27.08.2021 Views

Waste to Energy: Harnessing the fuel in organic waste to create a business opportunity for a recycling-based society and system

To generate a feasible amount of methane to support a digester, it is estimated that 10 to 12 tons/d, with 8-10% contamination and 80% of the contamination being bioplastics, can produce about 70 Nm3/h of biogas. This is the amount of biogas needed to produce 200 kg/day of hydrogen, which is the smallest commercially available packaged system. The greenhouse gas emission (GHG) for IngeoTM is currently 1.3 kg CO2 eq./kg polymer compared to approx. 3.2 kg CO2 eq./kg polymer for PET. Therefore, implementing anaerobic digestion for PLA can reduce around 942.5 kg - 1132 kg per day of CO2 equivalent emissions. A total of 1 ton per day of undigested bioplastic with 30% of total solids will be sent to landfills; 3 tons per day of dewatered digestate cake can be utilized for composting, and Class A fertilizer can be produced. The research on anaerobic degradation of biopolymers is still in its infancy. Therefore, this report has discussed different pre-treatment alternatives to treat PLA such as physical, chemical, and thermal treatments. This report suggests on-site segregation benefits of the current solid waste management scenario in the commercial sector of Plano, Texas. Organic waste generated from a cafeteria of the commercial sector in Plano caused an environmental impact on landfills. This report consists of a description of existing scenarios and possible pre-treatment alternatives for bioplastic degradation generated from the commercial sector. Harshada Pednekar was a graduate research analyst in the Hunt Institute while studying for a masters degree in environmental engineering from SMU's Lyle School of Engineering

To generate a feasible amount of methane to support a digester, it is estimated that 10 to 12 tons/d, with 8-10% contamination and 80% of the contamination being bioplastics, can produce about 70 Nm3/h of biogas. This is the amount of biogas needed to produce 200 kg/day of hydrogen, which is the smallest commercially available packaged system. The greenhouse gas emission (GHG) for IngeoTM is currently 1.3 kg CO2 eq./kg polymer compared to approx. 3.2 kg CO2 eq./kg polymer for PET. Therefore, implementing anaerobic digestion for PLA can reduce around 942.5 kg - 1132 kg per day of CO2 equivalent emissions.

A total of 1 ton per day of undigested bioplastic with 30% of total solids will be sent to landfills; 3 tons per day of dewatered digestate cake can be utilized for composting, and Class A fertilizer can be produced. The research on anaerobic degradation of biopolymers is still in its infancy. Therefore, this report has discussed different pre-treatment alternatives to treat PLA such as physical, chemical, and thermal treatments. This report suggests on-site segregation benefits of the current solid waste management scenario in the commercial sector of Plano, Texas. Organic waste generated from a cafeteria of the commercial sector in Plano caused an environmental impact on landfills. This report consists of a description of existing scenarios and possible pre-treatment alternatives for bioplastic degradation generated from the commercial sector.

Harshada Pednekar was a graduate research analyst in the Hunt Institute while studying for a masters degree in environmental engineering from SMU's Lyle School of Engineering

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

0<br />

Page of 33<br />

0


1<br />

<strong>Waste</strong> <strong>to</strong> <strong>Energy</strong>:<br />

<strong>Harness<strong>in</strong>g</strong> <strong>the</strong> <strong>fuel</strong> <strong>in</strong> <strong>organic</strong> <strong>waste</strong><br />

<strong>to</strong> <strong>create</strong> a bus<strong>in</strong>ess <strong>opportunity</strong> <strong>for</strong> a recycl<strong>in</strong>g-<strong>based</strong><br />

<strong>society</strong> <strong>and</strong> <strong>system</strong><br />

Industry Advisors:<br />

Terra Group at <strong>the</strong> Toyota Mo<strong>to</strong>r North America<br />

Mat<strong>the</strong>w Sheldon, Social Intrapreneur<br />

Jason S Sekhon, Fuel Cell <strong>and</strong> Hydrogen SME<br />

Mark Hitchock, Zero <strong>waste</strong>, recycl<strong>in</strong>g, <strong>and</strong> <strong>the</strong> City of Plano Liaison<br />

Kelli Gregory, NTCOG liaison, clean energy mobility<br />

Graduate Research Analyst:<br />

Harshada Pednekar<br />

Project Manager:<br />

Corrie A. Harris, MA, MBA<br />

Faculty Advisors:<br />

Mohammad Khodayar, Ph.D. Associate Professor <strong>in</strong> <strong>the</strong><br />

Department of Electrical <strong>and</strong> Computer Eng<strong>in</strong>eer<strong>in</strong>g at Lyle School of Eng<strong>in</strong>eer<strong>in</strong>g<br />

Eva Csaky, Ph.D., Executive Direc<strong>to</strong>r of <strong>the</strong> Hunt Institute<br />

Sou<strong>the</strong>rn Methodist University<br />

Lyle School of Eng<strong>in</strong>eer<strong>in</strong>g<br />

Hunter <strong>and</strong> Stephanie Hunt Institute <strong>for</strong> Eng<strong>in</strong>eer<strong>in</strong>g <strong>and</strong> Humanity<br />

Global Development Lab<br />

April 2021<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


2<br />

Table of Contents<br />

SUMMARY 5<br />

BACKGROUND 6<br />

CORPORATE SOLID WASTE MANAGEMENT 8<br />

AVAILABLE SOLUTIONS 9<br />

RECYCLING/REUSE 9<br />

INCINERATION WITH ENERGY RECOVERY 10<br />

AEROBIC COMPOSTING 10<br />

ANAEROBIC DIGESTION 11<br />

Processes <strong>in</strong> <strong>the</strong> Digester 12<br />

Digestate 15<br />

Gas Production 15<br />

LANDFILL 17<br />

FEEDSTOCK COMPOSITION 18<br />

THE RATIO OF FOOD WASTE TO PLA 18<br />

ALTERNATIVES FOR PRE-TREATMENT OF PLA 18<br />

PHYSICAL TREATMENT - REDUCTION IN PARTICLE SIZE & CHOPPING AND SHREDDING 19<br />

CHEMICAL TREATMENT - ALKALINITY TREATMENT 19<br />

THERMAL TREATMENT 20<br />

ULTRAVIOLET IRRADIATION 21<br />

DAIRY & WASTEWATER INOCULATION 21<br />

NEED FOR AN ACCELERATING AGENT (I.E. GBX) 22<br />

FEEDSTOCK QUANTITY, METHANE AND HYDROGEN PRODUCTION 23<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


3<br />

CONSISTENCY OF WASTE FROM EMPLOYER 24<br />

RECOMMENDATIONS & WORKPLACE PRACTICES 24<br />

CONCLUSION 25<br />

FUTURE SCOPE 26<br />

APPENDIX A 28<br />

WORKS CITED 29<br />

Useful Websites: 31<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


4<br />

Table of Figures<br />

FIGURE 1: EXAMPLES OF PLA PRODUCTS - WORLD CENTRIC CUP, CUTLERY & CHIPS BAG (CALIFORNIA ORGANICS RECYCLING COUNCIL) .. 6<br />

FIGURE 2: LIFE CYCLE OF BIODEGRADABLE PLASTIC DISPOSAL ..................................................................................................... 9<br />

FIGURE 3: BIODEGRADATION OF BIOPOLYMERS: AEROBIC VS. ANAEROBIC DEGRADATION (BATORI ET AL. 2018)................................ 11<br />

FIGURE 4: PROCESS FLOW DIAGRAM USED WITH PERMISSION BY JOHN MCNAMARA, VP AT CR&R ENVIRONMENTAL SERVICES ............ 12<br />

FIGURE 5: PLA AT DIFFERENT DEGRADATION TIMES (A & B AT 0 DAYS, C & D AT 30 DAYS) (MOON ET AL. 2016) .............................. 14<br />

FIGURE 6: CO2 GENERATION FROM DIFFERENT ORGANIC WASTE TREATMENTS (UNION OF CONCERNED SCIENTISTS) ......................... 16<br />

FIGURE 7: COMPARISON OF UNTREATED CRYSTALLINE PLA BEFORE AND AFTER BMP TEST ........................................................... 20<br />

FIGURE 8: MINERALIZATION OF PLA IN ANAEROBIC CONDITION AT 37C & 52C (ITAVAARA ET AL. 2002) ......................................... 21<br />

FIGURE 9: SCHEMATIC DIAGRAM OF PLA DEGRADATION AND SOIL BURIAL ................................................................................. 22<br />

FIGURE 10: BIOBASED PRODUCT LABELS, CALIFORNIA ORGANICS RECYCLING COUNCIL .................................................................. 24<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


5<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


5<br />

Summary<br />

To generate a feasible amount of methane <strong>to</strong> support a digester, it is estimated that 10 <strong>to</strong><br />

12 <strong>to</strong>ns/d, with 8-10% contam<strong>in</strong>ation <strong>and</strong> 80% of <strong>the</strong> contam<strong>in</strong>ation be<strong>in</strong>g bioplastics, can<br />

produce about 70 Nm3/h of biogas. This is <strong>the</strong> amount of biogas needed <strong>to</strong> produce 200<br />

kg/day of hydrogen, which is <strong>the</strong> smallest commercially available packaged <strong>system</strong>. The<br />

greenhouse gas emission (GHG) <strong>for</strong> Ingeo TM is currently 1.3 kg CO2 eq./kg polymer<br />

compared <strong>to</strong> approx. 3.2 kg CO2 eq./kg polymer <strong>for</strong> PET. There<strong>for</strong>e, implement<strong>in</strong>g<br />

anaerobic digestion <strong>for</strong> PLA can reduce around 942.5 kg - 1132 kg per day of CO2<br />

equivalent emissions.<br />

A <strong>to</strong>tal of 1 <strong>to</strong>n per day of undigested bioplastic with 30% of <strong>to</strong>tal solids will be sent <strong>to</strong><br />

l<strong>and</strong>fills; 3 <strong>to</strong>ns per day of dewatered digestate cake can be utilized <strong>for</strong> compost<strong>in</strong>g, <strong>and</strong><br />

Class A fertilizer can be produced. The research on anaerobic degradation of biopolymers<br />

is still <strong>in</strong> its <strong>in</strong>fancy. There<strong>for</strong>e, this report has discussed different pre-treatment<br />

alternatives <strong>to</strong> treat PLA such as physical, chemical, <strong>and</strong> <strong>the</strong>rmal treatments. This report<br />

suggests on-site segregation benefits of <strong>the</strong> current solid <strong>waste</strong> management scenario <strong>in</strong><br />

<strong>the</strong> commercial sec<strong>to</strong>r of Plano, Texas. Organic <strong>waste</strong> generated from a cafeteria of <strong>the</strong><br />

commercial sec<strong>to</strong>r <strong>in</strong> Plano caused an environmental impact on l<strong>and</strong>fills. This report<br />

consists of a description of exist<strong>in</strong>g scenarios <strong>and</strong> possible pre-treatment alternatives <strong>for</strong><br />

bioplastic degradation generated from <strong>the</strong> commercial sec<strong>to</strong>r.<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


6<br />

Background<br />

Bioplastic <strong>waste</strong> go<strong>in</strong>g <strong>to</strong> <strong>the</strong> l<strong>and</strong>fill from break rooms <strong>and</strong> cafeterias of <strong>the</strong> commercial<br />

sec<strong>to</strong>r <strong>in</strong> Plano has caused <strong>in</strong>creas<strong>in</strong>g environmental concerns <strong>for</strong> susta<strong>in</strong>ability<br />

professionals <strong>in</strong> <strong>the</strong> area. Divert<strong>in</strong>g <strong>waste</strong> from l<strong>and</strong>fills <strong>to</strong> decrease environmental impact<br />

is a shared goal among corporations <strong>in</strong>clud<strong>in</strong>g Toyota Mo<strong>to</strong>r North America, Fri<strong>to</strong>-Lay,<br />

PepsiCo, <strong>and</strong> many o<strong>the</strong>rs. Among <strong>the</strong> Environmental Challenge 2050 goals of Toyota is<br />

a call <strong>to</strong> action <strong>to</strong> ensure that its facilities <strong>and</strong> processes support <strong>and</strong> establish a recycl<strong>in</strong>g<strong>based</strong><br />

<strong>society</strong>.<br />

Recently, corporations <strong>in</strong> Plano switched all s<strong>in</strong>gle-use items, <strong>in</strong>clud<strong>in</strong>g packag<strong>in</strong>g, <strong>to</strong><br />

compostable plastics. Among <strong>the</strong> o<strong>the</strong>r materials, a wide range of Poly Lactic Acid (PLA)<br />

products are currently used <strong>for</strong> cutlery (examples shown <strong>in</strong> Figure 1). <strong>Waste</strong> reduction at<br />

<strong>the</strong> source is an effective practice that will divert <strong>waste</strong> from l<strong>and</strong>fills <strong>and</strong> ultimately reduce<br />

GHG emissions, ultimately lead<strong>in</strong>g <strong>to</strong>wards achiev<strong>in</strong>g a zero-<strong>waste</strong> policy. Currently,<br />

corporate <strong>waste</strong> management offer<strong>in</strong>gs <strong>in</strong> <strong>the</strong> Plano area cannot support zero-<strong>waste</strong><br />

goals. Companies are committed, however, <strong>to</strong> work<strong>in</strong>g with municipalities <strong>and</strong> o<strong>the</strong>r<br />

concerned corporations <strong>to</strong> discover a path <strong>to</strong>ward zero <strong>waste</strong>.<br />

Figure 1: Examples of PLA Products - World Centric Cup, cutlery & chips bag (Cali<strong>for</strong>nia Organics Recycl<strong>in</strong>g Council)<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


7<br />

The purpose of this engagement is <strong>to</strong> study <strong>and</strong> recommend potential solutions focus<strong>in</strong>g<br />

on an anaerobic digester, or o<strong>the</strong>r applicable technologies, as a potential solution <strong>to</strong> <strong>the</strong><br />

accumulation of Plano’s bioplastic <strong>waste</strong> end<strong>in</strong>g up <strong>in</strong> l<strong>and</strong>fills. The aim is <strong>to</strong> build broad<br />

corporate support <strong>in</strong> <strong>the</strong> surround<strong>in</strong>g area <strong>for</strong> implementation by demonstrat<strong>in</strong>g <strong>the</strong><br />

potential greenhouse gas reduction, <strong>waste</strong> stream diversion from l<strong>and</strong>fills, economic<br />

value, <strong>and</strong> potential <strong>to</strong> <strong>create</strong> a future <strong>fuel</strong><strong>in</strong>g source enabl<strong>in</strong>g consumers <strong>to</strong> purchase<br />

<strong>and</strong> drive hydrogen-powered vehicles.<br />

This report will thoroughly review <strong>the</strong> biodegradability of PLA. PLA & food <strong>waste</strong> have<br />

complementary characteristics <strong>for</strong> anaerobic digestion; both are <strong>organic</strong> <strong>and</strong> degrade<br />

under anaerobic conditions. Food <strong>waste</strong> <strong>and</strong> PLA are explored as potential energy<br />

sources, while also exam<strong>in</strong><strong>in</strong>g <strong>the</strong> potential challenges that can occur while treat<strong>in</strong>g <strong>the</strong>m<br />

<strong>to</strong>ge<strong>the</strong>r. Currently, <strong>the</strong> worldwide annual production capacity <strong>for</strong> biodegradable plastic is<br />

350,000 <strong>to</strong>ns, which pales <strong>in</strong> comparison <strong>to</strong> that of conventional plastic, which is<br />

estimated at 260 million <strong>to</strong>ns (Miller 2005). However, <strong>the</strong> production of bioplastic has<br />

reached an <strong>in</strong>dustrial scale, <strong>and</strong> awareness of its environmental benefits has <strong>in</strong>creased.<br />

In this report, various pre-treatments <strong>for</strong> <strong>the</strong> slow hydrolysis of PLA will be exam<strong>in</strong>ed, <strong>and</strong><br />

feeds<strong>to</strong>ck capacity <strong>in</strong> <strong>the</strong> area will be evaluated <strong>to</strong> calculate m<strong>in</strong>imum requirements. The<br />

DFW Metroplex does not currently have a facility with an anaerobic digester <strong>for</strong><br />

commercial solid <strong>waste</strong>. Instead, this report’s evaluations <strong>and</strong> comparisons will be derived<br />

from o<strong>the</strong>r locations, primarily <strong>in</strong> Cali<strong>for</strong>nia.<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


8<br />

Corporate Solid <strong>Waste</strong> Management<br />

The City of Plano has approximately 40 more years of l<strong>and</strong>fill capacity. Currently, 149<br />

pounds of trash per residential cus<strong>to</strong>mer go <strong>to</strong> <strong>the</strong> l<strong>and</strong>fill each month. There are two<br />

transfer stations <strong>in</strong> Plano 1 . Trash loads are dumped at <strong>the</strong> local transfer stations <strong>the</strong>n<br />

transferred <strong>in</strong><strong>to</strong> larger trucks <strong>and</strong> hauled <strong>to</strong> <strong>the</strong> l<strong>and</strong>fill. The average tipp<strong>in</strong>g fee is $43.35<br />

per <strong>to</strong>n.<br />

Texas Pure <strong>in</strong> North Texas produces compost, plant<strong>in</strong>g mix <strong>for</strong> garden<strong>in</strong>g, <strong>and</strong> natural<br />

<strong>and</strong> colonized mulch. Texas Pure accepts only food <strong>waste</strong> <strong>and</strong> yard debris. If <strong>the</strong>re is<br />

trash (plastic, metal, glass, waxy conta<strong>in</strong>ers, compostable products) <strong>in</strong> <strong>the</strong> load, <strong>the</strong> trash,<br />

or even <strong>the</strong> whole load, will be placed <strong>in</strong> <strong>the</strong> l<strong>and</strong>fill. Food <strong>waste</strong> is not accepted at <strong>the</strong><br />

Plano location of Texas Pure, so it must be delivered directly <strong>to</strong> <strong>the</strong> Texas Pure site on<br />

l<strong>and</strong>fill property <strong>in</strong> Melissa, Texas. The North Texas Municipal Water District (NTMWD)<br />

L<strong>and</strong>fill takes all items that residents put <strong>in</strong> <strong>the</strong>ir trash carts. They do not accept hazardous<br />

material or construction site debris.<br />

The City of Plano managed a food <strong>waste</strong> recycl<strong>in</strong>g program <strong>for</strong> approximately 40<br />

bus<strong>in</strong>esses utiliz<strong>in</strong>g 95-gallon carts. Although <strong>the</strong> program was discont<strong>in</strong>ued <strong>in</strong> February<br />

of 2020, <strong>the</strong>re are still several bus<strong>in</strong>esses <strong>in</strong> Plano that recycle food <strong>waste</strong> us<strong>in</strong>g o<strong>the</strong>r<br />

haulers, namely: Sprouts, North Texas Food Bank, Whole Foods, Maui Foods, <strong>and</strong> Fri<strong>to</strong>-<br />

Lay. Texas Pure cont<strong>in</strong>ues <strong>to</strong> process food <strong>waste</strong> from Whole Foods, Maui Foods, <strong>and</strong><br />

<strong>the</strong> North Texas Food Bank. Organizations rely on permitted haulers <strong>to</strong> collect <strong>and</strong><br />

transport <strong>the</strong>ir food <strong>waste</strong> <strong>to</strong> an authorized receiver or compost facility. A few of <strong>the</strong> larger<br />

1 For more <strong>in</strong><strong>for</strong>mation about <strong>the</strong> transfer stations <strong>in</strong> Plano see https://www.ntmwd.com/facilities/<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


9<br />

commercial bus<strong>in</strong>esses keep recycl<strong>in</strong>g food <strong>waste</strong> through smaller <strong>in</strong>dependent food<br />

<strong>waste</strong> recyclers like Organix. Organix hauls food <strong>waste</strong> from three Sam’s Club locations<br />

<strong>and</strong> six Walmart <strong>and</strong> Sprouts locations.<br />

Available Solutions<br />

The life cycle of biodegradable plastic is shown <strong>in</strong> Figure 2, which <strong>in</strong>cludes typical<br />

treatment options such as recycl<strong>in</strong>g (reprocess<strong>in</strong>g polymer with debas<strong>in</strong>g of properties),<br />

monomer recovery (recovery of lactic acid from PLA), <strong>in</strong>c<strong>in</strong>eration with energy recovery,<br />

compost<strong>in</strong>g, anaerobic digestion, <strong>and</strong> l<strong>and</strong>fill. The next section will describe each of <strong>the</strong>se<br />

alternatives.<br />

Recycl<strong>in</strong>g/Reuse<br />

Figure 2: Life Cycle of Biodegradable Plastic Disposal<br />

Any plastic, whe<strong>the</strong>r conventional or bio-<strong>based</strong>, that enters <strong>the</strong> municipal <strong>waste</strong> stream<br />

causes complications. Although it is feasible <strong>to</strong> mechanically recycle some bioplastic<br />

polymers, such as PLA, a few times without significant reduction <strong>in</strong> properties, <strong>the</strong> lack of<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


10<br />

cont<strong>in</strong>uous <strong>and</strong> reliable supply of bioplastic polymer <strong>waste</strong> <strong>in</strong> large quantities presently<br />

makes recycl<strong>in</strong>g less economically attractive than <strong>for</strong> conventional plastics. The “4R’s”—<br />

reus<strong>in</strong>g, reduc<strong>in</strong>g, recycl<strong>in</strong>g, <strong>and</strong> repurpos<strong>in</strong>g—when compared <strong>to</strong> traditional <strong>waste</strong><br />

management practices, offer a more effective answer <strong>to</strong> <strong>the</strong> ongo<strong>in</strong>g bioplastic <strong>waste</strong><br />

disposal dilemma.<br />

Inc<strong>in</strong>eration with <strong>Energy</strong> Recovery<br />

Most commodity plastics have gross calorific values (GCV) comparable <strong>to</strong> or greater than<br />

that of coal (Davis & Song 2006). Inc<strong>in</strong>eration with energy recovery can be a good option<br />

<strong>for</strong> all recyclable <strong>waste</strong>, but it also has an adverse impact. In addition <strong>to</strong> <strong>the</strong> <strong>to</strong>xic gases<br />

generated from <strong>in</strong>c<strong>in</strong>eration, <strong>the</strong> <strong>in</strong>stallation of an <strong>in</strong>c<strong>in</strong>eration plant is an expensive<br />

process requir<strong>in</strong>g tra<strong>in</strong>ed personnel <strong>and</strong> frequent ma<strong>in</strong>tenance. In <strong>the</strong> case of bioplastic,<br />

<strong>the</strong> GCV of both natural cellulose <strong>and</strong> fiber starch is lower than that of coal but comparable<br />

<strong>to</strong> that of wood, <strong>and</strong> <strong>the</strong>y <strong>the</strong>re<strong>for</strong>e have considerable value <strong>for</strong> <strong>in</strong>c<strong>in</strong>eration.<br />

Aerobic Compost<strong>in</strong>g<br />

Unlike petrochemical polymers, PLA can be composted, generat<strong>in</strong>g carbon <strong>and</strong> nutrientrich<br />

compost. Not all bio-<strong>based</strong> products are compostable or biodegradable <strong>and</strong> vice<br />

versa. Biodegradation of <strong>organic</strong> material, <strong>in</strong>clud<strong>in</strong>g bioplastic, produces valuable<br />

compost along with water, CO2, <strong>and</strong> heat. However, <strong>the</strong> produced CO2 does not contribute<br />

<strong>to</strong> an <strong>in</strong>crease <strong>in</strong> greenhouse gases, as it already exists <strong>in</strong> <strong>the</strong> biological carbon cycle<br />

(Song, et al. 2009).<br />

Accord<strong>in</strong>g <strong>to</strong> estimation from Anargia, a <strong>to</strong>n of <strong>the</strong> <strong>organic</strong> fraction of municipal solid <strong>waste</strong><br />

sent <strong>to</strong> compost<strong>in</strong>g produces approximately +80 kg of CO2 equivalent (eq). PLA alone did<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


11<br />

not biodegrade at mesophilic temperature (25-60°C), <strong>and</strong> only 10% CO2 was generated<br />

with<strong>in</strong> 210 days. In contrast, <strong>the</strong> highest rate of CO2 occurred at 60°C, reach<strong>in</strong>g<br />

m<strong>in</strong>eralization of 90% with<strong>in</strong> 120 days <strong>and</strong> 40 days of lag time observed. (Itavaara et al.<br />

2002) Less than 10% mass reta<strong>in</strong>ed by a 2mm sieve <strong>and</strong> resultant compost has no<br />

adverse impact on plants (OECD 2008). St<strong>and</strong>ard tests are available <strong>for</strong> evaluat<strong>in</strong>g <strong>the</strong><br />

compostability of biopolymers, such as ASTM D6400 <strong>and</strong> ISO17088.<br />

Anaerobic Digestion<br />

In anaerobic degradation (AD) of biopolymers, <strong>the</strong> energy is s<strong>to</strong>red <strong>in</strong> <strong>organic</strong> matter <strong>and</strong><br />

is released as methane. Due <strong>to</strong> <strong>the</strong> lack of oxygen <strong>in</strong> this process, less heat <strong>and</strong> less<br />

microbial mass are produced. However, dur<strong>in</strong>g <strong>the</strong> aerobic process <strong>the</strong> energy <strong>in</strong> <strong>organic</strong><br />

matter is released as heat <strong>and</strong> cannot be captured. Figure 3 shows a diagram of <strong>the</strong><br />

biodegradation of biopolymers <strong>and</strong> compares aerobic <strong>and</strong> anaerobic degradation. The<br />

dark green symbols represent <strong>the</strong> microorganisms <strong>in</strong>volved <strong>in</strong> <strong>the</strong> processes. (Ba<strong>to</strong>ri, et<br />

al. 2018)<br />

Figure 3: Biodegradation of Biopolymers: Aerobic vs. Anaerobic Degradation (Ba<strong>to</strong>ri et al. 2018)<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


12<br />

In <strong>the</strong> last decade, numerous studies have focused on <strong>the</strong> PLA degradation under various<br />

treatment conditions such as hydrolysis, hydro<strong>the</strong>rmal, <strong>and</strong> compost. Compared <strong>to</strong><br />

mesophilic (37°C) processes, <strong>the</strong>rmophilic (55°C) <strong>and</strong> hyper<strong>the</strong>rmophilic (above 55°C)<br />

AD processes have <strong>the</strong> advantage of more effective <strong>organic</strong> particle stabilization <strong>and</strong><br />

higher biogas production (Nielsen & Petersen 2000). However, generally applicable <strong>and</strong><br />

effective methods <strong>for</strong> PLA have not yet been proposed (Wang, et al. 2012). Figure 4<br />

describes <strong>the</strong> typical process of anaerobic digestion of <strong>organic</strong> <strong>waste</strong>.<br />

Figure 4: Process flow diagram used with permission by John McNamara, VP at CR&R Environmental Services<br />

Processes <strong>in</strong> <strong>the</strong> Digester<br />

The two-stage, up-flow anaerobic sludge blanket (UASB) reac<strong>to</strong>r is a suitable (good<br />

mix<strong>in</strong>g) technology <strong>for</strong> high strength <strong>waste</strong> (>15% solids) from <strong>the</strong> commercial sec<strong>to</strong>r<br />

(Schroepher, et al. 1955). PLA is a high molecular weight polymer, <strong>and</strong> very few<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


13<br />

microorganisms like Stenotrophomonas pavanii <strong>and</strong> Pseudomonas geniculata can<br />

colonize <strong>and</strong> degrade it. These are examples of nitrogen-fix<strong>in</strong>g, gram-negative<br />

microorganisms. It has been observed that PLA is, despite <strong>the</strong> presence of various<br />

polyester-degrad<strong>in</strong>g microorganisms, very slowly degraded. PLA undergoes cha<strong>in</strong><br />

scission <strong>to</strong> fragments <strong>and</strong> oligomers, hence requir<strong>in</strong>g extensive hydrolysis be<strong>for</strong>e <strong>the</strong><br />

biotic attack. PLA can <strong>for</strong>m a highly crystall<strong>in</strong>e structure that is more difficult <strong>to</strong> hydrolyze<br />

than amorphous (Reeve, et al. 1994). ASTM Method D5511 is a st<strong>and</strong>ard test method <strong>for</strong><br />

determ<strong>in</strong><strong>in</strong>g anaerobic biodegradation of plastic material under high-solid anaerobic<br />

digestion conditions.<br />

Necessary pre-treatments are expla<strong>in</strong>ed later <strong>in</strong> this report. In <strong>the</strong>rmophilic conditions,<br />

anaerobic biodegradation of PLA is faster than <strong>in</strong> aerobic conditions due <strong>to</strong> lactic acid<br />

be<strong>in</strong>g a more favorable substrate <strong>for</strong> anaerobic than aerobic microorganisms. At high<br />

temperatures, micro molecular structure changes, <strong>and</strong> Siparsky et al. (1997) f<strong>in</strong>d that<br />

water absorption <strong>in</strong><strong>to</strong> <strong>the</strong> polymer matrix <strong>in</strong>creases. This not only accelerates <strong>the</strong><br />

chemical hydrolysis, but it also <strong>in</strong>creases polymer hydrophilicity which makes it more<br />

accessible <strong>to</strong> microbes <strong>and</strong> enzymes (Karjomaa, et al. 1998). There<strong>for</strong>e, higher<br />

biodegradation is measured at higher temperatures—about 90% biodegradation of PLA<br />

<strong>in</strong> 60 days at 55°C with no lag phase observed (Yagi, et al. 2009). These results are<br />

achieved from an evolved <strong>system</strong> developed by us<strong>in</strong>g a gas collection bag at atmospheric<br />

pressure.<br />

The morphological characteristics of <strong>the</strong> PLA particles were exam<strong>in</strong>ed under optical<br />

microscopy. Figure 5 shows <strong>the</strong> bacterial attachment on <strong>the</strong> PLA surface. For this<br />

experiment, only <strong>the</strong> bacteria with <strong>the</strong> ability <strong>to</strong> attach <strong>to</strong> PLA were selected <strong>and</strong> those<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


14<br />

bacteria were dom<strong>in</strong>ant <strong>in</strong> <strong>the</strong> f<strong>in</strong>al stage (c & d) of degradation as shown <strong>in</strong> Figure 5<br />

(Moon, et al. 2016). Additional research will be needed <strong>to</strong> exam<strong>in</strong>e <strong>the</strong> metabolic<br />

reactions at <strong>the</strong> <strong>in</strong>terface.<br />

Figure 5: PLA at Different Degradation Times (a & b at 0 days, c & d at 30 days) (Moon et al. 2016)<br />

Important parameters <strong>in</strong> <strong>the</strong> AD processes are – Solid Retention Time, Hydraulic<br />

Retention Time, temperature, pH, alkal<strong>in</strong>ity, moisture content, C/N (carbon/nitrogen) ratio,<br />

nutrients, <strong>and</strong> <strong>to</strong>xic material. SRT is <strong>the</strong> average time <strong>the</strong> solids are <strong>in</strong> <strong>the</strong> <strong>system</strong>, <strong>and</strong><br />

HRT is a measure of <strong>the</strong> average length of time that water rema<strong>in</strong>s <strong>in</strong> a bioreac<strong>to</strong>r. SRT,<br />

HRT, <strong>and</strong> temperature are required <strong>to</strong> determ<strong>in</strong>e <strong>the</strong> processes, while alkal<strong>in</strong>ity controls<br />

<strong>the</strong> digestion, <strong>and</strong> nutrients <strong>and</strong> <strong>to</strong>xic material determ<strong>in</strong>e bacterial growth. Most<br />

bioplastics are very carbon-rich <strong>and</strong> conta<strong>in</strong> little <strong>to</strong> no nitrogen; <strong>the</strong> addition of bioplastics<br />

<strong>to</strong> corporate cafeteria <strong>organic</strong> <strong>waste</strong>, however, will improve <strong>the</strong> C/N ratio of <strong>the</strong> mixture.<br />

ADs are highly susceptible <strong>to</strong> upsets due <strong>to</strong> environmental conditions such as wea<strong>the</strong>r<br />

<strong>and</strong> seasonal variation. There<strong>for</strong>e, it is crucial <strong>to</strong> ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> parameter with<strong>in</strong> <strong>the</strong><br />

recommended limit. Appendix A shows <strong>the</strong> specifications of <strong>the</strong> AD process <strong>for</strong> Food<br />

<strong>Waste</strong> <strong>and</strong> PLA (Tchobanoglous 2014).<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


15<br />

Digestate<br />

Ideally, bioplastics would biodegrade <strong>and</strong> dis<strong>in</strong>tegrate dur<strong>in</strong>g <strong>the</strong> anaerobic phase <strong>in</strong> an<br />

anaerobic digestion plant, just as a major part of “natural” bio<strong>waste</strong> does. However, if<br />

bioplastics dis<strong>in</strong>tegrate dur<strong>in</strong>g <strong>the</strong> anaerobic phase, <strong>the</strong>y later can biodegrade completely<br />

dur<strong>in</strong>g <strong>the</strong> aerobic stabilization phase or with <strong>the</strong> use of digestate or compost <strong>in</strong> <strong>the</strong> soil.<br />

Usually, <strong>in</strong>dustrial digestate is sieved through a 2 mm mesh, <strong>and</strong> if <strong>the</strong> result<strong>in</strong>g biomanure<br />

is not 100% PLA, it can be dangerous. The feeds<strong>to</strong>ck of pure PLA can produce<br />

Class A sludge <strong>and</strong> be used as fertilizer on farms.<br />

No significant amount of chemicals (PLA, Accelerant, etc) were found <strong>in</strong> <strong>the</strong> compost<strong>in</strong>g<br />

process, but daily lab test<strong>in</strong>g is required. Seasonal variation <strong>in</strong> <strong>the</strong> <strong>waste</strong> can <strong>create</strong><br />

obstacles <strong>in</strong> <strong>the</strong> process. A sampl<strong>in</strong>g at various stages is recommended. The undigested<br />

matter would go <strong>to</strong> <strong>the</strong> l<strong>and</strong>fill, <strong>and</strong> it is assumed that <strong>the</strong> residual untreated PLA from <strong>the</strong><br />

AD process will not cont<strong>in</strong>ue <strong>to</strong> emit biogas when l<strong>and</strong>filled <strong>and</strong> will offset emission via<br />

carbon sequestration. Generally, one <strong>to</strong>n per day of <strong>organic</strong> matter produces<br />

approximately 33 <strong>to</strong>ns of bio manure per year.<br />

A <strong>to</strong>tal of 1TPD of undigested bioplastic with 30% of <strong>to</strong>tal solids will be sent <strong>to</strong> <strong>the</strong><br />

l<strong>and</strong>fill; about 3TPD dewatered digestate cake can be utilized <strong>for</strong> compost<strong>in</strong>g, <strong>and</strong><br />

Class A fertilizer can be produced.<br />

Gas Production<br />

Gas from anaerobic digestion conta<strong>in</strong>s about 65 - 70% CH4 by volume, 25 <strong>to</strong> 30% CO2,<br />

<strong>and</strong> small amounts of N2, H2, H2S, water vapor, <strong>and</strong> o<strong>the</strong>r gases. PLA was degraded<br />

us<strong>in</strong>g dry digestion with high solids under <strong>the</strong> mesophilic condition up <strong>to</strong> 60% over 40<br />

days (Itavaara, et al. 2002). It was found that approx. 90% degradation occurs <strong>in</strong> 60 days<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


16<br />

under 55°C (Yagi, et al. 2009) whereas 189 N-Lit/dry kg of methane estimated from 40%<br />

degradation of amorphous PLA at 35°C <strong>for</strong> 170 days (100% degradation gives 467 N-<br />

Lit/dry kg <strong>based</strong> on reaction – C6H8O4 + 2H2O → 3CO2 + 3CH4) (Kolstad, et. al. 2012).<br />

For this particular scenario <strong>for</strong> a s<strong>in</strong>gle corporation, 10 TPD of food <strong>and</strong> bioplastic <strong>waste</strong><br />

with 28% of <strong>to</strong>tal solids would produce 66 N-m3/hr of biogas under <strong>the</strong> mesophilic<br />

condition with HRT of 24 days <strong>and</strong> an <strong>organic</strong> load<strong>in</strong>g rate of 4.3 kg VSS/m3.d <strong>in</strong> <strong>in</strong>sulated<br />

bolter steel anaerobic digester. After biogas condition<strong>in</strong>g, 40 N-m3/hr of biomethane will<br />

be generated.<br />

L<strong>and</strong>fill biogas has a greater carbon <strong>in</strong>tensity than digester biogas because l<strong>and</strong>fill<br />

<strong>system</strong>s are not as efficient at produc<strong>in</strong>g <strong>and</strong> captur<strong>in</strong>g biogas, whereas digesters are<br />

specifically designed <strong>for</strong> that purpose. Figure 6 shows that <strong>organic</strong> diversion <strong>and</strong><br />

anaerobic digestion can result <strong>in</strong> negative lifecycle emissions (Union of Concerned<br />

Scientists 2012).<br />

Figure 6: CO2 Generation from Different Organic <strong>Waste</strong> Treatments (Union of Concerned Scientists)<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


17<br />

L<strong>and</strong>fill<br />

<strong>Waste</strong> plastics be<strong>in</strong>g sent <strong>to</strong> l<strong>and</strong>fill is <strong>the</strong> least favored option <strong>in</strong> <strong>the</strong> <strong>waste</strong> hierarchy.<br />

Levels of concern are ris<strong>in</strong>g <strong>for</strong> <strong>the</strong> impact of l<strong>and</strong>fills on health <strong>and</strong> <strong>the</strong> environment due<br />

<strong>to</strong> <strong>the</strong> number of <strong>to</strong>xic materials <strong>in</strong> l<strong>and</strong>-filled municipal <strong>waste</strong> <strong>and</strong> <strong>the</strong>ir potential leach<strong>in</strong>g<br />

out of l<strong>and</strong>fill sites. The l<strong>and</strong>fill of biodegradable materials <strong>in</strong>clud<strong>in</strong>g bioplastic polymers,<br />

garden <strong>waste</strong>, <strong>and</strong> kitchen <strong>waste</strong> presents a problem <strong>in</strong> that methane, a greenhouse gas<br />

with 25 <strong>to</strong> 36 times <strong>the</strong> effect of CO2, may be produced under anaerobic conditions<br />

encountered <strong>in</strong> <strong>the</strong> l<strong>and</strong>fill. In <strong>the</strong> US, a typical recycl<strong>in</strong>g facility is not equipped <strong>to</strong> deal<br />

with food packag<strong>in</strong>g, <strong>and</strong> this material is <strong>the</strong>re<strong>for</strong>e disposed of <strong>in</strong> l<strong>and</strong>fills.<br />

The assessment of anaerobic degradation of Ingeo TM PLA under accelerated l<strong>and</strong>fill<br />

conditions shows that semi-crystall<strong>in</strong>e PLA under AD <strong>in</strong> a l<strong>and</strong>fill at a moderate<br />

temperature will not generate significant methane because <strong>the</strong>re are no significant<br />

microorganisms available <strong>to</strong> degrade high molecular weight PLA. There<strong>for</strong>e, it needs a<br />

chemical hydrolysis step be<strong>for</strong>e any degradation (Kolstad, et al. 2012).<br />

Fortunately, methane is an energy-dense <strong>fuel</strong> that can be used <strong>for</strong> electricity, heat<strong>in</strong>g,<br />

<strong>and</strong> transportation. For example, U.S. <strong>waste</strong>-derived “biomethane” could produce nearly<br />

4.5 billion gasol<strong>in</strong>e-equivalent gallons of <strong>fuel</strong> annually—enough <strong>fuel</strong> <strong>for</strong> 10.4 million cars<br />

(EIA 2021). This could displace nearly 75% of <strong>the</strong> natural gas consumed by <strong>the</strong><br />

transportation sec<strong>to</strong>r or 7% of <strong>the</strong> natural gas consumed by <strong>the</strong> electricity sec<strong>to</strong>r (EIA<br />

2021). As <strong>the</strong> electric vehicle market cont<strong>in</strong>ues <strong>to</strong> grow, biomethane-generated electricity<br />

could allow <strong>for</strong> truly zero-emission driv<strong>in</strong>g.<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


18<br />

Feeds<strong>to</strong>ck Composition<br />

Food <strong>waste</strong> has a high energy potential <strong>and</strong> an estimated decay rate of 0.14 yr - which<br />

makes it compatible <strong>to</strong> digest with PLA. Feeds<strong>to</strong>ck will be composed of food <strong>waste</strong> <strong>and</strong><br />

PLA/bioplastic. The source of food <strong>waste</strong> is <strong>the</strong> cafeteria <strong>and</strong> canteen food <strong>waste</strong>.<br />

Because of high moisture content (approx. 80% or more) <strong>in</strong> food <strong>waste</strong>, it is suitable <strong>to</strong><br />

comb<strong>in</strong>e with PLAs that are low <strong>in</strong> moisture content. Not all bio-<strong>based</strong> plastics will<br />

biodegrade. Lactic acid is a great source of food <strong>for</strong> microorganisms <strong>and</strong> hence is easy<br />

<strong>to</strong> biodegrade. Biodegradable bioplastics like pure PLA have great potential <strong>to</strong> contribute<br />

<strong>to</strong> material recovery, reduction of l<strong>and</strong>fills, <strong>and</strong> use of renewable resources.<br />

The Ratio of Food <strong>Waste</strong> <strong>to</strong> PLA<br />

There are a variety of ratios of food <strong>waste</strong> <strong>to</strong> PLA recommended, but overall, a very small<br />

percentage of PLA <strong>to</strong> <strong>organic</strong> <strong>waste</strong> is feasible. The ratio of bioplastic <strong>to</strong> kitchen <strong>waste</strong><br />

was kept very low at a compost plant <strong>in</strong> Kassel, Germany: 1 plastic part <strong>to</strong> 99 parts of<br />

<strong>organic</strong> <strong>waste</strong> on a weight basis. It showed no negative effects observed <strong>in</strong> terms of<br />

quality <strong>and</strong> <strong>the</strong> same effect on plants as regular compost. (Song, et al. 2009). SMU faculty<br />

members from <strong>the</strong> Civil <strong>and</strong> Environmental Eng<strong>in</strong>eer<strong>in</strong>g Department <strong>and</strong> professionals<br />

had <strong>the</strong> same op<strong>in</strong>ion that an acceptable ratio is up <strong>to</strong> 10%. It can also work as COD of<br />

kitchen garbage (raw - 230 g/lit) <strong>to</strong> PLA at a 4:1 ratio. (Wang, et al. 2012).<br />

Alternatives <strong>for</strong> Pre-Treatment of PLA<br />

Inconsistencies <strong>in</strong> product label<strong>in</strong>g <strong>and</strong> a lack of accepted def<strong>in</strong>itions <strong>for</strong> <strong>in</strong>dustry terms<br />

confuse consumers upon purchas<strong>in</strong>g <strong>and</strong> discard<strong>in</strong>g products. Improperly sorted<br />

bioplastics can contam<strong>in</strong>ate recycl<strong>in</strong>g streams <strong>and</strong> feeds<strong>to</strong>ck <strong>for</strong> compost<strong>in</strong>g operations<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


19<br />

or end up buried <strong>in</strong> a l<strong>and</strong>fill. Also, <strong>in</strong>consistent rates of decomposition across products<br />

can impede commercial compost<strong>in</strong>g operations.<br />

Physical Treatment - Reduction <strong>in</strong> Particle Size & Chopp<strong>in</strong>g <strong>and</strong><br />

Shredd<strong>in</strong>g<br />

Particle size may significantly affect <strong>the</strong> speed <strong>and</strong> stability of anaerobic digestion, so<br />

match<strong>in</strong>g <strong>the</strong> choice of particle size reduction equipment <strong>to</strong> digester type can determ<strong>in</strong>e<br />

<strong>the</strong> outcome of <strong>the</strong> process. The anaerobic biodegradation rate of PLA film (thickness 25<br />

μm) was faster than <strong>the</strong> PLA powder (125–250 μm) at 55 °C. Itavarra, et al. (2002) found<br />

that samples of 2x2 cm pieces of PLA film diluted <strong>in</strong> <strong>waste</strong>water <strong>in</strong>oculum had better<br />

degradation due <strong>to</strong> <strong>the</strong> physical change of <strong>the</strong> PLA. On <strong>the</strong> contrary, although <strong>the</strong> smaller<br />

pieces were expected <strong>to</strong> degrade faster, it turned out that <strong>the</strong>y stuck <strong>to</strong>ge<strong>the</strong>r <strong>and</strong><br />

generated static electricity. There<strong>for</strong>e, <strong>the</strong> <strong>to</strong>tal surface area <strong>in</strong> contact with sludge was<br />

less than with larger pieces (Ba<strong>to</strong>ri, et al. 2018).<br />

Chemical Treatment - Alkal<strong>in</strong>ity Treatment<br />

Alkal<strong>in</strong>e pretreatment has <strong>the</strong> highest solid reduction rate of PLA <strong>and</strong> maximum<br />

production of CH4 when comb<strong>in</strong>ed with food <strong>waste</strong> <strong>and</strong> anaerobically digested sludge.<br />

PLA dissolv<strong>in</strong>g <strong>in</strong> a high alkal<strong>in</strong>e solution leads <strong>to</strong> hydrolysis of aliphatic polyester,<br />

cleav<strong>in</strong>g <strong>the</strong> ester bonds. The hydrolytic degradation of crystall<strong>in</strong>e PLA leads <strong>to</strong> an<br />

<strong>in</strong>creased rate of mass loss <strong>in</strong> solution <strong>and</strong> <strong>in</strong>creased consumption of O2 due <strong>to</strong> PLA<br />

content. The biotic degradation of PLA is desirable dur<strong>in</strong>g disposal, <strong>and</strong> degradation can<br />

be enhanced through <strong>the</strong>rmal treatment mak<strong>in</strong>g anaerobic digestion viable. Hobbs, et al.<br />

(2019) found that PLA <strong>in</strong>cubated at 12.96 pH <strong>for</strong> 15 days showed 98% solubilization.<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


20<br />

Figure 7: Comparison of Untreated Crystall<strong>in</strong>e PLA Be<strong>for</strong>e <strong>and</strong> After BMP Test<br />

Figure 7 shows <strong>the</strong> change <strong>in</strong> <strong>the</strong> weight of PLA. The PLA without treatment after<br />

anaerobic digestion experienced a 53% reduction of <strong>in</strong>itial weight due <strong>to</strong> <strong>the</strong> conversion<br />

of long polymer cha<strong>in</strong>s <strong>in</strong><strong>to</strong> shorter cha<strong>in</strong>s under alkal<strong>in</strong>e treatment.<br />

Thermal Treatment<br />

Despite <strong>the</strong> biocompatible nature of bioplastics, <strong>the</strong> degradation of PLA <strong>in</strong> <strong>the</strong><br />

environment is not easy because, under ambient conditions, PLA <strong>in</strong> soil or sewage is<br />

resistant <strong>to</strong> microbial attack. Thermophilic (50-60°C) <strong>system</strong>s have a faster throughput<br />

with faster biogas production per unit of feeds<strong>to</strong>ck <strong>and</strong> digester volume. However, <strong>the</strong><br />

capital costs of <strong>the</strong>rmophilic <strong>system</strong>s are far higher, more energy is needed <strong>to</strong> heat <strong>the</strong>m,<br />

<strong>and</strong> <strong>the</strong>y generally require more management.<br />

Figure 8 <strong>in</strong>dicates that 60% m<strong>in</strong>eralization of PLA <strong>to</strong>ok place <strong>in</strong> anaerobic aquatic<br />

conditions at 37°C <strong>in</strong> 100 days, while at 52 o C, 60% was m<strong>in</strong>eralized <strong>in</strong> 40 days. This<br />

shows that <strong>the</strong>rmophilic temperature is <strong>the</strong> key parameter affect<strong>in</strong>g <strong>the</strong> biodegradation<br />

rate of PLA.<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


21<br />

Figure 8: M<strong>in</strong>eralization of PLA <strong>in</strong> Anaerobic condition at 37C & 52C (Itavaara et al. 2002)<br />

Ultraviolet Irradiation<br />

Ultraviolet irradiation at a wavelength of 254 mm (UV-C) can break <strong>the</strong> long cha<strong>in</strong>s of PLA<br />

beverage cups <strong>and</strong> reduce <strong>the</strong> average molecular weight (Jeon & Kim 2013). The<br />

exposure of PLA <strong>waste</strong> <strong>to</strong> UV-C radiation be<strong>for</strong>e compost<strong>in</strong>g will <strong>in</strong>crease <strong>the</strong> rate of PLA<br />

degradation.<br />

Dairy & <strong>Waste</strong>water Inoculation<br />

Anaerobic microbial <strong>in</strong>oculum was derived from an anaerobic <strong>waste</strong>water treatment<br />

facility, <strong>and</strong> that dairy manure can be used <strong>for</strong> test<strong>in</strong>g of PLA degradation. The dairy<br />

<strong>waste</strong>water sludge was Act<strong>in</strong>omadura, a good source of microbial consortia. The amount<br />

of <strong>in</strong>oculum was equivalent <strong>to</strong> 10% of <strong>the</strong> volume of <strong>the</strong> solution. Figure 9 shows a<br />

schematic diagram of PLA degradation under UV-C irradiation followed by Soil Burial,<br />

Dairy <strong>Waste</strong>water Sludge (DWS), <strong>and</strong> P. geniculate WS3 additions<br />

(Pattanasuttichonlakul 2018). UV-C irradiation decreased <strong>the</strong> molecular weight of PLA<br />

as compared <strong>to</strong> UV-A <strong>and</strong> UV-B.<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


22<br />

Figure 9: Schematic Diagram of PLA Degradation <strong>and</strong> Soil Burial<br />

UV-C-treated PLA sheets are buried <strong>in</strong> <strong>the</strong> soil with DWS <strong>and</strong> P. geniculata WS3<br />

additions. P. geniculata WS3 <strong>and</strong> some microorganisms <strong>in</strong> DWS, adhered <strong>to</strong> <strong>the</strong> PLA<br />

surface, excreted PLA-degrad<strong>in</strong>g enzymes. The PLA-degrad<strong>in</strong>g enzyme is absorbed or<br />

localized on <strong>the</strong> PLA surface (Bubpachat et al., 2018). The PLA degradation process<br />

<strong>in</strong>volves chemical <strong>and</strong> enzymatic hydrolysis. Qi, et al. (2017) recommend <strong>the</strong> process of<br />

UV-C irradiation <strong>and</strong> <strong>the</strong> addition of DWS <strong>and</strong> P. geniculata WS3, as <strong>the</strong>se offer an<br />

efficient method <strong>for</strong> accelerat<strong>in</strong>g PLA degradation under aerobic soil burial conditions.<br />

Need <strong>for</strong> an Accelerat<strong>in</strong>g Agent (i.e. GBX)<br />

There is no need <strong>to</strong> add an accelerat<strong>in</strong>g agent <strong>for</strong> PLA & food <strong>waste</strong> feeds<strong>to</strong>ck. If any<br />

specific k<strong>in</strong>d of <strong>in</strong>dustrial <strong>waste</strong> is treated, <strong>the</strong>n it may need an accelerat<strong>in</strong>g agent, such<br />

as Inoculum from WWTP or dairy. This report recommends runn<strong>in</strong>g <strong>the</strong> process as<br />

naturally as possible.<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


23<br />

Feeds<strong>to</strong>ck Quantity, Methane <strong>and</strong> Hydrogen<br />

Production<br />

It is estimated that 10 <strong>to</strong> 12 <strong>to</strong>ns/d (one collection compac<strong>to</strong>r truck) of food <strong>waste</strong> with 8<br />

<strong>to</strong> 10% contam<strong>in</strong>ation (wet/wet basis) <strong>and</strong> 80% of <strong>the</strong> contam<strong>in</strong>ation be<strong>in</strong>g bioplastics<br />

(<strong>the</strong> rest conventional plastics <strong>and</strong> o<strong>the</strong>rs) can produce about 70 Nm3/h of biogas. This<br />

is <strong>the</strong> amount of biogas needed <strong>to</strong> produce 200 kg/day of hydrogen. The focus is on 200<br />

kg of H2 because this is <strong>the</strong> smallest size of commercially available packaged <strong>and</strong><br />

conta<strong>in</strong>erized biomethane re<strong>for</strong>m<strong>in</strong>g <strong>system</strong>s. The design parameters <strong>for</strong> AD are as<br />

follows: HRT of 24days, digester volume of 500 m 3 , <strong>and</strong> <strong>organic</strong> load<strong>in</strong>g rate of 4.3 kg<br />

VSS/m 3 per day. (Anargia)<br />

There is ano<strong>the</strong>r design approach <strong>for</strong> small-scale distribution facilities that would produce<br />

100 <strong>to</strong> 1500 kg of hydrogen per day at <strong>fuel</strong><strong>in</strong>g stations. For 200 kg per day of hydrogen,<br />

<strong>the</strong> biogas flow rate should be 120 cfm at 60% methane (172,000 cuft per day). To<br />

produce that amount of biogas, <strong>the</strong> digester’s <strong>organic</strong> load<strong>in</strong>g would need <strong>to</strong> be 28,800<br />

lbs per day of COD (<strong>based</strong> on ~6 cubic feet per lbs of COD). Food <strong>waste</strong> <strong>and</strong> 10% PLA<br />

must blend <strong>and</strong> make a slurry (feed material blend) with 100,000 mg/L COD or 35,000<br />

gallons of feed material (attached biogas yields). SMR Technology is widely used <strong>to</strong><br />

generate hydrogen because of its per<strong>for</strong>mance <strong>and</strong> cost-efficiency (Tasser).<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


24<br />

Consistency of <strong>Waste</strong> from Employer<br />

Figure 10: Bio<strong>based</strong> Product Labels, Cali<strong>for</strong>nia Organics Recycl<strong>in</strong>g Council<br />

● Reduction <strong>and</strong> Segregation at source by plac<strong>in</strong>g color-coded b<strong>in</strong>s<br />

● Connect with restaurants, supermarkets, or food & PLA-generat<strong>in</strong>g commercial<br />

sec<strong>to</strong>rs<br />

● Implement<strong>in</strong>g effective biological treatment <strong>for</strong> <strong>the</strong> develop<strong>in</strong>g range of PLAs will<br />

require clear certification <strong>and</strong> label<strong>in</strong>g schemes<br />

● An effective collection <strong>system</strong> should accept only 100% biodegradable products<br />

(not all bio<strong>based</strong> products are biodegradable; Figure 10 shows <strong>the</strong> widely<br />

recognized labels which demonstrate compliance with ASTM D6400 & ASTM<br />

D6866, respectively)<br />

● Tipp<strong>in</strong>g fees - The best practice of establish<strong>in</strong>g long-term off-take contracts are<br />

with guarantees <strong>for</strong> quantity <strong>and</strong> composition <strong>to</strong> secure project f<strong>in</strong>anc<strong>in</strong>g<br />

Recommendations & Workplace Practices<br />

● Buy products from certified 100% pure PLA products e.g. Ingeo, Nature Works,<br />

<strong>and</strong> ask <strong>the</strong>m <strong>for</strong> certification of 100% biodegradation<br />

● Separation of <strong>waste</strong> <strong>in</strong> different b<strong>in</strong>s <strong>for</strong> different k<strong>in</strong>ds of <strong>waste</strong>, such as<br />

recyclable, l<strong>and</strong>fill, <strong>organic</strong> wet, <strong>organic</strong> dry, <strong>and</strong> PLA (used spoons, dishes, <strong>and</strong><br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


25<br />

o<strong>the</strong>r cutlery) with <strong>the</strong> list of materials or pho<strong>to</strong>graphs <strong>to</strong> identify appropriate <strong>waste</strong><br />

placement<br />

● Spread awareness on <strong>the</strong> benefits of <strong>waste</strong> separation - reduces cost, treatment,<br />

energy, <strong>and</strong> labor<br />

Conclusion<br />

The purpose of this project is <strong>to</strong> study <strong>and</strong> recommend potential solutions through an<br />

analysis of corporate <strong>waste</strong> management options <strong>in</strong> Plano, Texas, focus<strong>in</strong>g on an<br />

anaerobic digester or o<strong>the</strong>r applicable technologies <strong>to</strong> be used <strong>for</strong> several possible<br />

benefits: greenhouse gas reduction, diversion from l<strong>and</strong>fill, economic value, <strong>and</strong> <strong>the</strong><br />

potential <strong>to</strong> <strong>create</strong> a <strong>fuel</strong><strong>in</strong>g source <strong>for</strong> hydrogen-powered vehicles.<br />

The m<strong>in</strong>imum requirements of feeds<strong>to</strong>ck <strong>for</strong> a digester are 10 <strong>to</strong>ns a day equat<strong>in</strong>g <strong>to</strong><br />

~3650 <strong>to</strong>ns of feeds<strong>to</strong>ck annually. If one corporation produces 1.5 million lbs (769 <strong>to</strong>ns)<br />

annually leav<strong>in</strong>g a deficit of 3650 <strong>to</strong>ns <strong>and</strong> <strong>the</strong> City of Plano collects approximately 30,000<br />

<strong>to</strong>ns of yard <strong>waste</strong> annually with a breakdown of 1,915 <strong>to</strong>ns a month, a partnership with<br />

<strong>the</strong> City of Plano would guarantee <strong>the</strong> m<strong>in</strong>imum feeds<strong>to</strong>ck <strong>to</strong> susta<strong>in</strong> <strong>the</strong> anaerobic activity<br />

of bacteria <strong>and</strong> <strong>the</strong> production of methane gas <strong>to</strong> meet <strong>the</strong> energy needs of <strong>the</strong> plant.<br />

Secur<strong>in</strong>g a reliable feeds<strong>to</strong>ck supply is fundamental <strong>to</strong> profitable AD <strong>and</strong> if feeds<strong>to</strong>cks are<br />

<strong>to</strong> be bought from a third party, secur<strong>in</strong>g a long-term contract on acceptable terms is<br />

critical. Partnerships with o<strong>the</strong>r corporations’ supplies of feeds<strong>to</strong>ck would be beneficial <strong>for</strong><br />

<strong>the</strong> environment <strong>and</strong> establishment of challenges like recycl<strong>in</strong>g-<strong>based</strong> <strong>society</strong> <strong>and</strong><br />

<strong>system</strong>s <strong>for</strong> Plano, TX. However, <strong>the</strong> risk associated with wet <strong>organic</strong> <strong>waste</strong> quality from<br />

corporations would not be reliable <strong>to</strong> run a digester constantly throughout <strong>the</strong> year.<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


26<br />

Additional partnerships are advisable <strong>based</strong> on <strong>the</strong> bus<strong>in</strong>ess model <strong>for</strong> CR&R, Inc. The<br />

success of this endeavor would <strong>in</strong>crease with <strong>in</strong>dustry partners who specialize <strong>in</strong><br />

anaerobic digestion technology ma<strong>in</strong>tenance like Esenmann, biogas upgrad<strong>in</strong>g<br />

technology like Greenlane Biogas, biogas polish<strong>in</strong>g technology like Sysadvance,<br />

renewable natural gas distribution with <strong>the</strong> City of Plano or a private sec<strong>to</strong>r gas company,<br />

<strong>and</strong> subcontrac<strong>to</strong>rs <strong>for</strong> operations <strong>and</strong> project management like JRMA who specialize <strong>in</strong><br />

<strong>waste</strong> management <strong>and</strong> <strong>waste</strong> <strong>to</strong> energy process<strong>in</strong>g.<br />

Future Scope<br />

Possible locations of sort<strong>in</strong>g, pre-treatment, <strong>and</strong> digester are corporation’s available<br />

space, a transfer station, or a separate facility near <strong>the</strong> l<strong>and</strong>fill.<br />

Ideally, <strong>to</strong> reduce process<strong>in</strong>g <strong>and</strong> labor costs at <strong>the</strong> site, <strong>the</strong> digester plant could be<br />

located near an exist<strong>in</strong>g MRF (Material Recovery Facility) or l<strong>and</strong>fill. Additionally, this<br />

could reduce <strong>the</strong> cost of transportation <strong>and</strong> ma<strong>in</strong>tenance while also elim<strong>in</strong>at<strong>in</strong>g <strong>the</strong><br />

requirement <strong>for</strong> a permit <strong>to</strong> transport <strong>the</strong> <strong>waste</strong>. The plant will also need a food process<strong>in</strong>g<br />

<strong>system</strong> (shredder or separa<strong>to</strong>r) <strong>in</strong> a 50 sq. ft. build<strong>in</strong>g. The overall footpr<strong>in</strong>t would also<br />

<strong>in</strong>clude <strong>the</strong> gas treatment <strong>system</strong> <strong>and</strong> hydrogen SMR re<strong>for</strong>mer.<br />

Due <strong>to</strong> <strong>the</strong> restrictions of COVID-19 guidel<strong>in</strong>es, this report will benefit from fur<strong>the</strong>r analysis<br />

<strong>in</strong> <strong>the</strong> follow<strong>in</strong>g areas.<br />

● <strong>Waste</strong> generation audit/quantity of <strong>waste</strong> generated by all <strong>the</strong> corporations from<br />

Plano area<br />

● The characteristics study of food <strong>waste</strong> generated <strong>in</strong> a cafeteria<br />

● Eng<strong>in</strong>eer<strong>in</strong>g design of an anaerobic digester, mass, <strong>and</strong> energy balance<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


27<br />

● Process flow diagram <strong>and</strong> facility layout of a proposed facility, requir<strong>in</strong>g work with<br />

an architect<br />

● Detailed cost estimation, <strong>in</strong>clud<strong>in</strong>g construction, commission<strong>in</strong>g, <strong>in</strong>stallation,<br />

fabrication, <strong>and</strong> O&M <strong>based</strong> on facility configurations<br />

● Required fund<strong>in</strong>g, <strong>in</strong>vestment structures, VPPA/PPA<br />

● Costs/revenues of operat<strong>in</strong>g an anaerobic digester, dem<strong>and</strong>-side target audience<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


28<br />

Appendix A<br />

DESIGN PARAMETERS<br />

APPROX. VALUES<br />

Solids Retention Time (SRT)<br />

Hydraulic retention Time<br />

Temperature<br />

pH<br />

Alkal<strong>in</strong>ity<br />

COD Load<strong>in</strong>g Rate<br />

VSS<br />

40 <strong>to</strong> 120 days<br />

5 <strong>to</strong> 12 hours<br />

Mesophilic 55°C (Favorable)<br />

7.0 - 7.1 Optimum<br />

2000 <strong>to</strong> 8000 mg/lit as CaCO3<br />

1 <strong>to</strong> 50 kg COD/m 3 .day<br />

22-24% of raw <strong>waste</strong><br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


29<br />

Works Cited<br />

Anargia - Fuel<strong>in</strong>g a susta<strong>in</strong>able world. https://www.anaergia.com/<br />

Ba<strong>to</strong>ri, V., Dan Akesson, Akram Zamani, Mohammad J. Taherzadeh, Anaerobic<br />

degradation of bioplastic: A review (2018), Swedish Center <strong>for</strong> Resource<br />

Recovery, University of Boras, Sweden.<br />

Biomass Resources <strong>in</strong> <strong>the</strong> United States. Union of Concerned Scientists. (2012).<br />

https://www.ucsusa.org/resources/biomass-resources-united-states.<br />

Bubpachat, T., Sombatsompop, N., <strong>and</strong> Prapagdee, B. (2018). “Isolation of two degrad<strong>in</strong>g<br />

bacteria <strong>and</strong> <strong>the</strong>ir roles on production of degrad<strong>in</strong>g enzymes <strong>and</strong> PLA<br />

biodegradability at mesophilic conditions,” Polymer Degradation <strong>and</strong> Stability 152,<br />

75-85. DOI: 10.1016/j.polymdegradstab.2018.03.023<br />

Davis G. & Song J. H. (2006). Biodegradable packag<strong>in</strong>g <strong>based</strong> on raw materials from<br />

crops <strong>and</strong> <strong>the</strong>ir impact on <strong>waste</strong> management. Industrial Crops <strong>and</strong> Products<br />

23(2), 147–161.<br />

<strong>Energy</strong> Efficiency & Renewable <strong>Energy</strong>, & Moriarty, K., Feasibility Study of Anaerobic<br />

Digestion of Food <strong>Waste</strong> <strong>in</strong> St. Bernard, Louisiana (2013). National Renewable<br />

<strong>Energy</strong> Labora<strong>to</strong>ry. https://www.nrel.gov/docs/fy13osti/57082.pdf.<br />

Hamad, K., Kaseem, M., Yang, H.W., Deri, F., & Ko, Y.G. (2015). Properties <strong>and</strong> medical<br />

applications of polylactic acid: A review. EXPRESS Polymer Letters 9(5), 435-455.<br />

10.3144/expresspolymlett.2015.42<br />

Hawken, P. (2018). Drawdown: The most comprehensive plan ever proposed <strong>to</strong> roll back<br />

global warm<strong>in</strong>g. London: Pengu<strong>in</strong> Books.<br />

Hobbs, S., Parameswaran, P., Astmann, B., Devkota, J., & L<strong>and</strong>is, A. (2019). Anaerobic<br />

Co-digestion of Food <strong>Waste</strong> <strong>and</strong> Polylactic Acid: Effect of Pretreatment on<br />

Methane Yield <strong>and</strong> Solid Reduction. Advances <strong>in</strong> Materials Science <strong>and</strong><br />

Eng<strong>in</strong>eer<strong>in</strong>g 2019(2), 1-6. https://doi.org/10.1155/2019/4715904<br />

Itävaara, M., Karjomaa, S., & Sel<strong>in</strong>, J. (2002). Biodegradation of polylactide <strong>in</strong> aerobic<br />

<strong>and</strong> anaerobic <strong>the</strong>rmophilic conditions. Chemosphere 46, 879-885.<br />

https://doi.org/10.1016/S0045-6535(01)00163-1<br />

Jeon, H.J. & Kim, M.N. (2013). Biodegradation of poly(L-lactide) (PLA) exposed <strong>to</strong> UV<br />

irradiation by a mesophilic bacterium. Int. Biodeterior. Biodegrad. 85, 289-293.<br />

Karjomaa, S., Suortti, T., Lempiä<strong>in</strong>en, R., Sel<strong>in</strong>, J.-F., Itävaara, M. (1998). Microbial<br />

degradation of poly-(L-lactic acid)oligomers. Polym. Degradation Stability 59, 333–<br />

336.<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


30<br />

Kolstad, J., V<strong>in</strong>k, E., De Wilde, B., & Debeer, L. (2012). Assessment of anaerobic<br />

degradation of Ingeo TM polylactides under accelerated l<strong>and</strong>fill conditions. Polymer<br />

Degradation <strong>and</strong> Stability 97(7), 1131-1141.<br />

https://doi.org/10.1016/j.polymdegradstab.2012.04.003<br />

Malik, A., Grohmann, E., & Alves, M. (2013). Management of Microbial Resources <strong>in</strong> <strong>the</strong><br />

Environment. Dordrecht: Spr<strong>in</strong>ger Ne<strong>the</strong>rl<strong>and</strong>s.<br />

Miller, R. (2005). The l<strong>and</strong>scape <strong>for</strong> biopolymers <strong>in</strong> packag<strong>in</strong>g. Miller Kle<strong>in</strong> Associates,<br />

Ltd.<br />

Moon, J. & Mi Yeon Kim (2016). Estimation of <strong>the</strong> Microbial Degradation of Biodegradable<br />

Polymer, PLA with a specific gas production rate.<br />

https://l<strong>in</strong>k.spr<strong>in</strong>ger.com/article/10.1007/s13233-016-4060-2<br />

Nielsen, B. & Petersen, G. (2000). Thermophilic anaerobic digestion <strong>and</strong> pasteurisation.<br />

Practical experience from Danish <strong>waste</strong>water treatment plants. Water Science &<br />

Technology 42(9), 65-72.<br />

OECD. (2008). Guidance Manual <strong>for</strong> <strong>the</strong> Control of Transboundary Movements of<br />

Recoverable <strong>Waste</strong>s. OECD Environment Direc<strong>to</strong>rate.<br />

https://www.oecd.org/env/<strong>waste</strong>/guidance-manual-control-transboundarymovements-recoverable-<strong>waste</strong>s.pdf.<br />

Pattanasuttichonlakul, W., Sombatsompop, N., & Prapagdee, B. (2018). Accelerat<strong>in</strong>g<br />

biodegradation of PLA us<strong>in</strong>g microbial consortium from dairy <strong>waste</strong>water sludge<br />

comb<strong>in</strong>ed with PLA-degrad<strong>in</strong>g bacterium. International Biodeterioration &<br />

Biodegradation 132, 74-83. https://doi.org/10.1016/j.ibiod.2018.05.014<br />

Qi, X., Ren, Y., & Wang, X. (2017). New advances <strong>in</strong> <strong>the</strong> biodegradation of Poly(lactic)<br />

acid. International Biodeterioration & Biodegradation, 117, 215–223.<br />

https://doi.org/10.1016/j.ibiod.2017.01.010<br />

Reeve, M.S., et al. (1994). Polylactide Stereochemistry: Effect on Enzymatic<br />

Degradability. Macromolecules 27, 825-831.<br />

Siparsky, G. L., Voorhees, K. J., Dorgan, J. R., & Schill<strong>in</strong>g, K. (1997). Water Transport <strong>in</strong><br />

Polylactic Acid (PLA), PLA/Polycaprolac<strong>to</strong>ne Copolymers, <strong>and</strong> PLA/Polyethylene<br />

Glycol Blends . Journal of Environmental Polymer Degradation, 5(3), 125–136.<br />

Song, J.H., R.J. Murphy, R. Narayan, <strong>and</strong> G.B. H. Davies. (2009). Biodegradable <strong>and</strong><br />

Compostable Alternatives <strong>to</strong> Conventional Plastics. Philosophical Transactions:<br />

Biological Science 364(1526).<br />

Schroepher, G.J., et al. (1955). The Anaerobic Contact Process as Applied <strong>to</strong><br />

Pack<strong>in</strong>ghouse <strong>Waste</strong>s. Sewage <strong>and</strong> Industrial <strong>Waste</strong>s 27(4), 460-486.<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA


31<br />

Tasser, Christian. Pr<strong>in</strong>cipal, Technology-<strong>in</strong>vestments organization, CA.<br />

Tchobanoglous, G. (2014). <strong>Waste</strong>water eng<strong>in</strong>eer<strong>in</strong>g: treatment <strong>and</strong> resource recovery.<br />

McGraw-Hill.<br />

U.S. <strong>Energy</strong> In<strong>for</strong>mation Adm<strong>in</strong>istration - EIA - Independent Statistics <strong>and</strong> Analysis.<br />

Biomass expla<strong>in</strong>ed - U.S. <strong>Energy</strong> In<strong>for</strong>mation Adm<strong>in</strong>istration (EIA). (2021, June 8).<br />

https://www.eia.gov/energyexpla<strong>in</strong>ed/biomass/.<br />

Wang, F., Hidaka, T., Tsuno, H., & Tsubota, J. (2012). Co-digestion of polylactide <strong>and</strong><br />

kitchen garbage <strong>in</strong> hyper<strong>the</strong>rmophilic <strong>and</strong> <strong>the</strong>rmophilic cont<strong>in</strong>uous anaerobic<br />

processes. Bioresource Technology, 112, 67–74.<br />

https://doi.org/10.1016/j.biortech.2012.02.064<br />

<strong>Waste</strong>water Eng<strong>in</strong>eer<strong>in</strong>g: Treatment <strong>and</strong> Resource Recovery 5th Edition by Inc. Metcalf<br />

& Eddy (Author), George Tchobanoglous (Author), H. Stensel (Author)<br />

Yagi, H., N<strong>in</strong>omiya, F., Funabashi, M., & Kunioka, M. (2012). Anaerobic Biodegradation<br />

of Poly (Lactic Acid) Film <strong>in</strong> Anaerobic Sludge. Journal of Polymers <strong>and</strong> <strong>the</strong><br />

Environment 20(3), 673-680. https://doi.org/10.1007/s10924-012-0472-z<br />

Yagi, H., N<strong>in</strong>omiya, F., Funabashi, M., & Kunioka, M. (2009). Anaerobic Biodegradation Tests<br />

of Poly(lactic acid) under Mesophilic <strong>and</strong> Thermophilic Conditions Us<strong>in</strong>g a New<br />

Evaluation System <strong>for</strong> Methane Fermentation <strong>in</strong> Anaerobic Sludge. International Journal<br />

of Molecular Sciences, 10(9), 3824–3835. https://doi.org/10.3390/ijms10093824<br />

Useful Websites:<br />

https://www.ntmwd.com/, https://www.ntmwd.com/facilities/<br />

www.ucsusa.org/Trash<strong>to</strong>Treasure<br />

https://www.epa.gov/sites/production/files/2020-07/documents/20-02-qa_0.pdf<br />

https://www.epa.gov/agstar<br />

https://archive.epa.gov/region9/<strong>organic</strong>s/web/html/<strong>in</strong>dex-2.html<br />

WASTE TO ENERGY<br />

PEDNEKAR, HARSHADA

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!