cell (<1.5 kW) Test bench

• Equivalent Electric circuit identification test.

• Parameters identification test.

• Load test, efficiency measurement and thermal behavior.


LAMBDA Lab

Measurements for biomedical applications

Fiber optic and image-based solutions

for measurements

meccanica magazine

94

Description:

The Lambda Lab (Laboratory of Measurements for Biomedical Applications)

is part of the Measurement and Experimental Techniques

area. The main research fields of the group are based on fiber

optic and image-based measurements for biomedical applications,

along with light-based approaches for minimally invasive therapy

and monitoring. The Lambda Lab develops innovative and experimental

solutions for thermometry in biological tissues undergoing

laser and nanoparticles-enhanced photothermal treatments. The

team works on novel algorithms for temperature-based therapy

control, and in the field of hyperspectral imaging for biomedical

applications. A new research line is developed in the field of biomechanical

monitoring for health and sport activities.

References:

European Research Council (ERC), Fondazione Cariplo and Regione

Lombardia, Ministry of University and Research (MUR).

Instruments & Facilities:

• Interrogators for multipoint fiber optic sensing, static and dynamic

full-spectrum analysis, in the ranges 800-900 nm and 1460-1620 nm

• Core Alignment Fusion Splicer for optical fibers splicing

• Fiber Bragg Grating sensors with custom-made features

• Laser sources operating within the therapeutic window (808-1064

nm) in both continuous and non-continuous modes

• Enclosure and systems for laser safety

• Infrared imaging for contactless thermal field measurements

• Hyperspectral camera working in the range 400-1000 nm (VIS-NIR)

• Thermal property analyzer

• 3D printer

• Workstation

• Magneto-inertial measurement units

• Power meter, thermopile and thermocouples


• Different laser applicators (200-300-400-600 µm) and collimators for

contact and contactless target irradiation

Activities:

Thermometry for biomedical applications

• Temperature measurement in tissues undergoing thermal ablation

procedures

• Sensors-based temperature measurements

• Infrared thermometry

• Diagnostic imaging for thermometry (Magnetic Resonance Thermometry)

meccanica magazine

95

Measurements for photothermal therapy

• Thermal characterization of nanoparticles-embedded phantoms

• Measurement of thermal properties of biological tissues

• Hyperspectral-based estimation of biological thermal damage

• FEM analysis

Fiber optic-based measurements

• Thermometry for biomedical applications

• Shape sensing, strain for prosthetic devices

Other expertise

• Experience with cell cultures and in vivo models (accredited)

• FEM analysis and Monte Carlo-based simulations of laser-tissue interaction

• Biomechanical monitoring for health and sport activities


LaST- Laboratory for safety

of transport systems

Ground vehicle design and testing,

focusing on active safety

meccanica magazine

96

Description:

Main activities of the Laboratory involve testing and modelling of

vehicle systems with emphasis on suspension systems, tyres, braking

systems, drivelines of conventional or electric vehicles. NVH,

durability, thermal and mechanical performances are derived either

experimentally or by numerical simulations. The measurement of

the parameters affecting the vehicle dynamics, e.g. vehicle inertia

properties, is performed by original and dedicated test rigs. Patented

load cells and measuring hubs are available. The measurement

and simulation of vehicle ride comfort is one of the key competences

of the Laboratory.

Certifications:

Measurement of the mass properties of a rigid body by means of

InTensino. ISO 9001:2008.

References:

Brembo, Daimler, Evobus, Fiat Powertrain, Ferrari Automobili, Fiat

Chrysler Automobiles, Ford USA, Honda RD America, IDIADA, IVECO,

Lamborghini Automobili, Maserati Automobili, SameDeutz-Fahr,

Toyota Motor Europe.

Instruments & Facilities:

• InTenso test rig: measurement of the mass properties of full vehicles.

• InTensino test rig: measurement of the mass properties of rigid

bodies up to 400 kg.

• RuotaVia test rig: twin drum providing a rolling contact surface for

tyre or suspension or driveline test and development.

• Measuring hubs: measurement of the forces acting at the tyre

contact patch.

• (Special patented) 6 axis load cells: measurement of forces for


NVH or durability purposes.

• MaRiCo dummy: objective measurement of the ride comfort of vehicles.

• BRAD: measurement of the forces acting both at the brake and at the

tire-ground interface.

• VeTyT (Velo Tyre Test rig) for the mechanical caractherisation of bycicles

tyres.

Activities:

IInTenso+

• Measurement of the Centre of Gravity location of full vehicles.

• Measurement of the Inertia Tensor of full vehicles.

The rig is composed by a ‘carrying system’ (usually a steel cage), which

bears the body under test; three rods connect the carrying system to

an external fixed frame. The rods are connected to the frame and to

the carrying system by low-friction Hooke joints. A load cell is fitted on

each rod. The orientation of the rods is measured by means of 6 absolute

17 bit encoders positioned on the upper Hooke joint. The Centre

of Gravity location and the Inertia Tensor are computed knowing the

angular acceleration of the carrying system and the forces acting on it.

InTensino+

• Measurement of the Centre of Gravity location of rigid bodies up to

500 kg.

• Measurement of the Inertia Tensor of rigid bodies up to 500 kg.

The rig is composed by a ‘carrying system’ which bears the body under

test; three rods connect the carrying system to an external fixed frame.

The rods are connected to the frame and to the carrying system by

low-friction Hooke joints. A load cell is fitted on each rod. The orientation

of the rods is measured by means of 6 absolute 13 bit encoders

positioned on the upper Hooke joint. The Centre of Gravity location and

the Inertia Tensor are computed knowing the angular acceleration of

the carrying system and the forces acting on it.

RuotaVia

• Design and testing of tyres.

• Design and testing of suspension systems.

• Design and testing of powertrains.

• NVH measurements.

The RuotaVia rig is composed by a horizontal axis steel drum, providing

a running contact surface for wheels. An asynchronous motor+neuro

controlled inverter drives the drum up to 400 km/h.

Measuring Wheels/Hubs

• Measurement of the forces acting at the tyre contact patch, custom

design.

The measuring hubs are based on a statically determined three cantilever/spoke

structure replacing the wheel centre. Strain gauges are

fitted on each spoke. The statically determined connection consist of

three spherical joints with an additional degree of freedom along the

axis of the spokes. A telemetry system has been designed and employed

to transmit the force signals to a data storage unit.

Instrumented Steering Wheel

The Instrumented Steering Wheel can measure the forces and the moments

applied by the driver at each hand. The ISW has a carbon fibre

composite structure and is equipped with two special six-axis load

cells. Six force transducers are placed inside the handles to detect

the grip forces exerted by each hand.

MaRiCo Dummy

• Objective measurement of vehicles ride comfort.

• Comparison between different seats.

The dummy can reproduce the vertical and longitudinal accelerations

at the body-seat interfaces that would be respectively sensed by a human

subject. It can be adjusted to simulate different human subjects,

from 5 percentile to 95 percentile, and to accommodate to different

seats configuration. The dummy has a vibrating mass moving along

the spine axis. An adjustable magnetic damper controls the motion of

such a mass.

BRAD

The test bench is composed by a rotating steel drum, which provides

a rolling contact surface for a pneumatic tire. The brake under test in

connected to the pneumatic tyre spindle. The vertical load is applied

to the wheel and brake by means of a pneumatic spring. A two-stage

flywheel configuration has been chosen. The test rig can be used to

study the interaction between brakes and tires near wheel locking.

VeTyT

• Measurement of lateral force.

• Measurement of self-aligning torque.

The VeTyT can be employed to test a wide range of bicycle tyres with

different wheel sizes, from 16” to 29” diameter. The system consists of

a rigid frame that allows a wheel to be steered and cambered. Tests

can be performed either on a drum or on a flat surface.

meccanica magazine

97


Material analysis

Physical, chemical, thermal,

microstructural and surface

characterization of materials

meccanica magazine

98

Description:

The laboratory is equipped with analytical instruments and testing

devices for the investigation of material properties. Optical and

electron microscopes equipped with EDX and EBSD detectors are

available for microstructure and failure analysis. Thermal, physical

and chemical properties of materials are characterized by a

set of analytical instruments, including a dilatometer, a laser-flash

analyzer, a differential scanning calorimeter, an optical emission

spectrometer, an oxygen and nitrogen analyzer, and a platform for

the analysis of thermoelectric properties of materials. Properties

of material surfaces and coatings are investigated by a pin-on-disk

tribometer, a scratch tester, and an instrumented microhardness

tester.

References:

Brembo, Ferrari, Avio, Sandvik, Tenaris Dalmine.

Instruments & Facilities:

• Zeiss Sigma 500 Field Emission Scanning Electron Microscope

equipped by the Oxford Ultimax 65 Energy Dispersive X-ray Analysis

(EDS) and the Oxford C-NANO Electron Backscattered Diffraction

(EBSD) detectors

• Zeiss EVO 50XVP Thermionic Scanning Electron Microscope with

the Oxford Inca Energy 200 X-ray microanalysis (EDS) detector

• Nikon Eclipse LV150NL light optical microscope

• Rigaku SmartLab SE powder X-Ray diffractometer for qualitative

and quantitative phase analysis. The instrument is equipped with a

Eulerian cradle for stress and texture analysis

• StressTech X3000 X-Ray diffractometer for nondestructive measurement

of residual stresses and retained austenite in crystalline

materials. It also allows analysis of large mechanical components

including in-situ applications, eg. pipelines and bridges


• Setaram DSC / GTA thermal analysis system equipped with furnace

and rods for temperature cycles of up to 800 and 1600°C

• OES Bruker Q4 Tasman 130. Analyzable matrix: Fe, Al, Ni, Ti. Bulk samples.

Minimum sample size = 25x25x0.5 mm

• LECO Oxygen and Nitrogen analyzer

• Vertical Dilatometer Linseis V75 with temperature ranges RT-900°C

and RT 1600°C

• Laser Flash Analyzer Linseis LFA 1000/1600 for direct measurements

of thermal diffusivity and indirect measurements of thermal conductivity

in the temperature range RT-1600°C

• Seeback/TE Linseys LZT 1100. Combined LFA (thermal diffusivity) and

LSR (Seebeck and resistivity) for cylindrical (up to 6 mm in diameter

and max. 23 mm long), prismatic (2 to 5 mm rectangular and max. 23

mm long) and button-shape (from Ø12.7 to Ø25.4 mm) samples. Maximum

temperature 1100 °C under He atmosphere

• CSM pin-on-disk tribometer

• CSM Microindenter instrumented microhardness (loads from 0,01 to

10 N) and scratch tester (load range 0.3 - 30 N)

• Foerster Sigmatest eddy current instrument that measures the

electrical conductivity of non-ferromagnetic metals electrical resistivity

measurements

Heat flow probes, specifically the high-temperature FCR-200-M-K

supplied by Wuntronic GmbH, with max service temperature 550°C

and max heat flux range 15,800 W/(m2K), sensitivity 560 (W/m2)/mV

• Multimeter 7.5 digits Keithley

meccanica magazine

99

Activities:

• Microstructure investigation, failure analysis and quality control by

optical and scanning electron microscopy. Texture analysis of crystalline

materials by EBSD and XRD

• Chemical analysis by OES, EDX and LECO

• Analysis of phases and residual stresses by X-ray diffraction

• Thermal analysis by dilatometer, laser flash analyzer and differential

scanning calorimetry

• Wear tests by pin on disk tribometer and analysis of coating adhesion

by scratch tester


Material Testing

Static and dynamic tests on materials

and small components

meccanica magazine

100

Description:

The laboratory is equipped with several resonant and universal testing

machines for static and dynamic tests on metallic, composite

and advanced materials. Each testing machine features extensometers

with different gage lengths and temperature ranges, along

with 2D and 3D measurement systems. Furnaces and environmental

chambers are available to perform tests at low and high temperature.

References:

Ansaldo Energia S.p.A., Avio Aero, Brembo S.p.A., ENI S.p.A., Ferrari

S.p.A., Leonardo S.p.A., Radici S.p.A., SACMI, Tenaris.

Instruments & Facilities:

• MTS809 servohydraulic triaxial machine. Ranges: ±250 kN axial;

±2000 Nm torsional; 100 MPa pressure.

• MTS servohydraulic monoaxial machines. Max. force range: from

± 15 kN to ±250 kN.

• Instron electrodynamic testing machine. Max. force: 10 kN.

• MTS electromechanical machines. Max. force range: from ± 2 kN

to ±150 kN.

• Rumul Cracktronic resonant testing machines. Max flexural and

torsional moment:160 Nm.

• Rumul Testronic resonant testing machine. Range: ± 100 kN.

• Italsigma 2TM831 rotary bending machines.Max bending moment:

35 Nm.

• Creep-Fatigue and Crack Growth testing machines. Max load 12

kN. Max temperature 1200°C.

• Induction heaters. Max temperature: 1200°C.

• Furnace MTS 653.01. Max temperature: 1400°C.

• Environmental chamber with built-in controller MTS. Temperature:

-128/+315°C.


• Fixtures and extensometers for fracture mechanics. Temperature

range: -100/+1200°C.

• Extensometers for tensile and LCF tests. Gage length: 8/50 mm.

Temperature: -40/+1200°C.

• GOM Aramis 3D 12M measurement system. Camera resolution:

4096x3000 pixels.

• Creep testing machines, stress relaxation, cyclic creep testing frames.

Max load 30 kN, Max temperature 1100°C.

Activities:

Static and dynamic tests on materials and small components.

• Tensile and compression static tests according to international standards

or customized in order to fulfill the customer needs.

• High cycles fatigue (HCF) and low cycles fatigue tests (LCF). Temperature

range: -40/+1000°C.

• Dynamic tests with customized load spectra.

• Static and dynamic tests for the characterization of the components

(e.g. stiffness).

• Further kinds of test (e.g. flexural, shear) or test conditions (temperature,

standard) can be arranged upon request.

Fracture mechanics

• KIc determination according to ASTM E399.

• JIc determination according to ASTM E1820.

• Measurement of Fatigue Crack Growth Rates according to ASTM E647

and under customized load spectra.

• Temperature range for Fracture mechanics tests: -100/+1000°C.

In collaboration with the interdepartmental laboratory HSR, it is also

possible to perform dynamic characterization tests according to the

ASTM D7136, D3763, ISO 6603, ISO 8256 standards.

Creep, Creep Crack Growth and Creep-Fatigue Crack Growth tests

• Creep strain analysis through extensometry of round section specimens

at high temperature.

• Crack initiation and propagation analysis of pre-cracked C(T) specimens

through potential drop system at high temperature.

• Crack initiation and propagation analysis of pre-cracked C(T) specimens

in a creep-fatigue interaction context.

meccanica magazine

101

Multi axial tests

• Biaxial and triaxial static tests, applied by means of three independent

controlled actions: axial (max 250 kN), torsional (max 2200 Nm),

pressure (max 100 MPa).

• Biaxial and triaxial low cycle fatigue tests (LCF). Tests can be performed

under strain control.

• Biaxial high temperature low cycle fatigue tests (LCF) up to 1000°C.

• Axial-torsional high cycles fatigue (HCF) tests. Axial and torsional

axial can be applied either in phase or out of phase.

• Dynamic tests with customized load spectra.

Tests on polymeric, composite and advanced materials

• Static tests on composite materials according to ASTM standards

(e.g. D6671, D5379, D6484, D695, D3410) and ISO (e.g. 14126, 14129).

• Static tests on polymeric materials according to ASTM (e.g. D3039,

D3518, D638) and ISO 527.

• Low cycles fatigue tests (LCF) and High cycles fatigue (HCF), e.g. ISO

13003

• Other kinds of test (e.g. ISO 178, ASTM D7274) or test conditions (high/

low temperature, standard) can be arranged upon request.

• Adhesive testing (static e.g. ISO 14130, ISO 15024 and fatigue).


Instruments & Facilities:

• Electrodynamic shakers - max force 25 kN @ 3.5 kHz.

• Several tens of sensors for mechanical and thermal measurements,

especially vibrations and NVH

• Different data acquisition systems

• 3D Digital Image Correlation (DIC) systems for 3D strain field remeccanica

magazine

102

Measuring devices and

calibration

Experimental characterization of

mechanical and civil structures with

innovative techniques

Description:

The laboratory facilities (more than 1200 sensors, calibration and

loading devices) allow performing static and dynamic tests on elements

with scales ranging from millimeters to hundreds of meters,

as well as acoustic tests on components and assemblies. Vision-based

measuring devices allow the 3D motion estimation and

the reconstruction of shape and strain conditions. Fit for purpose

measurement systems can be developed according to the customers’

requests.

Accredited Staff:

NDT qualification complying with EN 473, ISO 9712 and SNT-TC-1° in

testing by electrical resistance strain gauges (Level 1 and Level 2).

NDT qualification complying with UNI EN ISO 9712:2012 (RINA

RC/C.14 directive) – method Acoustics and Vibration (Level 3).

Certifications:

Accredited laboratory for acceleration transducer calibration: Settore

Accelerometria of Politecnico di Milano, Laboratorio Accreditato

di Taratura LAT 104.

References:

ABB, AgustaWestland, Comune di Milano, Veneranda Fabbrica del

Duomo di Milano, Leonardo SpA, ASI (Agenzia Spaziale Italiana), ESA

(European Space Agency), STMicroelectronics.


construction.

• 3D vision-based scanners with customized working volume.

• Infrared imaging for contactless thermal field measurements and

non-destructive defect detection.

• Scanning Laser-Doppler vibrometer for non-contact vibration measurement

and modal analysis of mechanical systems.

• Industrial cameras and lenses for vision-based measurements

• Hyperspectral Imaging System

• Thermo-vacuum chamber for characterization of components

between -180 and 200°C.

• Instrumentation for mechanical, thermal and acoustic measurements.

Activities:

Large/small structure dynamic testing and monitoring

Structural Health Monitoring of bridges, stadia, high rise buildings

railway, tie-rods and cultural heritage

Experimental and Operational Modal analyses.

Long-term continuous structures monitoring.

New sensing systems for civil and industrial engineering

Human-structure interaction

Vision-based measuring systems

3D measurements with drone-carried vision devices.

Contactless measurement of strain field for mechanical analysis.

Failure analysis of civil structures and concrete beams.

Remote monitoring of bridges vibration by means of vision devices.

Dynamic measurement of structures vibration, including harsh environment

measurements like helicopter blades tracking during operation.

Measurements for space

Development of FTIR spectrometers for remote sensing.

Development of opto-mechanical systems for space application.

Characterization of mechanical systems in cryogenic conditions.

Qualification of components for space applications.

meccanica magazine

103

Artistic and historical landmarks monitoring and protection

Historical and artistic structures monitoring.

Statue vibration and seismic isolation.

Long-term continuous monitoring.

Vibration control and monitoring with smart materials

Vibration mitigation through smart approaches (e.g. piezoelectric

shunt, shape memory alloys)

Structural monitoring through smart materials

Acoustic testing and analyses

Noise source identification through microphone arrays

Sound quality, synthesis and Psycho-acoustic analyses

Vibro-acoustic correlations and path analyses (e.g. TPA, component-based

TPA, substructuring)


Non-destructive tests

Experimental and simulation means for

non destructive testing and structural

health monitoring

meccanica magazine

104

Description:

Research and applicative activities on non-destructive testing and

structural health monitoring of structural materials and components

are performed both experimentally and numerically. Traditional

and advanced techniques are applied, while innovative ones are

developed. In-service monitoring and prognostics are studied and

applied, as well

Certified NDT personnel:

• Level 2 and 3 Liquid Penetrant Testing (PT) according to ISO 9712

• Level 2 and 3 Magnetic Particles Testing (MT) according to ISO 9712

and including the extension for

Railway Maintenance according to the Italian Regulation

• Level 2 and 3 Ultrasonic Testing (UT) according to ISO 9712 and including

the extension for Railway

Maintenance according to the Italian Regulation

• Level 2 and 3 Visual Testing (VT) according to ISO 9712 and including

the extension for Railway

Maintenance according to the Italian Regulation

Tests accredited according to ISO 17025:

Liquid penetrants testing

References:

ALSTOM Ferroviaria S.p.A., AnsaldoBreda S.p.A., ATM S.p.A., Autostrade

per l’Italia S.p.A., Brembo S.p.A., CIFA S.p.A., Cromodora

Wheels S.p.A., Deutsche Bahn AG, ENI S.p.A., GE Avio S.r.l., Hitachi

Rail S.p.A., ITA S.p.A., Italcertifer S.p.A., ITER Organization, Loptex

S.r.l., Lucchini RS S.p.A., Pojazdy Szynowe Pesa Bydgoszcz SA,

Radici Novacips S.p.A., RFI S.p.A., SAIPEM S.p.A., Siemens S.p.A.,

Spasciani S.p.A., Tenaris/Dalmine S.p.A., Titagarh Firema S.p.A.


Instruments & Facilities:

• Harfang X32 phased array ultrasonic flaw detector with 2.25, 5 and 10

MHz probes. Encoders for C-Scan mapping

• Eddify M2M Mantis phased array ultrasonic flaw detector with 2.25

and 5 MHz probes. TOFD, conventional ultrasonic channels and TFM

functionalities are available, as well

• RDG500 and RDG2500 conventional ultrasonic flaw detectors with

straight, twin, angled and creeping probes

• Innerspec Temate Powerbox H EMAT ultrasonic flaw detector with

permanent magnets and coils for different beam forming opportunities

• Specific equipment for implementing and managing Lamb and guided

ultrasonic waves

• Vallen AMSY-6 acoustic emission unit (8-channels). Managed by the

PoliNDT interdepartmental lab

• Nortec 1000S+ eddy current flaw detector with probes working at a

500-2000 Hz frequency range

• NSI X25 x-ray micro-computed tomography scanner. Managed by the

AMALA interdepartmental lab

• Electromagnetic yokes and permanent magnets for colour contrast

and fluorescent magnetic particles (calibration blocks, luxmeter, radiometer,

UV lights, ASME probe, gaussmeter)

• Colour contrast and fluorescent liquid penetrants (calibration blocks,

luxmeter, radiometer, UV lights, thermocouples, chronometer)

• Lenses, mirrors and dedicated white and black lights for visual testing

• CIVAnde specific software package for NDT simulations (ultrasonic

testing, eddy current testing, radiographic testing and x-ray computed

tomography)

• AST X-Stress 3000 portable X-ray diffractometer

• Equipment for holographic interferometry and for transmission and

reflection photo-elasticity

composite and polymeric

components

• Definition of an innovative way to induce a single anti-symmetric propagation

mode of Lamb waves

• Analysis of the reflection and transmission of Lamb waves through

artificial delaminations in composite laminates

• Analysis of the reflection and transmission of Lamb waves through

natural defects, obtained by low energy impacts, in composite laminates

Structural health monitoring by acoustic emission:

• In-service monitoring of railway axles by means of acoustic emission

• In-service monitoring of adhesive bonded joints by means of acoustic

emission

• Comparison of acoustic emission response with optical, micro-computed

tomography scans and ultrasonic NDT approaches during crack

propagation tests

• Comparison of acoustic emission response with low frequency vibrations

during crack propagation tests

• Post-processing and interpretation of acoustic emission data by machine

learning and artificial intelligence

Eddy current testing of corrosion-fatigue phenomena:

• Experimental eddy current measurements of developing corrosion-fatigue

damage in small-scale

specimens and full-scale components

• Correlation between damage and eddy current response at different

stages of corrosion-fatigue life

• Numerical simulations of eddy current response at different stages

of corrosion-fatigue life

meccanica magazine

105

Activities:

Experimental and numerical characterization of NDT capabilities:

• Characterization of experimental “Probability of Detection” curves for

different NDT methods

• Characterization of numerical “Model Assisted Probability of Detection”

and “Multi-Parameter

Probability of Detection” curves for different NDT methods

• Interaction between NDT capabilities and the damage tolerant design

approach

Traditional and advanced ultrasonic testing of materials and components:

• Phased array monitoring of fatigue crack propagation in adhesive

bonded composite lap-joints

• TOFD inspection of welded and seamless metallic pipes

• Guided waves monitoring of pipes and rails

• Residual stress measurements in railway wheels by EMAT

• Application of creeping waves to coarse grain metals

Structural health monitoring by ultrasonic Lamb waves:

• Determination and characterization of dispersion curves in metallic,


Process metallurgy and

simulation

Experimental facilities and simulation

software for process metallurgy

meccanica magazine

106

Description:

Numerical and experimental investigations on metallurgical processes

are carried out by means of simulation software and lab-scale

process facilities, including a set of muffle furnaces that can operate

up to 1700°C in ambient or inert atmosphere, a melting resistance

furnace, a rolling mill and a hot extrusion system for small billets

and tubes. Equipment for handling, mixing and milling of metallic

and ceramic powder are also available to researchers.

References:

Tenaris Dalmine, Siemens, Brembo, SMS-INNSE, Prysmian.

Instruments & Facilities:

• Thermocalc Software SUNLL licence for computational thermodynamics

with DICTRA (Diffusion-Controlled phase TRAnsformation)

and PRISMA (precipitation reactions) software modules are

available to research in the Academic version. Thermodynamic and

mobility databases are available for Fe, Al and Ni-based alloys.

• Procast PRO-CT-01 with the following modules: GUI (VTS-CE-28),

Thermal 2 core, Fluidynamic 2 core, Semisolid 2 core, Irradiation

2 core.

• Deform DEFORMTM Premier, educational licence, version 11.3 with

the following modules: Forming express, GeoTool, Integrated 2D3D,

Inategrated Manufacturing, Inverse Heat, Material Suite.

• Nabertherm melting furnace (temperature up to 1700°C, in ambient

or inert atmospheres), internal diameter = 120, height = 130

mm, max load 2 kg.

• Carbolite tube furnace (temperature up to 1050°C, in ambient or

inert atmospheres). Internal diameter = 75 mm, uniform heated length

= 540 mm.

• Carbolite HRF 722D (temperature up to 750 °C), 220x200x495 mm.

• Carbolite GPC 12/36 (temperature up to 1200 °C), 250x320x450 mm.


• Lenton UAF 14/27 (temperature up to 1400 °C in ambient or inert atmospheres),

290x270x340.

• OAM rolling mill (symmetric and asymmetric operation mode, cylinders

of 150 mm diameter, speed: 0-20 rpm).

• MTS Exceed E45 equipped with induction coil, dies and plungers for

cold and hot extrusion of small billets and tubes and for compaction

of powder.

• Retsch M400 ball mill system equipped with steel and alumina jars

and balls.

• Adler Powder mixer and sieving facilities.

meccanica magazine

107

Activities:

• Simulation of metallurgical processes and heat treatments

• Laboratory casting of metallic alloys

• Rolling of metals at room and high temperatures

• Hot extrusion of small billets and tubes

• Hot and cold compaction of powder

• High energy ball milling of metal and ceramic powder

• Powder handling, mixing and sieving


Railway Engineering

Experimental tests of rail vehicle and

infrastructure sub-systems

meccanica magazine

108

Description:

The laboratory provides a series of specifically test-rig designed

for testing and characterization of several sub-systems of both,

rail vehicle (axle, pantograph, bogie frame) and rail infrastructures

(sleepers, insulated rail joints, fastening system). The variety of general-purpose

hydraulic actuators and the great number of measurement

devices allows the laboratory to realize custom designed

setups for testing great number of rail subcomponents such as

springs, silent blocks, air spring. Moreover, the laboratory can perform

in-line testing for the assessment of both dynamic behaviour,

comfort and aerodynamic of vehicles according to several European

standard.

Certifications:

The laboratory meets the requirements of ISO/IEC 17025:2017. The

following test are officially accredited by the Italian accreditation

body ACCREDIA:

• Static tests on bogie frames, axleboxes and bolsters (EN

13749:2021).

• Fatigue testing of full-scale axles (EN 13261:2020).

• Homologation tests for fastening system (EN 13146:2021).

• Homologation tests for concrete sleepers (EN 13230:2016).

• Measurement of the friction coefficient between pantograph contact

strips and contact wire of overhead line and measurement of

wear rate for contact wire and pantograph contact strips (RFI-DMA-

IM.LA\ST TE65 del 2004).

• Train aerodynamic loads in open air: slipstream effects on passengers

on platform and on workers trackside, head pressure pulse and

maximum pressure variations in tunnels (TSI HS LOCPAS, 2014).

Certified tests ISO 9001:2008 (Italcert):

• Dynamic Interaction between pantograph and overhead contact


line: calibration of the measurement system (EN50317, RFI/DI/TC.TE/

ST.TE 74D).

Accredited Staff ISO 9712:

ST - Strain Testing Level 1 and 2

Dye penetrant inspection Level 2 and 3

Magnetic particle inspection Level 2 and 3

Instruments & Facilities:

• Bogie test-rig: reconfigurable test-rig for the testing of bogie frame,

bolster and other vehicle components.

• Dynamometric wheelset test-rig: characterization and calibration of

dynamometric wheelset.

• Pantograph test-rig: hardware in the loop device for the characterization

of instrumented pantograph.

• Axle test-rig: study of the rotating bending fatigue and crack propagation

phenomena on axles.

• Collector strips test-rig: testing on collector strips reproducing the

real in-line conditions.

• Sleeper test-rig: test rig equipped with 1000 kN dynamic actuator for

homologation tests on main typology of sleepers.

• Insulated rail joints testing machine: custom designed bi-axial machine

for testing of insulated rail joints.

• The laboratory can rely on a great number of measurement instruments

calibrated, signal conditioner and acquisition systems.

Activities:

Structural rail components testing

• Performs static, dynamic and fatigue tests on railway bogies and/or

their components according to the international standard EN 13749.

• Reconfigurable layout to allow the housing of all types of bogies currently

in circulation on railways, metro, and tramways.

• Possibility to control simultaneously a variable number of hydraulic

actuators (up to 14) with different ranges of applicable loads up to a

maximum of 1000kN.

Pantograph characterization

• Allows the characterisation of pantographs reproducing the dynamic

interaction with the catenary.

• Possibility to replicate the stagger geometry and pantograph velocity.

• Separate application of the loads in vertical direction for the two collector

stripes.

• Real time hardware in the loop control to simulate the real interaction

between the pantograph and a simulated catenary.

Rotating bending fatigue on axles

• Imposes a variable load to the central section of the axle while rotating

reproducing the conditions needed for axles fatigue testing.

• Maximum rotation speed 600rpm.

• Maximum load 250kN with the possibility to impose load spectra to

the axle.

• Possibility to run tests in harsh environmental conditions to reproduce

corrosion effects.

Insulated rail joints testing

• Biaxial testing facility for the simultaneous application of longitudinal

tractive sand vertical loads.

• Maximum longitudinal load 1000 kN and maximum vertical load 500

kN.

• Possibility to measure displacements and deformation along the specimen

under test.

Collector stripes test

• Performs wear tests on collector stripes reproducing the at best the

real condition encountered in service.

• Maximum tension applicable 1200A.

• Maximum relative speed between collector stripes and overhead

power line up to 210km/h.

• Reproduction of the wind cooling effects, and the load imposed by

the pantograph springs.

Dynamometric wheelset characterization

• Static characterization a wheelset or, more in general a bogie, properly

instrumented to measure the contact forces.

• Real boundary conditions both at the contact interface (UIC60 cant

angle 1/20) and at the axle-boxes (mounting on the test-rig of the entire

bogie).

• Direct measurement of the three components of the contact forces

acting on each wheel.

• High variety of applicable loads (up to 150 kN per wheel in vertical, 40

kN in lateral and 20kN in longitudinal direction) and their combinations.

meccanica magazine

109


Reverse Engineering

Computer Vision and Reverse Engineering

meccanica magazine

110

Description:

The Computer Vision and Reverse Engineering laboratory is specialized

in the Reverse Engineering pipeline for study, research and

industrial applications: 3D devices calibration and characterization,

3D acquisition and processing, redrawing of CAD models based on

3D data. The 3D capturing equipment permits to acquire industrial

components, structures, Cultural Heritage objects with a wide range

of geometries, sizes and materials.

References:

The laboratory has contributed to the production of reality-based

3D models for the following patrons:

• Scuola Normale Superiore di Pisa

• Comune di Milano - Castello Sforzesco

• Comune di Milano - Civico Museo Archeologico

Instruments & Facilities:

3D Scanners:

• Konica Minolta Vivid 9i

• GOM Atos

• NextEngine Ultra HD

• Artec Leo

• EviXscan 3D Heavy Duty Quadro 3D

• Structure Sensor

Coordinate Measuring System:

• Microscribe MX digitizer system

Professional Cameras:

• Sony

• Canon


Activities:

Camera calibration for photogrammetry and 3D Vision

• Radial distortions assessment.

• Tangential distortion assessment.

• Affine distortion assessment.

Active 3D range sensors characterization (Triangulation and TOF/PS)

according to Committee E57 draft ASTM

• Global uncertainty assessment.

• Precision assessment.

• Accuracy assessment.

3D acquisition and modelling based on:

• Traditional photogrammetry with sparse clouds.

• SFM/Image matching with dense clouds/meshes.

• Triangulation based laser scanning and dense mesh generation.

• TOF/PS laser scanning and dense mesh generation.

• CAD drawing on 3D data gathered manually or automatically.

3D models optimization for Virtual Navigation

• Mesh optimization.

• Texturing/Displacement mapping.

• 3D segmentation.

meccanica magazine

111


Test of mechanical

components

Static and dynamic tests on real

components or structures

meccanica magazine

112

Description:

The laboratory is equipped with multi-range servohydraulic actuators

and other facilities to perform tests on full-scale components

and structures. The equipment includes servo-controllers, load

cells, electrodynamic shakers, modular constraint systems, various

transducers (pressure, temperature, displacement, acceleration,

strain, acoustic waves, etc.), with dedicated signal conditioners and

acquiring systems. A novel micro-compression device, compatible

with a synchrotron, is available for multi-scale mechanical testing.

The laboratory is supported by modelling capabilities (mainly numerical

FE and CFD models) in order to replicate and extend experimental

activities by means of “virtual tests” (predictive models).

Certifications:

The laboratory is compliant with Leonardo Helicopters quality standard

requirements.

Tests on aeronautical components also for certification purpose

(FAA) have been carried out in the laboratory.

References:

Leonardo Helicopters, Cifa, ENI, Pirelli, Ferrari.

Instruments & Facilities:

• Special set-ups for full-scale component testing:

Servo-hydraulic actuators (max force 1000 kN).

Electrodynamic shakers (max force 25 kN).

Controllers for servo-hydraulic actuators: single and multichannel

(MTS 407, MTS Flex Test IIm, MTS Aero GT, MTS Flex Test SE, etc.).

Constraint systems with treaded holes or grooves and steel beams

to build customized frames for full-scale tests.


• Other equipment and devices:

Load cells.

Displacement transducers.

Rotation transducers.

Pressure and temperature transducers.

Accelerometers.

Systems for data analysis.

Systems for strain measurements.

Optical fiber interrogator with Military Standard environmental qualification

(MIL-STD 810G).

Multi-channel oscilloscopes.

Micro compression device suitable for small samples’ testing and compatible

with synchrotron facility

Dynamical characterization of components

• Tests to analyze the dynamical behavior (frequency response, mechanical

impedance, fatigue resistance, etc.) of components and systems

using electromechanical shakers.

• Development of control systems for vibrations on “Smart structures”.

Activities:

Single and multi-actuator tests on mechanical components and large-scale

structures

• Fatigue tests to define the life of a component.

• Application of a load spectrum to simulate a real stress condition.

• Static and dynamic tests to verify the integrity of components and

large-scale structures subjected to the real operating conditions.

• Detection and monitoring of crack propagation during a fatigue test

(non-destructive methods, microscope, crack gauges, etc.).

• Determination of the influence of several technological parameters

on the fatigue resistance.

• Laboratory testing of structural health and usage monitoring systems

under varying load and environmental conditions

• On-platform testing

meccanica magazine

113

Fatigue tests for biomedical applications and multi-scale mechanical

characterization of biological tissues

• Static and fatigue tests to verify the resistance of limb prosthesis.

• Performance optimization of leg prosthesis for sportive applications.

•Static tests performed outside and inside a synchrotron to determine

meso and micro characteristics of biological tissues.

•Detection of microdamage mechanisms.

Gear fatigue tests: Tooth Bending Fatigue, Contact Fatigue (pitting

and micropitting), vibration and noise, efficiency, contact pattern and

torsional stiffness tests on gears and gear reducers. Several experimental

devices are available:

CENIT 2, a power-recirculating test rig suitable for gear contact fatigue

(i.e. pitting), scuffing and bending fatigue tests on running gears

Schenck mechanical resonance pulsator for tooth root bending fatigue

tests with a STBF (Single Tooth Bending Fatigue) approach.

VIBRU, Motor / brake test rig up to 100 kW, reconfigurable on plates, for

measurements of Transmission Error and Noise

Electric power recirculation test rig, DC motor and brake, 30 kW, 3,000

rpm reconfigurable on plates


Vehicle Dynamics

Measurement, testing, development, and

validation of vehicle dynamics models,

state estimators, and control

algorithms.

meccanica magazine

114

Description:

Main activities of the Laboratory are focused on testing, modelling

and control of vehicles, with particular attention to suspensions, tires,

braking systems, drivelines of conventional, hybrid or electric

vehicles, control systems for active safety and performance, ADAS

and autonomous vehicle control logics. The laboratory offers facilities

and expertise for setting up road tests on the complete vehicle

or indoor tests on single components. Commercial and innovative

stability control systems (ESP, ABS, EBD, etc.) can be tested with

a dedicated test rig based on hardware-in-the-loop technique. Our

dynamic driving simulator (DRISMI) offers the possibility to insert

the driver in the loop to better understand and tune ADAS and autonomous

driving control algorithms.

References:

Pirelli Tyres, Ferrari Auto, FIAT, CRF (Centro Ricerche FIAT), Bridgestone,

Tenaris Dalmine, CIFA, Marelli, Autoliv, Brembo, TRW, SAME,

Maserati Auto, CRA-ISMA, Nokian Tyres, Kymko, MV Agusta, Lamborghini

Auto.

Instruments & Facilities:

• Dynamic driving simulator

• Hybrid/electric power train full-scale and components full active

test bench.

• Vehicle prototypes, fully instrumented and with autonomous driving

capability.

• Vehicle logger and analyzers

• Wind tunnel

Activities:

ADAS and autonomous driving prototypes

• Vehicle dynamics test.

• Validation of numerical vehicle models.


• Validation of state estimators.

• Testing of ADAS and autonomous driving control strategies

• Testing of autonomous driving state estimation and environment

sensing

Several vehicle prototypes are available in our laboratories. Vehicles

are equipped with sensors to measure the vehicle state (accelerometers,

gyros, GPS, optical speed sensor and others) and to sense the

surrounding environment (camera, lidars, radars, etc.). Vehicles are

also actuated, and full autonomous driving control strategies are tested

and compared. Vehicle teleoperation is another activity we are

currently working on.

Characterization of spring and damper

• Characterization of spring and damper.

• Evaluation of behavior with different active control logics.

Our laboratories host test benches designed for the testing of suspensions

components. Static and dynamic characterization of springs

(coil springs, leaf springs etc.) and dampers (viscous dampers, magnetorheological

dampers etc.) can be carried out. The force developed as

function of deformation, speed, and other variables, in case of active

or semi-active components, can thus be determined. Test bench can

be easily adapted a series of different geometries.

Dynamic Driving Simulator

• Driver in the loop

Testing with dynamic Driving Simulator of Politecnico di Milano (DRI-

SMI: www.drismi.polimi.it): set-up of the virtual models of a vehicle

and its components, creation of scenarios in terms of road network

(urban road, country road, highway) and interaction with other road

users like other vehicles or pedestrian, measurement of the driver’s

physiological response (eye tracking, skin potential, hear rate), data

analysis.

Vehicle Aerodynamics

• Drag

• Crosswind

• Noise

The availability of the large wind tunnel (GVPM) is suitable for automotive

applications, in particular truck and motorcycle aerodynamics.

The aerodynamics studies are carried out also with CFD, using a HPC

infrastructure, for the analysis, among others, of vehicle wheel aerodynamics

and aero-acoustic noise.

Tire modeling

• contact forces

• wear

• noise and vibration

The group works on the modeling, design, and testing of tire performance,

wear, and acoustical emissions. The research group also help

to develops advanced and intelligent systems like the cybertire.

Noise and Vibration

• Tyre rolling noise

• Tyre dynamics

• Vehicle comfort

• Cabin interior noise

The research group works on the development and experimental validation

of predictive models suitable for supporting noise and vibration

mitigation in vehicles. The research topics cover both exterior noise

issues and vibration/acoustic comfort inside the vehicle.

meccanica magazine

115

Heavy and agricultural vehicles

• Rollover analysis

Numerous studies are conducted on the modelling and rollover analyses

of heavy vehicles as well as agricultural vehicles under different

load condition. Crosswind effect is studied also considering the interaction

with driver. Active systems for reducing rollover risk are studied

like active suspensions and active rear wheel steering.

Hybrid/Electric vehicle power train testing

• Battery cell characterization and testing

• Detection of motor characteristics (nameplate).

• Performance analysis of a complete powertrain.

In our laboratories two test benches for the testing of hybrid/electric

vehicle power trains are available ranging from small (from 7 kW) to

high power trains (up to 200kW and 1300Nm). All electric quantities

both on the electric motor, the power electronics, and the battery cells

can be assessed for measuring the efficiency, the operating range,

and the control behavior. Also, regenerative braking tests can be performed.


Virtual prototyping

& human modelling lab

State-of-the-art VR/AR, haptics,

3d human modeling technologies

meccanica magazine

116

Description:

The Virtual Prototyping & Human Modelling Lab is a research and

teaching laboratory equipped with state-of-the-art technologies

and tools for Virtual and Augmented Reality, Haptics and Digital Human

Modelling. The Lab is focused on developing multisensory interactive

virtual prototypes for design review, simulation and testing

purposes, real-time rendering on high performing workstations,

modelling of human body and organs for ergonomics, human-machine

interaction, bioengineering and medicine.

Instruments & Facilities:

Immersive Displays:

• Cyviz - VIZ3D

• Large screen (3,4x2,1m) with Barco F80-4K12 4K UHD stereoscopic

projector

Head Mounted Displays for Augmented Reality (AR):

• Microsoft HoloLens 1&2

• Magic Leap 1

Head Mounted Displays for Virtual Reality (VR):

• Oculus Quest 2

• HTC Vive Pro Eye

• Varjo VR1

Motion tracking systems:

• VICON 460

• A.R.T. Tracking System

• OptiTrack V100:R2

• OptiTrack V120:Trio

• Microsoft Kinect 1&2

• Microsoft Azure Kinect

• UltraLeap Leap Motion


Eye-tracking systems:

• Nvisor ST HMD

• Pupil labs Core

• Tobii Pro Glasses 3

Bio signal acquisition systems:

• ProComp Infiniti

• LWT3 Raw Power 0.9 surfaceElectroMyoGraphy (sEMG)

• EMOTIV EPOC ElectroEncephaloGram (EEG) Headset

• ANTneuro eego sports 128 pro ElectroEncephaloGram (EEG) and

ElectroMyoGraphy (EMG) headset

Haptic Systems:

• Haption Virtuose 6D35-45 (6 DOF device)

• MOOG Haptic Master (3 DOF robot)

• 3D Systems PHANToM desktop (6 DOF device)

• Manus VR (glove)

• WeArt Touch Diver (wearable)

• Ultraleap Stratos Explore (mid-air haptics)

• Haptic-based simulation and training of maintenance operations (assembly/disassembly).

Digital Human Modelling

• 3D models of organs or systems from .dicom files

• VR/AR applications for diagnosis/simulations of surgeries, prosthesis

design

• VR/AR for ergonomics, human-machine interaction

• 3D segmentation.

meccanica magazine

117

Equipment for physical prototyping:

• Ultimaker S3 (FDM 3D Printer)

• Utimaker S5 (FDM 3D Printer)

• Delta Wasp 4070 (FDM 3D Printer)

• Formlabs Form 3B (SLA 3D Printer)

• Laser Engraver and Cutter

In-House Developed Systems:

• Multi vehicle virtual simulators (car, excavator)

• Spatial Augmented Reality (SAR) system - SPARK

• Multi-camera recording system for design activities monitoring

Activities:

Interactive Virtual Prototyping

• Product design review.

• Multisensory virtual prototypes.

• Interactive prototypes of industrial products.

• Haptic interaction with virtual products.

Monitoring and Maintenance

• Augmented Reality for diagnostic and prognostic.

• Augmented Reality for remote product maintenance.


meccanica magazine

118


meccanica magazine

119


Dipartimento di Meccanica

via Giuseppe La Masa, 1 - Milano

www.mecc.polimi.it

meccpolimi

Per rimanere sempre aggiornati

sulle novità del Dipartimento

iscriviti alla newsletter.

Subscribe to our newsletter

to receive the latest news and

remain updated.


meccanica magazine

121


NEWS

meccanica magazine

122

IL PROGETTO GAP DEL DMEC

HA RAGGIUNTO IL SINCRO-

TRONE ELETTRA (TS)

La ricerca, condotta da

un team interdisciplinare

coordinato dalla prof. Laura

Vergani ed attivamente

seguito dalla dottoranda

Federica Buccino, mira

alla comprensione del

danneggiamento osseo

alla micro-scala. Questo

rappresenta un aspetto

innovativo e di cruciale

rilevanza per la diagnosi

precoce dell’osteoporosi e

di patologie ossee rare.

GAP PROJECT OF THE DMEC

REACHES ELETTRA SYN-

CHROTRON IN TRIESTE

The research, conducted

by an interdisciplinary team

coordinated by Prof. Laura

Vergani and actively followed

by the Ph.D. candidate Federica

Buccino, focuses on the

investigation of human bone

damage at the micro-scale.

This is a crucial point in

order to provide an early diagnosis

of osteoporosis and

rare bone pathologies, that

still represent an evident

burden in our society.

BANDO RICERCATORI DMEC:

SELEZIONATO IL PROGETTO

SBLINK PRESENTATO DA

MARTA GANDOLLA

È stato decretato il progetto

vincitore del Bando Ricercatori

promosso da DMEC

per sostenere la partecipazione

dei ricercatori del

Dipartimento alla ricerca

multidisciplinare e incentivare

la produttività scientifica

di qualità.

Per questa edizione DMEC

sostiene progetti di ricerca

sulle tematiche identificate

in LIS4.0. Sulla base della

graduatoria finale, il progetto

SBLINK (“Smart Bio-inspired

Link”) ha ottenuto il finanziamento.

--

DMEC CALL FOR RESE-

ARCHERS: THE SBLINK

PROJECT SUBMITTED BY

MARTA GANDOLLA

The Scientific Commission

just announced the winner

of the Call for Researchers,

sponsored by DMEC to

support the Department’s

researchers to get involved

in multidisciplinary research

and encourage quality scientific

productivity. Through

this edition of the call, DMEC

decided to support research

projects on topics related to

LIS4.0; according to the final

ranking, the SBLINK (“Smart

Bio-inspired Link”) project

is among the winners of the

research funds.

POLIMI ANCORA LA MIGLIO-

RE TRA LE UNIVERSITÀ ITA-

LIANE SECONDO L’ULTIMO

QS WORLD RANKINGS

Polimi figura nella top 20

delle migliori università del

mondo per Ingegneria &

Tecnologia. Inoltre, secondo

la classifica per disciplina, il

Politecnico è quindicesima

tra le migliori università del

mondo per Ingegneria Meccanica,

Aeronautica e della

Produzione.

--

POLIMI STILL THE TOP

ITALIAN UNIVERSITY,

ACCORDING TO THE LATEST

QS WORLD RANKINGS

Polimi is listed among the top

20 Universities in the world

in Engineering & Technology.

Moreover, in the ranking by

subject, Politecnico di Milano

ranks 15th among the top

universities for “Mechanical,

Aeronautical & Manufacturing”

Engineering.

LA SEZIONE MATERIALI

DMEC COINVOLTA NEL

PROGETTO I.FAST PER LE

“TECNOLOGIE AVANZATE

PER GLI ACCELERATORI”

Nei primi mesi del 2021 ha

avuto avvio il progetto I.FAST.

Lo scopo generale del progetto,

coordinato dal CERN, è

quello di sviluppare ricerca di

lungo termine per una nuova

generazione di acceleratori

di particelle più sostenibili,

adatti anche a soddisfare

la crescente domanda di

infrastrutture per le scienze

applicate, la medicina e altre

applicazioni sociali.

--

THE MATERIALS RESEARCH

LINE OF DMEC INVOLVED

IN I.FAST FOR RESEARCH

ACTIVITIES CONCERNING

ADVANCED ACCELERATOR

TECHNOLOGIES

During the first months of

2021, the I.FAST project.

Coordinated by CERN, the

project aims to carry out

research activities that,

in the long term, will allow

developing sustainable particle

accelerators. They will

eventually satisfy the growing

demand for infrastructures

for applied sciences,

healthcare and other social

applications.


NEWS

MECHENG: ONLINE IL

NUOVO SITO DEL CORSO

DI STUDI DI INGEGNERIA

MECCANICA

SAVE THE DATE - “TECHNO-

LOGICAL INNOVATIONS FOR

THE PRECISION MEDICINE

OF TOMORROW”

IL NOSTRO ALUMNO SIMONE

ROMANO RICEVE IL PREMIO

INTERNAZIONALE JAAP

SCHIJVE

CRESDET: ISTRUZIONE

E FORMAZIONE DIGITALE

RESISTENTI AGLI SCENARI

DI CRISI

Lanciato qualche settimana

fa, al link www.mecheng.

polimi.it è possibile visitare il

nuovo sito del Corso di Studi

di Ingegneria Meccanica.

Un sito dinamico, colorato

e interattivo con pagine dedicate

alla didattica, ai piani

di studi e alle risorse per gli

studenti futuri e iscritti.

--

MECHENG: THE NEW WEB-

SITE OF THE MECHANICAL

ENGINEERING PROGRAMME

IS ONLINE

Launched a few weeks ago,

at the link www.mecheng.

polimi.it, it is possible to visit

the website of the Mechanical

Engineering Programme.

A dynamic, colourful, and

interactive website complete

with pages on teaching,

study plans, and recourses

for future and current

students.

“Technological innovations

for the precision medicine

of tomorrow” è il titolo del

workshop organizzato per

il prossimo 10 Giugno 2021

presso il Dipartimento di

Meccanica del Politecnico

di Milano. Il focus dell’evento

sarà l’approfondimento dei

recenti sviluppi della medicina

di precisione associati

all’innovazione tecnologica

emergente. L’evento, organizzato

dalla prof. Paola

Saccomandi, Professore

Associato del Politecnico di

Milano, e dalla dottoranda

Martina De Landro, è sponsorizzato

dall’Ambasciata di

Francia in Italia e dall’Istituto

Francese d’Italia.

--

SAVE THE DATE - “TECHNO-

LOGICAL INNOVATIONS FOR

THE PRECISION MEDICINE

OF TOMORROW”

On June 10th, 2021, the

Department of Mechanical

Engineering of Politecnico

di Milano will host the

online event “Technological

innovations for the precision

medicine of tomorrow.”

During the workshop, the

recent advances in precision

medicine assured by innovation

will be discussed.

The event is organized by

prof. Paola Saccomandi

- Associate Professor at

Politecnico di Milano - and

Martina De Landro - PhD

student - and sponsored by

the Institute Francais and by

the Ambassade de France

en Italie.

Il Dott. Romano è stato

insignito del premio Jaap

Schijve Award 2021 per

i Giovani Ricercatori. Il

premio, istituito dal Royal

Netherlands Aerospace Centre

(NLR) e dal Dipartimento

di Aerospaziale della Delft

University of Technology, ha

l’obiettivo di promuovere lo

studio della resistenza alla

fatica e alla rottura delle

strutture degli aeromobili.

--

THE JAAP SCHIJVE AWARD

TO OUR ALUMNO SIMONE

ROMANO

Dr Romano has been

awarded the 2021 Jaap

Schijve Award for Young

Researchers. This award

has been established by

the Royal Netherlands

Aerospace Centre NLR and

the Faculty of Aerospace

Engineering of Delft University

of Technology (NL)

to promote the discipline of

Aircraft Structural Fatigue

and Damage Tolerance.

Il 23 Aprile, con il relativo

kick-off meeting, ha preso

il via il progetto Erasmus+

CResDET: un progetto che

si pone l’obiettivo di stilare

delle linee guida adattabili

a diversi contesti educativi

in potenziali situazioni di

crisi o di digital divide, con

un accento particolare

sui corsi di progettazione

ingegneristica e sulle

relative attività pratiche di

tipo collaborativo.

--

CRESDET: CRISIS-RESI-

STANT DIGITAL EDUCATION

AND TRAINING

On April 23rd, with a remote

kick-off meeting, the

Erasmus+ CResDET project

started: it aims at creating

guidelines for educators

to address similar crisis or

situations characterized by

digital divide, with a particular

focus on engineering

design education and the

related practice, including

student co-design.

meccanica magazine

123


NEWS

NUOVO ACCORDO TRA IL

POLITECNICO E STMICROE-

LECTRONICS

SCANSIONI 3D ANCHE IN

AMBIENTI OSTILI GRAZIE AL

PROGETTO 3DYNAMIC4.0

DMEC SI ARRICCHISCE DI UN

NUOVO LABORATORIO SUL-

LA FLUIDICA INTELLIGENTE

FESTIVAL DELL’INGEGNERIA

| 10-12 SETTEMBRE 2021 –

CAMPUS BOVISA

meccanica magazine

124

Il Dipartimento di Meccanica,

insieme ai Dipartimenti di

Fisica e Chimica, DICA e

DEIB, sarà parte attiva del

nuovo centro di ricerca

congiunto sui materiali avanzati

per sensori (STEAM) che

nascerà grazie all’accordo di

collaborazione quinquennale

siglato pochi giorni fa da

POLIMI e STMicroelectronics

alla presenza del Ministro

dello Sviluppo Economico

Giancarlo Giorgetti.

--

NEW AGREEMENT BETWE-

EN POLITECNICO AND

STMICROELECTRONICS

The Department of Mechanical

Engineering, in collaboration

with the Department

of Physics, the Department

of Chemistry, Materials and

Chemicals, DICA and DEIB,

will play an active role in the

new Joint Research Centre

on advanced materials

for sensors (STEAM), born

thanks to the recently signed

agreement for a five-year

collaboration between

POLIMI and STMicroelectronics

under the attentive

watch of Giancarlo Giorgetti,

Minister for the Economic

Development.

Sviluppato nell’ambito del

progetto 3DYNAMIC4.0

(3D Dynamic Image-based

Measurements in Industry

4.0) finanziato dal MIUR,

il drone strumentato è

stato appena completato

di tutta la strumentazione

e sta svolgendo i primi test

di volo. L’obiettivo del drone

prototipale è di permettere

di effettuare scansioni 3D,

elaborare vaste porzioni,

valutare danni e potenziali

pericoli di qualsiasi elemento,

partendo da alcuni test

sulle strutture in cemento,

senza che vi siano rischi per

gli operatori.

--

3D SCANNING EVEN IN HAR-

SH ENVIROMENTS THANKS

TO 3DYNAMIC4.0 PROJECT

The instrumented drone

developed in the ambit of

the 3DYNAMIC4.0 project,

funded by the Italian Ministry

of University and Research,

is now fully equipped and it

is performing the first flight

tests.

The goal of the prototype

drone is to allow you to allow

3D scanning, reconstruct

large portions, assess the

damage and potential dangers

of any type of targets

(starting with some tests on

concrete structures) without

risks for operators.

In collaborazione con

Fluid-o-Tech e STMicroelectronics,

nasce presso il

Dipartimento di Meccanica

del Politecnico di Milano

un nuovo laboratorio per la

messa a punto di soluzioni

tecnologiche innovative nel

campo della sensoristica

senza contatto. L’ obiettivo è

quello di creare uno spazio in

cui ci sia uno scambio fluido

e continuo di conoscenze

ingegneristiche, meccaniche,

elettroniche, ottiche e

sull’intelligenza artificiale.

Nel nuovo laboratorio

verranno quindi sviluppati

know-how, tecnologie e dispositivi

nel campo della fluidica

digitale per applicazioni

industriali, food & beverage e

dispositivi medicali.

--

A NEW LAB ON FLUIDIC

INTELLIGENCE CREATED

AT DMEC

In partnership with Fluid-o-Tech

and STMicroelectronics,

the Department

of Mechanical Engineering

announces the creation of a

new lab to develop innovative

technological solutions

in the field of non-contact

sensors.

The objective is to build a

common space where to dynamically

and continuously

exchange knowledge about

mechanical engineering,

electronics, optics and

artificial intelligence.

The new laboratory will

further develop know-how,

technologies and devices

in the field of digital fluidics

for industrial applications,

food & beverage and medical

devices.

Il Politecnico di Milano presenta

la Prima Edizione del

Festival dell’Ingegneria.

Una tre giorni di incontri,

lezioni, laboratori aperti e

spettacoli in cui i visitatori

potranno vivere un’esperienza

immersiva nel mondo

dell’Ingegneria guidati

da docenti, dottorandi e

ricercatori che condivideranno

con grandi e piccoli

la loro vita nei laboratori

del Politecnico di Milano, i

traguardi già raggiunti nel

campo della ricerca e le

sfide ancora da vincere,

con uno sguardo puntato

sempre verso il futuro delle

tecnologie.

--

ENGINEERING FESTIVAL |

SEPTEMBER 10-12TH, 2021 –

BOVISA CAMPUS

Politecnico di Milano presents

the first edition of the

Engineering Festival.

Three days of meetings,

courses, free-access labs,

and events during which

visitors can dive into the

engineering world guided

by teachers, PhD students

and researchers. The elder

and the youngest equally will

join them to discover their

daily life inside the POLIMI

labs and learn about the

accomplishments and the

yet-to-be-faced challenges

of their research, always

looking at the future of

technologies.


NEWS

IL TEAM DYNAMIS PRE-

SENTA IL SUO PROTOTIPO

ELETTRICO DP12EVO

DMEC PRESENTA LE PRIME

DUE DOTTORANDE DEL

PROGRAMMA CON LA SJTU

MOTOSTUDENT VI EDITION:

IL SUCCESSO DELLA MOTO

ELETTRICA NYX

UNA PARTE DEL NOSTRO

DIPARTIMENTO IN MOSTRA

ALLA BIENNALE DI VENEZIA

Formula Student Netherlands

2021, tenutasi ad

Assen dal 4 all’8 luglio 2021

è stata la prima gara a cui

il team Dynamis/DMEC ha

partecipato con il prototipo

elettrico DP12evo.

Obiettivo della trasferta

erano esclusivamente

le “prove statiche” dove

sono stati raggiunti ottimi

risultati. Infatti, il team ha

ottenuto - per il secondo

anno consecutivo - la prima

posizione per il Business

Plan e piazzamenti di rilievo

nelle categorie Design e Cost

Event.

--

DYNAMIS TEAM PRESENTS

ITS ELECTRIC PROTOTYPE

DP12EVO

Held in Assen from the 4th to

the 8th of July 2021, Formula

Student Netherlands 2021

was the first race the team

Dynamis of DMEC took part

in with their first electric

prototype DP12evo. The

objective of the trip was to

participate in the “static tests”

in which the team achieved

great results. In fact, the

team ranked first - for the

second year in a row - in the

Business Plan category and

reached impressive ranking

positions in the Desing and

Cost Event categories.

Tra giugno e luglio hanno

conseguito il titolo di Dottore

di Ricerca le prime due

dottorande coinvolte in un

accordo di doppio dottorato

con Shanghai Jiao Tong University,

firmato nel 2018.

Ci congratuliamo con Ziwei

Lin e Ling Liu per il notevole

traguardo raggiunto, dopo

un percorso di cinque anni

di cui due trascorsi presso il

nostro Dipartimento.

--

DMEC FIRST TWO PHD

GRADUATES OF THE JOINT

PROGRAMME WITH SJTU

Between last June and July,

the first two PhD students

taking part in the Double PhD

Programme in collaboration

with the Shanghai Jiao Tong

University signed in 2018

were awarded their PhD.

Congratulations to Ziwei Lin

and Ling Liu for the impressive

result achieved after

their five-year programmes,

two of which were spent at

DMEC.

Si è chiusa domenica 18 la VI

edizione della competizione

Motostudent che ha visto tra

i protagonisti anche il team

del Dipartimento di Meccanica

POLIMI MOTORCYCLE

FACTORY.

Tanti i successi raggiunti dal

team con il primo prototipo

elettrico NYX: migliore top

speed con una velocità

massima di 200 km/h, primo

posto nella gara di accelerazione

e premio come miglior

progetto industriale.

Nonostante i problemi tecnici

che non hanno permesso

al prototipo Petrol di correre

la gara finale, i ragazzi del

team sono tornati a casa

orgogliosi dei traguardi raggiunti

e pronti ad affrontare

le nuove sfide del futuro.

--

MOTOSTUDENT VI EDITION:

A SUCCESS FOR THE NYX

ELECTRIC MOTORCYCLE

On Sunday, the 18th of July

the VI Edition of the Motostudent

competition ended,

seeing the team POLIMI

MOTORCYCLE FACTORY of

the Department of Mechanical

Engineering among

the participants. The team

obtained many successful

results with the electric NYX

prototype: best top speed

reaching the maximum speed

of 200 km/h, first place

in the acceleration category

and first prize won for Best

Industrial Project.

Even though the Petrol

prototype couldn’t take part

to the final race due to some

technical issues, our team

members came back home

full of pride for their achievements

and ready to face the

new challenges ahead.

DMEC è ospitato presso

gli spazi della 17ª edizione

di Biennale di Venezia

Architettura con una

esposizione che illustra il

progetto H2020 “TheBlue-

GrowthFarm”. La mostra

è stata inaugurata il 10

Settembre e sarà aperta

fino al 21 Novembre 2021

presso lo Squero Castello.

Nell’esposizione sono

presenti 7 progetti internazionali,

che studiano

l’impatto della sostenibilità

sul design, l’architettura e

la tecnologia.

--

A PART OF OUR DEPART-

MENT ON DISPLAY AT THE

VENICE BIENNALE

DMEC is currently part

of the 17th International

Architecture Exhibition – La

Biennale di Venezia with

an exhibition dedicated to

the H2020 project called

“TheBlueGrowthFarm”. The

opening of the exhibition

was last September 10th

and will be hosted at Squero

Castello until November 21st,

2021. The exhibition involves

7 international projects

studying how sustainability

affects design, architecture

and technology.

meccanica magazine

125


NEWS

meccanica magazine

126

CONGRATULAZIONI AI PRIMI

LAUREATI MAGISTRALI IN

MOBILITY ENGINEERING!

Leticia Bala, Luigi Castagna,

Diego Franceschini, Manuel

Manzoni, Irene Motta e

Cristiano Gabriele Rombolà

sono i primi laureati magistrali

del nuovo corso di

studi in Mobility Engineering.

Un ringraziamento

speciale va ai 19 partner che

hanno supportato i nostri

studenti non solo nelle

attività didattiche, ma anche

organizzando seminari e

visite tecniche, proponendo

tesi in collaborazione con le

aziende, offrendo tirocini e

borse di studio.

--

CONGRATULATIONS TO OUR

FIRST POSTGRADUATES IN

MOBILITY ENGINEERING!

Leticia Bala, Luigi Castagna,

Diego Franceschini, Manuel

Manzoni, Irene Motta e

Cristiano Gabriele Rombolà

are the first postgraduate of

the new Programme in Mobility

Engineering. A special

thanks to our 19 partners,

who provided their support

to our students for all

teaching activities, including

seminars, hosted technical

visits, presented in-company

theses, offered internships

and scholarships.

SWITCH2PRODUCT: 4 PRO-

GETTI DMEC TRA I PRIMI 45

SELEZIONATI

Sono stati da poco annunciati

i primi 45 progetti selezionati

per l’edizione 2021

della call Switch2Product.

Quattro tra questi vedono il

coinvolgimento diretto del

Dipartimento di Meccanica:

ARTI (Digital Renaissance for

Cultural and Natural Heritage),

EtherARt, CHIRO e Food

E-box. Equilibrium modified

atmosphere packaging a

casa tua.

--

POLIMIREHAMOVE TEAM TO

THE DIGITAL CYBATHLON

Just announced the first 45

selected projects competing

in the 2021 edition of the

call Switch2Product. Four

of them directly involve the

Department of Mechanical

Engineering: ARTI (Digital

Renaissance for Cultural and

Natural Heritage), EtherARt,

CHIRO and Food E-box. Equilibrium

modified atmosphere

packaging a casa tua.

ALUMNI DMEC PREMIATI

DALLA FONDAZIONE UCIMU

PER LE MIGLIORI TESI DI

LAUREA

Fondazione UCIMU mette in

palio premi per tesi di laurea

o relazioni di tirocinio e

laurea magistrale inerenti

al manifatturiero meccanico.

Sabato 9 ottobre, lo

Speakers’ Corner di EMO

Milano ha ospitato la cerimonia

di premiazione della

45esima edizione dei Premi

UCIMU. Le tesi vincitrici

hanno riguardato un’ampia

gamma di applicazioni di

ingegneria meccanica e

manifatturiera.

--

DMEC ALUMNI AWARDED BY

THE UCIMU FOUNDATION

FOR THE BEST DEGREE

THESES

Fondazione UCIMU awards

graduation prizes for Internship

reports or Master’s

Thesis on topics related to

mechanical engineering and

manufacturing. On Sunday,

October 9th, EMO Speakers’

Corner in Milan hosted the

award ceremony of the 45th

edition of UCIMU Prizes. The

winning theses dealt with a

variety of Mechanical Engineering

and Manufacturing

applications.

DYNAMIS PRC QUARTI A VA-

RANO E OSPITI DELL’ESPO-

SIZIONE MUSEO STORICO

ALFA ROMEO

Dopo lo stop causa pandemia,

il Team Dynamis PRC

è tornato in pista e questa

volta con il primo prototipo

elettrico: DP12evo. Il team

ha gareggiato nell’ultima

edizione italiana della

Formula SAE tenutasi a

Varano de’ Melegari, Parma.

Dynamis PRC, nonostante

si sia dedicato allo sviluppo

di un prototipo interamente

elettrico da meno di un

anno, si è imposto come

miglior team italiano della

competizione ottenendo il

quarto posto nella classifica

genarle Overall Electric.

E mentre si festeggiano i

riconoscimenti ottenuti, il

team è già al lavoro per il

nuovo prototipo DP13e. La

stagione 2021-2022 si prospetta

molto interessante

per il nostro team in quanto

hanno appena stretto una

collaborazione con il Museo

Storico Alfa Romeo.

--

DYNAMIS PRC RANKS

FOURTH IN VARANO AND

SHOWCASES AT THE

EXHIBITION HOSTED BY

THE MUSEO STORICO ALFA

ROMEO

After the break due to

pandemics, the Dynamis

PRC Team is back in the race

and, this time, with its first

electric prototype. The team

raced in the latest Italian

edition of Formula SAE held

in Varano de’ Melegari, Parma.

Despite having started

developing a full-electric

car prototype just one year

ago, Dynamis PRC finished

the race as the best Italian

team, conquering the fourth

place in the Overall Electric

ranking. While the team

celebrates the obtained

rewards, students are already

working on the new DP13e

prototype for the upcoming

season. The same that

involves the team as a guest

of the temporary exhibition

hosted by Museo Storico Alfa

Romeo.


NEWS

DMEC IN ERITREA: L’INCON-

TRO TRA INGEGNERIA E

ARCHEOLOGIA

Nell’ambito del Progetto:

Sustainable Valorization of

the Eritrean Heritage Adulis

Archaeological Site (VITAE),

a inizio novembre 2021 si

è tenuta una missione in

Eritrea di uno gruppo di

ricercatori DMEC; il team è

stato impegnato nella formazione

di operatori eritrei,

un gruppo di 33 studenti di

archeologia, ingegneria e

chimica, in particolare per

quanto riguarda le tecniche

di scansione 3D dei reperti

e la creazione di prototipi

virtuali degli stessi.

--

DMEC IN ERITREA: WHEN

ENGINEERING MEETS

ARCHAEOLOGY

A group of researchers

of Politecnico di Milano,

involved in the activities

of the VITAE (Sustainable

Valorisation of the Eritrean

Heritage Adulis Archaeological

Site) project started last

November 2021, just came

back from Eritrea. During

their stay, our team engaged

in a training activity to make

local operators - a group

of 33 made of archaeology,

engineering and chemistry

students - acquire 3D scanning

techniques and skills

in the creation of virtual

prototypes of the archaeological

remains.

DMEC CON LA GVP ALL’E-

VENTO FOCUS LIVE

Dal 11 al 14 novembre si è

tenuto presso il museo della

Scienza e della Tecnica Leonardo

Da Vinci l’evento Focus

LIVE presso il quale DMEC in

collaborazione con la Galleria

del vento ha intrattenuto

i visitatori con i racconti

della ricerca e delle prove

strutturali realizzate presso

la struttura legate a costruzioni

iconiche della Città

di Milano: Bosco Verticale,

torre dell’Unicredit, ecc.

--

DMEC WITH WIND TUNNEL

AT THE FOCUS LIVE EVENT

From the 11th to the 14th

of November, the Museo

della Scienza e della Tecnica

Leonardo Da Vinci hosted

the Focus LIVE event. DMEC,

along with Wind Tunnel,

organised an exhibition

to share stories linked to

our research activities and

structural tests carried out

on iconic buildings of the

City of Milan: Bosco Vericale,

Unicredit skyscraper, etc.

TENUTO PRESSO DMEC

IL PRIMO WORKSHOP SUL

PROGETTO LIS4.0

È con piacere che annunciamo

il successo del primo

evento tenutosi presso

DMEC per condividere i

risultati delle attività di

ricerca legate al progetto

LIS4.0. Ricercatori, assegnisti

e dottorandi hanno

minuziosamente illustrato ai

loro colleghi gli esperimenti

condotti e i risultati raggiunti

dall’avvio del progetto. Ogni

presentazione ha portato

feedback interessanti,

trasformandosi in un momento

di condivisione molto

stimolante.

Grazie a tutti coloro che

hanno preso parte sia in

presenza che online.

--

THE FIRST WORKSHOP

ABOUT THE LIS4.0 PROJECT

HELD AT DMEC

Proud to announce the success

of the first event held at

DMEC to share the results of

the research activities of the

LIS4.0 project. Researchers,

research fellows and PhD

students carefully explained

to their colleagues the experiments

they carried out and

what they’ve accomplished

since the beginning of the

project. Each presentation

gave impressive feedback,

turning into a very inspiring

moment.

Thank you to everyone who

took part in the event, both

in-person and online.

DMEC TRA I VINCITORI DEL

BANDO PRIN

DMEC si è aggiudicato un

finanziamento nel contesto

dei bandi PRIN (Progetti di

Rilevante Interesse Nazionale,)

posizionandosi 5° sui 373

partecipanti della sezione

PE8 (Products and Processes

Engineering). Polimi è parte

di un consorzio che include

UniCusano, Tor Vergata e

Università di Genova.

--

DMEC AMONG THE WINNERS

OF A PRIN GRANT

DMEC received a Research

Project of Relevant National

Interest (PRIN) grant, ranking

5th out of 373 applicants

within the PE8 (Products

and Processes Engineering)

section of the scheme. PoliMi

is part of a consortium including

UniCusano, Tor Vergata

and University of Genoa.

meccanica magazine

127


DMEC Publications

January 2021

meccanica magazine

128

E. Maleki, N. Maleki, A. Fattahi, O. Unal, M. Guagliano, S. Bagherifard, Mechanical characterization and

interfacial enzymatic activity of AISI 316L stainless steel after surface nanocrystallization Surface and

Coatings Technology, 405, art. no. 126729

S. Gao, S. Chatterton, Naldi L., P. Pennacchi, Ball bearing skidding and over-skidding in large-scale

angular contact ball bearings: Nonlinear dynamic model with thermal effects and experimental results,

Mechanical Systems and Signal Processing, 147, art. no. 107120.

E. Maleki, N. Maleki, A. Fattahi, O. Unal, M. Guagliano, S. Bagherifard, Mechanical characterization and

interfacial enzymatic activity of AISI 316L stainless steel after surface nanocrystallization, Surface and

Coatings Technology, 405, art. no. 126729.

D. Liu, D. Liu, M. Guagliano, X. Xu, K. Fan, S. Bagherifard,Contribution of ultrasonic surface rolling

process to the fatigue properties of TB8 alloy with body-centered cubic structure, Journal of Materials

Science and Technology, 61, pp. 63-74.

F. Defant, P. Albertelli, A novel harmonic solution for chatter stability of time periodic systems, Journal

of Sound and Vibration, 490, art. no. 115719.

G.W. Scurati, M. Bertoni, S. Graziosi, F. Ferrise, Exploring the use of virtual reality to support

environmentally sustainable behavior: A framework to design experiences, Sustainability (Switzerland),

13 (2), art. no. 943, pp. 1-20.

M. De Landro, I. Espíritu García-Molina, M. Barberio, E.Felli, V. Agnus, M. Pizzicannella, M. Diana, E.Zappa,

P. Saccomandi, Hyperspectral imagery for assessing laser-induced thermal state change in liver,

Sensors (Switzerland), 21 (2), art. no. 643, pp. 1-19.

Z. Lin, A. Matta, S. Du, A budget allocation strategy minimizing the sample set quantile for initial

experimental design, IISE Transactions, 53 (1), pp. 39-57.

P. Pennacchi, S. Chatterton, A. Vania, D. Massocchi, Definition of damage indices for railway axle

bearings: Results of long-lasting tests, Machines, 9 (1), art. no. 12, pp. 1-17.

A. De Rosa, R. Kulkarni, A. Qazizadeh, M. Berg, E. Di Gialleonardo, A. Facchinetti, S. Bruni, S., Monitoring

of lateral and cross level track geometry irregularities through onboard vehicle dynamics measurements

using machine learning classification algorithms, Proceedings of the Institution of Mechanical

Engineers, Part F: Journal of Rail and Rapid Transit, 235 (1), pp. 107-120.

E. Maleki, S. Bagherifard, M. Bandini, M. Guagliano, Surface post-treatments for metal additive

manufacturing: Progress, challenges, and opportunities, Additive Manufacturing, 37, art. no. 101619.

F. Belelli, R. Casati, M. Riccio, A. Rizzi, M.Y. Kayacan, M. Vedani, Development of a novel high-temperature

al alloy for laser powder bed fusion, Metals, 11 (1), art. no. 35, pp. 1-12.

F. Sausto, G. Marchese, E. Bassini, M. Calandri, S. Biamino, D. Ugues, S. Foletti, S. Beretta, Anisotropic

mechanical and fatigue behaviour of Inconel718 produced by SLM in LCF and high-temperature

conditions, Fatigue and Fracture of Engineering Materials and Structures, 44 (1), pp. 271-292.

M. Giuranna, P. Wolkenberg, D. Grassi, A. Aronica, S. Aoki, D. Scaccabarozzi, B. Saggin, V. Formisano,

The current weather and climate of Mars: 12 years of atmospheric monitoring by the Planetary Fourier

Spectrometer on Mars Express, Icarus, 353, art. no. 113406.

E.R. Delgado Ramírez, J.E. Perez Ipiña, E.M. Castrodeza, Analysis of the S pb

method for geometries

where η pl

depends on a/W, Engineering Fracture Mechanics, 241, art. no. 107416.

J. Wójcicki, T. Tolio, G. Bianchi,Cross-level model of a transfer machine energy demand using a twomachine

generalized threshold representation, Journal of Manufacturing Systems, 58, pp. 44-58.

G. Lugaresi, V.V. Alba, A. Matta, Lab-scale Models of Manufacturing Systems for Testing Real-time

Simulation and Production Control Technologies, Journal of Manufacturing Systems, 58, pp. 93-108.

Cited 1 time.

V.V. Krishna, D. Jobstfinke, S. Melzi, M. Berg, An integrated numerical framework to investigte the

running safety of overlong freight trains, Proceedings of the Institution of Mechanical Engineers, Part F:

Journal of Rail and Rapid Transit, 235 (1), pp. 47-60.

G. Zong, H. Ren, H.R. Karimi, Event-Triggered Communication and Annular Finite-Time H∞ Filtering for

Networked Switched Systems, IEEE Transactions on Cybernetics, 51 (1), art. no. 9162476, pp. 309-317.

N. Robuschi, C. Zeile, S. Sager, F. Braghin, Multiphase mixed-integer nonlinear optimal control of hybrid

electric vehicles, Automatica, 123, art. no. 109325.

X. Gong, N. Geng, Y. Zhu, A. Matta, E. Lanzarone, A Matheuristic Approach for the Home Care Scheduling

Problem with Chargeable Overtime and Preference Matching, IEEE Transactions on Automation

Science and Engineering, 18 (1), art. no. 9268951, pp. 282-298.

D. Chadefaux, A.P. Moorhead, P. Marzaroli, S. Marelli, E. Marchetti, M. Tarabini, Vibration transmissibility

and apparent mass changes from vertical whole-body vibration exposure during stationary and

propelled walking, Applied Ergonomics, 90, art. no. 103283.

C. Ren, S. He, X. Luan, F. Liu, H.R. Karimi, Finite-Time L<inf>2</inf>-Gain Asynchronous Control

for Continuous-Time Positive Hidden Markov Jump Systems via T-S Fuzzy Model Approach, IEEE

Transactions on Cybernetics, 51 (1), art. no. 9113242, pp. 77-87.

B. Jiang, H.R. Karimi, S. Yang, C. Gao, Y. Kao, Observer-Based Adaptive Sliding Mode Control for

Nonlinear Stochastic Markov Jump Systems via T-S Fuzzy Modeling: Applications to Robot Arm Model,

IEEE Transactions on Industrial Electronics, 68 (1), art. no. 8960531, pp. 466-477.

J. Liu, T. Yin, D. Yue, H.R. Karimi, J. Cao, Event-Based Secure Leader-Following Consensus Control

for Multiagent Systems with Multiple Cyber Attacks, IEEE Transactions on Cybernetics, 51 (1), art. no.

9003516, pp. 162-173.

C. Re, S. He, X. Luan, F. Liu, H.R. Karimi, Finite-Time L2-Gain Asynchronous Control for Continuous-

Time Positive Hidden Markov Jump Systems via T-S Fuzzy Model Approach (2021) IEEE Transactions on

Cybernetics, 51 (1), art. no. 9113242, pp. 77-87.

X. Huo, H.R. Karimi, X. Zhao, B. Wang, G. Zong, Adaptive-Critic Design for Decentralized Event-Triggered

Control of Constrained Nonlinear Interconnected Systems Within an Identifier-Critic Framework (2021)

IEEE Transactions on Cybernetics.

D. Zhang, Y. Chen, F. Guo, H.R. Karimi, H. Dong, Q. Xuan, A New Interpretable Learning Method for Fault

Diagnosis of Rolling Bearings (2021) IEEE Transactions on Instrumentation and Measurement, 70, art.

no. 9290108.

E. Maleki, N. Maleki, A. Fattahi, O. Unal, M. Guagliano, S. Bagherifard, Mechanical characterization and

interfacial enzymatic activity of AISI 316L stainless steel after surface nanocrystallization (2021) Surface

and Coatings Technology, 405, art. no. 126729.

F. Tessarolo, et al, Testing surgical face masks in an emergency context: The experience of italian

laboratories during the COVID-19 pandemic crisis (2021) International Journal of Environmental

Research and Public Health, 18 (4), art. no. 1462, pp. 1-19.

G. Battista, G. Herold, E. Sarradj, P. Castellini, P. Chiariotti, IRLS based inverse methods tailored to

volumetric acoustic source mapping (2021) Applied Acoustics, 172, art. no. 107599.

N. Riboldi, G.W. Scurati, F. Ferrise, M. Bordegoni, S, Pedrini, Improving maintenance services through

virtual reality (2021) Manufacturing In The Era Of 4th Industrial Revolution: A World Scientific Reference

(In 3 Volumes), pp. 49-72.

F. Cadini, L. Lomazzi, M. Ferrater Roca, C. Sbarufatti, M. Giglio, Neutralization of temperature effects

in damage diagnosis of MDOF systems by combinations of autoencoders and particle filters (2021)

Mechanical Systems and Signal Processing, 162, art. no. 108048.

W. Terkaj, Q. Qi, M. Urgo, P.J. Scott, X. Jiang, Multi-scale modelling of manufacturing systems using

ontologies and delta-lenses (2021) CIRP Annals, 70 (1), pp. 361-364.

S. Petrò, G Moroni, Statistics-based decision rules for the ISO 10360 series of standard tests (2021) CIRP

Annals, 70 (1), pp. 423-426.

A. Gilioli F. Cadini, L. Abbiati, G.A.G. Solero, M. Fossati, A. Manes, L. Carnelli, C. Lazzari, S, Cardamone,

M. Giglio, Finite element modelling of a parabolic trough collector for concentrated solar power (2021)

Energies, 14 (1), art. no. 209.

M. Vignati, E. Sabbioni, A cooperative control strategy for yaw rate and sideslip angle control combining

torque vectoring with rear wheel steering (2021) Vehicle System Dynamics.

V.V. Krishna, D. Jobstfinke, S. Melzi, M. Berg, An integrated numerical framework to investigate the

running safety of overlong freight trains (2021) Proceedings of the Institution of Mechanical Engineers,

Part F: Journal of Rail and Rapid Transit, 235 (1), pp. 47-60.

Li, Z., Zhai, J., Karimi, H.R. Adaptive finite-time super-twisting sliding mode control for robotic

manipulators with control backlash (2021) International Journal of Robust and Nonlinear Control, 31 (17),

pp. 8537-8550.

S.S. Christensen, S. Manzoni, M. Vanali, A. Cigada, A. Brandt, Quantitative Study on the Modal Parameters

Estimated Using the PLSCF and the MITD Methods and an Automated Modal Analysis Algorithm (2021)


Conference Proceedings of the Society for Experimental Mechanics Series, pp. 159-168.

F. Ballo, M. Carboni, G. Mastinu, G. Previati, Wires for spring construction: full scale fatigue experimental

tests (2021) Meccanica.

M. Ozdemir, V. Chatziioannou, J. Verlinden, G. Cascini, M. Pàmies-Vilà, Towards 3D printed saxophone

mouthpiece personalization: Acoustical analysis of design variations (2021) Acta Acustica, 5, art. no. 46.

A. Casaroli, M. Boniardi, R. Gerosa, B. Rivolta, Metallurgical Analysis as a Useful Method for Fire

Investigation: the Case of Galvanized Steel Sheets (2021) Fire Technology.

S.K. Gupta, H.A. Bruck, Y. Chen, V.N. Krovi, C. Schlenoff, M. Bordegoni, J. Ritchie, Manufacturing in the

era of 4th industrial revolution: A world scientific reference (In 3 Volumes) (2021) Manufacturing In The

Era Of 4th Industrial Revolution: A World Scientific Reference (In 3 Volumes), pp. 1-1001.

M.Bordegoni, S.K. Gupta, J.M. Ritchie, Introduction (2021) Manufacturing In The Era Of 4th Industrial

Revolution: A World Scientific Reference (In 3 Volumes), pp. 1-16.

D. Oboe, L. Colombo, C. Sbarufatti, M. Giglio, Shape Sensing with Inverse Finite Element Method on a

Composite Plate Under Compression Buckling (2021) Lecture Notes in Civil Engineering, 128, pp. 342-

351.

C. Sbarufatti, B. Patel, X.F. Sánchez-Romate, D. Scaccabarozzi, S. Cinquemani, A. Jiménez-Suárez, A.

Ureña, Self-sensing of CNT-Doped GFRP Panels During Impact and Compression After Impact Tests

(2021) Lecture Notes in Civil Engineering, 128, pp. 527-536.

A. Beligni, K. Kowalczyk, C. Sbarufatti, M. Giglio, An Impact Monitoring System for Aeronautical

Structures (2021) 127, pp. 636-646.

L. Colombo, D. Oboe, C. Sbarufatti, M. Giglio, Damage Identification by Inverse Finite Element Method on

Composite Structures Subject to Impact Damage (2021) 127, pp. 553-563.

M. Carboni, A. Bernasconi, Acoustic Emission Based Monitoring of Fatigue Damage in CFRP-CFRP

Adhesive Bonded Joints (2021) 127, pp. 605-615.

Z. Li, E. Gariboldi, Analysis of the applicability of effective thermophysical properties to composite phase

change materials (2021) Materials Science Forum, 1016 MSF, pp. 813-818.

C. Confalonieri, E. Gariboldi, Effect of different production processes on metallic composite phase

change materials for thermal energy storage (2021) Materials Science Forum, 1016 MSF, pp. 359-365.

X. Han, X. Zhao, H.R. Karimi, D. Wang, G. Zong, Adaptive Optimal Control for Unknown Constrained

Nonlinear Systems With a Novel Quasi-Model Network (2021) IEEE Transactions on Neural Networks and

Learning Systems.

M. Manzini, M. Urgo, An Approximate Approach for the Verification of Process Plans with an Application

to Reconfigurable Pallets (2021) Lecture Notes in Mechanical Engineering, pp. 105-120.

N. Frigerio, A. Matta, Energy Efficient State Control of Machine Tool Components: A Multi-sleep Control

Policy (2021) Lecture Notes in Mechanical Engineering, pp. 43-59.

A. Angius, M. Colledani, Lead Time Analysis of Manufacturing Systems with Time-Driven Rework

Operations (2021) Lecture Notes in Mechanical Engineering, pp. 153-167.

A. Cigada, F. Lucà, M. Malavisi, G. Mancini, Structural health monitoring of a damaged operating bridge:

Asupervised learning case study (2021) Conference Proceedings of the Society for Experimental

Mechanics Series, pp. 169-177.

P. Pennacchi, S. Chatterton, A. Vania, Diagnostics of Roller Bearings Faults During Long-Lasting Tests

(2021) Mechanisms and Machine Science, 91, pp. 687-698.

February 2021

E. Maleki, M.J. Mirzaali, M. Guagliano, S. Bagherifard, Analyzing the mechano-bactericidal effect of nanopatterned

surfaces on different bacteria species, Surface and Coatings Technology, 408, art. no. 126782.

D. Paloschi, K.A. Bronnikov, S. Korganbayev, A.A. Wolf, A. Dostovalov, P. Saccomandi, 3D Shape Sensing

with Multicore Optical Fibers: Transformation Matrices Versus Frenet-Serret Equations for Real-Time

Application, IEEE Sensors Journal, 21 (4), art. no. 9233257, pp. 4599-4609.

F. Zanelli, F. Castelli-Dezza, D. Tarsitano, M. Mauri, M.L. Bacci, G. Diana, Design and field validation of a

low power wireless sensor node for structural health monitoring†, Sensors (Switzerland), 21 (4), art. no.

1050, pp. 1-17.

D. Oboe, L. Colombo, C. Sbarufatti, M. Giglio, Shape sensing of a complex aeronautical structure with

inverse finite element method, Sensors (Switzerland), 21 (4), art. no. 1388, pp. 1-25.

P. Albertelli, M. Monno, Energy assessment of different cooling technologies in Ti-6Al-4V milling,

International Journal of Advanced Manufacturing Technology, 112 (11-12), pp. 3279-3306.

F. Sausto, L. Patriarca, S. Foletti, S. Beretta, E. Vacchieri, Strain localizations in notches for a coarsegrained

Ni-based superalloy: Simulations and experiments, 14 (3), art. no. 564, pp. 1-18.

S. Petrò, G. Moroni, A statistical point of view on the ISO 10360 series of standards for coordinate

measuring systems verification, Measurement: Journal of the International Measurement

Confederation, 172, art. no. 108937.

L. Colombo, D. Oboe, C. Sbarufatti, F. Cadini, S. Russo, M. Giglio, Shape sensing and damage identification

with iFEM on a composite structure subjected to impact damage and non-trivial boundary conditions,

Mechanical Systems and Signal Processing, 148, art. no. 107163.

R. Scazzosi, M. Giglio, A. Manes, Experimental and numerical investigation on the perforation resistance

of double-layered metal shield under high-velocity impact of armor-piercing projectiles, Materials, 14

(3), art. no. 626, pp. 1-20.

L. Caprio, A.G. Demir, B. Previtali, Nonintrusive estimation of subsurface geometrical attributes of

the melt pool through the sensing of surface oscillations in laser powder bed fusion, Journal of Laser

Applications, 33 (1), art. no. 012035.

H. Skyvulstad, T. Argentini, A. Zasso, O. Øiseth, Nonlinear modelling of aerodynamic self-excited forces:

An experimental study, Journal of Wind Engineering and Industrial Aerodynamics, 209, art. no. 104491.

R. Scazzosi, M. Giglio, A. Manes, Experimental and numerical investigation on the perforation resistance

of double-layered metal shields under high-velocity impact of soft-core projectiles, Engineering

Structures, 228, art. no. 111467.

L. Xu, S. Chatterton, P. Pennacchi, Rolling element bearing diagnosis based on singular value

decomposition and composite squared envelope spectrum, Mechanical Systems and Signal Processing,

148, art. no. 107174.

R. Casati, M. Coduri, S. Checchia, M. Vedani, Insight into the effect of different thermal treatment routes

on the microstructure of AlSi7Mg produced by laser powder bed fusion, Characterization, 172, art. no.

110881.

F. Bruzzo, G. Catalano, A.G. Demir, B. Previtali, Surface finishing by laser re-melting applied to robotized

laser metal deposition, Optics and Lasers in Engineering, 137, art. no. 106391.

G. Previati, Large oscillations of the trifilar pendulum: Analytical and experimental study, Mechanism

and Machine Theory, 156, art. no. 104157.

M. Jambor, D. Kajánek, S. Fintová, J. Bronček, B. Hadzima, M. Guagliano, S. Bagherifard, Directing

Surface Functions by Inducing Ordered and Irregular Morphologies at Single and Two-Tiered Length

Scales, Engineering Materials, 23 (2), art. no. 2001057.

L. Colombo, C. Sbarufatti, L. Dal Bosco, D. Bortolotti, M.Dziendzikowski, K. Dragan, F. Concli, M. Giglio,

Numerical and experimental verification of an inverse-direct approach for load and strain monitoring in

aeronautical structures, Structural Control and Health Monitoring, 28 (2), art. no. e2657.

S. Karimi, B. Mohammadikalakoo, P. Schito, Performance enhancement of single dielectric barrier

discharge flow control actuators by means of rear linking tunnels on a reference bluff body using CFD,

Journal of Wind Engineering and Industrial Aerodynamics, 209, art. no. 104488.

Z. Wang, J. Fu, A. Manes, Discrete fracture and size effect of aluminosilicate glass under flexural loading:

Monte Carlo simulations and experimental validation, Theoretical and Applied Fracture Mechanics, 111,

art. no. 102864.

L. Roveda, M. Magni, M. Cantoni, D. Piga, G. Bucca, Human–robot collaboration in sensorless assembly

task learning enhanced by uncertainties adaptation via Bayesian Optimization, Robotics and

Autonomous Systems, 136, art. no. 103711.

L. Wang, H.R. Karimi, Gu, J., Stability Analysis for Interval Type-2 Fuzzy Systems by Applying Homogenous

Polynomially Membership Functions Dependent Matrices and Switching Technique, IEEE Transactions

on Fuzzy Systems, 29 (2), art. no. 9237956, pp. 203-212.

A. Casaroli, M. Boniardi, R. Dalipi, L. Borgese, L.E. Depero, Procedure optimization of type 304 and 420B

stainless steels release in acetic acid, Food Control, 120, art. no. 107509.

S. Castagnet, C. Nadot-Martin, N. Fouchier, E. Conrado, A. Bernasconi, Fatigue life assessment in

notched injection-molded specimens of a short-glass fiber reinforced Polyamide 6 with different

injection gate locations, International Journal of Fatigue, 143, art. no. 105968.

S. Asadi, L. Bianchi, M. De Landro, S. Korganbayev, E. Schena, P. Saccomandi, Laser-induced

optothermal response of gold nanoparticles: From a physical viewpoint to cancer treatment application,

Journal of Biophotonics, 14 (2), art. no. e202000161.

M. Zago, M. Tarabini, M.D. Spiga, C. Ferrario, F. Bertozzi, C. Sforza, M. Galli, Machine-learning based

determination of gait events from foot-mounted inertial units, Sensors (Switzerland), 21 (3), art. no. 839,

pp. 1-13.

J.D. Velazco-Garcia, N.V. Navkar, S. Balakrishnan, J. Abi-Nahed, K. Al-Rumaihi, A. Darweesh, A. Al-

Ansari, E.G. Christoforou, M. Karkoub, E.L. Leiss, P. Tsiamyrtzis, N.V. Tsekos, End-user evaluation of

software-generated intervention planning environment for transrectal magnetic resonance-guided

prostate biopsies, International Journal of Medical Robotics and Computer Assisted Surgery, 17 (1), pp.

1-12.

A. Beisenova, A. Issatayeva, Z. Ashikbayev, M. Jelbuldina, A. Aitkulov, V. Inglezakis, W. Blanc, P.

Saccomandi, C. Molardi, D. Tosi, Distributed sensing network enabled by high-scattering MgO-doped

optical fibers for 3d temperature monitoring of thermal ablation in liver phantom,(Switzerland), 21 (3),

art. no. 828, pp. 1-10.

G. Cosoli, A. Mobili, N. Giulietti, P. Chiariotti, G. Pandarese, F. Tittarelli, T. Bellezze, N. Mikanovic, G.M.

Revel, Performance of concretes manufactured with newly developed low-clinker cements exposed

to water and chlorides: Characterization by means of electrical impedance measurements (2021)

Construction and Building Materials, 271, art. no. 121546.

M. Pesenti, A. Antonietti, M. Gandolla, A. Pedrocchi, Towards a functional performance validation

standard for industrial low-back exoskeletons: State of the art review (2021) Sensors (Switzerland), 21

(3), art. no. 808, pp. 1-23.

M. Jambor, D. Kajánek, S. Fintová, J. Bronček, B. Hadzima, M. Guagliano, S. Bagherifard, Directing

Surface Functions by Inducing Ordered and Irregular Morphologies at Single and Two-Tiered Length

Scales(2021) Advanced Engineering Materials, 23 (2), art. no. 2001057.

N. Lecis, R. Beltrami, M. Mariani, Binder jetting 3D printing of 316 stainless steel: Influence of process

parameters on microstructural and mechanical properties (2021) Metallurgia Italiana, 113 (2), pp. 31-41.

P. Stabile, F. Ballo, G. Mastinu, M. Gobbi, An ultra-efficient lightweight electric vehicle—power demand

analysis to enable lightweight construction (2021) Energies, 14 (3), art. no. 766.

A. Cigada, F. Lucà, M. Malavisi, G. Mancini, A damage detection strategy on bridge external tendons

through long-time monitoring (2021) Conference Proceedings of the Society for Experimental Mechanics

Series, pp. 159-168.

meccanica magazine

129


meccanica magazine

130

P.N.C. Girotti, I. Königsrainer, U. Pastorino, A.L. Girotti, F. Rosa, Optimal chest wall prosthesis:

Comparative study of mechanical and functional behavior (2021) European Journal of Cardio-thoracic

Surgery, 59 (2), pp. 302-308.

F. Marchegiani, E. Noll, P. Riva, S.-H. Kong, P. Saccomandi, G. Vita, V. Lindner, I.J. Namer, J. Marescaux,

P. Diemunsch, M. Diana, Effects of Warmed and Humidified CO2 Surgical Site Insufflation in a Novel

Experimental Model of Magnetic Compression Colonic Anastomosis (2021) Surgical Innovation, 28 (1),

pp. 7-17.

S. Arrigoni, F. Braghin, F. Cheli, MPC trajectory planner for autonomous driving solved by genetic

algorithm technique (2021) Vehicle System Dynamics.

M. Khayyat, S. Arrigoni, F. Cheli, Development and simulation-based testing of a 5G-Connected

intersection AEB system (2021) Vehicle System Dynamics.

E. Vasileska, M. Pacher, B. Previtali, In-line monitoring of focus shift by kerf width detection with

coaxial thermal imaging during laser cutting (2021) International Journal of Advanced Manufacturing

Technology.

G. Diana, E. Sabbioni, C. Somaschini, D. Tarsitano, P. Cavicchi, M. Di Mario, L. Labbadia, Full-scale

derailment tests on freight wagons (2021) Vehicle System Dynamics.

March 2021

M. Cenedese, E. Belloni, F. Braghin, Interaction of Bragg scattering bandgaps and local resonators in

mono-coupled periodic structures, Journal of Applied Physics, 129 (12), art. no. 124501.

F. Belelli, R. Casati, F. Larini, M. Riccio, M. Vedani, Investigation on two Ti–B-reinforced Al alloys for Laser

Powder Bed Fusion, Materials Science and Engineering A, 808, art. no. 140944.

N. Frigerio, C.F.A. Cornaggia, A. Matta, An adaptive policy for on-line Energy-Efficient Control of machine

tools under throughput constraint N. Frigerio et al., Journal of Cleaner Production, 287, art. no. 125367.

G. Bianchi, S. Cinquemani, F. Resta, Bio-inspired design of an underwater robot exploiting fin undulation

propulsion, Applied Sciences (Switzerland), 11 (6), art. no. 2556.

Y. Xia, E. Riva, M.I.N. Rosa, G. Cazzulani, A. Erturk, F. Braghin, M. Ruzzene, Experimental Observation of

Temporal Pumping in Electromechanical Waveguides, Physical Review Letters, 126 (9), art. no. 095501.

S. Petrò, C. Reina, G. Moroni, X-ray CT-Based Defect Evaluation of Continuous CFRP Additive

Manufacturing, Journal of Nondestructive Evaluation, 40 (1), art. no. 7.

F. Buccino, C. Colombo, L.M. Vergani, A review on multiscale bone damage: From the clinical to the

research perspective, Materials, 14 (5), art. no. 1240, pp. 1-25.

G. Cazzulani, A. Silva, P. Pennacchi, Optimization of continuous sensor placement for modal analysis:

Application to an optical backscatter reflectometry strain sensor, Mechanical Systems and Signal

Processing, 150, art. no. 107242.

Z. Lin, N. Frigerio, A. Matta, S. Du, Multi-fidelity surrogate-based optimization for decomposed buffer

allocation problems, OR Spectrum, 43 (1), pp. 223-253.

G. Riccardo, B. Rivolta, C. Gorla, F. Concli, Cyclic behavior and fatigue resistance of AISI H11 and AISI H13

tool steels, Engineering Failure Analysis, 121, art. no. 105096.

N. Milan, P. Parenti, M. Annoni, M. Sorgato, G. Lucchetta, Innovative fabrication of diffractive surfaces

on plastic parts via textures micromilled on NiP injection moulds, International Journal of Advanced

Manufacturing Technology, 113 (5-6), pp. 1347-1359.

D. Ma, S. Campos Amico, M. Giglio, A. Manes, Effect of fibre bundle uncertainty on the tensile and shear

behaviour of plain-woven composites, Composite Structures, 259, art. no. 113440.

A. Chirico, G.W. Scurati, C. Maffi, S. Huang, S. Graziosi, F. Ferrise, A. Gaggioli, Designing virtual

environments for attitudes and behavioral change in plastic consumption: a comparison between

concrete and numerical information, Virtual Reality, 25 (1), pp. 107-121.

C. Ruzzo, S. Muggiasca, G. Malara, F. Taruffi, M. Belloli, M. Collu, L. Li, G. Brizzi, F. Arena, Scaling

strategies for multi-purpose floating structures physical modeling: state of art and new perspectives,

Applied Ocean Research, 108, art. no. 102487.

H. Ren, G. Zong, H.R. Karimi, Asynchronous Finite-Time Filtering of Markov Jump Nonlinear Systems and

Its Applications, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51 (3), art. no. 8681275,

pp. 1725-1734.

J. Chen, M. Guagliano, M. Shi, X. Jiang, H. Zhou, A comprehensive overview of bamboo scrimber and its

new development in China, European Journal of Wood and Wood Products, 79 (2), pp. 363-379.

H. Wan, X. Luan, H.R. Karimi, F. Liu, Dynamic Self-Triggered Controller Codesign for Markov Jump

Systems, IEEE Transactions on Automatic Control, 66 (3), art. no. 9086137, pp. 1353-1360.

Y. Lei, H.R. Karimi, L. Cen, X. Chen, Y. Xie, Processes soft modeling based on stacked autoencoders and

wavelet extreme learning machine for aluminum plant-wide application, Control Engineering Practice,

108, art. no. 104706.

Z. Zhang, L. Zheng, Z. Chen, L. Kong, H.R. Karimi, Mutual-Collision-Avoidance Scheme Synthesized

by Neural Networks for Dual Redundant Robot Manipulators Executing Cooperative Tasks, IEEE

Transactions on Neural Networks and Learning Systems, 32 (3), art. no. 9072323, pp. 1052-1066.

B. Jiang, H.R. Karimi, S. Yang, Y. Kao, C. Gao, Takagi-Sugeno Model-Based Reliable Sliding Mode Control

of Descriptor Systems with Semi-Markov Parameters: Average Dwell Time Approach, IEEE Transactions

on Systems, Man, and Cybernetics: Systems, 51 (3), art. no. 8661740, pp. 1549-1558.

E. De Vita, M. De Landro, C. Massaroni, A. Iadicicco, P. Saccomandi, E. Schena, S. Campopiano, Fiber

Optic Sensors-Based Thermal Analysis of Perfusion-Mediated Tissue Cooling in Liver Undergoing Laser

Ablation, IEEE Transactions on Biomedical Engineering, 68 (3), art. no. 9126195, pp. 1066-1073.

K. Chaib-Draa, A. Zemouche, F. Bedouhene, R. Rajamani, Y. Wang, H.R. Karimi, T.M. Laleg-Kirati,

Finite-time estimation algorithms for LPV discrete-time systems with application to output feedback

stabilization, 125, art. no. 109436, .

A. Mantelli, A. Romani, R. Suriano, M. Diani, M. Colledani, E. Sarlin, S. Turri, M. Levi, Uv-assisted 3d

printing of polymer composites from thermally and mechanically recycled carbon fibers, Polymers, 13

(5), art. no. 726, pp. 1-15.

A. Abba, et al., The novel Mechanical Ventilator Milano for the COVID-19 pandemic, Physics of Fluids, 33

(3), art. no. 037122.

L. Benedetti, P. Borlenghi, M. D’Angelo, A. Menghini, G. Zonno, F. Ballio, M. Belloli, C. Gentile,

Multidisciplinary Investigations of a Steel–Concrete Composite Bridge (2021) Lecture Notes in Civil

Engineering, 156, pp. 793-807.

B. Liu, S. Bruni, Influence of individual wheel profiles on the assessment of running dynamics of a rail

vehicle by numerical simulation: a case study (2021) Vehicle System Dynamics.

F, Concli, L. Pierri, C. Sbarufatti, A model-based SHM strategy for gears-development of a hybrid FEManalytical

approach to investigate the effects of surface fatigue on the vibrational spectra of a backto-back

M. Gandolla, L. Niero, F. Molteni, F. Guanziroli, N.S. Ward, A. Pedrocchi, Brain plasticity mechanisms

underlying motor control reorganization: Pilot longitudinal study on post-stroke subjects (2021) Brain

Sciences, 11 (3), art. no. 329, pp. 1-17.

I. Maor, S. Asadi, S. Korganbayev, D. Dahis, Y. Shamay, E. Schena, H. Azhari, P. Saccomandi, I.S.

Weitz, Laser-induced thermal response and controlled release of copper oxide nanoparticles from

multifunctional polymeric nanocarriers (2021) Science and Technology of Advanced Materials, 22 (1), pp.

218-233.

L. Malagodi, E. Lanzarone, A. Matta, Home care vehicle routing problem with chargeable overtime and

strict and soft preference matching (2021) Health Care Management Science, 24 (1), pp. 140-159.

E. Di Gialleonardo, M. Santelia, S. Bruni, A. Zolotas, A simple active carbody roll scheme for hydraulically

actuated railway vehicles using internal model control (2021) ISA Transactions.

H. Yan, M. Grasso, K. Paynabar, B.M. Colosimo, Real-time detection of clustered events in video-imaging

data with applications to additive manufacturing (2021) IISE Transactions.

Z. Ashikbayeva, A. Aitkulov, M. Jelbuldina, A. Issatayeva, A. Beisenova, C. Molardi, P. Saccomandi, W.

Blanc, V.J. Inglezakis, D. Tosi, Gold nanoparticles-mediated laser ablation therapy monitored with optical

fibers sensing network in real time (2021) Progress in Biomedical Optics and Imaging - Proceedings of

SPIE, 11628, art. no. 116280Y.

K.A. Goggins, D. Chadefaux, M. Tarabini, M. Arsenault, W.B. Lievers, T. Eger, Four degree-of-freedom

lumped parameter model of the foot-ankle system exposed to vertical vibration from 10 to 60 Hz with

varying centre of pressure conditions (2021) Ergonomics, 64 (8), pp. 1002-1017.

April 2021

D. Oboe, L. Colombo, C. Sbarufatti, M. Giglio, Comparison of strain pre-extrapolation techniques for

shape and strain sensing by iFEM of a composite plate subjected to compression buckling, Composite

Structures, 262, art. no. 113587.

D. Ma, P. Verleysen, S. Chandran, M. Giglio, A. Manes, A modified peridynamic method to model the

fracture behaviour of nanocomposites, Engineering Fracture Mechanics, 247, art. no. 107614.

Z. Wang, D. Ma, T. Suo, Y. Li, A. Manes, Investigation into different numerical methods in predicting

the response of aluminosilicate glass under quasi-static and impact loading conditions, International

Journal of Mechanical Sciences, 196, art. no. 106286.

E. Maleki, O. Unal, M. Guagliano, S. Bagherifard, The effects of shot peening, laser shock peening and

ultrasonic nanocrystal surface modification on the fatigue strength of Inconel 718, Materials Science

and Engineering A, 810, art. no. 141029.

C. Cantoni, M. Gobbi, G. Mastinu, A. Meschini, S. Vicchi, Tire and Brake Interaction - A New Test Rig to

Study Wheel Locking, SAE Technical Papers.

N. Frigerio, L. Marzano, A. Matta, An Online Policy for Energy-Efficient State Control of Manufacturing

Equipment, IEEE Transactions on Automation Science and Engineering, 18 (2), art. no. 9308932, pp.

705-716.

F. Concli, L. Bonaiti, R. Gerosa, L. Cortese, F. Nalli, F. Rosa, C. Gorla, Bending fatigue behavior of 17-4 ph

gears produced by additive manufacturing, Applied Sciences (Switzerland), 11 (7), art. no. 3019.

M. Fossati, M. Pagani, M. Giglio, A. Manes, Fatigue crack propagation in a helicopter component

subjected to impact damage, Defence Technology, 17 (2), pp. 416-428.

P. Coppola, F. Silvestri, Gender inequality in safety and security perceptions in railway stations,

(Switzerland), 13 (7), art. no. 4007.

G. Lugaresi, A. Matta, Automated manufacturing system discovery and digital twin generation, Journal

of Manufacturing Systems, 59, pp. 51-66.

Z. Li, C. Confalonieri, E. Gariboldi, Numerical and experimental evaluation of thermal conductivity: An

application to al-sn alloys, Metals, 11 (4), art. no. 650.

J. Volpp, F. Belelli, R. Casati, Fluctuations of tracks and layers during aluminium laser powder-bed

fusion, Applied Sciences (Switzerland), 11 (7), art. no. 3132.

M. Berardengo, S. Manzoni, J. Høgsberg, M. Vanali, Vibration control with piezoelectric elements: The

indirect measurement of the modal capacitance and coupling factor, Mechanical Systems and Signal

Processing, 151, art. no. 107350.

S. Derosa, P. Nåvik, A. Collina, A. Rønnquist, Railway catenary tension force monitoring via the analysis

of wave propagation in cables, Proceedings of the Institution of Mechanical Engineers, Part F: Journal


of Rail and Rapid Transit, 235 (4), pp. 494-504.

Y. Tang, C. Li, A. Matta, Q. Chang, Special Issue on Intelligent Energy Solutions to Sustainable Production

and Service Automation, IEEE Transactions on Automation Science and Engineering, 18 (2), art. no.

9397468, pp. 615-617.

D.E. Quadrelli, R. Craster, M. Kadic, F. Braghin, Elastic wave near-cloaking, Extreme Mechanics Letters,

44, art. no. 101262.

X. Li, Z. Sun, Y. Tang, H.R. Karimi, Adaptive Event-Triggered Consensus of Multiagent Systems on

Directed Graphs, IEEE Transactions on Automatic Control, 66 (4), art. no. 9112274, pp. 1670-1685.

A.S. Vishwanath, K. Rane, J. Schaper, M. Strano, R. Casati, Rapid production of AZ91 Mg alloy by extrusion

based additive manufacturing process (2021) Powder Metallurgy, 64 (5), pp. 370-377.

G. Battista, P. Chiariotti, P. Milena, Castellini, C. Colangeli, K. Janssens, 3D acoustic mapping in

automotive wind tunnel: Algorithm and problem analysis on simulated data (2021) Applied Sciences

(Switzerland), 11 (7), art. no. 3241.

M. Sadeghi, L. Sartor, M. Rossi, A semantic-based access control mechanism for distributed systems

(2021) Proceedings of the ACM Symposium on Applied Computing, pp. 1864-1873.

S. Muggiasca, F. Taruffi, A. Fontanella, S. Di Carlo, M. Belloli, Aerodynamic and structural strategies for

the rotor design of a wind turbine scaled model (2021) Energies, 14 (8), art. no. 2119.

N. Giulietti, P. Chiariotti, G. Cosoli, A. Mobili, G. Pandarese, F. Tittarelli, G.M. Revel, Automated

measurement system for detecting carbonation depth: Image-processing based technique applied to

concrete sprayed with phenolphthalein (2021) Measurement: Journal of the International Measurement

Confederation, 175, art. no. 109142.

M.A. Farid, M. Strano, K. Rane, Optimization of process-property relations of 3D printed ceramics using

extrusion-based additive manufacturing (2021) ESAFORM 2021 - 24th International Conference on

Material Forming, art. no. 3723.

F. Perotti, M. Annoni, A. Calcante, M. Monno, V. Mussi, R. Oberti, Experimental study of abrasive waterjet

cutting for managing residues in no-tillage techniques (2021) Agriculture (Switzerland), 11 (5), art. no. 392.

G. Previati, M. Gobbi, F. Ballo, A sensitivity interpolation algorithm for the concurrent optimization of

bodies sharing a common design space (2021) Optimization and Engineering.

M. Zhang, E. Pastore, A. Alfieri, A. Matta, Buffer allocation problem in production flow lines: A new

Benders-decomposition-based exact solution approach (2021) IISE Transactions.

F. Taruffi, S. Di Carlo, S. Muggiasca, A. Fontanella, Numerical design of a floating offshore wind turbine

large scale model for control purposes (2021) Proceedings of the ASME 2021 3rd International Offshore

Wind Technical Conference, IOWTC 2021.

S. Di Carlo, A. Fontanella, A. Facchinetti, S. Muggiasca, F. Taruffi, M. Belloli, Experimental validation of

a wave elevation observer on a floating wind turbine model (2021) Proceedings of the ASME 2021 3rd

International Offshore Wind Technical Conference, IOWTC 2021.

A. Gruttadauria, S. Barella, A Guerra, Ni-Based CW6MC: Effect of the Internal Revert Recycle on the

Soundness of the Alloy (2021) International Journal of Metalcasting.

A. Collina, R. Corradi, E. Di Gialleonardo, Q Li, Nonlinear Model of an Embedded Rail System for the

Simulation of Train-Track Dynamic Interaction and the Analysis of Vibration Transmission (2021) Notes

on Numerical Fluid Mechanics and Multidisciplinary Design, 150, pp. 251-258.

A. Collina, R. Corradi, E. Di Gialleonardo, Q. Li, Analysis of the Effect of Running Speed and Bogie

Attitude on Rail Corrugation Growth in Sharp Curves (2021) Notes on Numerical Fluid Mechanics and

Multidisciplinary Design, 150, pp. 303-311.

X. Wang, B. Liu, E. Di Gialleonardo, I. Kovacic, S. Bruni, Application of semi-active yaw dampers for the

improvement of the stability of high-speed rail vehicles: mathematical models and numerical simulation

(2021) Vehicle System Dynamics.

May 2021

M.C. Magnanini, T.A.M. Tolio, Performance evaluation of asynchronous two-stage manufacturing lines

fabricating discrete parts (2021) CIRP Journal of Manufacturing Science and Technology, 33, pp. 488-

505.

A. Medolago, S.A Melzi, Flexible multi-body model of a surface miner for analyzing the interaction

between rock-cutting forces and chassis vibrations (2021) International Journal of Mining Science and

Technology, 31 (3), pp. 365-375.

L. Bianchi, S. Korganbayev, A. Orrico, M. De Landro, P. Saccomandi, Quasi-distributed fiber optic

sensor-based control system for interstitial laser ablation of tissue: Theoretical and experimental

investigations(2021) Biomedical Optics Express, 12 (5), pp. 2841-2858.

A. Cortés, X.F. Sánchez-Romate, A. Jiménez-Suárez, M. Campo, A. Esmaeili, A., C. Sbarufatti, A. Ureña,

S.G. Prolongo, Complex geometry strain sensors based on 3d printed nanocomposites: Spring, threecolumn

device and footstep-sensing platform (2021) Nanomaterials, 11 (5), art. no. 1106.

D.F. Redaelli, S.G. Barsanti, E. Biffi, F.A. Storm, G. Colombo, Comparison of geometrical accuracy

of active devices for 3D orthopaedic reconstructions (2021) International Journal of Advanced

Manufacturing Technology, 114 (1-2), pp. 319-342.

A. Mangia, B. Lenzo, E. Sabbioni, An integrated torque-vectoring control framework for electric vehicles

featuring multiple handling and energy-efficiency modes selectable by the driver(2021) Meccanica, 56

(5), pp. 991-1010.

S. Bagherifard, J. Kondas, S. Monti, J. Cizek, F. Perego, O. Kovarik, F. Lukac, F. Gaertner, M. Guagliano,

Tailoring cold spray additive manufacturing of steel 316 L for static and cyclic load-bearing applications

(2021) Materials and Design, 203, art. no. 109575,

H. Yu, F. Castelli-Dezza, F. Cheli, X, Tang, X. Hu, X. Lin, Dimensioning and Power Management of

Hybrid Energy Storage Systems for Electric Vehicles with Multiple Optimization Criteria (2021) IEEE

Transactions on Power Electronics, 36 (5), art. no. 9222355, pp. 5545-5556.

K. Rane, M.A. Farid, W. Hassan, M. Strano, Effect of printing parameters on mechanical properties of

extrusion-based additively manufactured ceramic parts (2021) Ceramics International, 47 (9), pp. 12189-

12198.

K. Sun, H.R. Karimi, J. Qiu, Finite-time fuzzy adaptive quantized output feedback control of triangular

structural systems (2021) Information Sciences, 557, pp. 153-169.

M. Bersani, S. Mentasti, P. Dahal, S. Arrigoni, M. Vignati, F. Cheli, M. Matteucci, An integrated algorithm

for ego-vehicle and obstacles state estimation for autonomous driving (2021) Robotics and Autonomous

Systems, 139, art. no. 103662

L. Cheng, A. Cigada, Z. Lang, E. Zappa, Y. Zhu, An output-only ARX model-based sensor fusion framework

on structural dynamic measurements using distributed optical fiber sensors and fiber Bragg grating

sensors(2021) Mechanical Systems and Signal Processing, 152, art. no. 107439

C. Guan, Z. Fei, H.R. Karimi, P. Shi, Finite-Time Synchronization for Switched Neural Networks via

Quantized Feedback Control (2021) IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51

(5), art. no. 8732449, pp. 2873-2884.

D. Mombelli, G. Dall’Osto, C. Mapelli, A. Gruttadauria, S. Barella, Modeling of a Continuous Charging

Electric Arc Furnace Metallic Loss Based on the Charge Mix (2021) Steel Research International, 92 (5),

art. no. 2000580.

F. Alessio, M. Alessio, M. Vedani, R. Viganò, Novel concepts for the design of moulds and equipment for

expanded polymer bead foams (2021) Progress in Additive Manufacturing, 6 (2), pp. 339-346.

D. Cristiani, C. Sbarufatti, M. Giglio, Damage diagnosis and prognosis in composite double cantilever

beam coupons by particle filtering and surrogate modelling (2021) Structural Health Monitoring, 20 (3),

pp. 1030-1050.

J.M. Jarillo, J. Moreno, S. Alfi, S. Barcet, P. Bouvet, S. Bruni, S. Cervello, B. Costa, R. Licciardello, Novel

technology concepts and architecture for on-board condition-based monitoring of railway running gear:

The RUN2Rail vision(2021) Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail

and Rapid Transit, 2 35 (5), pp. 616-630.

M. Gavazzoni, I. Boniotti, S. Foletti, Influence of specimen size on the mechanical properties of

microlattices obtained by selective laser melting (2021) Proceedings of the Institution of Mechanical

Engineers, Part C: Journal of Mechanical Engineering Science, 235 (10), pp. 1774-1787.

A. Mangia, B. Lenzo, E. Sabbioni, An integrated torque-vectoring control framework for electric vehicles

featuring multiple handling and energy-efficiency modes selectable by the driver (2021) Meccanica, 56

(5), pp. 991-1010.

S. Bagherifard, J. Kondas, S. Monti, J. Cizek, F. Perego, O. Kovarik, F. Lukac, F. Gaertner, M. Guagliano,

Tailoring cold spray additive manufacturing of steel 316 L for static and cyclic load-bearing applications

(2021) Materials and Design, 203, art. no. 109575.

L. Bianchi, R. Mooney, Y. Cornejo, C. Hyde, E. Schena, J. Berlin, K. Aboody, P, Saccomandi, Fiber Bragg

Grating Sensors-based Thermometry of Gold Nanorod-enhanced Photothermal Therapy in Tumor Model

(2021) IEEE Sensors Journal.

C.A. Biffi, A. Tuissi, A.G. Demir, Martensitic transformation, microstructure and functional behavior of

thin-walled Nitinol produced by micro laser metal wire deposition (2021) Journal of Materials Research

and Technology, 12, pp. 2205-2215.

L. Li, M. Collu, Y. Gao, C. Ruzzo, F. Arena, F. Taruffi, S. Muggiasca, M. Belloli, Development and validation

of a coupled numerical model for offshore floating multi-purpose platforms (2021) Developments in

Renewable Energies Offshore - Proceedings the 4th International Conference on Renewable Energies

Offshore, RENEW 2020, pp. 274-281.

C. Ruzzo, A. Romolo, G. Malara, F. Arena, F. Taruffi, S. Muggiasca, M. Belloli, B. Bouscasse, J. Ohana, A.

Santoro, K. Aubriere, G. Brizzi, M. Collu, P. Corvaglia, F. Lagasco,

On the arrangement of two experimental activities on a novel multi-purpose floating structure concept

(2021) Developments in Renewable Energies Offshore - Proceedings the 4th International Conference on

Renewable Energies Offshore, RENEW 2020, pp. 291-302.

M. Freschi, M. Di Virgilio, G. Zanardi, M. Mariani, N. Lecis, G. Dotelli, Employment of micro- and Nano-WS2

structures to enhance the tribological properties of copper matrix composites (2021) Lubricants, 9 (5),

art. no. 53.

A. Medolago, S. Melzi, A flexible multi-body model of a surface miner for analyzing the interaction

between rock-cutting forces and chassis vibrations (2021) International Journal of Mining Science and

Technology, 31 (3), pp. 365-375.

J. Marconi, G. Bonaccorsi, D. Giannini, L. Falorni, F. Braghin, Exploiting Nonlinearities for Frequency-

Matched MEMS Gyroscopes Tuning (2021) INERTIAL 2021 - 8th IEEE International Symposium on Inertial

Sensors and Systems, Proceedings, art. no. 9430478.

S. Scrivano, T. Tolio, A Markov Chain model for the performance evaluation of manufacturing lines with

general processing times (2021) Procedia CIRP, 103, pp. 20-25.

M. De Landro, S. Korganbayev, K. Ambarki, J. Verde, H. Odeen, C. Giraudeau, P. Saccomandi, Magnetic

resonance-based measurement system: Comparison of 2D and 3D echo-planar imaging sequences

for thermometry application (2021) Conference Record - IEEE Instrumentation and Measurement

Technology Conference, 2021-May, art. no. 9460088.

G. Betta, D. Capriglione, M. Salone, D. Amata, C. Liguori, E. Zappa, Characterization of 3D Image-Based

Biometric Systems in Dynamic Acquisition Conditions (2021) Conference Record - IEEE Instrumentation

and Measurement Technology Conference, 2021-May, art. no. 9459917.

S. Turrisi, E. Zappa, A. Cigada, M.R. Vivanco, N.C. Avin, Effect of image acquisition and processing

meccanica magazine

131


meccanica magazine

132

parameters on the estimation of crowd-induced dynamic loading on stadium grandstands (2021)

Conference Record - IEEE Instrumentation and Measurement Technology Conference, 2021-May, art.

no. 9460021.

R.L. Smith, M.M. Bersani, M. Rossi, P.S. Pietro, Improved Bounded Model Checking of Timed Automata

(2021) Proceedings - 2021 IEEE/ACM 9th International Conference on Formal Methods in Software

Engineering, FormaliSE 2021, pp. 97-110.

M. Askarpour, C. Tsigkanos, C. Menghi, R. Calinescu, P. Pelliccione, S. Garcia, R. Caldas, T.J. Von

Oertzen, M. Wimmer, L. Berardinelli, M. Rossi, M.M. Bersani, G.S.Rodrigues, RoboMAX: Robotic Mission

Adaptation eXemplars (2021) Proceedings - 2021 International Symposium on Software Engineering for

Adaptive and Self-Managing Systems, SEAMS 2021, art. no. 9462005, pp. 245-251.

Z. Wang, A. Manes, Investigation of the biaxial flexural fracture of aluminosilicate glass by smeared fixed

crack method (2021) Procedia Structural Integrity, 33 (C), pp. 337-346.

A. Loffredo, N. Frigerio, E. Lanzarone, A. Matta, Energy-Efficient Control Policy for Parallel and Identical

Machines with Availability Constraint (2021) IEEE Robotics and Automation Letters.

K.D. Zamba, P. Tsiamyrtzis, Sequential detection framework for real-time biosurveillance based on

Shiryaev-Roberts procedure with illustrations using COVID-19 incidence data (2021) Sequential Analysis,

40 (2), pp. 149-169.

K. Bourazas, D. Kiagias, P. Tsiamyrtzis, Predictive Control Charts (PCC): A Bayesian approach in online

monitoring of short runs (2021) Journal of Quality Technology.

S. Muggiasca, S. Giappino, T. Argentini, A. Collina, A. Manenti, G. Diana, Wind Resistant Design of a Very

Large Observation Wheel (2021) Structural Engineering International.

June 2021

A. Fontanella, M. Al, J.W. van Wingerden, M. Belloli, Model-based design of a wave-feedforward control

strategy in floating wind turbines (2021) Wind Energy Science, 6 (3), pp. 885-901.

A. Mohammadi,L. Bianchi, S. Asadi, P. Saccomandi, Measurement of ex vivo liver, brain and pancreas

thermal properties as function of temperature (2021) Sensors, 21 (12), art. no. 4236

S. Sorti, C. Petrone, S. Russenschuck, F. Braghin, Metrological characterisation of rotating-coil

magnetometer systems (2021) Acta IMEKO, 10 (2), pp. 30-36.

G. Cazzulani, S. Cinquemani, L. Benedetti, M. Belloli, Load estimation and vibration monitoring of scale

model wind turbine blades through optical fiber sensors (2021) Engineering Research Express, 3 (2), art.

no. 025036,

R. Scazzosi, M. Giglio, A. Manes, Numerical simulation of high-velocity impact on fiber-reinforced

composites using MAT_162 (2021) Material Design and Processing Communications, 3 (3), art. no. E163.

M. Gobbi, C. Ferrario, M. Tarabini, G. Annino, N. Cau, M. Zago, P. Marzullo, S. Mai, M. Galli, P. Capodaglio,

Low-intensity whole-body vibration: A useful adjuvant in managing obesity? a pilot study (2021) Applied

Sciences (Switzerland), 11 (11), art. no. 5101.

O. Castillo, P.K. Muhuri, H. Mo, C. Li, R. Li, H.R. Karimi, Editorial on Special Issue: Trends and

Developments on Type-2 Fuzzy Sets and Systems(2021) International Journal of Fuzzy Systems, 23 (4),

pp. 1055-1056.

K. Sun, J. Qiu, H.R. Karimi, Y. Fu, Event-Triggered Robust Fuzzy Adaptive Finite-Time Control of

Nonlinear Systems with Prescribed Performance (2021) IEEE Transactions on Fuzzy Systems, 29 (6), art.

no. 9026974, pp. 1460-1471.

C. Jiménez-Peña, A. Lavatelli, R. Balcaen, E. Zappa, D. Debruyne, A Novel Contactless Bolt Preload

Monitoring Method Using Digital Image Correlation (2021) Journal of Nondestructive Evaluation, 40 (2),

art. no. 54.

W. Hassan, M.A. Farid, A. Tosi, K. Rane, M. Strano, The effect of printing parameters on sintered

properties of extrusion-based additively manufactured stainless steel 316L parts(2021) International

Journal of Advanced Manufacturing Technology, 114 (9-10), pp. 3057-3067.

E. Gariboldi, C., Confalonieri, M. Colombo, High temperature behavior of al-7si-0.4mg alloy with er and zr

additions (2021) Metals, 11 (6), art. no. 879

K. Sun, J. Qiu, H.R. Karimi, H. Gao, A Novel Finite-Time Control for Nonstrict Feedback Saturated

Nonlinear Systems with Tracking Error Constraint (2021) IEEE Transactions on Systems, Man, and

Cybernetics: Systems, 51 (6), art. no. 8944301, pp. 3968-3979.

D. Scaccabarozzi, B. Saggin, Measurement of stress waves propagation in percussive drilling(2021)

Sensors, 21 (11), art. no. 3677.

J. Marconi,P. Tiso, D.E. Quadrelli,F. Braghin, A higher-order parametric nonlinear reduced-order model

for imperfect structures using Neumann expansion (2021) Nonlinear Dynamics, 104 (4), pp. 3039-3063.

J. Wang, R. Zou, B.M. Colosimo, W. Lu, L. Xu, X.J. Jiang, Characterisation of freeform, structured

surfaces in T-spline spaces and its applications (2021) Surface Topography: Metrology and Properties,

9 (2), art. no. 025003.

A.A. Oliver, M. Sikora-Jasinska, A.G. Demir, R.J. Guillory, Recent advances and directions in the

development of bioresorbable metallic cardiovascular stents: Insights from recent human and in vivo

studies (2021) Acta Biomaterialia, 127, pp. 1-23.

V.G. Zaragoza, K. Rane, M. Strano, M., M. Monno, Manufacturing and performance of 3D printed plastic

tools for air bending applications (2021) Journal of Manufacturing Processes, 66, pp. 460-469.

G. Carasi, B. Yu, E. Hutten, H. Zurob, R. Casati, M. Vedani, Effect of Heat Treatment on Microstructure

Evolution of X38CrMoV5-1 Hot-Work Tool Steel Produced by L-PBF (2021) Metallurgical and Materials

Transactions A: Physical Metallurgy and Materials Science, 52 (6), pp. 2564-2575.

S. Cacace, Q. Semeraro, Improvement of SLM Build Rate of A357 alloy by optimizing Fluence (2021)

Journal of Manufacturing Processes, 66, pp. 115-124.

H.R. Karimi, Y. Lu, Guidance and control methodologies for marine vehicles: A survey (2021) Control

Engineering Practice, 111, art. no. 104785.

C. Huang, H.R. Karimi, Non-fragile H∞ control for LPV-based CACC systems subject to denial-of-service

attacks (2021) IET Control Theory and Applications, 15 (9), pp. 1246-1256.

Z. Li, E. Gariboldi, Review on the temperature-dependent thermophysical properties of liquid paraffins

and composite phase change materials with metallic porous structures (2021) Materials Today Energy,

20, art. no. 100642.

W. Qi, G. Zong, H.R. Karimi, SMC for Nonlinear Stochastic Switching Systems with Quantization (2021)

IEEE Transactions on Circuits and Systems II: Express Briefs, 68 (6), art. no. 9309384, pp. 2032-2036.

D. Ma, M. Giglio, A. Manes, Analysis of mesoscale modelling strategies for woven composites(2021)

Material Design and Processing Communications, 3 (3), art. no. E145.

C. Bruna-Rosso, J. Mergheim, B. Previtali, Finite element modeling of residual stress and geometrical

error formations in selective laser melting of metals(2021) Proceedings of the Institution of Mechanical

Engineers, Part C: Journal of Mechanical Engineering Science, 235 (11), pp. 2022-2038.

C.D. Liang, M.F. Ge, Z.W. Liu, Y.W. Wang, H.R. Karimi, Output Multiformation Tracking of Networked

Heterogeneous Robotic Systems via Finite-Time Hierarchical Control (2021) IEEE Transactions on

Cybernetics, 51 (6), art. no. 8990015, pp. 2893-2904.

I. Pavlidis, A. Khatri, P. Buddharaju, M. Manser, R. Wunderlich, E. Akleman, P. Tsiamyrtzis, Biofeedback

Arrests Sympathetic and Behavioral Effects in Distracted Driving (2021) IEEE Transactions on Affective

Computing, 12 (2), art. no. 8550705, pp. 453-465.

L.M. Hlaváč, M.P.G. Annoni, I.M. Hlaváčová, F. Arleo, F. Viganò, A. Štefek, Abrasive waterjet (AWJ) forces—

potential indicators of machining quality (2021) Materials, 14 (12), art. no. 3309.

F. Concli, C. Gorla, Dynamic modeling of gears: An innovative hybrid FEM-analytical approach (2021)

International Journal of Computational Methods and Experimental Measurements, 9 (2), pp. 117-125.

M.C. Magnanini, T.A.M. Tolio, A model-based Digital Twin to support responsive manufacturing systems

(2021) CIRP Annals, 70 (1), pp. 353-356. Cited 2 times.

A.J. Sabet, S. Gopalakrishnan, M. Rossi, F.A. Schreiber, L. Tanca, Preference Mining in the Travel Domain

(2021) 2021 IEEE International Conference on Artificial Intelligence and Computer Applications, ICAICA

2021, pp. 358-365.

D. Paloschi, M. Bravi, S. Miccinilli, E. Schena, S. Sterzi, C. Massaroni, P. Saccomandi, Preliminary

analysis on the cervicothoracic angular velocity during forward bending and backward return task (2021)

2021 IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021 -

Proceedings, art. no. 9488521, pp. 330-334.

M. Turati, S. Franchi, G. Leone, M. Piatti, N. Zanchi, M. Gandolla, L. Rigamonti, P. Sacerdote, L. Rizzi, A.

Pedrocchi, R.J. Omeljaniuk, G. Zatti, A. Torsello, M. Bigoni, Resolvin E1 and Cytokines Environment in

Skeletally Immature and Adult ACL Tears (2021) Frontiers in Medicine, 8, art. no. 610866, .

P. Castellini, N. Giulietti, N. Falcionelli, A.F. Dragoni, P. Chiariotti, A neural network based microphone

array approach to grid-less noise source localization (2021) Applied Acoustics, 177, art. no. 107947.

M. Acerbi, R. Malvermi, M. Pezzoli, F. Antonacci, A. Sarti, R. Corradi, Interpolation of irregularly sampled

frequency response functions using convolutional neural networks (2021) ICASSP, IEEE International

Conference on Acoustics, Speech and Signal Processing - Proceedings, 2021-June, pp. 950-954.

F.C. Zefinetti, A. Vitali, D. Regazzoni, G. Colombo, Goalkeeper’s Performances Assessed with Action

Cameras Based Mocap System (2021) Advances in Intelligent Systems and Computing, 1206 AISC, pp.

259-266.

S. Korganbayev, A. Orrico, L. Bianchi, M. De Landro, A. Wolf, A. Dostovalov, P. Saccomandi, Feedbackcontrolled

thermal therapy of tissues based on fiber Bragg grating thermometers (2021) 2021 IEEE

International Symposium on Medical Measurements and Applications, MeMeA 2021 - Conference

Proceedings, art. no. 9478749.

A. Orrico, L. Bianchi, S. Korganbayev, M. De Landro, P. Saccomandi, Controlled photothermal therapy

based on temperature monitoring: Theoretical and experimental analysis (2021) 2021 IEEE International

Symposium on Medical Measurements and Applications, MeMeA 2021 - Conference Proceedings, art.

no. 9478671.

M.G. Naon, S. Marelli, A.P. Moorhead, B. Saggin, G. Moschioni, M. Tarabini, Development of a device to

impose medio-lateral whole-body vibration while walking (2021) 2021 IEEE International Symposium on

Medical Measurements and Applications, MeMeA 2021 - Conference Proceedings, art. no. 9478701.

S. Korganbayev, S. Asadi, I. Maor, E. Schena, H. Azhari, I.S. Weitz, P. Saccomandi, Measurement

of enhanced photothermal effects of CuO-encapsulated polymeric nanospheres (2021) 2021 IEEE

International Symposium on Medical Measurements and Applications, MeMeA 2021 - Conference

Proceedings, art. no. 9478675.

D. Scaccabarozzi, B. Saggin, M. Magni, P. Valnegri, M.G. Corti, E. Palomba, A. Longobardo, F. Dirri, E.

Zampetti, Design of 3D printed holder for quartz crystal microbalances (2021) 2021 IEEE International

Workshop on Metrology for AeroSpace, MetroAeroSpace 2021 - Proceedings, art. no. 9511667, pp. 715-

719.

P. Valnegri, B. Saggin, D. Scaccabarozzi, M.G. Corti, F. Capaccioni, G. Bellucci, G. Rinaldi, Comparison

of candidate mechanism concepts for a deployable space telescope (2021) 2021 IEEE International

Workshop on Metrology for AeroSpace, MetroAeroSpace 2021 - Proceedings, art. no. 9511663, pp. 92-96.

M.G. Corti, D. Scaccabarozzi, B. Saggin, P. Valnegri, F. Esposito, F. Cozzolino, G. Mongelluzzo, Topology

optimization of the optical bench for the MicroMED dust analyzer (2021) 2021 IEEE International

Workshop on Metrology for AeroSpace, MetroAeroSpace 2021 - Proceedings, art. no. 9511694, pp. 86-91.

M. Dziendzikowski, A. Kurnyta, A. Beligni, C. Sbarufatti, K. Dragan, M. Giglio, Low-velocity impact damage

detection of CFRP composite panel based on Transfer Impedance approach to Structural Health


Monitoring (2021) 2021 IEEE International Workshop on Metrology for AeroSpace, MetroAeroSpace 2021

- Proceedings, art. no. 9511783, pp. 625-630.

D. Scaccabarozzi, B. Saggin, M.G. Corti, P. Valnegri, C. Pernechele, L. Lessio, L. Paoletti, L. Consolaro,

Preliminary structural design of PANCAM, a bifocal panoramic camera for planetary observation (2021)

2021 IEEE International Workshop on Metrology for AeroSpace, MetroAeroSpace 2021 - Proceedings,

art. no. 9511701, pp. 311-316.

G. Mongelluzzo, G. Franzese, F. Cozzolino, F. Esposito, A.C. Ruggeri, C. Porto, C. Molfese, S. Silvestro,

C.I. Popa, D. Scaccabarozzi, B. Saggin, A. Martin-Ortega, I. Arruego, J.R. De Mingo, N.A. Santiuste, D.

Brienza, F. Cortecchia, J.P. Merrison, J.J. Iversen, Performance analysis of the microMED optical

particle counter in windy conditions (2021) 2021 IEEE International Workshop on Metrology for

AeroSpace, MetroAeroSpace 2021 - Proceedings, art. no. 9511691, pp. 241-246.

G. Shuai, S. Chatterton, P. Pennacchi, A nonlinear dynamic model for the skidding and the over-skidding

in industry scale angular contact ball bearing (2021) 2021 7th International Conference on Condition

Monitoring of Machinery in Non-Stationary Operations, CMMNO 2021, art. no. 9467655, pp. 67-71.

L. Xu, S. Chatterton, P. Pennacchi, A Rolling Element Bearing Diagnosis Method Based on Singular Value

Decomposition and Squared Envelope Spectrum (2021) 2021 7th International Conference on Condition

Monitoring of Machinery in Non-Stationary Operations, CMMNO 2021, art. no. 9467527, pp. 47-51.

L. Roveda, M. Maroni, L. Mazzuchelli, L. Praolini, G. Bucca, D. Piga, Enhancing object detection

performance through sensor pose definition with bayesian optimization (2021) 2021 IEEE International

Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021 - Proceedings, art. no.

9488517, pp. 699-703.

D.M. Fabris, A. Meldoli, R. Sala, P. Salina, M. Tarabini, Metrological characterization of measurement

systems through monte carlo simulations, design of experiments and robotic manipulation (2021)

2021 IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021 -

Proceedings, art. no. 9488485, pp. 561-565.

A. Baleani, P. Castellini, P. Chiariotti, N. Paone, D. Roccetti, L. Zampetti, M. Zannini, S. Zitti, Dimensional

measurements in production line: A comparison between a custom-made telecentric optical

profilometer and on-the-market measurement systems (2021) 2021 IEEE International Workshop on

Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021 - Proceedings, art. no. 9488428, pp. 693-

698.

Y. Yao, P. Saccomandi, M. Tarabini, User-driven design and monitoring systems of limb prostheses:

Overview on the technology and on the gender-related aspects (2021) 2021 IEEE International Workshop

on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021 - Proceedings, art. no. 9488488, pp.

313-318.

L. Bianchi, A. Orrico, S. Korganbayev, M. De Landro, P. Saccomandi, Two-dimensional temperature

feedback control strategy for thermal ablation of biological tissue (2021) 2021 IEEE International

Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021 - Proceedings, art. no.

9488457, pp. 301-306.

C. Conese, F. Conti, S. Cinquemani, F.M. Bono, A. Zavalloni, M. Tarabini, Vibration analysis for condition

monitoring of an automatic press machine for thermoplastic polymers (2021) 2021 IEEE International

Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021 - Proceedings, art. no.

9488525, pp. 270-274.

H. Giberti, F. La Mura, M. Tarabini, M. Camnasio, Characterization of a 6 degrees of freedom parallel robot

(2021) 2021 IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021

- Proceedings, art. no. 9488446, pp. 281-285.

S. Candidori, F. De Gaetano, K. Osouli, A. Re, P. Volonte, A.A. Zanini, S. Graziosi, M.L. Costantino, Fighting

maternal bleeding in low-resource settings: An analysis of design and measurement issues (2021)

2021 IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021 -

Proceedings, art. no. 9488502, pp. 324-329.

F. Conti, C. Conese, M. Colombo, L. Maggioni, G. Moschioni, M. Tarabini, Vibration signals for condition

based maintenance of hydraulic valves (2021) 2021 IEEE International Workshop on Metrology for

Industry 4.0 and IoT, MetroInd 4.0 and IoT 2021 - Proceedings, art. no. 9488499, pp. 259-263.

P.E. Todmal, S. Melzi, Characteristics Analyses of Innovative Crank-Lever Electromagnetic Damper

for Suspension System of an Off-Road Vehicle (2021) SAE International Journal of Passenger Cars -

Mechanical Systems, 14 (2).

A. Angius, A. Horváth, M. Urgo, A kronecker algebra formulation for markov activity networks with phasetype

distributions (2021) Mathematics, 9 (12), art. no. 1404.

T. Li, F. Cadini, C. Sbarufatti, Particle filter-based hybrid damage prognosis considering bias (2021)

COMPDYN Proceedings.

M. Pacher, S. Strada, M. Tanelli, B. Previtali, S.M. Savaresi, Real-time velocity regulation for productivity

optimization in laser cutting (2021) IFAC-PapersOnLine, 54 (1), pp. 1230-1235.

G. Lugaresi, A. Matta, Automated digital twins generation for manufacturing systems: A case study

(2021) IFAC-PapersOnLine, 54 (1), pp. 749-754.

M.C. Magnanini, O. Melnychuk, A. Yemane, H. Strandberg, I. Ricondo, G. Borzi, M. Colledani, A digital

twin-based approach for multi-objective optimization of short-term production planning (2021) IFAC-

PapersOnLine, 54 (1), pp. 140-145.

G. Fogliazza, C. Arvedi, C. Spoto, L. Trappa, F. Garghetti, M. Grasso, B.M. Colosimo, Fingerprint analysis

for machine tool health condition monitoring (2021) IFAC-PapersOnLine, 54 (1), pp. 1212-1217.

A. Fontanella, M. Belloli, Model-inversion feedforward control for wave load reduction in floating

wind turbines (2021) Proceedings of the International Conference on Offshore Mechanics and Arctic

Engineering - OMAE, 9, art. no. V009T09A018.

S. Chatterton, P. Pennacchi, A. Vania, P.V. Dang, Optimization of an oil film journal bearing for

temperature reduction (2021) Proceedings of the ASME Turbo Expo, 9A-2021, art. no. V09AT24A023.

D. Yang, H.R. Karimi, K. Sun, CNN-based early classification of rotating machinery fault diagnosis (2021)

17th International Conference on Condition Monitoring and Asset Management, CM 2021.

B.M. Colosimo, M. Grasso, F. Garghetti, B. Rossi, Complex geometries in additive manufacturing: A new

solution for lattice structure modeling and monitoring (2021) Journal of Quality Technology.

B. Fu, S. Bruni, An examination of alternative schemes for active and semi-active control of vertical carbody

vibration to improve ride comfort (2021) Proceedings of the Institution of Mechanical Engineers,

Part F: Journal of Rail and Rapid Transit.

July 2021

L. Roveda, D. Riva, G. Bucca, D. Piga, External joint torques estimation for a position-controlled

manipulator employing an extended kalman filter, 2021 18th International Conference on Ubiquitous

Robots, UR 2021, art. no. 9494674, pp. 101-107.

F. Resta, Polytechnic culture: Ideas, values and opportunities, TECHNE, 21, pp. 58-60.

M. Zago, S. David, F. Bertozzi, C. Brunetti, A. Gatti, F. Salaorni, M. Tarabini, C. Galvani, C. Sforza, M. Galli,

Fatigue Induced by Repeated Changes of Direction in Élite Female Football (Soccer) Players: Impact on

Lower Limb Biomechanics and Implications for ACL Injury Prevention, Frontiers in Bioengineering and

Biotechnology, 9, art. no. 666841, .

I. Di Luch, M. Ferrario, D. Fumagalli, M. Carboni, M. Martinelli, Coherent fiber-optic sensor for ultraacoustic

crack emissions, Sensors, 21 (14), art. no. 4674.

A. Cauteruccio, E. Brambilla, M. Stagnaro, L.G. Lanza, D. Rocchi, Wind Tunnel Validation of a Particle

Tracking Model to Evaluate the Wind-Induced Bias of Precipitation Measurements, Water Resources

Research, 57 (7), art. no. e2020WR028766, .

E. Gariboldi, S. Spigarelli, High-temperature behavior of metals, Metals, 11 (7), art. no. 1128.

R. Andreotti, S. Abate, A. Casaroli, M. Quercia, R. Fossati, M.V. Boniardi, A simplified ale model for finite

element simulation of ballistic impacts with bullet splash – development and experimental validation,

Frattura ed Integrita Strutturale, 15 (57), pp. 223-245.

A.H. Astaraee, S. Bagherifard, S. Monti, M. Guagliano, Evaluating the homogeneity of surface features

induced by impact based surface treatments, Materials, 14 (13), art. no. 3476.

N. Sohrabi, M. Hamidi-Nasab, B. Rouxel, J. Jhabvala, A. Parrilli, M. Vedani, R.E. Logé, Fatigue performance

of an additively manufactured zr-based bulk metallic glass and the effect of post-processing, Metals, 11

(7), art. no. 1064.

N. Frigerio, A. Matta, Modelling the startup of machine tools for energy efficient multi-sleep control

policies, Journal of Manufacturing Systems, 60, pp. 337-349.

E. Lacroce, P. Saccomandi, F. Rossi, Can gold nanoparticles improve delivery performance of polymeric

drug-delivery systems?, Therapeutic Delivery, 12 (7), pp. 489-492.

L. Antonioli, A. Pella, R. Ricotti, M. Rossi, M.R. Fiore, G. Belotti, G. Magro, C. Paganelli, E. Orlandi, M.

Ciocca, G. Baroni, Convolutional neural networks cascade for automatic pupil and iris detection in ocular

proton therapy, Sensors, 21 (13), art. no. 4400.

M. Askarpour, L. Lestingi, S. Longoni, N. Iannacci, M. Rossi, F. Vicentini, Formally-based Model-Driven

Development of Collaborative Robotic Applications, Journal of Intelligent and Robotic Systems: Theory

and Applications, 102 (3), art. no. 59.

D. Vanerio, J. Kondas, M. Guagliano, S. Bagherifard, 3D modelling of the deposit profile in cold spray

additive manufacturing, Journal of Manufacturing Processes, 67, pp. 521-534.

M. Zago, N.F.M. Lecis, M. Vedani, I. Cristofolini, Dimensional and geometrical precision of parts produced

by binder jetting process as affected by the anisotropic shrinkage on sintering, Additive Manufacturing,

43, art. no. 102007.

D. Scaccabarozzi, C.A. Biffi, B. Saggin, M. Magni, P. Valnegri, J. Fiocchi, A. Tuissi, Design and testing

of selective laser melted structural component in AlSi9Cu3 alloy for a space dust analyser, Acta

Astronautica, 184, pp. 193-207.

R. Sorci, O. Tassa, A. Colaneri, A. Astri, D. Mirabile, S. Iwnicki, A.G. Demir, Design of an Innovative Oxide

Dispersion Strengthened Al Alloy for Selective Laser Melting to Produce Lighter Components for the

Railway Sector, Journal of Materials Engineering and Performance, 30 (7), pp. 5184-5194.

Z. Li, E. Gariboldi, Modelling the conditions for natural convection onset in open-cell porous Al/paraffin

composite phase change materials: Effects of temperature, paraffin type and metallic structure

geometry, International Journal of Heat and Mass Transfer, 173, art. no. 121279.

S. Bagherifard, R. Naderi Beni, D. Kajanek, R. Donnini, S. Monti, M.F. Molla, B. Hadzima, M. Guagliano,

Inclined and multi-directional surface impacts accelerate biodegradation and improve mechanical

properties of pure iron, Journal of the Mechanical Behavior of Biomedical Materials, 119, art. no. 104476.

P.J. Mistry, M.S. Johnson, S. Li, S. Bruni, A. Bernasconi, Parametric sizing study for the design of a

lightweight composite railway axle, Composite Structures, 267, art. no. 113851.

L. Di Pace, T. Beone, A. Di Donato, A. Astri, A. Colaneri, A. Cea, D. Mirabile, A.G. Demir, DEMO radioactive

wastes: Decarburization, recycling and reuse by additive manufacturing, Fusion Engineering and

Design, 168, art. no. 112439.

Q.Li, F. Ripamonti, R. Corradi, M. Caccialanza, Simulation of deterministic tyre noise based on a

monopole substitution model, Acoustics, 178, art. no. 108009.

X. Meng, Z. Wu, C. Gao, B. Jiang, H.R. Karimi, Finite-time projective synchronization control of variableorder

fractional chaotic systems via sliding mode approach, IEEE Transactions on Circuits and Systems

II: Express Briefs, 68 (7), art. no. 9340398, pp. 2503-2507.

A. Gruttadauria, S. Barella, C. Fiocchi, Mechanical Response of Ni-Based CU5MCuC Alloy to Different

Stabilization Thermal Treatments, International Journal of Metalcasting, 15 (3), pp. 829-838.

W. Ji, J. Qiu, H.R. Karimi, Y. Fu, New Results on Fuzzy Integral Sliding Mode Control of Nonlinear Singularly

Perturbed Systems, IEEE Transactions on Fuzzy Systems, 29 (7), art. no. 9067032, pp. 2062-2067.

meccanica magazine

133


meccanica magazine

134

M. Zago, N.F.M. Lecis, M. Vedani, I. Cristofolini, Dimensional and geometrical precision of parts

produced by binder jetting process as affected by the anisotropic shrinkage on sintering (2021) Additive

Manufacturing, 43, art. no. 102007.

S. Kalwar, M. Sadeghi, A.J. Sabet, A. Nemirovskiy, M. Rossi, SMART: Towards automated mapping

between data specifications (2021) Proceedings of the International Conference on Software

Engineering and Knowledge Engineering, SEKE, 2021-July, pp. 429-436.

L. Bianchi, R. Mooney, Y.R. Cornejo, E. Schena, J.M. Berlin, K.S. Aboody, P. Saccomandi, Thermal analysis

of laser irradiation-gold nanorod combinations at 808 nm, 940 nm, 975 nm and 1064 nm wavelengths in

breast cancer model (2021) International Journal of Hyperthermia, 38 (1), pp. 1099-1110.

L. Fraccaroli, C. Gorla, F. Concli, Structural modelling of multilayer skis with an open source FEM

software (2021) WIT Transactions on Engineering Sciences, 133, pp. 27-38.

R. Malvermi, S. Gonzalez, M. Quintavalla, F. Antonacci, A. Sarti, J.A. Torres, R. Corradi, Feature-based

representation for violin bridge admittances (2021) Advances in Acoustics, Noise and Vibration - 2021

Proceedings of the 27th International Congress on Sound and Vibration, ICSV 2021.

L. Liu, R. Corradi, Z. Rao, Wave based method for vibro-acoustic analysis of a plate-cavity system

with elastically restrained plate and irregularly shaped cavity (2021) Advances in Acoustics, Noise and

Vibration - 2021 Proceedings of the 27th International Congress on Sound and Vibration, ICSV 2021.

F. Libonati, S. Graziosi, F. Ballo, M. Mognato, G. Sala, 3D-Printed Architected Materials Inspired by Cubic

Bravais Lattices (2021) ACS Biomaterials Science and Engineering.

F. Nonis, L. Ulrich, N. Dozio, F.G. Antonaci, E. Vezzetti, F. Ferrise, F. Marcolin, Building an Ecologically

Valid Facial Expression Database – Behind the Scenes (2021) Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12768

LNCS, pp. 599-616.

A. Esmaeili, C. Sbarufatti, K. Youssef, A. Jiménez-Suárez, A. Ureña, A.M.S. Hamouda, Enhanced tensile

strength, fracture toughness and piezoresistive performances of CNT based epoxy nanocomposites

using toroidal stirring assisted ultra-sonication (2021) Mechanics of Advanced Materials and Structures.

M. Vignati, M. Belloni, D. Tarsitano, E. Sabbioni, Optimal Cooperative Brake Distribution Strategy for

IWM Vehicle Accounting for Electric and Friction Braking Torques (2021) Mathematical Problems in

Engineering, 2021, art. no. 1088805.

E. Brambilla, P. Schito, C. Somaschini, D. Rocchi, Virtual homologation of high-speed trains in railway

tunnels: A new iterative numerical approach for train-tunnel pressure signature (2021) Proceedings of

the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit.

M. Bugatti, B.M.Colosimo, A new method for in-situ process monitoring of AM cooling rate-related

defects (2021) Procedia CIRP, 99, pp. 325-329.

S. Cacace, S. Giacomazzi, Q. Semeraro, Estimation of the accuracy of measurement of internal defects

in X-ray Computed Tomography (2021) Procedia CIRP, 99, pp. 284-289.

August 2021

M. Berardengo, S. Manzoni, O. Thomas, C. Giraud-Audine, L. Drago, S. Marelli, M. Vanali, The reduction

of operational amplifier electrical outputs to improve piezoelectric shunts with negative capacitance,

Journal of Sound and Vibration, 506, art. no. 116163.

S. Loffredo, S. Gambaro, L. Marin De Andrade, C. Paternoster, R. Casati, N. Giguère, M. Vedani, D.

Mantovani, Six-Month Long in Vitro Degradation Tests of Biodegradable Twinning-Induced Plasticity

Steels Alloyed with Ag for Stent Applications, ACS Biomaterials Science and Engineering, 7 (8), pp. 3669-

3682.

S.M. Tayyab, S. Chatterton, P. Pennacchi, Fault detection and severity level identification of spiral bevel

gears under different operating conditions using artificial intelligence techniques, Machines, 9 (8), art.

no. 173.

G. Cusimano, F. Casolo, An almost comprehensive approach for the choice of motor and transmission in

mechatronic applications: Torque peak of the motor, Machines, 9 (8), art. no. 159.

M. Rossi, P. Cerveri, Comparison of supervised and unsupervised approaches for the generation of

synthetic ct from cone-beam ct, Diagnostics, 11 (8), art. no. 1435.

F. Buccino, I. Aiazzi, A. Casto, B. Liu, M.C. Sbarra, G. Ziarelli, L.M. Vergani, S. Bagherifard, Down to the

bone: A novel bio-inspired design concept, Materials, 14 (15), art. no. 4226.

J. Fiocchi, C. Colombo, L.M. Vergani, A. Fabrizi, G. Timelli, A. Tuissi, C.A. Biffi, Heat treatments for stress

relieving alsi9cu3 alloy produced by laser powder bed fusion, Materials, 14 (15), art. no. 4184 .

A. Cauteruccio, E. Brambill, M. Stagnaro, L.G. Lanza, D. Rocchi, Erratum: Withdrawal notice to

Experimental evidence of the wind-induced bias of precipitation gauges using Particle Image

Velocimetry and particle tracking in the wind tunnel, Journal of Hydrology X, 12, art. no. 100094.

M. Vignati, N. Debattisti, M.L. Bacci, D. Tarsitano, A software-in-the-loop simulation of vehicle control

unit algorithms for a driverless railway vehicle, Applied Sciences (Switzerland), 11 (15), art. no. 6730.

D.Giannini, G. Bonaccorsi, F. Braghin, Rapid prototyping of inertial mems devices through structural

optimization, Sensors, 21 (15), art. no. 5064.

Z. Wang, T. Ren, T. Suo, A. Manes, Quasi-static and low-velocity impact biaxial flexural fracture of

aluminosilicate glass — An experimental and numerical study, Thin-Walled Structures, 165, art. no.

107939.

M. Murer, V. Furlan, G. Formica, S. Morganti, B. Previtali, F. Auricchio, Numerical simulation of particles

flow in Laser Metal Deposition technology comparing Eulerian-Eulerian and Lagrangian-Eulerian

approaches, Journal of Manufacturing Processes, 68, pp. 186-197.

L. Lomazzi, M. Giglio, A. Manes, Analytical and empirical methods for the characterisation of the

permanent transverse displacement of quadrangular metal plates subjected to blast load: Comparison

of existing methods and development of a novel methodological approach, International Journal of

Impact Engineering, 154, art. no. 103890.

U. Zerbst, G. Bruno, J.Y. Buffière, T. Wegener, T. Niendorf, T. Wu, X. Zhang, N. Kashaev, G. Meneghetti,

N. Hrabe, M. Madia, T. Werner, K. Hilgenberg, M. Koukolíková, R. Procházka, J. Džugan, B. Möller, S.

Beretta, A. Evans, R. Wagener, K. Schnabel, Damage tolerant design of additively manufactured metallic

components subjected to cyclic loading: State of the art and challenges, Progress in Materials Science,

121, art. no. 100786.

M. Mariani, R. Beltrami, P. Brusa, C. Galassi, R. Ardito, N. Lecis, 3D printing of fine alumina powders by

binder jetting, Journal of the European Ceramic Society, 41 (10), pp. 5307-5315.

S. Mariani, Q. Rendu, M. Urbani, C. Sbarufatti, Causal dilated convolutional neural networks for automatic

inspection of ultrasonic signals in non-destructive evaluation and structural health monitoring,

Mechanical Systems and Signal Processing, 157, art. no. 107748.

E. Maleki, G.H. Farrahi, K. Reza Kashyzadeh, O. Unal, M. Gugaliano, S. Bagherifard, Effects of

Conventional and Severe Shot Peening on Residual Stress and Fatigue Strength of Steel AISI 1060 and

Residual Stress Relaxation Due to Fatigue Loading: Experimental and Numerical Simulation, Metals and

Materials International, 27 (8), pp. 2575-2591.

M. Carnevale, I. La Paglia, P. Pennacchi, An algorithm for precise localization of measurements in rolling

stock-based diagnostic systems, Proceedings of the Institution of Mechanical Engineers, Part F:

Journal of Rail and Rapid Transit, 235 (7), pp. 827-839.

M. Bordegoni, M. Carulli, E. Spadoni, Multisensory VR for delivering training content to machinery

operators (2021) Proceedings of the ASME Design Engineering Technical Conference, 2, art. no.

V002t02a073

H. Singh, G. Cascini, C. McComb, Comparing design outcomes achieved by teams of expert and novice

designers through agent-based simulation (2021) Proceedings of the Design Society, 1, pp. 661-670.

Cited 1 time.

S.L.D.S. Vieira, M. Benedek, J.S. Gero, G. Cascini, S. Li, Brain activity of industrial designers in

constrained and open design: The effect of gender on frequency bands (2021) Proceedings of the Design

Society, 1, pp. 571-580.

E. Piñones, G. Cascini, G. Caruso, F. Morosi, Overcoming augmented reality adoption barriers in design:

A mixed prototyping content authoring tool supported by computer vision (2021) Proceedings of the

Design Society, 1, pp. 2359-2368.

T. Montecchi, N. Becattini, A modelling framework for data-driven design for sustainable behaviour in

human-machine interactions (2021) Proceedings of the Design Society, 1, pp. 151-160.

H. Singh, G. Cascini, C. McComb, Comparing virtual and face-to-face team collaboration: Insights from

an agent-based simulation (2021) Proceedings of the ASME Design Engineering Technical Conference,

6, art. no. V006T06A022.

J.A. Di Antonio, M. Longo, D. Zaninelli, F. Ferrise, A. Labombarda, MEMS-based measurements in

virtual reality: Setup an electric Vehicle (2021) 2021 56th International Universities Power Engineering

Conference: Powering Net Zero Emissions, UPEC 2021 – Proceedings.

F. Borghetti, C.G. Colombo, M. Longo, R. Mazzoncini, C. Somaschini, Development of a new urban line

with innovative trams(2021) WIT Transactions on the Built Environment, 204, pp. 167-178.

L. Bertoli, F. Caltanissetta, B.M. Colosimo, In-situ Quality Monitoring of Extrusion-based Additive

Manufacturing via Random Forests and clustering (2021) IEEE International Conference on Automation

Science and Engineering, 2021-August, pp. 2057-2062.

G. Lugaresi, A. Matta, Discovery and digital model generation for manufacturing systems with assembly

operations (2021) IEEE International Conference on Automation Science and Engineering, 2021-August,

pp. 752-757.

H. Singh, G. Cascini, C. Mccomb, Influencers in design teams: a computational framework to study

their impact on idea generation (2021) Artificial Intelligence for Engineering Design, Analysis and

Manufacturing: AIEDAM, 35 (3), pp. 332-352.

P. Stabile, F. Ballo, M. Gobbi, G. Previati, Multi-objective structural optimization of vehicle wheels (2021)

Proceedings of the ASME Design Engineering Technical Conference, 1, art. no. V001T01A015, .

P. Bellani, M. Carulli, G. Caruso, Gestural interfaces to support the sketching activities of designers (2021)

Proceedings of the ASME Design Engineering Technical Conference, 2, art. no. v002t02a074.

G. Previati, M. Gobbi, Test bench for characterization and durability tests of motorbike clutches (2021)

Proceedings of the ASME Design Engineering Technical Conference, 1, art. no. V001T01A013, .

H. Singh, N. Becattini, G. Cascini, S. Škec, How familiarity impacts influence in collaborative teams?

(2021) Proceedings of the Design Society, 1, pp. 1735-1744.

S. Graziosi, G.W. Scurati, R. Parmose, A. Lecchi, M. Bordegoni, F. Ferrise, Bioinspired computational

design: A case study on a 3D-printed lamp based on the physalis alkekengi (2021) Proceedings of the

Design Society, 1, pp. 561-570.

M. Bordegoni, M. Carulli, E. Spadoni, Support users towards more conscious food consumption habits:

A case study (2021) Proceedings of the Design Society, 1, pp. 2801-2810.

S. Li, N. Becattini, G. Cascini, Correlating design performance to EEG activation: Early evidence from

experimental data (2021) Proceedings of the Design Society, 1, pp. 771-780.

N. Horvat, N. Becattini, S. Škec, Use of information and communication technology tools in distributed

product design student teams (2021) Proceedings of the Design Society, 1, pp. 3329-3338.

C. Sinigaglia, F. Braghin, S. Bandyopadhyay, M. Quadrelli, Optimal-transport-based control of particle

swarms for orbiting rainbows concept (2021) Journal of Guidance, Control, and Dynamics, 44 (11), pp.

2108-2117.

P. Coppola, L. Dell’Olio, F. Silvestri, Random-Parameters Behavioral Models to Investigate Determinants

of Perceived Safety in Railway Stations (2021) Journal of Advanced Transportation, 2021, art. no. 5530591.

R. Scimone, T. Taormina, B.M. Colosimo, M. Grasso, A. Menafoglio, P. Secchi, Statistical Modeling and

Monitoring of Geometrical Deviations in Complex Shapes With Application to Additive Manufacturing


(2021) Technometrics.

M. Asperti, M. Vignati, F. Braghin, Modelling of the Vertical Dynamics of an Electric Kick Scooter (2021)

IEEE Transactions on Intelligent Transportation Systems.

A. Cigada, E. Zappa, S. Paganoni, E. Giani, Protecting Pietà Rondanini against Environmental Vibrations

with Structural Restoration Works (2021) International Journal of Architectural Heritage.

September 2021

S. Sorti, C. Petrone, S. Russenschuck, F. Braghin Data-driven simulation of transient fields in air–coil

magnets for accelerators (2021) Nuclear Instruments and Methods in Physics Research, Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment, 1011, art. no. 165571.

S. Bruni, S. Dindar, S. Kaewunruen Editorial: Best Practices on Advanced Condition Monitoring of Rail

Infrastructure Systems, Volume II (2021) Frontiers in Built Environment, 7, art. no. 748846.

V. Zega, L. Martinelli, R. Casati, E. Zappa, G. Langfelder, A. Cigada, A. Corigliano A 3D Printed Ti6Al4V Alloy

Uniaxial Capacitive Accelerometer (2021) IEEE Sensors Journal, 21 (18), pp. 19640-19646.

M. Terrone, A. Ardeshiri Lordejani, J. Kondas, S. Bagherifard A numerical Approach to design and

develop freestanding porous structures through cold spray multi-material deposition (2021) Surface and

Coatings Technology, 421, art. no. 127423.

R. Luo, B. Liu, S. Qu A fast simulation algorithm for the wheel profile wear of high-speed trains

considering stochastic parameters (2021) Wear, 480-481, art. no. 203942.

D. Liu, D. Liu, J. Cui, X. Xu, K. Fan, A. Ma, Y. He, S. Bagherifard Deformation mechanism and in-situ TEM

compression behavior of TB8 titanium alloy with gradient structure (2021) Journal of Materials Science

and Technology, 84, pp. 105-115.

A. Fontanella, I. Bayati, R. Mikkelsen, M. Belloli, A. Zasso UNAFLOW: A holistic wind tunnel experiment

about the aerodynamic response of floating wind turbines under imposed surge motion (2021) Wind

Energy Science, 6 (5), pp. 1169-1190.

J.M. De Ponti, L. Iorio, E. Riva, R. Ardito, F. Braghin, A. Corigliano Selective Mode Conversion and Rainbow

Trapping via Graded Elastic Waveguides (2021) Physical Review Applied, 16 (3), art. no. 034028.

A. Scarpellini, V. Finazzi, P. Schito, A. Bionda, A. Ratti, A.G. Demir Laser powder bed fusion of a topology

optimized and surface textured rudder bulb with lightweight and drag-reducing design (2021) Journal of

Marine Science and Engineering, 9 (9), art. no. 1032.

F. Buccino, G. Martinoia, L.M. Vergani Torsion—resistant structures: A nature addressed solution (2021)

Materials, 14 (18), art. no. 5368.

E. Riva, G. Castaldini, F. Braghin Adiabatic edge-to-edge transformations in time-modulated elastic

lattices and non-Hermitian shortcuts (2021) New Journal of Physics, 23 (9), art. no. 093008.

F. Borghetti, C.G. Colombo, M. Longo, R. Mazzoncini, L. Cesarini, L. Contestabile, C. Somaschini 15-

min station: A case study in north italy city to evaluate the livability of an area (2021) Sustainability

(Switzerland), 13 (18), art. no. 10246.

A. Pourheidar, L. Patriarca, S. Beretta, D. Regazzi Investigation of fatigue crack growth in full-scale

railway axles subjected to service load spectra: Experiments and predictive models (2021) Metals, 11 (9),

art. no. 1427.

M. Pisati, M.G. Corneo, S. Beretta, E. Riva, F. Braghin, S. Foletti Numerical and experimental investigation

of cumulative fatigue damage under random dynamic cyclic loads of lattice structures manufactured by

laser powder bed fusion (2021) Metals, 11 (9), art. no. 1395.

T. Hauser, R.T. Reisch, S. Seebauer, A. Parasar, T. Kamps, R. Casati, J. Volpp, A.F.H. Kaplan Multi-

Material Wire Arc Additive Manufacturing of low and high alloyed aluminium alloys with in-situ material

analysis (2021) Journal of Manufacturing Processes, 69, pp. 378-390.

M. Rezasefat, D. Badel Torres, A. Gonzalez-Jimenez, M. Giglio, A. Manes A fast fracture plane orientation

search algorithm for Puck’s 3D IFF criterion for UD composites (2021) Materials Today Communications,

28, art. no. 102700.

H.R. Karimi Editorial: Special Issue on Automation in Mechatronic and Robotic Systems – Advanced

Perception, Planning and Control (2021) Transactions of the Institute of Measurement and Control, 43

(13), pp. 2885-2887.

R. Jones, O. Kovarik, S. Bagherifard, J. Cizek, J. Lang Damage tolerance assessment of AM 304L and

cold spray fabricated 316L steels and its implications for attritable aircraft

(2021) Engineering Fracture Mechanics, 254, art. no. 107916.

A.P. Moorhead, D. Chadefaux, M. Zago, S. Marelli, E. Marchetti, M. Tarabini Spatiotemporal gait parameter

changes due to exposure to vertical whole-body vibration

(2021) Gait and Posture, 89, pp. 31-37.

A. Cauteruccio, E. Brambilla, M. Stagnaro, L.G. Lanza, D. Rocchi Experimental evidence of the windinduced

bias of precipitation gauges using particle image velocimetry and particle tracking in the wind

tunnel (2021) Journal of Hydrology, 600, art. no. 126690.

Y. Lu, H.R. Karimi Variance-constrained resilient H∞ filtering for mobile robot localization under dynamic

event-triggered communication mechanism (2021) Asian Journal of Control, 23 (5), pp. 2064-2078.

E. Copertaro, F. Perotti, M. Annoni Operational vibration of a waterjet focuser as means for monitoring

its wear progression (2021) International Journal of Advanced Manufacturing Technology, 116 (5-6), pp.

1937-1949.

D. Marchisotti, E. Zappa Virtual simulation benchmark for the evaluation of simultaneous localization

and mapping and 3D reconstruction algorithm uncertainty (2021) Measurement Science and Technology,

32 (9), art. no. 095404.

M. Gandolla, S. Dalla Gasperina, V. Longatelli, A. Manti, L. Aquilante, M.G. D’Angelo, E. Biffi, E. Diella, F.

Molteni, M. Rossini, M. Gföhler, M. Puchinger, M. Bocciolone, F. Braghin, A. Pedrocchi An assistive upperlimb

exoskeleton controlled by multi-modal interfaces for severely impaired patients: development and

experimental assessment (2021) Robotics and Autonomous Systems, 143, art. no. 103822.

L. Kulinsky, M. Annoni, I. Fassi Special Issue on Remote Micro-and Nano-Manufacturing Science,

Engineering, and Education (2021) Journal of Micro and Nano-Manufacturing, 9 (3), .

J.C. Colombo-Pulgarín, C.A. Biffi, M. Vedani, D. Celentano, A. Sánchez-Egea, A.D. Boccardo, J.-P.

Ponthot Beta Titanium Alloys Processed By Laser Powder Bed Fusion: A Review (2021) Journal of

Materials Engineering and Performance, 30 (9), pp. 6365-6388.

D. Mombelli, G. Dall’Osto, G. Villa, C. Mapelli, S. Barella, A. Gruttadauria, L. Angelini, C. Senes, M. Bersani,

P. Frittella, R. Moreschi, R. Marras, G. Bruletti Study on the Pneumatic Lime Injection in the Electric Arc

Furnace Process: An Evaluation on the Performance Benefits (2021) Steel Research International, 92

(9), art. no. 2100083.

S. Gao, S. Chatterton, P. Pennacchi, F. Chu Behaviour of an angular contact ball bearing with threedimensional

cubic-like defect: A comprehensive non-linear dynamic model for predicting vibration

response (2021) Mechanism and Machine Theory, 163, art. no. 104376.

D. Yang, H.R. Karimi, K. Sun Residual wide-kernel deep convolutional auto-encoder for intelligent

rotating machinery fault diagnosis with limited samples (2021) Neural Networks, 141, pp. 133-144.

K. Matsuoka, H. Tanaka, K. Kawasaki, C. Somaschini, A. Collina Drive-by methodology to identify

resonant bridges using track irregularity measured by high-speed trains (2021) Mechanical Systems and

Signal Processing, 158, art. no. 107667.

J. Chen, L. Gu, W. Zhao, M. Guagliano Simulation of temperature distribution and discharge crater of

SiCp/Al composites in a single-pulsed arc discharge (2021) Chinese Journal of Aeronautics, 34 (9), pp.

37-46.

Y. Shi, N. Azzolin, A. Picardi, T. Zhu, M. Bordegoni, G. Caruso, A virtual reality-based platform to validate

hmi design for increasing user’s trust in autonomous vehicle (2021) Computer-Aided Design and

Applications, 18 (3), pp. 502-518.

A.P. Moorhead, D. Chadefaux, M. Zago, S. Marelli, E. Marchetti, M. Tarabini, Spatiotemporal gait

parameter changes due to exposure to vertical whole-body vibration (2021) Gait and Posture, 89, pp.

31-37.

A. Beligni, F. Cadini, C. Sbarufatti, M. Giglio, N. Cimminiello, P. Salvato, E. Monaco, F. Romano,

Investigation on low velocity impact damage identification with ultrasonic techniques under different

sensor network conditions (2021) IOP Conference Series: Materials Science and Engineering, 1024 (1),

art. no. 012027.

D. Milosavljevic, Q. Zhang, M. Moseneder, H. Zhu, N. Lecis, S. Cinquemani, F. Semperlotti, Progress on

the development of shape-memory-alloy metacomposites (2021) 36th Technical Conference of the

American Society for Composites 2021: Composites Ingenuity Taking on Challenges in Environment-

Energy-Economy, ASC 2021, 3, pp. 1838-1858.

G. Porpiglia, P. Schito, T. Argentini, A. Zasso, A numerical approach for the assessment of crosswind

effects on barrier-protected trains running on bridges (2021) IABSE Congress, Ghent 2021: Structural

Engineering for Future Societal Needs, pp. 233-240.

G. Diana, S. Stoyanoff, A. Allsop, L. Amerio, T. Argentini, M. Cid Montoya, V. de Ville, M.S. Andersen, T.

Wu, S. Hernández, J.Á. Jurado, I. Kavrakov, G. Larose, A. Larsen, G. Morgenthal, S. Omarini, D. Rocchi, M.

Svendsen, Super-long span bridge aerodynamics benchmark: Additional results for TG3.1 Step 1.2 (2021)

IABSE Congress, Ghent 2021: Structural Engineering for Future Societal Needs, pp. 1982-1989.

G. Bianchi, A. Agoni, S. Cinquemani, Design of a pneumatic growing robot inspired to plants’ roots (2021)

Proceedings of ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems,

SMASIS 2021, art. no. V001T01A006.

G. Bianchi, I. Claudio, S. Cinquemani, Investigation of fluid-dynamic forces on an artificial cownose ray

fin (2021) Proceedings of ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent

Systems, SMASIS 2021, art. no. V001T01A009.

F. Deirmina, P.A. Davies, R. Casati, Effects of Powder Atomization Route and Post-Processing Thermal

Treatments on the Mechanical Properties and Fatigue Resistance of Additively Manufactured 18Ni300

Maraging Steel (2021) Advanced Engineering Materials

L. Lomazzi, F. Cadini, M. Giglio, A. Manes, Vulnerability assessment to projectiles: Approach definition

and application to helicopter platforms (2021) Defence Technology.

M.P. Limongelli, E. Manoach, S. Quqa, P.F. Giordano, B. Bhowmik, V. Pakrashi, A. Cigada, Vibration

Response-Based Damage Detection (2021) Springer Aerospace Technology, pp. 133-173.

N.O. Pinciroli Vago, M. Sacaj, M. Sadeghi, S. Kalwar, A. Vogelsang, M. Rossi, On the visualization of

semantic-based mappings (2021) CEUR Workshop Proceedings, 2939.

H. Singh, H. Nolte, N. Becattini, Pedagogical Approaches and Course Modality Affecting Students’ Selfefficacy

and Problem-Solving Attitudes in a TRIZ-Oriented Course (2021) IFIP Advances in Information

and Communication Technology, 635 IFIP, pp. 367-378.

A. Gruttadauria, S. Barella, C. Mapelli, D. Mombelli, Iron Making in Fornovolasco (Italy) at the End of

the Fifteenth Century, the Canecchio Furnace, and an Artifact Characterization (2021) Historical

Archaeology.

C. Caccamo, R. Eleftheriadis, M.C. Magnanini, D. Powell, Odd Myklebust, A Hybrid Architecture for the

Deployment of a Data Quality Management (DQM) System for Zero-Defect Manufacturing in Industry 4.0

(2021) IFIP Advances in Information and Communication Technology, 632 IFIP, pp. 71-77.

meccanica magazine

135


meccanica magazine

136

October 2021

L. Liu, F. Ripamonti, R. Corradi, Z. Rao The modified weighted residual formulation in the wave based

method for plate bending problems: A general formulation for different types of edge restraints (2021)

Journal of Sound and Vibration, 511, art. no. 116329.

R. Jamali, G. Battista, M. Martarelli, P. Chiariotti, D.S. Kunte, C. Colangeli, P. Castellini Objectivesubjective

sound quality correlation performance comparison of genetic algorithm based regression

models and neural network based approach (2021) Journal of Physics: Conference Series, 2041 (1), art.

no. 012015.

R.S.O. Dias, M. Martarelli, P. Chiariotti Lagrange multiplier state-space substructuring (2021) Journal of

Physics: Conference Series, 2041 (1), art. no. 012016.

L. Barricelli, S. Beretta Analysis of prospective SIF and shielding effect for cylindrical rough surfaces

obtained by L-PBF (2021) Engineering Fracture Mechanics, 256, art. no. 107983.

D. Scaccabarozzi, B. Saggin, M. Magni, M.G. Corti, E. Zampetti, E. Palomba, A. Longobardo, F.

Dirri Calibration in cryogenic conditions of deposited thin-film thermometers on quartz crystal

microbalances (2021) Sensors and Actuators, A: Physical, 330, art. no. 112878.

G. Diana, A. Manenti, S. Melzi Energy Method to Compute the Maximum Amplitudes of Oscillation Due to

Galloping of Iced Bundled Conductors (2021) IEEE Transactions on Power Delivery, 36 (5), pp. 2804-2813.

M. Bertolini, M. Rossoni, G. Colombo Operative workflow from ct to 3d printing of the heart: Opportunities

and challenges (2021) Bioengineering, 8 (10), art. no. 130.

S. Maffia, V. Finazzi, F. Berti, F. Migliavacca, L. Petrini, B. Previtali, A.G. Demir Selective laser melting

of NiTi stents with open-cell and variable diameter (2021) Smart Materials and Structures, 30 (10), art.

no. 105010.

F. Buccino, C. Colombo, D.H.L. Duarte, L. Rinaudo, F.M. Ulivieri, L.M. Vergani 2D and 3D numerical

models to evaluate trabecular bone damage (2021) Medical and Biological Engineering and Computing,

59 (10), pp. 2139-2152.

M. Bertolini, A. Brambilla, S. Dallasta, G. Colombo High-quality chest CT segmentation to assess the

impact of COVID-19 disease (2021) International Journal of Computer Assisted Radiology and Surgery,

16 (10), pp. 1737-1747.

M. Rezasefat, A. Gonzalez-Jimenez, M. Giglio, A. Manes Numerical study on the dynamic progressive

failure due to low-velocity repeated impacts in thin CFRP laminated composite plates (2021) Thin-Walled

Structures, 167, art. no. 108220.

S. Beretta More than 25 years of extreme value statistics for defects: Fundamentals, historical

developments, recent applications (2021) International Journal of Fatigue, 151, art. no. 106407.

J.D. Velazco-Garcia, N.V. Navkar, S. Balakrishnan, G. Younes, J. Abi-Nahed, K. Al-Rumaihi, A. Darweesh,

M.S.M. Elakkad, A. Al-Ansari, E.G. Christoforou, M. Karkoub, E.L. Leiss, P. Tsiamyrtzis, N.V. Tsekos.

Evaluation of how users interface with holographic augmented reality surgical scenes: Interactive

planning MR-Guided prostate biopsies (2021) International Journal of Medical Robotics and Computer

Assisted Surgery, 17 (5), art. no. e2290.

S. Pfeiffer, K. Florio, D. Puccio, M. Grasso, B.M. Colosimo, C.G. Aneziris, K. Wegener, T. Graule. Direct

laser additive manufacturing of high performance oxide ceramics: A state-of-the-art review (2021)

Journal of the European Ceramic Society, 41 (13), pp. 6087-6114.

L. Bonaiti, A.B.M. Bayoumi, F. Concli, F. Rosa, C. Gorla Gear root bending strength: A comparison

between single tooth bending fatigue tests and meshing gears (2021) Journal of Mechanical Design,

Transactions of the ASME, 143 (10), art. no. 103402.

M. Berardengo, S. Manzoni, O. Thomas, M. Vanali Guidelines for the layout and tuning of piezoelectric

resonant shunt with negative capacitances in terms of dynamic compliance, mobility and accelerance

(2021) Journal of Intelligent Material Systems and Structures, 32 (17), pp. 2092-2107.

C. Colombo, M. Sansone, L. Patriarca, L. Vergani Rapid estimation of fatigue limit for C45 steel by

thermography and digital image correlation (2021) Journal of Strain Analysis for Engineering Design, 56

(7), pp. 478-491.

J. Liu, T. Yin, J. Cao, D. Yue, H.R. Karimi Security Control for T-S Fuzzy Systems with Adaptive Event-

Triggered Mechanism and Multiple Cyber-Attacks (2021) IEEE Transactions on Systems, Man, and

Cybernetics: Systems, 51 (10), pp. 6544-6554.

A.Eyvazian, S.A. Taghizadeh, A.M. Hamouda, F. Tarlochan, M. Moeinifard, M. Gobbi Buckling and crushing

behavior of foam-core hybrid composite sandwich columns under quasi-static edgewise compression

(2021) Journal of Sandwich Structures and Materials, 23 (7), pp. 2643-2670.

M. Ma, T. Wang, J. Qiu, H.R. Karimi, Adaptive Fuzzy Decentralized Tracking Control for Large-Scale

Interconnected Nonlinear Networked Control Systems (2021) IEEE Transactions on Fuzzy Systems, 29

(10), pp. 3186-3191.

A. Javadian Sabet, M. Rossi, F.A. Schreiber, L. Tanca,Towards learning travelers’ preferences in a

context-aware fashion (2021) Advances in Intelligent Systems and Computing, 1239 AISC, pp. 203-212.

A. Heydari Astaraee, C. Colombo, S. Bagherifard, Numerical Modeling of Bond Formation in Polymer

Surface Metallization Using Cold Spray (2021) Journal of Thermal Spray Technology, 30 (7), pp. 1765-1776.

E. Maleki, S. Bagherifard, M. Guagliano, Application of artificial intelligence to optimize the process

parameters effects on tensile properties of Ti-6Al-4V fabricated by laser powder-bed fusion (2021)

International Journal of Mechanics and Materials in Design.

M. Ahmadi, H.J. Kaleybar, M. Brenna, F. Castelli-dezza, M.S. Carmeli, Integration of distributed energy

resources and EV fast-charging infrastructure in high-speed railway systems (2021) Electronics

(Switzerland), 10 (20), art. no. 2555.

B. Li, Y. Lu, H.R. Karimi, Adaptive fading extended kalman filtering for mobile robot localization using a

doppler–azimuth radar (2021) Electronics (Switzerland), 10 (20), art. no. 2544.

M. De Landro, E. Felli, T. Collins, R. Nkusi, A. Baiocchini, M. Barberio, A. Orrico, M. Pizzicannella,

A. Hostettler, M. Diana, P. Saccomandi, Prediction of in vivo laser-induced thermal damage with

hyperspectral imaging using deep learning (2021) Sensors, 21 (20), art. no. 6934.

D. Paloschi, M. Bravi, E. Schena, S. Miccinilli, M. Morrone, S. Sterzi, P. Saccomandi, C. Massaroni,

Validation and assessment of a posture measurement system with magneto-inertial measurement

units (2021) Sensors, 21 (19), art. no. 6610.

S. Loffredo, S. Gambaro, F. Copes, C. Paternoster, N. Giguère, M. Vedani, D. Mantovani, Effect of silver

in thermal treatments of Fe-Mn-C degradable metals: Implications for stent processing (2021) Bioactive

Materials.

D. Farioli, M. Strano, F.B. Vangosa, V.G. Zaragoza, A. Aicardi, Rapid tooling for injection molding inserts

(2021) ESAFORM 2021 - 24th International Conference on Material Forming, art. no. 4186.

L. Lestingi, M. Askarpour, M.M. Bersani, M. Rossi, A Deployment Framework for Formally Verified

Human-Robot Interactions (2021) IEEE Access, 9, pp. 136616-136635.

M.H. Aref, A.-B.M. Youssef, I.H. Aboughaleb, A.A.R. Sharawi, A.A. Hussein, P. Saccomandi, Y.H. El-

Sharkawy, Imaging prospective study for commercial and in this issue: Spectral preprocessing

to compensate for packaging film / using neural nets to invert the prosail canopy model low-cost

hyperspectral imaging systems to evaluate thermal tissue effect on bovine liver samples(2021) Journal

of Spectral Imaging, 10, art. no. a5.

A. Abdelrahim, M. Aula, M. Iljana, T. Willms, T. Echterhof, S. Steinlechner, D. Mombelli, C. Mapelli, M.

Omran, S. Preiss, T. Fabritius, Suitability of Self-Reducing and Slag-Forming Briquettes for Electric Arc

Furnace Use Based on Laboratory Tests (2021) Steel Research International.

M.C. Magnanini, M. Colledani, O. Melnychuk, D. Caputo, Effect of work-force availability on manufacturing

systems operations of job shops (2021) Procedia CIRP, 103, pp. 152-157.

F. Morosi, G. Caruso, Configuring a VR simulator for the evaluation of advanced human–machine

interfaces for hydraulic excavators (2021) Virtual Reality.

S. Korganbayev, A. Orrico, L. Bianchi, D. Paloschi, A. Wolf, A. Dostovalov, P. Saccomandi, PID Controlling

Approach Based on FBG Array Measurements for Laser Ablation of Pancreatic Tissues (2021) IEEE

Transactions on Instrumentation and Measurement, 70.

S. Chatterton, P. Pennacchi, A. Vania, An unconventional method for the diagnosis and study of generator

rotor thermal bows (2021) Proceedings of the ASME Turbo Expo, 9B-2021, art. no. V09BT28A006.

B. Rivolta, R. Gerosa, C. Sala, F. Tavasci, L. Angelini, N. Bolognani, A. Panzeri, A. Parimbelli, Influence

of prior microstructure on the mechanical and microstructural properties of C–Mn–B steel after

spheroidizing annealing (2021) Ironmaking and Steelmaking, 48 (9), pp. 1013-1021.

November 2021

H. Khajehmirza, A. Heydari Astaraee, S. Monti, M. Guagliano, S. Bagherifard A hybrid framework to

estimate the surface state and fatigue performance of laser powder bed fusion materials after shot

peening (2021) Applied Surface Science, 567, art. no. 150758.

Y. Wei, H.R. Karimi Dynamic sliding mode control for nonlinear parameter-varying systems (2021)

International Journal of Robust and Nonlinear Control, 31 (17), pp. 8408-8419.

Z. Li, J. Zhai, H.R. Karimi Adaptive finite-time super-twisting sliding mode control for robotic

manipulators with control backlash (2021) International Journal of Robust and Nonlinear Control, 31 (17),

pp. 8537-8550.

M. Abdelwahed, S. Bengtsson, R. Casati, A. Larsson, S. Petrella, M. Vedani Effect of water atomization

on properties of type 4130 steel processed by L-PBF (2021) Materials and Design, 210, art. no. 110085.

A.Vescovini, L. Balen, R. Scazzosi, A.A.X. da Silva, S.C. Amico, M. Giglio, A. Manes Numerical investigation

on the hybridization effect in inter-ply S2-glass and aramid woven composites subjected to ballistic

impacts (2021) Composite Structures, 276, art. no. 114506.

D.E. Quadrelli, G. Cazzulani, S. La Riviera, F. Braghin, Acoustic scattering reduction of elliptical targets

via pentamode near-cloaking based on transformation acoustics in elliptic coordinates (2021) Journal of

Sound and Vibration, 512, art. no. 116396.

C. Confalonieri, E. Gariboldi, Al-Sn Miscibility Gap Alloy produced by Power Bed Laser Melting for

application as Phase Change Material (2021) Journal of Alloys and Compounds, 881, art. no. 160596.

J.M. De Ponti, L. Iorio, E. Riva, F. Braghin, A. Corigliano, R. Ardito, Enhanced Energy Harvesting of

Flexural Waves in Elastic Beams by Bending Mode of Graded Resonators (2021) Frontiers in Materials,

8, art. no. 745141.

N. Lecis, M. Mariani, R. Beltrami, L. Emanuelli, R. Casati, M. Vedani, A. Molinari Effects of process

parameters, debinding and sintering on the microstructure of 316L stainless steel produced by binder

jetting (2021) Materials Science and Engineering A, 828, art. no. 142108.

A.H. Astaraee, A. Salerno, S. Bagherifard, P. Carlone, H. Parmar, A. Astarita, A.Viscusi, C. Colombo,

Thermographic analysis of composite metallization through cold spray (2021) Metals, 11 (11), art. no. 1860.

D.E. Quadrelli, M.A. Casieri, G. Cazzulani, S. La Riviera, F. Braghin, Experimental validation of a broadband

pentamode elliptical-shaped cloak for underwater acoustics (2021) Extreme Mechanics Letters, 49, art.

no. 101526.

F. Belloli, A.G. Demir, B. Previtali, Understanding the deformation mechanisms of horizontal internal

channels during the LPBF of 18Ni300 maraging steel (2021) Journal of Manufacturing Processes, 71, pp.

237-248.

C. Mapelli, G. Villa, S. Barella, A. Gruttadauria, D. Mombelli, X. Veys, L. Duprez, JMAK model applied on

the κ-carbide precipitation in FeMnAlC steels (2021) Journal of Materials Research and Technology, 15,

pp. 3386-3398.


P. Rebesan, M. Ballan, M. Bonesso, A. Campagnolo, S. Corradetti, R. Dima, C. Gennari, G.A. Longo, S.

Mancin, M. Manzolaro, G. Meneghetti, A. Pepato, E. Visconti, M. Vedani, Pure molybdenum manufactured

by Laser Powder Bed Fusion: Thermal and mechanical characterization at room and high temperature

(2021) Additive Manufacturing, 47, art. no. 102277.

S. Muggiasca, F. Taruffi, A. Fontanella, S. Di Carlo, H. Giberti, A. Facchinetti, M. Belloli, Design of an

aeroelastic physical model of the DTU 10MW wind turbine for a floating offshore multipurpose platform

prototype (2021) Ocean Engineering, 239, art. no. 109837.

F. Cozzolino, G. Franzese, G. Mongelluzzo, C. Molfese, F. Esposito, A.C. Ruggeri, C. Porto, S. Silvestro, C.I

Popa, V. Mennella, D. Scaccabarozzi, B. Saggin, A.M.O. Rico, I. Arruego, J.R. De Mingo, N. Santiuste, D.

Brienza, F. Cortecchia, Techniques to verify the sampling system and flow characteristics of the sensor

MicroMED for the ExoMars 2022 Mission (2021) Measurement: Journal of the International Measurement

Confederation, 185, art. no. 110075.

L. Colombo, C. Sbarufatti, W. Zielinski, K. Dragan, M. Giglio, Numerical and experimental flight

verifications of a calibration matrix approach for load monitoring and temperature reconstruction and

compensation (2021) Aerospace Science and Technology, 118, art. no. 107074.

H.R. Karimi, Guest Editorial: Special issue on recent technological innovations in automation and control

systems for marine vehicles (2021) Control Engineering Practice, 116, art. no. 104928.

M. Mariani, I. Goncharov, D. Mariani, G.P. De Gaudenzi, A. Popovich, N. Lecis, M. Vedani Mechanical and

microstructural characterization of WC-Co consolidated by binder jetting additive manufacturing (2021)

International Journal of Refractory Metals and Hard Materials, 100, art. no. 105639.

Z. Sajedi, R. Casati, M.C. Poletti, R. Wang, F. Iranshahi, M. Vedani Comparative thermal fatigue behavior

of AlSi7Mg alloy produced by L-PBF and sand casting (2021) International Journal of Fatigue, 152, art.

no. 106424.

M. Grasso, A. Remani, A. Dickins, B.M. Colosimo, R.K. Leach In-situ measurement and monitoring

methods for metal powder bed fusion: An updated review (2021) Measurement Science and Technology,

32 (11), art. no. 112001.

L. Patriarca, W. Abuzaid, G. Carlucci, F. Belelli, R. Casati, Pseudoelasticity in FeMnNiAl shape memory

alloy lattice structures produced by Laser Powder Bed Fusion (2021) Materials Letters, 302, art. no.

130349.

K. Sun, J. Qiu, H.R. Karimi, Neural adaptive fault-tolerant finite-time control for nonstrict feedback

systems: An event-triggered mechanism (2021) Neural Networks, 143, pp. 377-385.

D. Ma, Á. González-Jiménez, M. Giglio, C.M. dos Santos Cougo, S.C. Amico, A. Manes. Multiscale

modelling approach for simulating low velocity impact tests of aramid-epoxy composite with nanofillers

(2021) European Journal of Mechanics, A/Solids, 90, art. no. 104286.

J. Chen, S. Yuan, C. Sbarufatti, X. Jin. Dual crack growth prognosis by using a mixture proposal particle

filter and on-line crack monitoring (2021) Reliability Engineering and System Safety, 215, art. no. 107758.

S. Petrò, L. Pagani, G. Moroni, P.J Scott, Conformance and nonconformance in segmentation-free X-ray

computed tomography geometric inspection (2021) Precision Engineering, 72, pp. 25-40.

M. Berardengo, S. Manzoni, M. Vanali, R. Bonsignori Enhancement of the broadband vibration attenuation

of a resistive piezoelectric shunt (2021) Journal of Intelligent Material Systems and Structures, 32 (18-19),

pp. 2174-2189.

X. Zhang, W. Zhou, H.R. Karimi, Y. Sun Finite-and Fixed-Time Cluster Synchronization of Nonlinearly

Coupled Delayed Neural Networks via Pinning Control (2021) IEEE Transactions on Neural Networks and

Learning Systems, 32 (11), pp. 5222-5231

C. Confalonieri, E. Gariboldi, Al-Sn Miscibility Gap Alloy produced by Power Bed Laser Melting for

application as Phase Change Material (2021) Journal of Alloys and Compounds, 881, art. no. 160596.

S. Cerfoglio, M. Galli, M. Tarabini, F. Bertozzi, C. Sforza, M, Zago, Machine learning-based estimation of

ground reaction forces and knee joint kinetics from inertial sensors while performing a vertical drop

jump (2021) Sensors, 21 (22), art. no. 7709.

K. Mahmood, T. Otto, V. Kuts, W. Terkaj, G. Modoni, M. Urgo, G. Colombo, G. Haidegger, P. Kovacs, J.

Stahre, Advancement in production engineering education through Virtual Learning Factory Toolkit

concept [Tootmisinseneride hariduse edendamine virtuaalse õppetehase tööriistakomplekti

kontseptsiooni kaudu] (2021) Proceedings of the Estonian Academy of Sciences, 70 (4), pp. 374-382.

L. Bonaiti, F. Rosa, P.M. Rao, F. Concli, C. Gorla, Gear root bending strength: statistical treatment of Single

Tooth Bending Fatigue tests results: Conference Proceedings [Zahnfußbiegefestigkeit: Statistische

Behandlung der Ergebnisse von den STBF-Versuchen] (2021) Forschung im Ingenieurwesen/

Engineering Research.

V. Longatelli, A. Pedrocchi, E. Guanziroli, F. Molteni, M. Gandolla, Robotic Exoskeleton Gait Training in

Stroke: An Electromyography-Based Evaluation (2021) Frontiers in Neurorobotics, 15, art. no. 733738.

J.M. De Ponti, E. Riva, F. Braghin, R. Ardito, Elastic three-dimensional metaframe for selective wave

filtering and polarization control (2021) Applied Physics Letters, 119 (21), art. no. 211903.

I. Ceroni, S. Ferrante, F. Conti, S.J. No, S.D. Gasperina, F. Dell’Eva, A. Pedrocchi, M. Tarabini, E. Ambrosini,

Comparing Fatigue Reducing Stimulation Strategies During Cycling Induced by Functional Electrical

Stimulation: a Case Study with one Spinal Cord Injured Subject (2021) Annual International Conference

of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology

Society. Annual International Conference, 2021, pp. 6394-6397.

G. Pomaranzi, O. Bistoni, P. Schito, L. Rosa, A. Zasso, Wind effects on a permeable double skin façade,

the eni head office case study (2021) Fluids, 6 (11), art. no. 415.

Q. Li, R. Corradi, , E. Di Gialleonardo, S. Bionda, A. Collina, Testing and modelling of elastomeric element

for an embedded rail system (2021) Materials, 14 (22), art. no. 6968.

M. Grasso, In situ monitoring of powder bed fusion homogeneity in electron beam melting (2021)

Materials, 14 (22), art. no. 7015.

L. Bernardini, M. Carnevale, A. Collina, Damage identification in warren truss bridges by two different

time–frequency algorithms (2021) Applied Sciences (Switzerland), 11 (22), art. no. 10605.

A.A. Shahid, J.S.V. Sesin, D. Pecioski, F. Braghin, D. Piga, L. Roveda, Decentralized multi-agent control

of a manipulator in continuous task learning (2021) Applied Sciences (Switzerland), 11 (21), art. no. 10227.

F. Borghetti, M. Longo, R. Mazzoncini, C. Somaschini, L. Cesarini, L. Contestabile, Relationship between

railway stations and the territory: Case study in LombardY - Italy for 15-min statioN (2021) International

Journal of Transport Development and Integration, 5 (4), pp. 367-378.

F. Tessarolo, et al., Measuring breathability and bacterial filtration efficiency of face masks in the

pandemic context: A round robin study with proficiency testing among non-accredited laboratories

(2021) Measurement: Journal of the International Measurement Confederation, art. no. 110481.

H.R. Karimi, N. Wang, X. Jin, A. Zemouche, Guest Editorial: Special issue on neural networks-based

reinforcement learning control of autonomous systems (2021) Neurocomputing.

L. Roveda, D. Riva, G. Bucca, D. Piga, Sensorless Optimal Switching Impact/Force Controller (2021) IEEE

Access, 9, pp. 158167-158184.

P. Mei, H.R. Karimi, S. Yang, B. Xu, C. Huang, An adaptive fuzzy sliding-mode control for regenerative

braking system of electric vehicles (2021) International Journal of Adaptive Control and Signal

Processing, .

S. Cacace, Q. Semeraro, Fast optimisation procedure for the selection of L-PBF parameters based on

utility function (2021) Virtual and Physical Prototyping.

C. Liu, C. Mapelli, Y. Peng, S. Barella, S. Liang, A. Gruttadauria, M. Belfi, Dynamic Recrystallization

Behavior of Low-Carbon Steel during the Flexible Rolling Process: Modeling and Characterization (2021)

Steel Research International.

B.M. Colosimo, E. del Castillo, L.A. Jones-Farmer, K. Paynabar, Artificial intelligence and statistics for

quality technology: an introduction to the special issue (2021) Journal of Quality Technology, 53 (5), pp.

443-453.

ìA. Bianciardi, G. Cascini, A bio-inspired approach for boosting innovation in the separation technology

sector (2021) Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical

Engineering Science.

E.R. Delgado Ramírez, J.E. Perez Ipiña, E.M. Castrodeza, Analysis of the Spb method for geometries

where ηpl depends on a/W (2021) Engineering Fracture Mechanics, 241, art. no. 107416.

December 2021

G. Zong, W. Qi, W., H.R Karimi, L Control of Positive Semi-Markov Jump Systems with State Delay(2021)

IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51 (12), pp. 7569-7578.

P. Coppola, F. De Fabiis, Impacts of interpersonal distancing on-board trains during the COVID-19

emergency (2021) European Transport Research Review, 13 (1), art. no. 13.

Z. Zhang, Y. Niu, H.R. Karimi, Sliding Mode Control of Interval Type-2 Fuzzy Systems under Round-Robin

Scheduling Protocol (2021) IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51 (12), pp.

7602-7612

J. Platl, H. Leitner, C. Turk, A.G. Demir, B. Previtali, R. Schnitzer Defects in a Laser Powder Bed Fused

Tool Steel(2021) Advanced Engineering Materials, 23 (12), art. no. 2000833.

V. Longatelli, A. Antonietti, E. Biffi, E. Diella, M.G. D’Angelo, M. Rossini, F. Molteni, M. Bocciolone, A.

Pedrocchi, M. Gandolla, User-centred assistive SystEm for arm Functions in neUromuscuLar subjects

(USEFUL): a randomized controlled study (2021) Journal of NeuroEngineering and Rehabilitation, 18 (1),

art. no. 4.

Y. Hu, H. Su, J. Fu, H.R. Karimi, G. Ferrigno, E.D. Momi, A. Knoll Nonlinear Model Predictive Control for

Mobile Medical Robot Using Neural Optimization (2021) IEEE Transactions on Industrial Electronics, 68

(12), art. no. 9305985, pp. 12636-12645.

A.A.X. Da Silva, R. Scazzosi, A. Manes, S.C. Amico High-Velocity Impact Behavior of Aramid/S2-Glass

Interply Hybrid Laminates(2021) Applied Composite Materials, 28 (6), pp. 1899-1917.

P. Albertelli, V. Mussi, M. Strano, M. Monno Experimental investigation of the effects of cryogenic cooling

on tool life in Ti6Al4V milling(2021) International Journal of Advanced Manufacturing Technology, 117 (7-8),

pp. 2149-2161.

W. Zhang, H.R. Karimi, Y. Tang, Distributed Tracking for Discrete-Time Multiagent Networks via an

Ultrafast Control Protocol (2021) IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51 (12),

pp. 7542-7552.

A. Armillotta, On the role of complexity in machining time estimation(2021) Journal of Intelligent

Manufacturing, 32 (8), pp. 2281-2299.

E. Maleki, S. Bagherifard, O. Unal, M. Bandini, G.H. Farrahi, M. Guagliano, Introducing gradient severe

shot peening as a novel mechanical surface treatment (2021) Scientific Reports, 11 (1), art. no. 22035.

H. Wan, H.R. Karimi, X. Luan, F. Liu, Self-triggered finite-time H∞ control for Markov jump systems with

multiple frequency ranges performance (2021) Information Sciences, 581, pp. 694-710.

H. Skyvulstad, Ø.W. Petersen, T. Argentini, A. Zasso, O. Øiseth, The use of a Laguerrian expansion basis

as Volterra kernels for the efficient modeling of nonlinear self-excited forces on bridge decks(2021)

Journal of Wind Engineering and Industrial Aerodynamics, 219, art. no. 104805.

K. Florio, D. Puccio, G. Viganò, S. Pfeiffer, F. Verga, M. Grasso, B.M. Colosimo, T. Graule, K. Wegener,

Process characterization and analysis of ceramic powder bed fusion (2021) International Journal of

Advanced Manufacturing Technology, 117 (7-8), pp. 2105-2116.

P. Albertelli, S. Esposito, V. Mussi, M. Goletti, M. Monno, Effect of metal foam on vibration damping and its

modelling (2021) International Journal of Advanced Manufacturing Technology, 117 (7-8), pp. 2349-2358.

meccanica magazine

137


meccanica magazine

138

M. Strano, K. Rane, M.A. Farid, V. Mussi, V. Zaragoza, M. Monno, Extrusion-based additive manufacturing

of forming and molding tools(2021) International Journal of Advanced Manufacturing Technology, 117 (7-

8), pp. 2059-2071.

A. Gonzalez-Jimenez, L. Lomazzi, F. Cadini, A. Beligni, C, Sbarufatti, M. Giglio, A. Manes, On the

mitigation of the RAPID algorithm uneven sensing network issue employing averaging and Gaussian blur

filtering techniques(2021) Composite Structures, 278, art. no. 114716.

M. Rezasefat, A. Gonzalez-Jimenez, M. Giglio, A. Manes, An evaluation of Cuntze and Puck inter fibre

failure criteria in simulation of thin CFRP plates subjected to low velocity impact(2021) Composite

Structures, 278, art. no. 114654.

S. Derosa, P. Nåvik, A. Collina, G. Bucca, A. Rønnquist, Contact point lateral speed effects on contact

strip wear in pantograph – catenary interaction for railway operations under 15 kV 16.67 Hz AC systems

(2021) Wear, 486-487, art. no. 204103.

P. Rebesan, C, Gennari, F. Zorzi, M. Bonesso, I. Calliari, R. Dima, A. Pepato, M. Vedani, Interface analysis

of additively manufactured pure molybdenum and AISI 304 stainless steel building-plate(2021) Materials

Letters, 305, art. no. 130763.

Z. Wu, Q. Gao, B. Jiang, H.R. Karimi, Solving the production transportation problem via a deterministic

annealing neural network method (2021) Applied Mathematics and Computation, 411, art. no. 126518.

S. Dalla Gasperina, L. Roveda, A, Pedrocchi, F. Braghin, M. Gandolla, Review on Patient-Cooperative

Control Strategies for Upper-Limb Rehabilitation Exoskeletons (2021) Frontiers in Robotics and AI, 8,

art. no. 745018.

M. Rossi, M.S. Carmeli, M. Mauri, Adjustable speed control and damping analysis of torsional vibrations in

vsd compressor systems (2021) Machines, 9 (12), art. no. 374.

N. Dozio, F. Marcolin, G.W. Scurati, F. Nonis, L. Ulrich, E. Vezzetti, F. Ferrise, Development of an affective

database made of interactive virtual environments(2021) Scientific Reports, 11 (1), art. no. 24108.

T. Torims, G. Pikurs, S. Gruber, M. Vretenar, A. Ratkus, M. Vedani, E. López, F. Brückner, First proofof-concept

prototype of an additive manufactured radio frequency quadrupole(2021) Instruments, 5 (4),

art. no. 35.

F. Guaglione, L. Caprio, B. Previtali, A.G. Demir, Single point exposure LPBF for the production of

biodegradable Zn-alloy lattice structures (2021) Additive Manufacturing, 48, art. no. 102426.

Z. Wang, T. Suo, A. Manes, Effect of chemical strengthening residual stress on the flexural performance

and fracture behavior of aluminosilicate glass (2021) Engineering Fracture Mechanics, 258, art. no.

108104.

C. Celletti, G. Ferrazzano, D. Belvisi, C, Ferrario, M. Tarabini, V. Baione, G. Fabbrini, A. Conte, M. Galli,

F. Camerota, Instrumental Timed Up and Go test discloses abnormalities in patients with Cervical

Dystonia(2021) Clinical Biomechanics, 90, art. no. 105493.

R.A.A. Lima, R. Perrone, M. Carboni, A. Bernasconi, Experimental analysis of mode I crack propagation

in adhesively bonded joints by optical backscatter reflectometry and comparison with digital image

correlation(2021) Theoretical and Applied Fracture Mechanics, 116, art. no. 103117.

M. Gavazzoni, M. Pisati, S. Beretta, S. Foletti, Multiaxial static strength of a 3D printed metallic lattice

structure exhibiting brittle behavior (2021) Fatigue and Fracture of Engineering Materials and Structures,

44 (12), pp. 3499-3516.

F. Morosi, I. Carli, G. Caruso, G. Cascini, E. Dekoninck, J.F, Boujut, Exploring Tablet Interfaces for

Product Appearance Authoring in Spatial Augmented Reality (2021) International Journal of Human

Computer Studies, 156, art. no. 102719.

D. Cristiani, C. Sbarufatti, M. Giglio, An interactive damage progression model for cross-ply laminates

subject to fatigue load cycles (2021) Composites Part A: Applied Science and Manufacturing, 151, art.

no. 106658.

A. Costa, E. Pastore, N. Frigerio, The Server Allocation Problem with non-identical machines: A metaheuristic

approach (2021) Computers and Industrial Engineering, 162, art. no. 107687.

F. Buccino, L. Zagra, P. Savadori, A. Galluzzo, C. Colombo, G. Grossi, G. Banfi, L.M. Vergani, Mapping local

mechanical properties of human healthy and osteoporotic femoral heads (2021) Materialia, 20, art. no.

101229.

D. Mombelli, D.L. Gonçalves, C. Mapelli, S. Barella, A. Gruttadauria, Processing and Characterization of

Self-Reducing Briquettes Made of Jarosite and Blast Furnace Sludges (2021) Journal of Sustainable

Metallurgy, 7 (4), pp. 1603-1626.

L. Bonaiti, C. Gorla, Estimation of gear SN curve for tooth root bending fatigue by means of maximum

likelihood method and statistic of extremes (2021) International Journal of Fatigue, 153, art. no. 106451.

Z. Li, E. Gariboldi, On the use of effective thermophysical properties to predict the melting process of

composite phase change materials with coarse structures (2021) International Journal of Heat and Mass

Transfer, 180, art. no. 121765.

P. Parenti, F. Puglielli, M. Goletti, M. Annoni, M. Monno, An experimental investigation on Inconel 718

interrupted cutting with ceramic solid end mills (2021) International Journal of Advanced Manufacturing

Technology, 117 (7-8), pp. 2173-2184.

L.M. Martulli, P. Barriga Ruiz, A. Rajan, F. Bárnik, M. Sága, A. Bernasconi, Infill shape effects on bending

stiffness of additively manufactured short fibre reinforced polymer sandwich specimens (2021) Journal

of Reinforced Plastics and Composites, 40 (23-24), pp. 927-938.

L. Mari, R. Casagrandi, E. Bertuzzo, D. Pasetto, S. Miccoli, A. Rinaldo, M. Gatto, The epidemicity index of

recurrent SARS-CoV-2 infections (2021) Nature Communications, 12 (1), art. no. 2752.

A. Pietra, M. Vazquez Rull, R. Etzi, A. Gallace, G.W. Scurati, F. Ferrise, M. Bordegoni, Promoting ecodriving

behavior through multisensory stimulation: a preliminary study on the use of visual and haptic

feedback in a virtual reality driving simulator (2021) Virtual Reality, 25 (4), pp. 945-959.

M.Q. Shaikh, S. Graziosi, S.V. Atre, Supportless printing of lattice structures by metal fused filament

fabrication (MF3) of Ti-6Al-4V: design and analysis (2021) Rapid Prototyping Journal, 27 (7), pp. 1408-1422.

Z. Zhang, Y. Niu, H.R Karimi, Sliding Mode Control of Interval Type-2 Fuzzy Systems under Round-Robin

Scheduling Protocol (2021) IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51 (12), pp.

7602-7612.

J. Platl, H. Leitner, C. Turk, A.G. Demir, B. Previtali, R. Schnitzer, Defects in a Laser Powder Bed Fused

Tool Steel (2021) Advanced Engineering Materials, 23 (12), art. no. 2000833.

L. Ulrich, F. Nonis, E. Vezzetti, S. Moos, G. Caruso, Y. Shi, F. Marcolin, Can adas distract driver’s attention?

An rgb-d camera and deep learning-based analysis (2021) Applied Sciences (Switzerland), 11 (24), art. no.

11587.

L.B. Peral, I. Fernández-Pariente, C. Colombo, C. Rodríguez, J. Belzunce, The positive role of nanometric

molybdenum–vanadium carbides in mitigating hydrogen embrittlement in structural steels (2021)

Materials, 14 (23), art. no. 7269.

Y.-E. Wang, D. Wu, H.R. Karimi, Robust stability of switched nonlinear systems with delay and sampling

(2021) International Journal of Robust and Nonlinear Control.

Q. Wu, et al, Freight train air brake models (2021) International Journal of Rail Transportation.

F. Marcolin, G.W. Scurati, L. Ulrich, F. Nonis, E. Vezzetti, N. Dozio, F. Ferrise, A. Stork, R.C. Basole,

Affective Virtual Reality: How to Design Artificial Experiences Impacting Human Emotions (2021) IEEE

Computer Graphics and Applications, 41 (6), pp. 171-178

L. Bernini, D. Waltz, P. Albertelli, M. Monno, A novel prognostics solution for machine tool sub-units:

The hydraulic case (2021) Proceedings of the Institution of Mechanical Engineers, Part B: Journal of

Engineering Manufacture.

T. Li, C. Sbarufatti, F. Cadini, J. Chen, S. Yuan, Particle filter-based hybrid damage prognosis considering

measurement bias(2021) Structural Control and Health Monitoring.

P. Tsiamyrtzis, M.L.G. Grasso, B.M. Colosimo, Image based statistical process monitoring via partial first

order stochastic dominance (2021) Quality Engineering.

S. Santoni, S.G. Gugliandolo, M., Sponchioni, D. Moscatelli, B.M. Colosimo, 3D bioprinting: current status

and trends—a guide to the literature and industrial practice (2021) Bio-Design and Manufacturing.

P. Marzaroli, A.P. Moorhead, M. Tarabini, M. Galli, F. Goi, R. Caimi, Development of a Wearable Sensors

System to Monitor Foot-Transmitted Vibration (2021) Lecture Notes of the Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 376 LNICST, pp. 188-196.


meccanica magazine

139




Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!