25.08.2021 Views

082-Engineering-Mathematics-Anthony-Croft-Robert-Davison-Martin-Hargreaves-James-Flint-Edisi-5-2017

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

894 Chapter 27 Line integrals and multiple integrals

=

∫ x=1

x=0

= [x 2 +x] 1 0

= 2

2x+1dx

Example27.17 Evaluate ∮ S v·dSwherev =x2 i+ 1 2 y2 j + 1 2 z2 k and whereSis the surface of the unit

cube 0 x 1, 0 y 1, 0 z 1. The vector dS should be drawn on each of the

sixfaces inan outward sense.

Solution ThecubeisshowninFigure27.22.Weevaluatethesurfaceintegralovereachofthesix

faces separately and then add the results.

OnsurfaceA,x = 1and0 y1,0 z1.dSisavectornormaltothissurface,

drawn inanoutward sense,and so wecan write itas dydzi. Then

v·dS= ( x 2 i + 1 2 y2 j+ 1 2 z2 k ) ·dydzi

=x 2 dydz

=dydz

sinceonA,x=1

The required surfaceintegral overAisthen

∫ z=1 ∫ y=1

z=0

y=0

1dydz=

= 1

∫ z=1

z=0

[y] 1 0 dz

OnsurfaceB,x = 0and0 y1,0 z1.dSisavectornormaltothissurfaceand

sowecanwriteitas −dydzi.Thenv·dSbecomes −x 2 dydz = 0sincex = 0.Overthis

surface, the integral iszero.

You should verify in a similar manner that over each ofC and E the integral is 1 2 ,

whilst integrals overDandF arezero. The total surfaceintegral isthen 2.

on E, dS = dxdy k

z

z = 1

E

dx

dy

D

B

dz

dx

on C, dS = dxdz j

x

x = 1

A

y= 1

C

dy

F

dz

on A, dS = dydz i

y

Figure27.22

Theintegral isevaluated over

allsixsurfaces.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!