24.12.2012 Views

Efficient N-Aroylation of Substituted Indoles with N-Aroylbenzotriazoles

Efficient N-Aroylation of Substituted Indoles with N-Aroylbenzotriazoles

Efficient N-Aroylation of Substituted Indoles with N-Aroylbenzotriazoles

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Synthesis, 2007, 23, 3673-3677<br />

<strong>Efficient</strong> N-<strong>Aroylation</strong> <strong>of</strong> <strong>Substituted</strong> <strong>Indoles</strong> <strong>with</strong> N-<strong>Aroylbenzotriazoles</strong><br />

Alan R. Katritzky, *,a Levan Khelashvili, a Prabhu P. Mohapatra a and Peter J. Steel b<br />

a Center for Heterocyclic Compounds, Department <strong>of</strong> Chemistry, University <strong>of</strong> Florida, Gainesville, FL 32611-7200, USA, bChemistry<br />

Department, University <strong>of</strong> Canterbury, Christchurch, New Zealand<br />

Fax: +1(352)3929199<br />

E-mail: katritzky@chem.ufl.edu<br />

Received: The date will be inserted once the manuscript is accepted.<br />

Abstract: Stable and easily accessible N-aroylbenzotriazoles<br />

react <strong>with</strong> indoles in the presence <strong>of</strong> a base to afford the corresponding<br />

N-aroylindoles in yields averaging 70%. This method is<br />

effective even when both coupling reagents possess electrondonating<br />

substituents.<br />

Key words: N-aroylbenzotriazoles, indoles, N-aroylindoles, electron-donating<br />

substituents<br />

N-Aroylindoles are well-known non-steroidal antiinflammatory<br />

drugs (NSAIDS) (e.g. indomethacin, a 5methoxyindole<br />

derivative). 1 N-Aroyl-5-nitro-1H-indoles<br />

are utilized as intermediates for the synthesis <strong>of</strong> 2-aryl-5nitro-1H-indoles<br />

effective as bacterial NorA efflux pump<br />

inhibitors. 2 5-<strong>Substituted</strong> N-aroylindoles also exhibit<br />

selective cyclooxygenase-2 inhibitor activity. 3 and 5amino-1-(3,5-dimethylbenzoyl)-1H-indole<br />

possesses<br />

anti-angiogenic activity. 4 Furthermore, suitably substituted<br />

N-aroylindoles are used as precursors for the synthesis<br />

<strong>of</strong> benzannulated indolizidines. 5<br />

A variety <strong>of</strong> methods have been reported for the direct<br />

N-aroylation <strong>of</strong> indoles. When neither the aroylating<br />

agent nor the indole contains an electron donating substituent,<br />

several procedures are satisfactory. 6 However,<br />

useful N-aroylations <strong>of</strong> indoles to a product in which<br />

either the aryl group or indole nucleus contains a strong<br />

electron donor substituent are rare. N-Aroylindoles have<br />

been prepared by (i) indolide anion formation <strong>with</strong> sodium<br />

hydride followed by reaction <strong>with</strong> an acid chloride<br />

(36−82%), 6a (ii) direct aroylation <strong>of</strong> indoles <strong>with</strong> carboxylic<br />

acids using boric acid (50−82%) 6c and (iii)<br />

phase-transfer catalyzed aroylation <strong>of</strong> indoles<br />

(77−94%). 6d Most recently, Bremner et al 6b N-aroylated<br />

5-substituted indoles <strong>with</strong> carboxylic acids via<br />

DCC/DMAP coupling <strong>with</strong> an electron-<strong>with</strong>drawing<br />

substituent (NO2, CN or F) in the 5-position to give<br />

73−95% yields <strong>of</strong> the N-aroylindoles. However, the<br />

yields for the 5-unsubstituted indoles, were 32−46% and<br />

for 5-methoxyindole only 0−15%.<br />

N-Acylbenzotriazoles are easily prepared activated derivatives<br />

<strong>of</strong> carboxylic acids. 7 Applications <strong>of</strong> Nacylbenzotriazoles<br />

include (i) N-acylation <strong>of</strong> amines,<br />

amides 8 and sulfonamides, 9 (ii) O-acylation <strong>of</strong> aldehydes,<br />

10 steroids, 11 hydroxyterpenes and alcohols, 12 (iii)<br />

many C-acylations viz: pyrroles and indoles, 13 ketones<br />

and heteroaromatics, 14 alkyl sulfones, 15 alkyl cyanides, 16<br />

alkyl azines, 17 α-nitroalkanes, 18 furan and thiophene; 19<br />

syntheses <strong>of</strong> (iv) peptides, 20 (v) oxazolines, 21 (vi) esters,<br />

22 (vii) benzodioxin-4-ones, 23 (viii) ketones, 24 (ix)<br />

benzodiazepin-2-ones, 25 (x) thiol esters, 26 (xi) alcohols, 27<br />

(xii) hydrazides 28 and (xiii) heteroaromatics. 29<br />

Earlier we 13a,14b and others 12 reported regiospecific Cacylation<br />

<strong>of</strong> pyrroles and indoles using Nacylbenzotriazoles.<br />

Herein, we report the efficient synthesis<br />

<strong>of</strong> electron-rich N-aroylindoles from Naroylbenzotriazoles<br />

in the presence <strong>of</strong> a base via Naroylation<br />

<strong>of</strong> indoles.<br />

Results and Discussion<br />

Indole 1a and 5-methoxyindole 1b were purchased and<br />

used as substrates for N-aroylation reactions. N-<br />

<strong>Aroylbenzotriazoles</strong> 2a–c were readily prepared from<br />

1H-benzotriazole (BtH) and the corresponding carboxylic<br />

acid in yields <strong>of</strong> 85 to 95% according to a literature<br />

procedure 20 (Figure 1). Reaction <strong>of</strong> 2,6dimethoxybenzoic<br />

acid <strong>with</strong> BtH and thionyl chloride in<br />

dichloromethane at RT for 1 h gave benzotriazol-1-yl-<br />

(2,6-dimethoxyphenyl)methanone 2d (95%) characterized<br />

by 1 H, 13 C NMR and CHN analysis (Figure 1).<br />

Figure 1. N-Acylbenzotriazoles (R 1 COBt) 2a–d.<br />

Bt<br />

O<br />

Bt<br />

OMe<br />

MeO<br />

Bt<br />

MeO<br />

Bt<br />

O<br />

O<br />

O<br />

MeO<br />

2a 2b 2c 2d<br />

Bt =<br />

N<br />

N<br />

N<br />

Reaction <strong>of</strong> the sodium salt <strong>of</strong> indole 1a (1 mmol) <strong>with</strong><br />

benzotriazol-1-yl-phenylmethanone 2a (1 mmol) in THF<br />

at 25 o C for 12 h gave the corresponding 1-benzoyl-1Hindole<br />

3a in 81% yield (Table 1). Previously 3a was<br />

prepared in 32% yield from 1a and benzoyl chloride. 6a<br />

Reaction <strong>of</strong> indoles 1a and 1b <strong>with</strong> electron-rich Nacylbenzotriazoles<br />

2a−d (Figure 1) tested the generality<br />

<strong>of</strong> this method. Reaction <strong>of</strong> 1a <strong>with</strong> 2b and 2c gave 1-(4methoxybenzoyl)-1H-indole<br />

3b and 1-(2methoxybenzoyl)-1H-indole<br />

3c, in 91% (lit. 6b 46%) and<br />

90% yields (lit. 6b 34%) respectively (Table 1).<br />

Reaction <strong>of</strong> 1b <strong>with</strong> 2a, 2b and 2c gave 1-benzoyl-5methoxy-1H-indole<br />

3d (87%, lit. 6b 15%), 5-methoxy-1-<br />

(4-methoxybenzoyl)-1H-indole 3e (77%, lit. 6b 9%) and<br />

novel 5-methoxy-1-(2-methoxybenzoyl)-1H-indole 3f<br />

(42%, lit. 6b 0%) (Table 1). A previous attempt to prepare<br />

3f from the corresponding acid chloride was unsuccessful.<br />

6c In order to confirm unambiguously the structures<br />

<strong>of</strong> these products the X-ray crystal structure <strong>of</strong> a representative<br />

example, 3f, was determined. 30 Figure 2 shows<br />

1


Synthesis, 2007, 23, 3673-3677<br />

a perspective view <strong>of</strong> the structure which is in accord<br />

<strong>with</strong> that proposed and confirms the N-aroylation.<br />

Figure 2. X-ray crystal structure <strong>of</strong> 3f.<br />

Table 1 Preparation <strong>of</strong> N-aroylindoles 3a–h<br />

Reactions <strong>of</strong> 1a and 1b <strong>with</strong> more electron-rich (thus<br />

less reactive) N-aroylbenzotriazole 2d gave novel 1-(2,6dimethoxybenzoyl)-1H-indole<br />

3g and 1-(2,6dimethoxybenzoyl)-5-methoxy-1H-indole<br />

3h, in 60%<br />

and 36% yields respectively (Table 1). These results<br />

demonstrate that the present method <strong>of</strong> synthesis is compatible<br />

<strong>with</strong> up to a total <strong>of</strong> three electron-donating substituents<br />

in both the indole and phenyl rings.<br />

Conclusion<br />

Readily available electron-rich N-aroylbenzotriazoles<br />

under basic conditions efficiently N-aroylate indoles,<br />

including those <strong>with</strong> a 5-electron donor substituent.<br />

entry indole RCOBt product structure yield<br />

(%) a<br />

yield (%)<br />

a 1a 2a<br />

3a d 81 32<br />

b 1a 2b<br />

c 1a 2c<br />

d 1b 2a<br />

e 1b 2b<br />

f 1b 2c<br />

g 1a 2d<br />

h 1b 2d<br />

MeO<br />

MeO<br />

MeO<br />

MeO<br />

a Isolated yields after column purification and determined from a<br />

O<br />

N<br />

N<br />

O OMe<br />

O<br />

O<br />

N<br />

MeO<br />

N<br />

MeO<br />

single experiment, b TLC pr<strong>of</strong>ile (ethyl acetate/hexanes = 1:4), c SiO2<br />

column chromatography (5-20% EtOAc in hexanes), d H-3' proton<br />

O<br />

N<br />

N<br />

O OMe<br />

O<br />

N<br />

MeO<br />

OMe<br />

O<br />

N<br />

OMe<br />

lit. 6b<br />

3b d 91 46<br />

3c 90 34<br />

3d 87 15<br />

3e 77 9<br />

3f 42 0<br />

3g 60 new<br />

3h 36 new<br />

MeO<br />

appears as singlet because the coupling constants between H-3' and H-<br />

2' are 2-4 Hz (low resolution)<br />

2


Synthesis, 2007, 23, 3673-3677<br />

Melting points are uncorrected. 1 H NMR and 13 C NMR spectra<br />

were recorded on a FT-Bruker AT-300 instrument using TMS as an<br />

internal standard and CDCl3 as solvent. Compounds were characterized<br />

by elemental analysis using a Carlo-Erba EA1112 instrument.<br />

Benzotriazol-1-yl-(2,6-dimethoxyphenyl)methanone<br />

(2d): 2,6-Dimethoxybenzoic acid (1.82 g, 10 mmol) was<br />

placed in a 100 mL Schlenk flask and dry dichloromethane<br />

(20 mL) was added. Then benzotriazole (3.63 g,<br />

30.5 mmol) and dichloromethane (20 mL) were added<br />

followed by thionyl chloride (0.77 mL, 10.5 mmol). The<br />

solid precipitate was difficult to stir and so it was shaken<br />

in a New Brunswick Scientific apparatus at 40 speed at<br />

RT for 1 h. The white precipitate was filtered and the<br />

filtrate was evaporated under reduced pressure to give<br />

the crude product which was then washed <strong>with</strong> dry diethyl<br />

ether (2 x 10 mL) to obtain pure benzotriazol-1-yl-<br />

(2,6-dimethoxyphenyl)methanone (2.62 g, 95%) as white<br />

crystals.<br />

Mp 154−155 o C.<br />

1 H NMR (300 MHz, CDCl3): δ = 8.45 (d, J = 8.2 Hz, 1<br />

H), 8.13 (d, J = 8.2 Hz, 1 H), 7.70 (t, J = 7.3 Hz, 1 H),<br />

7.53 (t, J = 7.3 Hz, 1 H), 7.45 (t, J = 8.4 Hz, 1 H), 6.67<br />

(d, J = 8.4 Hz, 2 H), 3.76 (s, 6H).<br />

13 C NMR (75 MHz, CDCl3): δ = 165.6, 158.2, 146.4,<br />

132.9, 131.4, 130.3, 126.3, 120.2, 114.8, 112.7, 104.1,<br />

56.2.<br />

Anal. Calcd for C15H13N3O3: C, 63.60; H, 4.63; N,<br />

14.83. Found: C, 63.37; H, 4.44; N, 14.73.<br />

General procedure for preparation <strong>of</strong> N-aroylindoles<br />

3: The sodium salt <strong>of</strong> the appropriate indole was prepared<br />

by adding 1.1 equiv <strong>of</strong> NaH portionwise to a<br />

stirred solution <strong>of</strong> the indole in dry THF (10 mL) at RT.<br />

After the salt had formed, 1.1 equiv <strong>of</strong> the appropriate Nacylbenzotriazole<br />

in dry THF (10 mL) was added dropwise<br />

and the mixture was allowed to stir at RT until the<br />

reaction was complete (followed by TLC, hexanes/ethyl<br />

acetate, 5:1). The resulting mixture was concentrated in<br />

vacuo and chromatographed on silica gel [10−20%<br />

EtOAc in hexanes] to give the N-(hetero)aroylindole 3.<br />

Sometimes additional purification was achieved by<br />

washing the product <strong>with</strong> hexanes or recrystallization<br />

from hexanes.<br />

1-Benzoyl-1H-indole (3a)<br />

Yield 0.22 g (81%); white crystals; mp = 63−64 o C<br />

(Lit. 6b 63−64 o C).<br />

1 H NMR (300 MHz, CDCl3): δ = 8.41 (d, J = 7.8 Hz, 1<br />

H), 7.72 (d, J = 6.9 Hz, 2 H) , 7.61−7.49 (m, 4 H),<br />

7.40−7.29 (m, 3 H), 6.61 (s, 1 H).<br />

13 C NMR (75 MHz, CDCl3): δ = 168.7, 135.9, 134.5,<br />

131.8, 130.7, 129.1, 128.5, 127.6, 124.9, 123.9, 120.8,<br />

116.3, 108.5.<br />

Anal. Calcd for C15H11N1O1: C, 81.43; H, 5.01; N, 6.33.<br />

Found: C, 81.50; H, 4.95; N, 6.37.<br />

1-(4-Methoxybenzoyl)-1H-indole (3b)<br />

Yield 0.24 g (91%); white crystals; mp = 138−139 o C<br />

(Lit. 6b 138−139 o C).<br />

1 H NMR (300 MHz, CDCl3): δ = 8.34 (d, J = 7.8 Hz, 1<br />

H), 7.74 (d, J = 8.5 Hz, 2 H), 7.60 (d, J = 7.2 Hz, 1 H),<br />

7.36−7.25 (m, 3 H), 7.00 (d, J = 8.4 Hz, 2 H), 6.61 (s, 1<br />

H), 3.89 (s, 3 H).<br />

13 C NMR (75 MHz, CDCl3): δ = 168.2, 162.6, 136.0,<br />

131.7, 130.6, 127.7, 126.5, 124.6, 123.6, 120.8, 116.1,<br />

113.8, 108.0, 55.5.<br />

Anal. Calcd for C16H13N1O2: C, 76.48; H, 5.21; N, 5.57.<br />

Found: C, 76.34; H, 5.08; N, 5.83.<br />

1-(2-Methoxybenzoyl)-1H-indole (3c)<br />

Yield 0.225 g (90%); colorless glassy solid (Lit. 6b pinkish-red<br />

glassy solid).<br />

1 H NMR (300 MHz, CDCl3): δ = 8.37 (br d, J = 7.7 Hz,<br />

1 H), 7.51−7.18 (m, 5 H), 7.03−6.94 (m, 3 H), 6.47 (d, J<br />

= 3.7 Hz, 1 H), 3.71 (s, 3 H).<br />

13 C NMR (75 MHz, CDCl3): δ = 167.2, 156.3, 135.5,<br />

132.1, 130.9, 129.0, 127.4, 124.8, 124.8, 123.9, 120.8,<br />

120.7, 116.5, 111.4, 108.6, 55.7.<br />

Anal. Calcd for C16H13N1O2: C, 76.48; H, 5.21; N, 5.57.<br />

Found: C, 76.21; H, 4.83; N, 5.67.<br />

1-Benzoyl-5-methoxy-1H-indole (3d)<br />

Yield 0.218 g (87%); white crystals; mp = 106−107 o C<br />

(Lit. 6b 106−107 o C).<br />

1 H NMR (300 MHz, CDCl3): δ = 8.25 (d, J = 9.1 Hz, 1<br />

H), 7.65 (dd, J = 6.9, 1.5 Hz, 2 H), 7.55−7.41 (m, 3H),<br />

7.18 (dd, J = 3.0, 0.5 Hz, 1 H), 6.99 (d, J = 2.5 Hz, 1 H),<br />

6.92 (dd, J = 8.9, 2.5 Hz, 1 H), 6.47 (d, J = 3.7 Hz, 1 H),<br />

3.80 (s, 3H).<br />

13 C NMR (75 MHz, CDCl3): δ = 168.4, 156.6, 134.5,<br />

131.7, 130.6, 129.1, 128.5, 128.2, 117.2, 113.3, 108.5,<br />

103.5, 55.6.<br />

Anal. Calcd for C16H13N1O2: C, 76.48; H, 5.21; N, 5.57.<br />

Found: C, 76.36; H, 5.15; N, 5.50.<br />

5-Methoxy-1-(4-methoxybenzoyl)-1H-indole (3e)<br />

Yield 0.218 g (77%); white crystals; mp = 106−108 o C<br />

(Lit. 6b 105−106 o C).<br />

1 H NMR (300 MHz, CDCl3): δ = 8.33 (d, J = 9.1 Hz, 1<br />

H), 7.78 (tt, J = 9.7, 2.7, 2.0 Hz, 2 H), 7.38 (d, J = 3.7<br />

Hz, 1 H), 7.12 (d, J = 2.5 Hz, 1 H), 7.07−7.02 (m, 3 H),<br />

6.56 (d, J = 3.7 Hz, 1 H), 3.94 (s, 3 H), 3.92 (s, 3 H).<br />

3


Synthesis, 2007, 23, 3673-3677<br />

13 C NMR (75 MHz, CDCl3): δ = 167.8, 162.5, 156.4,<br />

131.6, 131.5, 130.7, 128.3, 126.4, 116.9, 113.7, 113.2,<br />

107.9, 103.3, 55.6, 55.4.<br />

Anal. Calcd for C17H15N1O3: C, 72.58; H, 5.37; N, 4.98.<br />

Found: C, 72.84; H, 5.32; N, 4.85.<br />

5-Methoxy-1-(2-methoxybenzoyl)-1H-indole (3f)<br />

Yield 0.119 g (42%); white crystals; mp = 93−95 o C.<br />

1 H NMR (300 MHz, CDCl3): δ = 8.35 (br d, J = 7.3 Hz,<br />

1 H, H-2), 7.50 (td, J = 9.0, 1.6 Hz, 1 H, H-6’), 7.43 (dd,<br />

J = 7.5, 1.6 Hz, 1 H, H-4’), 7.08 (d, J = 7.4 Hz, 1 H, H-<br />

7), 7.05−7.00 (m, 3H, H-4, H-3’, H-5’), 6.97 (dd, J =<br />

8.9, 2.4 Hz, 1 H, H-3), 6.47 (d, J = 3.7 Hz, 1 H, H-6),<br />

3.87 (s, 3H, OCH3), 3.79 (s, 3H, OCH3).<br />

13 C NMR (75 MHz, CDCl3): δ = 166.8 (C=O), 156.6 (C-<br />

2’), 156.3 (C-5), 132.0 (C-4’), 131.9 (C-6’), 130.2 (C-<br />

3a), 129.0 (C-7a), 128.1 (C-2), 124.7 (C-1’), 120.7 (C-<br />

5’), 117.2 (C-3’), 113.0 (C-7), 111.4 (C-6), 108.5 (C-3),<br />

103.6 (C-4), 55.7 (OCH3).<br />

Anal. Calcd for C16H13N1O2: C, 72.58; H, 5.37; N, 4.98.<br />

Found: C, 72.93; H, 5.35; N, 4.88.<br />

1-(2,6-Dimethoxybenzoyl)-1H-indole (3g)<br />

Yield 0.17 g (60%); Pinkish-white crystals; mp =<br />

141−142 o C.<br />

1 H NMR (300 MHz, CDCl3): δ = 8.78 (br d, J = 5.9 Hz,<br />

1 H, H-7), 7.64 (d, J = 8.1 Hz, 1 H, H-2), 7.46 (t, J = 8.4<br />

Hz, 2 H, H-4 and H-6), 7.37 (t, J = 7.1 Hz, 1 H, H-4’),<br />

7.03 (br s, 1 H, H-5), 6.69 (d, J = 8.4 Hz, 2 H, H-3,5 Ar),<br />

6.59 (br s, 1H, H-3’), 3.80 (s, 6H, OCH3).<br />

13 C NMR (75 MHz, CDCl3): δ = 165.5 (C=O), 157.5 (C-<br />

2’ and C-6’), 135.5 (C-4’), 131.9 (C-7a), 131.2 (C-3a),<br />

127.3 (C-2), 124.9 (C-5), 124.0 (C-6), 120.8 (C-4), 117.0<br />

(C-7), 114.0 (C-1’), 108.6 (C-3’ and C-5’), 104.1 (C-3),<br />

56.0 (OCH3).<br />

Anal. Calcd for C17H15N1O3: C, 72.58; H, 5.37; N, 4.98.<br />

Found: C, 72.50; H, 5.32; N, 4.90.<br />

1-(2,6-Dimethoxybenzoyl)-5-methoxy-1H-indole (3h)<br />

Yield 0.113 g (36%); white crystals (from hexanes); mp<br />

= 134−135 o C.<br />

1 H NMR (300 MHz, CDCl3): δ = 8.59 (d, J = 8.5 Hz, 1<br />

H, H-2), 7.39 (t, J = 8.4 Hz, 1 H, H-4’)), 7.04 (s, 1 H, H-<br />

7), 7.00 (s, 1 H, H-4), 6.94 (d, J = 2.1 Hz, 1 H, H-3),<br />

6.63 (d, J = 8.5 Hz, 2 H, H-6, H-3’)), 6.46 (d, J = 2.1 Hz,<br />

1 H, H-5’), 3.86 (s, 3H, OCH3), 3.74 (s, 6H, OCH3).<br />

13 C NMR (75 MHz, CDCl3): δ = 165.1 (C=O), 157.5 (C-<br />

2’ and C-6’), 156.8 (C-5), 132.2 (C-4’), 131.9 (C-3a),<br />

130.3 (C-7a), 128.0 (C-2), 117.7 (C-7), 113.9 (C-6),<br />

113.1 (C-1’), 108.6 (C-3’ and C-5’), 104.0 (C-3), 103.7<br />

(C-4), 56.0 (OCH3), 55.8 (OCH3).<br />

Anal. Calcd for C18H17N1O4: C, 69.44; H, 5.50; N, 4.50.<br />

Found: C, 69.49. H, 5.47. N, 4.38.<br />

Acknowledgments<br />

We thank Dr. C. D. Hall for checking the manuscript.<br />

References<br />

(1) (a) Zambre, A. P.; Ganure, A. L.; Shinde, D. B.; Kulkarni,<br />

V. M. J. Chem. Inf. Model. 2007, 47, 635. (b) Rosenbaum,<br />

C.; Baumh<strong>of</strong>, P.; Mazitschek, R.; Mueller, O.; Giannis, A.;<br />

Waldmann, H. Angew. Chem. Int. Ed. 2004, 43, 224.<br />

(2) Samosorn, S.; Bremner, J. B.; Ball, A.; Lewis, K. Bioorg.<br />

Med. Chem. 2006, 14, 857.<br />

(3) Cho, I.-H.; Lim, J.-W.; Noh, J.-Y.; Kim, J.-H.; Park, S.-W.;<br />

Ryu, H.-C.; Kim, J.-H.; Chun, H.-O.; Wang, S.-Y.; Lee, S.-<br />

H. World Pat. WO 031409, 2003; Chem. Abstr. 2003, 138,<br />

321129.<br />

(4) (a) Sano, H.; Noguchi, T.; Miyajima, A.; Hashimoto, Y.;<br />

Miyachi, H. Bioorg. Med. Chem. Lett. 2006, 16, 3068. (b)<br />

Sano, H.; Noguchi, T.; Tanatani, A.; Hashimoto, Y.;<br />

Miyachi, H. Bioorg. Med. Chem. 2005, 13, 3079.<br />

(5) Gross, S.; Reissig, H.-U. Org. Lett. 2003, 5, 4305.<br />

(6) (a) Welstead, W. J. Jr.; Stauffer, H. F. Jr.; Sancilio, L. F. J.<br />

Med. Chem. 1974, 17, 544. (b) Bremner, J. B.; Samosorn,<br />

S.; Ambrus, J. I. Synthesis 2004, 2653. (c) Terashima, M.;<br />

Fujioka, M. Heterocycles 1982, 19, 91. (d) Illi, V. O. Synthesis<br />

1979, 387.<br />

(7) (a) Katritzky, A. R.; Suzuki, K.; Wang, Z. Synlett 2005,<br />

1656. (b) Katritzky, A. R.; Zhang, Y.; Singh, S. K.<br />

Synthesis 2003, 2795. (c) Katritzky, A. R.; Meher, N. K.;<br />

Cai, C.; Singh, S. K. Rev. Soc. Quim. Mex. 2004, 48, 275.<br />

Chem. Abstr. 2005, 143, 26540.<br />

(8) (a) Katritzky, A. R.; He, H.-Y.; Suzuki, K. J. Org. Chem.<br />

2000, 65, 8210. (b) Katritzky, A. R.; Yang, H.; Zhang, S.;<br />

Wang, M. ARKIVOC 2002, xi, 39.<br />

(9) Katritzky, A. R.; H<strong>of</strong>fmann, S.; Suzuki, K. ARKIVOC<br />

2004, xii, 14.<br />

(10) Katritzky, A. R.; Pastor, A.; Voronkov, M. V. J. Heterocycl.<br />

Chem. 1999, 36, 777.<br />

(11) Katritzky, A. R.; Suzuki, K.; Singh, S. K.; He, H.-Y. J. Org.<br />

Chem. 2003, 68, 5720.<br />

(12) Zou, X.; Wang, X.; Cheng, C.; Kong, L.; Mao, H. Tetrahedron<br />

Lett. 2006, 47, 3767.<br />

(13) (a) Katritzky, A. R.; Pastor, A. J. Org. Chem. 2000, 65,<br />

3679. (b) Katritzky, A. R.; Jiang, R.; Suzuki, K. J. Org.<br />

Chem. 2005, 70, 4993.<br />

(14) (a) Katritzky, A. R.; Meher, N. K.; Singh, S. K. J. Org.<br />

Chem. 2005, 70, 7792. (b) Katritzky, A. R.; Abdel-Fattah,<br />

A. A. A.; Wang, M. J. Org. Chem. 2003, 68, 1443. (c)<br />

Katritzky, A. R.; Abdel-Fattah, A. A. A.; Wang, M. J. Org.<br />

Chem. 2003, 68, 4932.<br />

(15) Katritzky, A. R.; Abdel-Fattah, A. A. A.; Akhmedova, R. G.<br />

ARKIVOC 2005, vi, 329.<br />

(16) Katritzky, A. R.; Abdel-Fattah, A. A. A.; Gromova, A. V.;<br />

Witek, R.; Steel, P. J. J. Org. Chem. 2005, 70, 9211.<br />

(17) Katritzky, A. R.; Suzuki, K.; Singh, S. K. Croat. Chem.<br />

Acta 2004, 77, 175, Chem. Abstr. 2004, 142, 134399.<br />

(18) Katritzky, A. R.; Suzuki, K.; Singh, S. K. Synthesis 2004,<br />

2645.<br />

(19) Katritzky, A. R.; Angrish, P.; Hür, D.; Suzuki, K. Synthesis<br />

2005, 397.<br />

(20) (a) Katritzky, A. R.; Angrish, P.; Suzuki, K. Synthesis 2006,<br />

411. (b) Katritzky, A. R.; Todadze, E.; Cusido, J.; Angrish,<br />

P.; Shestopalov, A. A. Chem. Biol. Drug Des. 2006, 68, 37.<br />

(c) Katritzky, A. R.; Todadze, E.; Shestopalov, A. A.;<br />

Cusido, J.; Angrish, P. Chem. Biol. Drug Des. 2006, 68, 42.<br />

(d) Katritzky, A. R.; Meher, G.; Angrish, P. Chem. Biol.<br />

Drug Des. 2006, 68, 326. (e) Katritzky, A. R.; Tao, H.;<br />

Jiang, R.; Suzuki, K.; Kirichenko, K. J. Org. Chem. 2007,<br />

4


Synthesis, 2007, 23, 3673-3677<br />

72, 407. (f) Katritzky, A. R.; Cai, C.; Suzuki, K.; Singh, S.<br />

K. J. Org. Chem. 2004, 69, 811. (g) Katritzky, A. R.; Singh,<br />

S. K.; Cai, C.; Bobrov, S. J. Org. Chem. 2006, 71, 3364.<br />

(21) Katritzky, A. R.; Yang, H.; Zhang, S.; Wang, M. ARKIVOC<br />

2002, xi, 39.<br />

(22) (a) Katritzky, A. R.; Rogovoy, B. V.; Kirichenko, N.;<br />

Vvedensky, V. Bioorg. Med. Chem. Lett. 2002, 12, 1809.<br />

(b) Katritzky, A. R.; Angrish, P. Steroids 2006, 71, 660. (c)<br />

Katritzky, A. R.; Singh, S. K.; Akhmedova, R.; Cai, C.;<br />

Bobrov, S. ARKIVOC 2007, vi, 6.<br />

(23) Katritzky, A. R.; Le, K. N. B.; Khelashvili, L.; Mohapatra,<br />

P. P. J. Org. Chem. 2006, 71, 9861.<br />

(24) (a) Wang, X.; Zhang, Y. Tetrahedron 2003, 59, 4201. (b)<br />

Wang, X.; Zhang, Y. Tetrahedron Lett. 2002, 43, 5431. (c)<br />

Katritzky, A. R.; Angrish, P. Synthesis 2006, 4135.<br />

(25) Wang, X.; Zou, X.; Li, J.; Hu, Q. Synlett 2005, 3042.<br />

(26) (a) Wang, X.; Zou, X.; Du, J. J. Chem. Res. 2006, 64. (b)<br />

Katritzky, A. R.; Shestopalov, A. A.; Suzuki, K. Synthesis<br />

2004, 1806.<br />

(27) Singh, K. N.; Kaur, A. Synth. Commun. 2005, 35, 2935.<br />

(28) Katritzky, A. R.; Wang, M.; Zhang, S. ARKIVOC 2001, ix,<br />

19.<br />

(29) Katritzky, A. R.; Huang, T.-B.; Voronkov, M. V.; Steel, P. J.<br />

J. Org. Chem. 2000, 65, 8069.<br />

(30) Crystal data for 3f: C 17H 15NO 3, MW 281.30, monoclinic,<br />

space group Cc, a = 15.1850(14), b = 4.3143(4), c =<br />

21.398(2) Å, β = 103.703(3) o , V = 1362.0(2) Å 3 , F(000) =<br />

592, Z = 4, T = -170 o C, µ (MoKα) = 0.095 mm -1 , D calcd =<br />

1.372 g.cm -3 , 2θ max 50 o APEX II CCD area detector,<br />

MoKα radiation, SHELXS and SHELXL, GOF = 1.08,<br />

wR(F 2 ) = 0.074 (all 2244 data), R = 0.029 (2039 data <strong>with</strong><br />

I > 2σI). CCDC # 639667.<br />

5


Synthesis, 2007, 23, 3673-3677<br />

Graphical Abstract<br />

Short title <strong>of</strong> the article: <strong>Efficient</strong> N-Acylation <strong>of</strong> <strong>Substituted</strong> <strong>Indoles</strong> <strong>with</strong> N-Acylbenzotriazoles<br />

R<br />

N<br />

H<br />

1 2<br />

N<br />

NaH<br />

O<br />

1<br />

R 2<br />

R 3<br />

O<br />

Bt<br />

R 1<br />

3<br />

36-92%<br />

R1 = H, 5-OMe; R2 = R3 = H, p-OMe, o-OMe, 2,6-OMe; Bt = benzotriazol-1-yl<br />

R 2<br />

R 3<br />

6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!