25.08.2021 Views

082-Engineering-Mathematics-Anthony-Croft-Robert-Davison-Martin-Hargreaves-James-Flint-Edisi-5-2017

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

14.4 Integration using partial fractions 467

(b)

Then, ∫ ∫

1 1

x 3 +x dx = x − x

x 2 +1 dx

=ln|x|− 1 2 ln|x2 +1|+c=ln

x

∣√ x2 +1

∣ +c

13x−4

6x 2 −x−2 dx = 13x−4

(2x +1)(3x −2) dx

=

= 3 2

3

2x+1 + 2

3x−2 dx

2

2x+1 dx + 2 ∫

3

using partialfractions

3

3x−2 dx

= 3 2 ln|2x+1|+2 3 ln|3x−2|+c

∫ 1

4t

Example14.15 3 −2t 2 +3t−1

Evaluate dt.

0 2t 2 +1

Solution Usingpartialfractions we maywrite

4t 3 −2t 2 +3t−1 t

=2t−1+

2t 2 +1 2t 2 +1

Hence,

∫ 1

0

4t 3 −2t 2 +3t−1

2t 2 +1

dt =

=

∫ 1

0

2t−1+

[

t

2t 2 +1 dt = t 2 −t + 1 ] 1

4 ln |2t2 +1|

0

[1 −1+ 1 ]

4 ln3 −

[0 −0+ 1 ]

4 ln1 = 0.275

EXERCISES14.4

1 Bywriting the integrand asits partialfractions find

∫ x +3

(a)

x 2 +x dx

∫ t −3

(b)

t 2 −1 dt

8x+10

(c)

4x 2 +8x+3 dx

∫ 2t 2 +3t+3

(d) dt

2(t +1)

∫ 2x 2 +x+1

(e)

x 3 +x 2 dx

2 Evaluate the following integrals:

∫ 3 5x+6

(a)

1 2x 2 +4x dx

∫ 1 3x+5

(b)

0 (x +1)(x +2) dx

∫ 2 3−3x

(c)

1 2x 2 +6x dx

∫ 0 4x+1

(d)

−1 2x 2 +x−6 dx

∫ 3 x 2 +2x−1

(e)

2 (x 2 +1)(x −1) dx

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!