082-Engineering-Mathematics-Anthony-Croft-Robert-Davison-Martin-Hargreaves-James-Flint-Edisi-5-2017

25.08.2021 Views

490 Chapter 16 Further topics in integration∫ ∞since f (d)is a constant. But∫ ∞−∞∫ ∞−∞The result∫ ∞−∞−∞f(t)δ(t −d)dt = f(d)∫ ∞−∞δ(t−d)dt=1f(t)δ(t −d)dt=f(d)f(t)δ(t −d)dt = f(d)δ(t −d)dt =1andhenceis known as the sifting property of the delta function. By multiplying a function, f (t),by δ(t −d) and integrating from −∞ to ∞ we siftfrom the function the value f (d).Example16.13 Evaluate the following integrals:(a)∫ ∞−∞Solution (a) We use∫ ∞t 2 δ(t −2)dt−∞(b)∫ ∞f(t)δ(t −d)dt = f(d)withf(t) =t 2 andd = 2.Hence∫ ∞−∞0e t δ(t −1)dtt 2 δ(t −2)dt=f(2)=2 2 =4(b) We note thatthe expression e t δ(t −1) is0everywhere except att = 1.Hence∫ ∞0e t δ(t−1)dt =∫ ∞−∞e t δ(t −1)dtEXERCISES16.4Using ∫ ∞f(t)δ(t −d)dt = f(d)−∞with f (t) = e t andd = 1 gives∫ ∞0e t δ(t−1)dt =f(1)=e 1 =e1 Evaluate∫ ∞(a) e t δ(t)dt−∞∫ ∞(b) e t δ(t −4)dt−∞∫ ∞(c) e t δ(t +3)dt−∞∫ ∞(d)4 t 2 δ(t −3)dt−∞

16.5 Integration of piecewise continuous functions 491∫ ∞ (1+t)δ(t −1)(e) dt−∞ 2∫ ∞(f) e −kt δ(t)dt−∞∫ ∞(g) e −kt δ(t −a)dt−∞∫ ∞(h) e −k(t−a) δ(t −a)dt−∞2 Evaluate the following integrals:∫ ∞(a) (sint)δ(t −2)dt−∞∫ ∞(b) e −t δ(t +1)dt−∞∫ 0(c) e −t δ(t +3)dt−∞∫ 10(d) x 3 δ(x−2)dx0∫ 1(e) x 2 δ(x+2)dx−13 Evaluate the following:∫ ∞(a) t(sin2t)δ(t −3)dt−∞∫ ∞(b) δ(t+1)−δ(t−1)dt0∫ ∞(c) δ(t −d)dt0 ∫ a(d) δ(t −d)dt−aSolutions1 (a) 1 (b) 54.5982(c) 4.9787 ×10 −2 (d) 36(e) 1 (f) 1(g) e −ak (h) 12 (a) 0.9093(b) 2.7183(c) 20.0855(d) 8(e) 03 (a) −0.8382(b) −1(c) 1 ifd 0,0otherwise(d) 1 if −a d a,0otherwise16.5 INTEGRATIONOFPIECEWISECONTINUOUSFUNCTIONSIntegration of piecewise continuous functions is illustrated in Example 16.14. If a discontinuityoccurs within the limits of integration then the interval is divided into subintervalsso thatthe integrand iscontinuouson eachsub-interval.Example16.14 Givenf(t)={2 0 t<1t 2evaluate ∫ 30 f(t)dt.1<t3Solution The function, f (t), is piecewise continuous with a discontinuity att = 1. The functionis illustrated in Figure 16.3. The discontinuity occurs within the limits of integration.We split the interval ofintegration atthe discontinuitythus:∫ 30f(t)dt =∫ 10f(t)dt+∫ 31f(t)dt

16.5 Integration of piecewise continuous functions 491

∫ ∞ (1+t)δ(t −1)

(e) dt

−∞ 2

∫ ∞

(f) e −kt δ(t)dt

−∞

∫ ∞

(g) e −kt δ(t −a)dt

−∞

∫ ∞

(h) e −k(t−a) δ(t −a)dt

−∞

2 Evaluate the following integrals:

∫ ∞

(a) (sint)δ(t −2)dt

−∞

∫ ∞

(b) e −t δ(t +1)dt

−∞

∫ 0

(c) e −t δ(t +3)dt

−∞

∫ 10

(d) x 3 δ(x−2)dx

0

∫ 1

(e) x 2 δ(x+2)dx

−1

3 Evaluate the following:

∫ ∞

(a) t(sin2t)δ(t −3)dt

−∞

∫ ∞

(b) δ(t+1)−δ(t−1)dt

0

∫ ∞

(c) δ(t −d)dt

0 ∫ a

(d) δ(t −d)dt

−a

Solutions

1 (a) 1 (b) 54.5982

(c) 4.9787 ×10 −2 (d) 36

(e) 1 (f) 1

(g) e −ak (h) 1

2 (a) 0.9093

(b) 2.7183

(c) 20.0855

(d) 8

(e) 0

3 (a) −0.8382

(b) −1

(c) 1 ifd 0,0otherwise

(d) 1 if −a d a,0otherwise

16.5 INTEGRATIONOFPIECEWISECONTINUOUSFUNCTIONS

Integration of piecewise continuous functions is illustrated in Example 16.14. If a discontinuity

occurs within the limits of integration then the interval is divided into subintervals

so thatthe integrand iscontinuouson eachsub-interval.

Example16.14 Given

f(t)=

{

2 0 t<1

t 2

evaluate ∫ 3

0 f(t)dt.

1<t3

Solution The function, f (t), is piecewise continuous with a discontinuity att = 1. The function

is illustrated in Figure 16.3. The discontinuity occurs within the limits of integration.

We split the interval ofintegration atthe discontinuitythus:

∫ 3

0

f(t)dt =

∫ 1

0

f(t)dt+

∫ 3

1

f(t)dt

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!