06.09.2021 Views

College Trigonometry, 2011a

College Trigonometry, 2011a

College Trigonometry, 2011a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

774 Foundations of <strong>Trigonometry</strong><br />

Example 10.4.2.<br />

1. Find the exact value of sin ( )<br />

19π<br />

12<br />

2. If α is a Quadrant II angle with sin(α) = 5<br />

13<br />

,andβ is a Quadrant III angle with tan(β) =2,<br />

find sin(α − β).<br />

3. Derive a formula for tan(α + β) intermsoftan(α) and tan(β).<br />

Solution.<br />

1. As in Example 10.4.1, we need to write the angle 19π<br />

12<br />

as a sum or difference of common angles.<br />

The denominator of 12 suggests a combination of angles with denominators 3 and 4. One<br />

such combination is 19π<br />

12 = 4π 3 + π 4<br />

. Applying Theorem 10.15, weget<br />

( ) ( 19π<br />

4π<br />

sin = sin<br />

12<br />

3 + π )<br />

4<br />

( ) 4π<br />

( π<br />

) ( ) 4π<br />

( π<br />

)<br />

= sin cos +cos sin<br />

3 4 3 4<br />

( √ )(√ ) (<br />

3 2<br />

= −<br />

+ − 1 ) ( √ )<br />

2<br />

2 2 2 2<br />

= −√ 6 − √ 2<br />

4<br />

2. In order to find sin(α − β) usingTheorem10.15, we need to find cos(α) and both cos(β)<br />

and sin(β). To find cos(α), we use the Pythagorean Identity cos 2 (α) +sin 2 (α) = 1. Since<br />

sin(α) = 5<br />

13 ,wehavecos2 (α)+ ( )<br />

5 2<br />

13 = 1, or cos(α) =±<br />

12<br />

13<br />

.Sinceα is a Quadrant II angle,<br />

cos(α) =− 12<br />

13<br />

. We now set about finding cos(β) and sin(β). We have several ways to proceed,<br />

but the Pythagorean Identity 1 + tan 2 (β) = sec 2 (β) is a quick way to get sec(β), and hence,<br />

cos(β). With tan(β) = 2, we get 1 + 2 2 = sec 2 (β) so that sec(β) =± √ 5. Since β is a<br />

Quadrant III angle, we choose sec(β) =− √ 5socos(β) = 1<br />

sec(β) = 1<br />

√<br />

− √ = − 5<br />

5 5<br />

. We now need<br />

to determine sin(β). We could use The Pythagorean Identity cos 2 (β)+sin 2 (β) = 1, but we<br />

opt instead to use a quotient identity. From tan(β) = sin(β)<br />

cos(β)<br />

,wehavesin(β) =tan(β) cos(β)<br />

( √ )<br />

so we get sin(β) =(2) − 5<br />

5<br />

= − 2√ 5<br />

5<br />

. We now have all the pieces needed to find sin(α − β):<br />

sin(α − β) = sin(α) cos(β) − cos(α)sin(β)<br />

( ) ( √ ) (<br />

5 5<br />

= − − − 12 ) ( )<br />

− 2√ 5<br />

13 5 13 5<br />

= − 29√ 5<br />

65

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!