082-Engineering-Mathematics-Anthony-Croft-Robert-Davison-Martin-Hargreaves-James-Flint-Edisi-5-2017

25.08.2021 Views

450 Chapter 13 IntegrationMore generally, capacitance is defined asC = Q/V, whereV is the voltage difference.ThereforeC =Q = 2πε r ε 0(V a−V b blna)Note that this is the capacitance per unit length of cable. Using ε r= 1.55, a =5.1 ×10 −4 m,b= 1.5 ×10 −3 m, weget2π ×1.55 ×8.85 ×10−12C = ( ) = 7.99 ×10 −11 ≈ 80 pF m −11.5 ×10−3ln5.1 ×10 −4Engineeringapplication13.5CharacteristicimpedanceofacoaxialcableAcommonlyquotedparameterofacoaxialcableisitscharacteristicimpedance,Z 0.Thecharacteristicimpedanceistheratioofthevoltagetothecurrentforapropagatingwave travelling on an electrical transmission line in the absence of reflections.ThevalueofZ 0iseasytoselectatthedesignstagebycarefullychoosingthedimensionsaandbtogetherwith the type of insulating material within the cable. The twomostcommoncharacteristicimpedancesforflexiblecablesareapproximately50 and 75 . The main reason for selecting 50 is that it represents a good compromisebetween the ability to handle high power and the minimization of losses thatoccur in thermoplastic dielectrics. The value of 75 is mainly considered optimalfor situations of low power transmission and where losses are the most importantconsideration. Often these 75 cables are of the air-dielectric type where the innerconductor is supported by a spacer rather than a solid plastic dielectric. An exampleof an application for a 75 cable is the connection from a rooftop TV antenna to aTV set.Itcanbeshownfromfundamentaltransmissionlinetheorythatthecharacteristicimpedanceofaloss-freecableis√LZ 0=CItcan be shown thatthe expression for the inductance of a coaxial cable isgiven byL = µ ( )0 b2π ln aAs shown inEngineering application 13.4, the expression for the capacitance isC = 2πε r ε 0( blna)

13.3 Definite and indefinite integrals 451Substituting forLandC inthe equation forZ 0( )µ 0 b Z 0=2π ln a/ ( ) = 1 √ ( )µ0 bln√2πε rε 0 b 2π ε rε 0alnaFor the cable defined in Engineering application 13.4, and substituting for the permeabilityof free space, µ 0= 4π ×10 −7 ,Z 0= 1 √( )µ 0 1.5 ×10−32π 1.55 ×8.85 ×10 ln =52−12 0.51 ×10 −313.3.1 UseofadummyvariableConsider the following integrals,I 1andI 2:I 1=∫ 1Then,[ ] t3 1I 1= =300[ x3I 2=3t 2 dt I 2=] 10=∫ 10x 2 dx( 13)−(0)= 1 3( 13)−(0)= 1 3So clearlyI 1= I 2. The value ofI 1does not depend upont, and the value ofI 2does notdepend uponx. Ingeneral,I =∫ baf(t)dt =∫ baf(x)dxBecause the value ofI is the same, regardless of what the integrating variable may be,wesayxandt are dummy variables. Indeed we could writeI =∫ baf(z)dz=∫ baf(r)dr=Thenz,randyaredummy variables.∫ baf(y)dyEXERCISES13.31 Evaluate the following integrals:∫ 3 ∫ 4(a) x 3 1dx (b)1 1 x dx∫ 1 ∫ 1(c) 2 dx (d) e x dx0−1∫ π/3(e) sint dt0∫ π/2(g) cos3t dt0∫ 1.2(i) tanx dx1(f)(h)∫ πsin(t +3)dt0∫ 2cos πt dt1

13.3 Definite and indefinite integrals 451

Substituting forLandC inthe equation forZ 0

( )

µ 0 b Z 0

=

2π ln a

/ ( ) = 1 √ ( )

µ0 b

ln

√2πε r

ε 0 b 2π ε r

ε 0

a

ln

a

For the cable defined in Engineering application 13.4, and substituting for the permeability

of free space, µ 0

= 4π ×10 −7 ,

Z 0

= 1 √

( )

µ 0 1.5 ×10

−3

2π 1.55 ×8.85 ×10 ln =52

−12 0.51 ×10 −3

13.3.1 Useofadummyvariable

Consider the following integrals,I 1

andI 2

:

I 1

=

∫ 1

Then,

[ ] t

3 1

I 1

= =

3

0

0

[ x

3

I 2

=

3

t 2 dt I 2

=

] 1

0

=

∫ 1

0

x 2 dx

( 1

3)

−(0)= 1 3

( 1

3)

−(0)= 1 3

So clearlyI 1

= I 2

. The value ofI 1

does not depend upont, and the value ofI 2

does not

depend uponx. Ingeneral,

I =

∫ b

a

f(t)dt =

∫ b

a

f(x)dx

Because the value ofI is the same, regardless of what the integrating variable may be,

wesayxandt are dummy variables. Indeed we could write

I =

∫ b

a

f(z)dz=

∫ b

a

f(r)dr=

Thenz,randyaredummy variables.

∫ b

a

f(y)dy

EXERCISES13.3

1 Evaluate the following integrals:

∫ 3 ∫ 4

(a) x 3 1

dx (b)

1 1 x dx

∫ 1 ∫ 1

(c) 2 dx (d) e x dx

0

−1

∫ π/3

(e) sint dt

0

∫ π/2

(g) cos3t dt

0

∫ 1.2

(i) tanx dx

1

(f)

(h)

∫ π

sin(t +3)dt

0

∫ 2

cos πt dt

1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!