082-Engineering-Mathematics-Anthony-Croft-Robert-Davison-Martin-Hargreaves-James-Flint-Edisi-5-2017

25.08.2021 Views

658 Chapter 21 The Laplace transformThese simultaneous algebraic equations need to be solved for X(s) and Y(s). ByCramer’s rule(see Section 8.7.2)∣ s +11/ss/2 0 ∣ −1/2Y(s)=∣ s +1 s/2=(s+1) 2 −s 2 /4s/2 s+1∣= − 1 { }12 3s 2 /4+2s+1= − 1 { }42 3s 2 +8s+4= − 1 { }42 (3s +2)(s +2)Using partialfractions wefindY(s)=− 1 { 32 3s+2 − 1 }s +2= − 1 { 1− 1 }2 s + 2 s +23and henceSimilarly,and soy(t) = 1 2 (e−2t −e −2t/3 )X(s)=4(s +1)s(3s +2)(s +2) = 1 s − 12 ( 1) −s + 2 2(s +2)3x(t)=1− 1 2 (e−2t/3 +e −2t )EXERCISES21.101 UseLaplace transformsto solve(a) x ′ +x=3,x(0) =1(b) 3 dxdt +4x=2,x(0) =2(c) 2 dydt +4y=1,y(0) =4(d) 4 dydt +8y=7,y(0) =6(e) y ′′ +y ′ +y=1,y(0) =1,y ′ (0) =32 UseLaplacetransformsto solve(a) x ′′ +x =2t,x(0) =0,x ′ (0) =5(b) 2x ′′ +x ′ −x =27cos2t +6sin2t,x(0) = −1,x ′ (0) = −2

21.11 Transfer functions 659(c) x ′′ +x ′ −2x=1−2t,x(0) =6,x ′ (0) = −11(d) x ′′ −4x = 4(cos2t −1),x(0) =1,x ′ (0) =0(e) x ′ −2x−y ′ +2y=−2t 2 +7,x ′2 +x+3y′ +y=t 2 +6x(0) =3,y(0) =6(f) x ′ +x+y ′ +y=6e t ,x ′ +2x−y ′ −y=2e −tx(0) =2,y(0) =13 Using Laplace transformsfindthe particularsolution ofd 2 ydt 2 −5dy dt −6y=14e−tsatisfyingy = 3 and dydt =8whent=0.Solutions1 (a) x(t)=3−2e −t(b) 3 2 e−4t/3 + 1 21(c)4 + 15 4 e−2t(d) y(t) = 7 8 + 418 e−2t(e) y(t) = 1 +3.464e −0.5t sin0.866t2 (a) 3sint+2t(b) −3cos2t +2e −t(c) t +6e −2t(d)e −2t4 + e2t4 − 1 2 cos2t+1(e) x=t 2 +3,y=6−t(f) x(t) = 6et5 +2e−t − 6e−3t/2 ,5y(t) = 6e−3t/253 −2te −t + 8e−t7−2e −t + 9et5+ 13e6t721.11 TRANSFERFUNCTIONSIt is possible to obtain a mathematical model of an engineering system that consists ofone or more differential equations. This approach was introduced in Section 20.4. Wehave already seen that the solution of differential equations can be found by using theLaplace transform. This leads naturally to the concept of a transfer function which willbedeveloped inthissection.Consider the differential equationdx(t)+x(t) = f(t) x(0) =xdt0(21.5)andassumethatitmodelsasimpleengineeringsystem.Then f (t)representstheinputtothesystemandx(t)representstheoutput,orresponseofthesystemtotheinput f (t).Forreasonsthatwillbeexplainedbelowitisnecessarytoassumethattheinitialconditionsassociatedwiththedifferentialequationarezero.InEquation(21.5)thismeanswetakex 0tobe zero.Taking the Laplace transform of Equation (21.5) yieldssX(s)−x 0+X(s) =F(s)(1 +s)X(s) =F(s) assumingx 0=0so thatX(s)F(s) = 11 +sThe function, X(s)/F(s), is called a transfer function. It is the ratio of the Laplacetransform of the output to the Laplace transform of the input. It is often denoted by

658 Chapter 21 The Laplace transform

These simultaneous algebraic equations need to be solved for X(s) and Y(s). By

Cramer’s rule(see Section 8.7.2)

∣ s +11/s

s/2 0 ∣ −1/2

Y(s)=

∣ s +1 s/2

=

(s+1) 2 −s 2 /4

s/2 s+1∣

= − 1 { }

1

2 3s 2 /4+2s+1

= − 1 { }

4

2 3s 2 +8s+4

= − 1 { }

4

2 (3s +2)(s +2)

Using partialfractions wefind

Y(s)=− 1 { 3

2 3s+2 − 1 }

s +2

= − 1 { 1

− 1 }

2 s + 2 s +2

3

and hence

Similarly,

and so

y(t) = 1 2 (e−2t −e −2t/3 )

X(s)=

4(s +1)

s(3s +2)(s +2) = 1 s − 1

2 ( 1

) −

s + 2 2(s +2)

3

x(t)=1− 1 2 (e−2t/3 +e −2t )

EXERCISES21.10

1 UseLaplace transformsto solve

(a) x ′ +x=3,

x(0) =1

(b) 3 dx

dt +4x=2,

x(0) =2

(c) 2 dy

dt +4y=1,

y(0) =4

(d) 4 dy

dt +8y=7,

y(0) =6

(e) y ′′ +y ′ +y=1,

y(0) =1,y ′ (0) =3

2 UseLaplacetransformsto solve

(a) x ′′ +x =2t,

x(0) =0,x ′ (0) =5

(b) 2x ′′ +x ′ −x =27cos2t +6sin2t,

x(0) = −1,x ′ (0) = −2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!