082-Engineering-Mathematics-Anthony-Croft-Robert-Davison-Martin-Hargreaves-James-Flint-Edisi-5-2017

25.08.2021 Views

646 Chapter 21 The Laplace transformTaking the inverse Laplace transformyieldsHence{ }L −1 s −1= (0.5 + √ 1.5j)e at + (0.5 − √ 1.5j)e bt(s −a)(s −b)= (0.5 + √ 1.5j)e (−2+√ 1.5j)t+ (0.5 − √ 1.5j)e (−2−√ 1.5j)t= e −2t {(0.5 + √ 1.5j)e √ 1.5jt+ (0.5 − √ 1.5j)e −√ 1.5jt }= e −2t {(0.5 + √ 1.5j)(cos √ 1.5t +jsin √ 1.5t)+ (0.5 − √ 1.5j)(cos √ 1.5t −jsin √ 1.5t)}= e −2t (cos √ 1.5t −2 √ 1.5sin √ 1.5t){ }L −1 s −1= e−2t2s 2 +8s+11 2 (cos √ 1.5t −2 √ 1.5sin √ 1.5t)EXERCISES21.8AsseenfromExample21.17,whencomplexnumbersareallowed,allthefactorsinthedenominatorarelinear.Theunknown constantsareevaluatedusingparticularvaluesofs orequating coefficients.1 Expressthe followingexpressions aspartialfractions,usingcomplex numbers ifnecessary. Hence findtheirinverse Laplacetransforms.(a)3s−2s 2 +6s+13(b)2s+1s 2 −2s+2(c)(e)s 2(s 2 /2)−s+52s+3−s 2 +2s−5(d)s 2 +s+1s 2 −2s+3Solutions31 (a) 2 +11j/4+s −a32 −11j/4s −bwherea=−3+2j,b=−3−2j,e −3t[ 3cos2t − 112 sin2t ](b) 1 −3j/2 + 1 +3j/2s −a s −bwherea=1+j,b=1−j,e t (2cost+3sint)(c) 2 +8j/3 + 2 −8j/3 +2s −a s −bwherea=1+3j,b=1−3j,(e t 4cos3t − 16 )3 sin3t +2δ(t)3(d)1+ 2 −j/(2 √ 2)+s −a(e)32 +j/(2√ 2)s −bwherea=1+ √ 2j,b=1− √ 2j,)δ(t)+e t (3cos √ 2t + 1 √2sin √ 2t−1 +5j/4s −a+−1 −5j/4s −bwherea=1+2j,b=1−2j,e t (−2cos2t − 5 2 sin2t)

21.9 The convolution theorem 64721.9 THECONVOLUTIONTHEOREMLet f (t) andg(t) be two piecewise continuous functions. The convolution of f (t)andg(t), denoted (f ∗g)(t), isdefined by(f ∗g)(t)=∫ t0f(t −v)g(v)dvExample21.18 Find the convolution of2t andt 3 .Solution f (t) = 2t,g(t) =t 3 , f(t −v) =2(t −v),g(v) = v 3 .Then2t∗t 3 =∫ t02(t −v)v 3 dv =2∫ t0tv 3 −v 4 dv[ tv4= 24 − v55= t510] t0[ ] t5= 24 − t5 5Itcan beshown thatf∗g=g∗fbutthe proof isomitted. Instead, thispropertyisillustratedby anexample.Example21.19 Show that f ∗g=g ∗ f where f (t) = 2t andg(t) =t 3 .Solution f ∗g= 2t ∗t 3 =t 5 /10 by Example 21.18. Fromthe definitionofconvolution(g∗f)(t)=∫ t0g(t −v)f(v)dvWe haveg(t) =t 3 ,sog(t −v) = (t −v) 3 ,and f(v) =2v.Thereforeg∗f=t 3 ∗2t=== 2∫ t0∫ t0∫ t(t −v) 3 2vdv(t 3 −3t 2 v +3tv 2 −v 3 )2vdv0t 3 v −3t 2 v 2 +3tv 3 −v 4 dv[ t 3 v 2] t= 22 −t2 v 3 + 3tv44 − v5= t55010

21.9 The convolution theorem 647

21.9 THECONVOLUTIONTHEOREM

Let f (t) andg(t) be two piecewise continuous functions. The convolution of f (t)

andg(t), denoted (f ∗g)(t), isdefined by

(f ∗g)(t)=

∫ t

0

f(t −v)g(v)dv

Example21.18 Find the convolution of2t andt 3 .

Solution f (t) = 2t,g(t) =t 3 , f(t −v) =2(t −v),g(v) = v 3 .Then

2t∗t 3 =

∫ t

0

2(t −v)v 3 dv =2

∫ t

0

tv 3 −v 4 dv

[ tv

4

= 2

4 − v5

5

= t5

10

] t

0

[ ] t

5

= 2

4 − t5 5

Itcan beshown that

f∗g=g∗f

butthe proof isomitted. Instead, thispropertyisillustratedby anexample.

Example21.19 Show that f ∗g=g ∗ f where f (t) = 2t andg(t) =t 3 .

Solution f ∗g= 2t ∗t 3 =t 5 /10 by Example 21.18. Fromthe definitionofconvolution

(g∗f)(t)=

∫ t

0

g(t −v)f(v)dv

We haveg(t) =t 3 ,sog(t −v) = (t −v) 3 ,and f(v) =2v.Therefore

g∗f=t 3 ∗2t=

=

= 2

∫ t

0

∫ t

0

∫ t

(t −v) 3 2vdv

(t 3 −3t 2 v +3tv 2 −v 3 )2vdv

0

t 3 v −3t 2 v 2 +3tv 3 −v 4 dv

[ t 3 v 2

] t

= 2

2 −t2 v 3 + 3tv4

4 − v5

= t5

5

0

10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!