25.08.2021 Views

082-Engineering-Mathematics-Anthony-Croft-Robert-Davison-Martin-Hargreaves-James-Flint-Edisi-5-2017

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

462 Chapter 14 Techniques of integration

EXERCISES14.2

1 Useintegration by partsto findthe following:

(a) xsin(2x)dx (b) te 3t dt

(c)

(e)

xcosxdx

∫ x

e x dx

(d)

( )

v

2vsin dv

2

2 Useintegration by partsto find

(a) tlntdt

(b) lntdt

(c) t n lntdt (n ≠ −1)

(d) tsin(at +b)dt a,bconstants

(e) te at+b dt a,bconstants

3 Evaluate the followingdefiniteintegrals:

∫ 1

∫ π/2

(a) xcos2xdx (b) xsin2xdx

0

0

∫ 1

∫ 3

(c) te 2t dt (d) t 2 lntdt

−1

1

∫ 2 2x

(e) dx

0 e2x 4 Find

(a) t 2 e 2t dt

(b)

(c)

t 2 cos3tdt

∫ ( )

t 2 t

sin dt

2

5 Evaluate the following definiteintegrals:

∫ 2

(a) t 2 e t dt

0

∫ 1

(b) t 2 sintdt

−1

∫ 1

(c) t 2 cos3tdt

0

6 Obtainareduction formulafor

I n = t n e kt dt n,k constants

Hencefind

t 2 e 3t dt,

t 3 e 3t dt and

t 4 e 3t dt.

7 Useintegration byparts twiceto obtain areduction

formulafor

∫ π/2

I n = t n sintdt

0

∫ π/2 ∫ π/2

Hencefind t 3 sintdt, t 5 sintdt

0 0

∫ π/2

and t 7 sintdt.

0

8 Useintegration byparts to find

∫ π/2

e 2x cosxdx

0

Solutions

sin2x

1 (a) − xcos2x

4 2

( )

(b) e 3t t

3 − 1 +c

9

+c

(c) cosx+xsinx+c

( ) ( )

v v

(d) 8sin −4vcos +c

2 2

(e) −e −x (x +1) +c

2 (a)

t 2 lnt

2

− t2 4 +c

(b) tlnt−t+c

(c)

(d)

(lnt)t n+1

tn+1

n +1 (n +1) 2 +c

sin(at +b)

a 2

(e) e at+b (

t

a − 1 a 2 )

+c

tcos(at +b)

a

+c

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!