01.08.2021 Views

The Adventure of Physics - Vol. VI- The Strand Model - A Speculation on Unification, 2008a

The Adventure of Physics - Vol. VI- The Strand Model - A Speculation on Unification, 2008a

The Adventure of Physics - Vol. VI- The Strand Model - A Speculation on Unification, 2008a

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Christoph Schiller<br />

MOTION MOUNTAIN<br />

the adventure <str<strong>on</strong>g>of</str<strong>on</strong>g> physics – vol.vi<br />

the strand model –<br />

a speculati<strong>on</strong> <strong>on</strong> unificati<strong>on</strong><br />

www.moti<strong>on</strong>mountain.net


Christoph Schiller<br />

Moti<strong>on</strong> Mountain<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Adventure</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Physics</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> –<br />

A <str<strong>on</strong>g>Speculati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> Unificati<strong>on</strong><br />

Editi<strong>on</strong> 31, available as free pdf with films<br />

at www.moti<strong>on</strong>mountain.net/research.html


Editio trigesima prima.<br />

Proprietas scriptoris © Chrestophori Schiller<br />

tertio anno Olympiadis trigesimae secundae.<br />

Omnia proprietatis iura reservantur et vindicantur.<br />

Imitatio prohibita sine auctoris permissi<strong>on</strong>e.<br />

N<strong>on</strong> licet pecuniam expetere pro aliqua, quae<br />

partem horum verborum c<strong>on</strong>tinet; liber<br />

pro omnibus semper gratuitus erat et manet.<br />

Thirty-first editi<strong>on</strong>.<br />

Copyright © 2008–2020 by Christoph Schiller,<br />

from the third year <str<strong>on</strong>g>of</str<strong>on</strong>g> the 24th Olympiad<br />

to the third year <str<strong>on</strong>g>of</str<strong>on</strong>g> the 32nd Olympiad.<br />

This pdf file is licensed under the Creative Comm<strong>on</strong>s<br />

Attributi<strong>on</strong>-N<strong>on</strong>commercial-No Derivative Works 3.0 Germany<br />

Licence, whose full text can be found <strong>on</strong> the website<br />

creativecomm<strong>on</strong>s.org/licenses/by-nc-nd/3.0/de,<br />

with the additi<strong>on</strong>al restricti<strong>on</strong> that reproducti<strong>on</strong>, distributi<strong>on</strong> and use,<br />

in whole or in part, in any product or service, be it<br />

commercial or not, is not allowed without the written c<strong>on</strong>sent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the copyright owner. <str<strong>on</strong>g>The</str<strong>on</strong>g> pdf file was and remains free for everybody<br />

to read, store and print for pers<strong>on</strong>al use, and to distribute<br />

electr<strong>on</strong>ically, but <strong>on</strong>ly in unmodified form and <strong>on</strong>ly at no charge.


To Britta, Esther and Justus Aar<strong>on</strong><br />

τῷ ἐμοὶ δαὶμονι


Man sollte manchmal einen kühnen Gedanken auszusprechen wagen,<br />

damiterFruchtbrächte.


PREFACE<br />

This book is for anybody who is intensely curious about moti<strong>on</strong>. Why and how do<br />

hings, people, trees, stars, images or empty space move? <str<strong>on</strong>g>The</str<strong>on</strong>g> answer leads<br />

o many adventures, and this book presents <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the best <str<strong>on</strong>g>of</str<strong>on</strong>g> them: the search<br />

for a precise, unified and complete descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all moti<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> aim to describe all moti<strong>on</strong> – everyday, quantum and relativistic – implies a large<br />

project. This project can be structured using the diagram shown in Figure 1, the so-called<br />

Br<strong>on</strong>shtein cube. <str<strong>on</strong>g>The</str<strong>on</strong>g> previous volumes have covered all points in the cube – all domains<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> – except the highest <strong>on</strong>e. This remaining point c<strong>on</strong>tains the complete and unified<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all moti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> present volume briefly summarizes the history <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

old quest and then presents an intriguing, though speculative soluti<strong>on</strong> to the riddle.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> search for the complete, unified descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> is a story <str<strong>on</strong>g>of</str<strong>on</strong>g> many surprises.<br />

First, twentieth-century research has shown that there is a smallest measurable distance<br />

in nature, the Planck length. <str<strong>on</strong>g>The</str<strong>on</strong>g>n it appeared that matter cannot be distinguished from<br />

empty space at those small distances. A last surprise dates from this century: particles and<br />

spaceappeartobemade<str<strong>on</strong>g>of</str<strong>on</strong>g>strands, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> little spheres or points. <str<strong>on</strong>g>The</str<strong>on</strong>g> present text<br />

explains how to reach these surprising c<strong>on</strong>clusi<strong>on</strong>s. In particular, quantum field theory,<br />

the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics, general relativity and cosmology are shown to<br />

follow from strands. <str<strong>on</strong>g>The</str<strong>on</strong>g> three gauge interacti<strong>on</strong>s, the three particle generati<strong>on</strong>s and the<br />

three dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> space turn out to be due to strands. In fact, all the open questi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> twentieth-century physics about the foundati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>, including the origin <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

colours and <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>stants <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard model, appear to be answerable.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand c<strong>on</strong>jecture presented in this text is an unexpected result from a threefold<br />

aim that the author has pursued in the five previous volumes <str<strong>on</strong>g>of</str<strong>on</strong>g> this series: to present the<br />

basics <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> in a way that is up to date, captivating and simple. While the previous<br />

volumes introduced the established parts <str<strong>on</strong>g>of</str<strong>on</strong>g> physics, this volume presents, in the same<br />

captivating and playful way, a speculati<strong>on</strong> about unificati<strong>on</strong>. Nothing in this volume is<br />

established knowledge – yet. <str<strong>on</strong>g>The</str<strong>on</strong>g> text is the original presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the topic. <str<strong>on</strong>g>The</str<strong>on</strong>g> aim<br />

for maximum simplicity has been central in deducing this speculati<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> search for a complete theory <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the adventures <str<strong>on</strong>g>of</str<strong>on</strong>g> life: it leads to<br />

the limits <str<strong>on</strong>g>of</str<strong>on</strong>g> thought. <str<strong>on</strong>g>The</str<strong>on</strong>g> journey overthrows several <str<strong>on</strong>g>of</str<strong>on</strong>g> our thinking habits about nature.<br />

This can produce fear, but by overcoming it we gain strength and serenity. Changing<br />

thinking habits requires courage, but it produces intense and beautiful emoti<strong>on</strong>s. Enjoy<br />

them.<br />

Christoph Schiller<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


8 preface<br />

Complete, unified descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong><br />

<str<strong>on</strong>g>Adventure</str<strong>on</strong>g>s: describing precisely all moti<strong>on</strong>, understanding<br />

the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> colours, space -time and particles, enjoying<br />

extreme thinking, calculating masses and couplings,<br />

catching a further, tiny glimpse <str<strong>on</strong>g>of</str<strong>on</strong>g> bliss (vol. <str<strong>on</strong>g>VI</str<strong>on</strong>g>).<br />

PHYSICS:<br />

Describing moti<strong>on</strong> with precisi<strong>on</strong>,<br />

i.e., using the least acti<strong>on</strong> principle.<br />

An arrow indicates an<br />

increase in precisi<strong>on</strong> by<br />

adding a moti<strong>on</strong> limit.<br />

General relativity<br />

<str<strong>on</strong>g>Adventure</str<strong>on</strong>g>s: the<br />

night sky, measuring<br />

curved and<br />

wobbling space,<br />

exploring black<br />

holes and the<br />

universe, space<br />

and time (vol. II).<br />

Classical gravity<br />

<str<strong>on</strong>g>Adventure</str<strong>on</strong>g>s:<br />

climbing, skiing,<br />

space travel,<br />

the w<strong>on</strong>ders <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

astr<strong>on</strong>omy and<br />

geology (vol. I).<br />

c<br />

limits<br />

G<br />

fast<br />

limits moti<strong>on</strong><br />

uniform<br />

moti<strong>on</strong><br />

Quantum theory<br />

with classical gravity<br />

<str<strong>on</strong>g>Adventure</str<strong>on</strong>g>s: bouncing<br />

neutr<strong>on</strong>s, understanding<br />

tree<br />

growth (vol. V).<br />

Special relativity<br />

<str<strong>on</strong>g>Adventure</str<strong>on</strong>g>s: light,<br />

magnetism, length<br />

c<strong>on</strong>tracti<strong>on</strong>, time<br />

dilati<strong>on</strong> and<br />

E 0 = mc 2<br />

(vol. II).<br />

h, e, k<br />

limit<br />

tiny<br />

moti<strong>on</strong><br />

Galilean physics, heat and electricity<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> world <str<strong>on</strong>g>of</str<strong>on</strong>g> everyday moti<strong>on</strong>: human scale, slow and weak.<br />

<str<strong>on</strong>g>Adventure</str<strong>on</strong>g>s: sport, music, sailing, cooking, describing<br />

beauty and understanding its origin (vol. I);<br />

using electricity, light and computers,<br />

understanding the brain and people (vol. III).<br />

Quantum field theory<br />

(the ‘standard model’)<br />

<str<strong>on</strong>g>Adventure</str<strong>on</strong>g>s: building<br />

accelerators, understanding<br />

quarks, stars,<br />

bombs and the basis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

life, matter & radiati<strong>on</strong><br />

(vol. V).<br />

Quantum theory<br />

<str<strong>on</strong>g>Adventure</str<strong>on</strong>g>s: biology,<br />

birth, love, death,<br />

chemistry, evoluti<strong>on</strong>,<br />

enjoying colours, art,<br />

paradoxes, medicine<br />

and high-tech business<br />

(vol. IV and vol. V).<br />

FIGURE 1 A complete map <str<strong>on</strong>g>of</str<strong>on</strong>g> physics, the science <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>, as first proposed by Matvei Br<strong>on</strong>shtein<br />

(b. 1907 Vinnytsia, d. 1938 Leningrad). <str<strong>on</strong>g>The</str<strong>on</strong>g> map is <str<strong>on</strong>g>of</str<strong>on</strong>g> central importance in the present volume. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

Br<strong>on</strong>shtein cube starts at the bottom with everyday moti<strong>on</strong>, and shows the c<strong>on</strong>necti<strong>on</strong>s to the fields <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

modern physics. Each c<strong>on</strong>necti<strong>on</strong> increases the precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the descripti<strong>on</strong> and is due to a limit to<br />

moti<strong>on</strong> that is taken into account. <str<strong>on</strong>g>The</str<strong>on</strong>g> limits are given for uniform moti<strong>on</strong> by the gravitati<strong>on</strong>al c<strong>on</strong>stant<br />

G, for fast moti<strong>on</strong> by the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light c, and for tiny moti<strong>on</strong> by the Planck c<strong>on</strong>stant h, the elementary<br />

charge e and the Boltzmann c<strong>on</strong>stant k.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


preface 9<br />

Using this book<br />

To get a fast overview, read the pictorial summary in Chapter 13: <strong>on</strong>e page <str<strong>on</strong>g>of</str<strong>on</strong>g> text and<br />

less than twenty pictures.<br />

For a short overview, read the presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the quest in Chapter 1 and then c<strong>on</strong>tinue<br />

with the summary secti<strong>on</strong>s at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> each chapter.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> full text expounds the train <str<strong>on</strong>g>of</str<strong>on</strong>g> thoughts that led to the strand model. It is written<br />

for physics enthusiasts who like daring thoughts. Throughout the text,<br />

⊳ Important steps are marked with a triangle.<br />

Also some dead ends are menti<strong>on</strong>ed. Care has been taken not to include statements that<br />

disagree with experiment.<br />

Marginal notes refer to bibliographic references, to other pages or to challenge soluti<strong>on</strong>s.<br />

In the colour editi<strong>on</strong>, such notes and also the pointers to footnotes and to other<br />

websites are typeset in green. In the free pdf editi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this book, available at www.<br />

moti<strong>on</strong>mountain.net, all green pointers and links are clickable. <str<strong>on</strong>g>The</str<strong>on</strong>g> pdf editi<strong>on</strong> also c<strong>on</strong>tains<br />

all films; they can be watched directly in Adobe Reader. Over time, links <strong>on</strong> the internet<br />

tend to disappear. Most links can be recovered via www.archive.org, which keeps<br />

a copy <str<strong>on</strong>g>of</str<strong>on</strong>g> old internet pages.<br />

Challenges are included regularly. Soluti<strong>on</strong>s and hints are given in the appendix. Challenges<br />

are classified as easy (e), standard student level (s), difficult (d) and research level<br />

(r). Challenges for which hints or soluti<strong>on</strong>s have not yet been included are marked (ny).<br />

A paper editi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this book is available, either in colour or in black and white, from<br />

www.amaz<strong>on</strong>.com. So is a Kindle editi<strong>on</strong>.<br />

Feedback<br />

Receiving an email from you at fb@moti<strong>on</strong>mountain.net, either <strong>on</strong> how to improve the<br />

text or <strong>on</strong> a soluti<strong>on</strong> for <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the prize challenges menti<strong>on</strong>ed <strong>on</strong> www.moti<strong>on</strong>mountain.<br />

net/prizes.html, would be delightful. All feedback will be used to improve the next editi<strong>on</strong>.<br />

For a particularly useful c<strong>on</strong>tributi<strong>on</strong> you will be menti<strong>on</strong>ed – if you want – in the<br />

acknowledgements, receive a reward, or both.<br />

Support<br />

Your d<strong>on</strong>ati<strong>on</strong> to the minuscule, charitable, tax-exempt n<strong>on</strong>-pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it organisati<strong>on</strong> that produces,<br />

translates and publishes this book series is welcome. For details, see the web page<br />

www.moti<strong>on</strong>mountain.net/d<strong>on</strong>ati<strong>on</strong>.html. <str<strong>on</strong>g>The</str<strong>on</strong>g> German tax <str<strong>on</strong>g>of</str<strong>on</strong>g>fice checks the proper use<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> your d<strong>on</strong>ati<strong>on</strong>. If you want, your name will be included in the sp<strong>on</strong>sor list. Thank you<br />

in advance for your help, <strong>on</strong> behalf <str<strong>on</strong>g>of</str<strong>on</strong>g> all readers across the world. And now, enjoy the<br />

reading.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


CONTENTS<br />

7 Preface<br />

Using this book 9 • Feedback 9 • Support 9<br />

10 C<strong>on</strong>tents<br />

17 1 From millennium physics to unificati<strong>on</strong><br />

How to name the result <str<strong>on</strong>g>of</str<strong>on</strong>g> the quest 20 • Against a complete theory 20 •What<br />

went wr<strong>on</strong>g in the past 22 • An encouraging argument 23<br />

24 Summary: how to find the complete theory <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong><br />

27 2 <str<strong>on</strong>g>Physics</str<strong>on</strong>g> in limit statements<br />

27 Simplifying physics as much as possible<br />

Everyday, or Galilean, physics in <strong>on</strong>e statement 27 • Special relativity in <strong>on</strong>e statement<br />

28 • Quantum theory in <strong>on</strong>e statement 29 • <str<strong>on</strong>g>The</str<strong>on</strong>g>rmodynamics in <strong>on</strong>e statement<br />

31 • General relativity in <strong>on</strong>e statement 31 • Deducing general relativity 33 •<br />

Deducing universal gravitati<strong>on</strong> 36 • <str<strong>on</strong>g>The</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> physical systems in general relativity<br />

36 • A mechanical analogy for the maximum force 36<br />

37 Planck limits for all physical observables<br />

<str<strong>on</strong>g>Physics</str<strong>on</strong>g>, mathematics and simplicity 39 • Limits to space, time and size 39 •Mass<br />

and energy limits 40 • Virtual particles – a new definiti<strong>on</strong> 41 • Curiosities and fun<br />

challenges about Planck limits 41<br />

46 Cosmological limits for all physical observables<br />

Size and energy dependence 46 • Angular momentum and acti<strong>on</strong> 46 • Speed 47 •<br />

Force, power and luminosity 47 • <str<strong>on</strong>g>The</str<strong>on</strong>g> strange charm <str<strong>on</strong>g>of</str<strong>on</strong>g> the entropy bound 48 •<br />

Curiosities and fun challenges about system-dependent limits to observables 49 •<br />

Simplified cosmology in <strong>on</strong>e statement 51 • <str<strong>on</strong>g>The</str<strong>on</strong>g> cosmological limits to observables<br />

52 • Minimum force 52 • Summary <strong>on</strong> cosmological limits 52 • Limits to<br />

measurement precisi<strong>on</strong> 53 •Norealnumbers 53 • Vacuum and mass: two sides<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>thesamecoin 53 •Nopoints 54 • Measurement precisi<strong>on</strong> and the existence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sets 54<br />

55 Summary <strong>on</strong> limits in nature<br />

57 3General relativity versus quantum theory<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>tradicti<strong>on</strong>s 58 • <str<strong>on</strong>g>The</str<strong>on</strong>g> origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tradicti<strong>on</strong>s 59 • <str<strong>on</strong>g>The</str<strong>on</strong>g> domain <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tradicti<strong>on</strong>s:<br />

Planck scales 60 • Resolving the c<strong>on</strong>tradicti<strong>on</strong>s 62 •<str<strong>on</strong>g>The</str<strong>on</strong>g>origin<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

points 63<br />

64 Summary <strong>on</strong> the clash between the two theories<br />

65 4 Doesmatterdifferfromvacuum?<br />

Farewell to instants <str<strong>on</strong>g>of</str<strong>on</strong>g> time 65 • Farewell to points in space 67 • <str<strong>on</strong>g>The</str<strong>on</strong>g> generalized<br />

indeterminacy relati<strong>on</strong> 69 • Farewell to space-time c<strong>on</strong>tinuity 69 •<br />

Farewell to dimensi<strong>on</strong>ality 72 • Farewell to the space-time manifold 73 • Farewell<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


c<strong>on</strong>tents 11<br />

to observables, symmetries and measurements 74 •Canspaceorspace-timebea<br />

lattice? 75 • A glimpse <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum geometry 76 • Farewell to point particles 76 •<br />

Farewell to particle properties 78 • A mass limit for elementary particles 79 •<br />

Farewell to massive particles – and to massless vacuum 80 • Matter and vacuum<br />

are indistinguishable 82 • Curiosities and fun challenges <strong>on</strong> Planck scales 83 •<br />

Comm<strong>on</strong> c<strong>on</strong>stituents 87 • Experimental predicti<strong>on</strong>s 88<br />

89 Summary <strong>on</strong> particles and vacuum<br />

91 5 What is the difference between the universe and nothing?<br />

Cosmological scales 91 •Maximumtime 92 • Does the universe have a definite<br />

age? 92 • How precise can age measurements be? 94 •Doestimeexist? 95 •<br />

What is the error in the measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe? 95 •Maximum<br />

length 99 • Is the universe really a big place? 100 • <str<strong>on</strong>g>The</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> space – is<br />

the sky a surface? 101 • Does the universe have initial c<strong>on</strong>diti<strong>on</strong>s? 102 •Doesthe<br />

universe c<strong>on</strong>tain particles and stars? 103 • Does the universe have mass? 103 •<br />

Do symmetries exist in nature? 105 • Does the universe have a boundary? 105 •<br />

Is the universe a set? 106 • Curiosities and fun challenges about the universe 108<br />

• Hilbert’s sixth problem settled 110 • <str<strong>on</strong>g>The</str<strong>on</strong>g> perfect physics book 111 •Doesthe<br />

universe make sense? 111 • Aband<strong>on</strong>ing sets and discreteness eliminates c<strong>on</strong>tradicti<strong>on</strong>s<br />

112 • Extremal scales and open questi<strong>on</strong>s in physics 113 •Isextremal<br />

identity a principle <str<strong>on</strong>g>of</str<strong>on</strong>g> nature? 114<br />

115 Summary <strong>on</strong> the universe<br />

Aphysicalaphorism 115<br />

117 6 <str<strong>on</strong>g>The</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> points – extensi<strong>on</strong> in nature<br />

118 <str<strong>on</strong>g>The</str<strong>on</strong>g> size and shape <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles<br />

Do boxes exist? 118 • Can the Greeks help? – <str<strong>on</strong>g>The</str<strong>on</strong>g> limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> knives 118 •Are<br />

cross secti<strong>on</strong>s finite? 119 • Can we take a photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> a point? 120 •Whatis<br />

the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong>? 121 •Istheshape<str<strong>on</strong>g>of</str<strong>on</strong>g>anelectr<strong>on</strong>fixed? 122 • Summary<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the first argument for extensi<strong>on</strong> 123<br />

123 <str<strong>on</strong>g>The</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> points in vacuum<br />

Measuring the void 125 • What is the maximum number <str<strong>on</strong>g>of</str<strong>on</strong>g> particles that fit inside<br />

a piece <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum? 125 • Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the sec<strong>on</strong>d argument for extensi<strong>on</strong> 125<br />

126 <str<strong>on</strong>g>The</str<strong>on</strong>g> large, the small and their c<strong>on</strong>necti<strong>on</strong><br />

Is small large? 127 • Unificati<strong>on</strong> and total symmetry 127 • Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the third<br />

argument for extensi<strong>on</strong> 128<br />

129 Does nature have parts?<br />

Doestheuniversec<strong>on</strong>tainanything? 131 •Anamoeba 131 • Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

fourth argument for extensi<strong>on</strong> 132<br />

133 <str<strong>on</strong>g>The</str<strong>on</strong>g> entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes<br />

Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the fifth argument for extensi<strong>on</strong> 134<br />

135 Exchanging space points or particles at Planck scales<br />

Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the sixth argument for extensi<strong>on</strong> 136<br />

136 <str<strong>on</strong>g>The</str<strong>on</strong>g> meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> spin<br />

Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the seventh argument for extensi<strong>on</strong> 137<br />

137 Curiosities and fun challenges about extensi<strong>on</strong><br />

Gender preferences in physics 139<br />

139 Checks <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong><br />

Current research based <strong>on</strong> extended c<strong>on</strong>stituents 140 • Superstrings – extensi<strong>on</strong><br />

plus a web <str<strong>on</strong>g>of</str<strong>on</strong>g> dualities 141 • Why superstrings and supermembranes are so ap-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


12 c<strong>on</strong>tents<br />

pealing 142 • Why the mathematics <str<strong>on</strong>g>of</str<strong>on</strong>g> superstrings is difficult 143 •Testingsuperstrings:<br />

couplings and masses 143 • <str<strong>on</strong>g>The</str<strong>on</strong>g> status <str<strong>on</strong>g>of</str<strong>on</strong>g> the superstring c<strong>on</strong>jecture 144<br />

145 Summary <strong>on</strong> extensi<strong>on</strong> in nature<br />

148 7 <str<strong>on</strong>g>The</str<strong>on</strong>g> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture<br />

Requirements for a unified theory 148 • Introducing strands 152 •Events,<br />

processes, interacti<strong>on</strong>s and colours 154 • From strands to modern physics 154 •<br />

Vacuum 159 • Observable values and limits 160 • Particles and fields 161 •Curiosities<br />

and fun challenges about strands 162 • Do strands unify? – <str<strong>on</strong>g>The</str<strong>on</strong>g> millennium<br />

list <str<strong>on</strong>g>of</str<strong>on</strong>g> open issues 164 • Are strands final? – On generalizati<strong>on</strong>s and modificati<strong>on</strong>s<br />

166 • Why strands? – Simplicity 167 • Why strands? – <str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental<br />

circularity <str<strong>on</strong>g>of</str<strong>on</strong>g> physics 169 • Funnels – an equivalent alternative to strands 172 •<br />

Knots and the ends <str<strong>on</strong>g>of</str<strong>on</strong>g> strands 172<br />

173 Summary <strong>on</strong> the fundamental principle – and <strong>on</strong> c<strong>on</strong>tinuity<br />

174 8 Quantum theory <str<strong>on</strong>g>of</str<strong>on</strong>g> matter deduced from strands<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s, vacuum and particles 174 • Rotati<strong>on</strong>, spin 1/2 and the belt trick 176 •<str<strong>on</strong>g>The</str<strong>on</strong>g><br />

belt trick is not unique 180 • An aside: the belt trick saves lives 181 •Fermi<strong>on</strong>s<br />

and spin 183 • Bos<strong>on</strong>s and spin 185 •Spinandstatistics 186 •Tanglefuncti<strong>on</strong>s:<br />

blurred tangles 186 • Details <strong>on</strong> fluctuati<strong>on</strong>s and averages 188 •Tanglefuncti<strong>on</strong>s<br />

are wave functi<strong>on</strong>s 189 • Deducing the Schrödinger equati<strong>on</strong> from tangles 194 •<br />

Mass from tangles 196 •Potentials198 • Quantum interferencefrom tangles 198 •<br />

Deducing the Pauli equati<strong>on</strong> from tangles 200 • Rotating arrows and path integrals<br />

201 • Interference and double slits 202 • Measurements and wave functi<strong>on</strong><br />

collapse 203 • Hidden variables and the Kochen–Specker theorem 205 •Manyparticle<br />

states and entanglement 206 • Mixed states 209 • <str<strong>on</strong>g>The</str<strong>on</strong>g> dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

space-time 209 • Operators and the Heisenberg picture 210 • Lagrangians and the<br />

principle <str<strong>on</strong>g>of</str<strong>on</strong>g> least acti<strong>on</strong> 211 • Special relativity: the vacuum 213 •Specialrelativity:<br />

the invariant limit speed 213 • Dirac’s equati<strong>on</strong> deduced from tangles 215 •<br />

Visualizing spinors and Dirac’s equati<strong>on</strong> using tangles 218 • Quantum mechanics<br />

vs. quantum field theory 220 • A flashback: settling three paradoxes <str<strong>on</strong>g>of</str<strong>on</strong>g> Galilean<br />

physics 221 • Fun challenges about quantum theory 222<br />

223 Summary <strong>on</strong> quantum theory <str<strong>on</strong>g>of</str<strong>on</strong>g> matter: experimental predicti<strong>on</strong>s<br />

225 9 Gauge interacti<strong>on</strong>s deduced from strands<br />

Interacti<strong>on</strong>s and phase change 225 • Tail deformati<strong>on</strong>s versus core deformati<strong>on</strong>s<br />

227<br />

228 Electrodynamics and the first Reidemeister move<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s and the twist, the first Reidemeister move 229 • Can phot<strong>on</strong>s decay, disappear<br />

or break up? 230 • Electric charge 231 • Challenge: What topological invariant<br />

is electric charge? 232 • Electric and magnetic fields and potentials 233 •<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> the electromagnetic field 234 • U(1) gauge invariance induced<br />

by twists 235 • U(1) gauge interacti<strong>on</strong>s induced by twists 237 •<str<strong>on</strong>g>The</str<strong>on</strong>g>Lagrangian<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

QED 237 • Feynman diagrams and renormalizati<strong>on</strong> 238 • <str<strong>on</strong>g>The</str<strong>on</strong>g> anomalous magnetic<br />

moment 241 •Maxwell’sequati<strong>on</strong>s 243 • Curiosities and fun challenges<br />

about QED 245 • Summary <strong>on</strong> QED and experimental predicti<strong>on</strong>s 245<br />

246 <str<strong>on</strong>g>The</str<strong>on</strong>g> weak nuclear interacti<strong>on</strong> and the sec<strong>on</strong>d Reidemeister move<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s, pokes and SU(2) 247 • Weak charge and parity violati<strong>on</strong> 249 • Weak bos<strong>on</strong>s<br />

251 • <str<strong>on</strong>g>The</str<strong>on</strong>g> Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> the unbroken SU(2) gauge interacti<strong>on</strong> 252 •SU(2)<br />

breaking 253 • Open issue: are the W and Z tangles correct? 254 •<str<strong>on</strong>g>The</str<strong>on</strong>g>electroweak<br />

Lagrangian 255 • <str<strong>on</strong>g>The</str<strong>on</strong>g> weak Feynman diagrams 257 • Fun challenges and curios-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


c<strong>on</strong>tents 13<br />

ities about the weak interacti<strong>on</strong> 257 • Summary <strong>on</strong> the weak interacti<strong>on</strong> and experimental<br />

predicti<strong>on</strong>s 258<br />

258 <str<strong>on</strong>g>The</str<strong>on</strong>g> str<strong>on</strong>g nuclear interacti<strong>on</strong> and the third Reidemeister move<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s and the slide, the third Reidemeister move 259 •An introducti<strong>on</strong> to<br />

SU(3) 260 •FromslidestoSU(3) 263 • <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model for glu<strong>on</strong>s 268 •<str<strong>on</strong>g>The</str<strong>on</strong>g><br />

glu<strong>on</strong> Lagrangian 270 • Colour charge 271 • Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g interacti<strong>on</strong><br />

273 •<str<strong>on</strong>g>The</str<strong>on</strong>g>Lagrangian<str<strong>on</strong>g>of</str<strong>on</strong>g>QCD 273 • Renormalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g interacti<strong>on</strong><br />

274 • Curiosities and fun challenges about SU(3) 274 • Summary <strong>on</strong> the<br />

str<strong>on</strong>g interacti<strong>on</strong> and experimental predicti<strong>on</strong>s 275<br />

276 Summary and predicti<strong>on</strong>s about gauge interacti<strong>on</strong>s<br />

Predicting the number <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s in nature 276 •Unificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s<br />

277 • No divergences 278 • Grand unificati<strong>on</strong>, supersymmetry and other<br />

dimensi<strong>on</strong>s 278 • No new observable gravity effects in particle physics 279 •<str<strong>on</strong>g>The</str<strong>on</strong>g><br />

status <str<strong>on</strong>g>of</str<strong>on</strong>g> our quest 279<br />

281 10 General relativity deduced from strands<br />

Flat space, special relativity and its limitati<strong>on</strong>s 281 • Classical gravitati<strong>on</strong> 282 •<br />

Deducing universal gravitati<strong>on</strong> from black hole properties 283 • Summary <strong>on</strong> universal<br />

gravitati<strong>on</strong> from strands 285 •Curvedspace 285 • <str<strong>on</strong>g>The</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong>s<br />

and black holes 287 • Is there something behind a horiz<strong>on</strong>? 288 •Energy<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

black hole horiz<strong>on</strong>s 288 • <str<strong>on</strong>g>The</str<strong>on</strong>g> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes 289 • Entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum and<br />

matter 289 • Entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes deduced from the strand model 289 •Temperature,<br />

radiati<strong>on</strong> and evaporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes 292 • Black hole limits 292 •<br />

Curvature around black holes 294 • <str<strong>on</strong>g>The</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-rotating black holes 294 •<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> field equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity 295 • Equati<strong>on</strong>s from no equati<strong>on</strong> 296 •<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Hilbert acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity 297 •Space-timefoam 298 •Gravit<strong>on</strong>s,<br />

gravitati<strong>on</strong>al waves and their detecti<strong>on</strong> 298 • Open challenge: Improve the argument<br />

for the gravit<strong>on</strong> tangle 299 • Other defects in vacuum 299 •<str<strong>on</strong>g>The</str<strong>on</strong>g>gravity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> superpositi<strong>on</strong>s 300 • Torsi<strong>on</strong>, curiosities and challenges about quantum gravity<br />

301 • Predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model about gravity 304<br />

306 Cosmology<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> finiteness <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe 306 • <str<strong>on</strong>g>The</str<strong>on</strong>g> big bang – without inflati<strong>on</strong> 308 •<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> cosmological c<strong>on</strong>stant 309 • <str<strong>on</strong>g>The</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> the matter density 309 •Openchallenge:<br />

What are the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> dark matter? 309 • <str<strong>on</strong>g>The</str<strong>on</strong>g> topology <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe 310 •<br />

Predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model about cosmology 310<br />

311 Summary <strong>on</strong> millennium issues about relativity and cosmology<br />

313 11 <str<strong>on</strong>g>The</str<strong>on</strong>g> particle spectrum deduced from strands<br />

Particles and quantum numbers from tangles 313<br />

314 Particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e strand<br />

Unknotted curves 316 • Gauge bos<strong>on</strong>s – and Reidemeister moves 317 •Openor<br />

l<strong>on</strong>g knots 318 •Closedtangles:knots 318 • Summary <strong>on</strong> tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e<br />

strand 318<br />

318 Particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands<br />

Quarks 321 • Quark generati<strong>on</strong>s 323 •<str<strong>on</strong>g>The</str<strong>on</strong>g>gravit<strong>on</strong> 324 • A puzzle 324 •Summary<br />

<strong>on</strong> two-stranded tangles 325<br />

325 Particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands<br />

Lept<strong>on</strong>s 325 • Open issue: are the lept<strong>on</strong> tangles correct? 327 • <str<strong>on</strong>g>The</str<strong>on</strong>g> Higgs bos<strong>on</strong> –<br />

the mistaken secti<strong>on</strong> from 2009 328 • <str<strong>on</strong>g>The</str<strong>on</strong>g> Higgs bos<strong>on</strong> – the corrected secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

2012 330 • 2012 predicti<strong>on</strong>s about the Higgs 332 • Quark-antiquark mes<strong>on</strong>s 332 •<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


14 c<strong>on</strong>tents<br />

Mes<strong>on</strong> form factors 336 • Mes<strong>on</strong> masses, excited mes<strong>on</strong>s and quark c<strong>on</strong>finement<br />

337 • CP violati<strong>on</strong> in mes<strong>on</strong>s 338 • Other three-stranded tangles 339 •Spin<br />

and three-stranded particles 339 • Summary <strong>on</strong> three-stranded tangles 339<br />

340 Tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> four and more strands<br />

Bary<strong>on</strong>s 340 • Tetraquarks and exotic mes<strong>on</strong>s 342 • Other tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> four<br />

or more strands 344 • Glueballs 344 • <str<strong>on</strong>g>The</str<strong>on</strong>g> mass gap problem and the Clay Mathematics<br />

Institute 345 • Summary <strong>on</strong> tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> four or more strands 345<br />

346 Fun challenges and curiosities about particle tangles<br />

CPT invariance 351 • Moti<strong>on</strong> through the vacuum – and the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light 351<br />

352 Summary <strong>on</strong> millennium issues about particles and the vacuum<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> omnipresent number 3 355 • Predicti<strong>on</strong>s about dark matter and searches for<br />

new physics 355<br />

357 12 Particle properties deduced from strands<br />

358 <str<strong>on</strong>g>The</str<strong>on</strong>g> masses <str<strong>on</strong>g>of</str<strong>on</strong>g> the elementary particles<br />

General properties <str<strong>on</strong>g>of</str<strong>on</strong>g> particle mass values 359 • Bos<strong>on</strong> masses 360 • W/Z bos<strong>on</strong><br />

mass ratio and mixing angle (in the 2016 tangle model) 361 •<str<strong>on</strong>g>The</str<strong>on</strong>g>g-factor <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

W bos<strong>on</strong> 363 • <str<strong>on</strong>g>The</str<strong>on</strong>g> Higgs/Z bos<strong>on</strong> mass ratio 363 • A first approximati<strong>on</strong> for absolute<br />

bos<strong>on</strong> mass values 363 • Quark mass ratios 364 •Lept<strong>on</strong>massratios 367 •<br />

On the absolute values <str<strong>on</strong>g>of</str<strong>on</strong>g> particle masses 369 • Analytical estimates for particle<br />

masses 372 • Open issues about mass calculati<strong>on</strong>s 373 • On fine-tuning and naturalness<br />

374 • Summary <strong>on</strong> elementary particle masses and millennium issues 374<br />

376 Mixing angles<br />

Quark mixing – the experimental data 376 • Quark mixing – explanati<strong>on</strong>s 377 •<br />

A challenge 378 • CP violati<strong>on</strong> in quarks 378 • Neutrino mixing 379 •CPviolati<strong>on</strong><br />

in neutrinos 380 • Open challenge: calculate mixing angles and phases ab<br />

initio 380 • Summary <strong>on</strong> mixing angles and the millennium list 381<br />

382 Coupling c<strong>on</strong>stants and unificati<strong>on</strong><br />

Interacti<strong>on</strong> strengths and strands 383 • <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s imply unificati<strong>on</strong> 385 •Calculating<br />

coupling c<strong>on</strong>stants 385 • First hint: the energy dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> physical quantities<br />

386 • Sec<strong>on</strong>d hint: the running <str<strong>on</strong>g>of</str<strong>on</strong>g> the coupling c<strong>on</strong>stants at low energy 387 •<br />

Third hint: further predicti<strong>on</strong>s at low energy 388 • <str<strong>on</strong>g>The</str<strong>on</strong>g> running <str<strong>on</strong>g>of</str<strong>on</strong>g> the coupling<br />

c<strong>on</strong>stants up to Planck energy 388 • Limits for the fine structure c<strong>on</strong>stant do<br />

not provide explanati<strong>on</strong>s 389 • Charge quantizati<strong>on</strong> and topological writhe 390 •<br />

Charge quantizati<strong>on</strong> and linking number 391 • How to calculate coupling c<strong>on</strong>stants<br />

392 • Coupling c<strong>on</strong>stants in the strand model 392 •Deducingalphafrom<br />

precessi<strong>on</strong> 393 • Deducing the weak coupling 394 • Deducing the str<strong>on</strong>g coupling<br />

395 • Open challenge: calculate coupling c<strong>on</strong>stants with precisi<strong>on</strong> 395 •Electric<br />

dipole moments 396 • Five key challenges about coupling strengths 396 •<br />

Summary <strong>on</strong> coupling c<strong>on</strong>stants 398<br />

399 13A pictorial summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model<br />

412 14 Experimental predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model<br />

415 Final summary about the millennium issues<br />

417 15 <str<strong>on</strong>g>The</str<strong>on</strong>g> top <str<strong>on</strong>g>of</str<strong>on</strong>g> Moti<strong>on</strong> Mountain<br />

417 Our path to the top<br />

Everyday life: the rule <str<strong>on</strong>g>of</str<strong>on</strong>g> infinity 418 • Relativity and quantum theory: the absence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> infinity 418 • Unificati<strong>on</strong>: the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> finitude 420<br />

421 New sights<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> beauty <str<strong>on</strong>g>of</str<strong>on</strong>g> strands 422 • Can the strand model be generalized? 422 •What<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


c<strong>on</strong>tents 15<br />

is nature? 423 • Quantum theory and the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> matter and vacuum 424 •<br />

Cosmology 424 • Musings about unificati<strong>on</strong> and strands 425 •<str<strong>on</strong>g>The</str<strong>on</strong>g>eliminati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> inducti<strong>on</strong> 430 • What is still hidden? 431<br />

431 A return path: je rêve, d<strong>on</strong>c je suis<br />

433 What is the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> colours?<br />

434 Summary: what is moti<strong>on</strong>?<br />

436 Postface<br />

437 a Knot and tangle geometry<br />

440 Challenge hints and soluti<strong>on</strong>s<br />

446 Bibliography<br />

469 Credits<br />

Acknowledgments 469 •Filmcredits 470 •Imagecredits 470<br />

471 Name index<br />

478 Subject index<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> –<br />

A <str<strong>on</strong>g>Speculati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong><br />

Unificati<strong>on</strong><br />

Where, through the combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

quantum theory and general relativity,<br />

the top <str<strong>on</strong>g>of</str<strong>on</strong>g> Moti<strong>on</strong> Mountain is reached,<br />

and it is discovered<br />

that vacuum is indistinguishable from matter,<br />

that there is little difference between the large and the small,<br />

that nature can be described by strands,<br />

that particles can be modelled as tangles,<br />

that gauge interacti<strong>on</strong>s appear naturally,<br />

that colours are due to strand twisting,<br />

that fundamental c<strong>on</strong>stants are uniquely fixed,<br />

and that a complete descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> is possible.


Chapter1<br />

FROM MILLENNIUM PHYSICS TO<br />

UNIFICATION<br />

Ref. 1, Ref. 3<br />

Ref. 2<br />

Look at what happens around us. A child that smiles, a nightingale that sings, a<br />

ilythatopens:allmove.Everyshadow,evenanimmobile<strong>on</strong>e,isduetomoving<br />

ight. Every mountain is kept in place by moving electr<strong>on</strong>s. Every colour around us<br />

is due to the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s and phot<strong>on</strong>s. Every star owes its formati<strong>on</strong> and its shine<br />

to moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> matter and radiati<strong>on</strong>. Also the darkness <str<strong>on</strong>g>of</str<strong>on</strong>g> the night sky** is due to moti<strong>on</strong>:<br />

it results from the expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> space. Finally, human creativity and human acti<strong>on</strong>s are<br />

due to the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> molecules, i<strong>on</strong>s and electr<strong>on</strong>s in the brain and in the body. Is there<br />

a comm<strong>on</strong> language for these and all other observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> nature?<br />

Is there a unified and precise way to describe all moti<strong>on</strong>? How? Is everything that<br />

moves, from people to planets, from light to empty space, made <str<strong>on</strong>g>of</str<strong>on</strong>g> the same c<strong>on</strong>stituents?<br />

What is the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>? Answering these questi<strong>on</strong>s is the topic <str<strong>on</strong>g>of</str<strong>on</strong>g> the present text.<br />

Answering questi<strong>on</strong>s about moti<strong>on</strong> with precisi<strong>on</strong> defines the subject <str<strong>on</strong>g>of</str<strong>on</strong>g> physics.Over<br />

the centuries, researchers collected a huge number <str<strong>on</strong>g>of</str<strong>on</strong>g> precise observati<strong>on</strong>s about moti<strong>on</strong>.<br />

We now know how electric signals move in the brain, how insects fly, why colours vary,<br />

how the stars formed, how life evolved, how the mo<strong>on</strong> and the planets move, and much<br />

more. We use our knowledge about moti<strong>on</strong> to look into the human body and heal illnesses;<br />

we use our knowledge about moti<strong>on</strong> to build electr<strong>on</strong>ics, communicate over large<br />

distances, and work for peace; we use our knowledge about moti<strong>on</strong> to secure life against<br />

many <str<strong>on</strong>g>of</str<strong>on</strong>g> nature’s dangers, including droughts and storms. <str<strong>on</strong>g>Physics</str<strong>on</strong>g>, the science <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>,<br />

has shown time after time that knowledge about moti<strong>on</strong> is both useful and fascinating.<br />

At the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the last millennium, humans were able to describe all moti<strong>on</strong> in nature<br />

with high precisi<strong>on</strong>. This descripti<strong>on</strong> can be summarized in the following six statements.<br />

1. In nature, moti<strong>on</strong> takes place in three dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> space and is described by<br />

the least acti<strong>on</strong> principle. Acti<strong>on</strong> is a physical quantity that describes how much<br />

change occurs in a process. <str<strong>on</strong>g>The</str<strong>on</strong>g> least acti<strong>on</strong> principle states: moti<strong>on</strong> minimizes change.<br />

Am<strong>on</strong>g others, the least change principle implies that moti<strong>on</strong> is predictable, that energy<br />

is c<strong>on</strong>served and that growth and evoluti<strong>on</strong> are natural processes, as is observed.<br />

2. In nature, there is an invariant maximum energy speed, the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light c. This<br />

invariant maximum implies special relativity. Am<strong>on</strong>g others, it implies that mass and<br />

energy are equivalent, as is observed.<br />

** <str<strong>on</strong>g>The</str<strong>on</strong>g> photograph <strong>on</strong> page 16 shows an extremely distant, thus extremely young, part <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe, with<br />

its large number <str<strong>on</strong>g>of</str<strong>on</strong>g> galaxies in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> the black night sky (courtesy NASA).<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


18 1 from millennium physics to unificati<strong>on</strong><br />

Page 31<br />

Ref. 2<br />

Ref. 2<br />

Ref. 4<br />

Ref. 4<br />

Ref. 5<br />

3. In nature, there is an invariant highest momentum flow, the Planck force c 4 /4G.This<br />

invariant maximum implies general relativity, as we will recall below. Am<strong>on</strong>g others,<br />

general relativity implies that things fall and that empty space curves and moves, as<br />

is observed.<br />

4. <str<strong>on</strong>g>The</str<strong>on</strong>g> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe appears to be described by the cosmological c<strong>on</strong>stant Λ.<br />

Together with the largest distance and the largest age that can presently be observed,<br />

the cosmological c<strong>on</strong>stant determines the accelerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the most distant stars.<br />

5. In nature, there is a n<strong>on</strong>-zero, invariant smallest change value, the quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong><br />

ħ. This invariant value implies quantum theory. Am<strong>on</strong>g others, it explains what life<br />

and death are, why they exist and how we enjoy the world.<br />

6. In nature, matter and radiati<strong>on</strong> c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum particles. Matter c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong>s:<br />

six quarks, three charged lept<strong>on</strong>s, three neutrinos and their antiparticles. Radiati<strong>on</strong><br />

c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> bos<strong>on</strong>s: the phot<strong>on</strong>, three intermediate weak vector bos<strong>on</strong>s and<br />

eight glu<strong>on</strong>s. In additi<strong>on</strong>, the year 2012 finally brought the discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> the Higgs<br />

bos<strong>on</strong>, which was already predicted in 1964. Fermi<strong>on</strong>s and bos<strong>on</strong>s move and can<br />

transform into each other. <str<strong>on</strong>g>The</str<strong>on</strong>g> transformati<strong>on</strong>s are described by the electromagnetic<br />

interacti<strong>on</strong>, the weak nuclear interacti<strong>on</strong> and the str<strong>on</strong>g nuclear interacti<strong>on</strong>. Together<br />

with the masses, quantum numbers, mixing angles and couplings <str<strong>on</strong>g>of</str<strong>on</strong>g> the elementary<br />

particles, these transformati<strong>on</strong> rules form the so-called standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle<br />

physics. Am<strong>on</strong>g others, the standard model explains how lightning forms, why colours<br />

vary, and how the atoms in our bodies came to be.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se six statements, the millennium descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> physics, describe everything known<br />

about moti<strong>on</strong> in the year 2000. (Actually, 2012 is a more precise, though less striking<br />

date.) <str<strong>on</strong>g>The</str<strong>on</strong>g>se statements describe the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> people, animals, plants, objects, light,<br />

radiati<strong>on</strong>, stars, empty space and the universe. <str<strong>on</strong>g>The</str<strong>on</strong>g> six statements describe moti<strong>on</strong> so<br />

precisely that even today there is no difference between calculati<strong>on</strong> and observati<strong>on</strong>,<br />

between theory and practice. This is an almost incredible result, the summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

efforts <str<strong>on</strong>g>of</str<strong>on</strong>g> tens <str<strong>on</strong>g>of</str<strong>on</strong>g> thousands <str<strong>on</strong>g>of</str<strong>on</strong>g> researchers during the past centuries.<br />

However, a small set <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>s does not yet follow from the six statements. A<br />

famous example is the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> colours. In nature, colours are c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> the socalled<br />

fine structure c<strong>on</strong>stant, a mysterious c<strong>on</strong>stant <str<strong>on</strong>g>of</str<strong>on</strong>g> nature, abbreviated α,whosevalue<br />

is measured to be α = 1/137.035 999 139(31). If α had another value, all colours would<br />

differ. And why are there three gauge interacti<strong>on</strong>s, twelve elementary fermi<strong>on</strong>s, thirteen<br />

elementary bos<strong>on</strong>s and three dimensi<strong>on</strong>s? What is the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> particle masses? Why is<br />

the standard model, the sixth statement above, so complicated? How is it related to the<br />

five preceding statements?<br />

A further unexplained observati<strong>on</strong> is the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> dark matter found around galaxies.<br />

We do not know yet what it is. Another unexplained process is the way thinking<br />

forms in our brain. We do not know yet in detail how thinking follows from the above<br />

six statements, though we do know that thinking is not in c<strong>on</strong>trast with them. For this<br />

reas<strong>on</strong>, we will not explore the issue in the following. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> dark matter this is<br />

not so clear: dark matter could even be in c<strong>on</strong>trast with the millennium descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

moti<strong>on</strong>.<br />

Finally, why is there moti<strong>on</strong> anyway? In short, even though the millennium descrip-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


from millennium physics to unificati<strong>on</strong> 19<br />

ti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> physics is precise and successful, it is not complete. <str<strong>on</strong>g>The</str<strong>on</strong>g> list <str<strong>on</strong>g>of</str<strong>on</strong>g> all those fundamental<br />

issues about moti<strong>on</strong> that are unexplained since the year 2000 make up <strong>on</strong>ly a<br />

short table. We call them the millennium issues.<br />

TABLE 1 <str<strong>on</strong>g>The</str<strong>on</strong>g> millennium list: everything the standard model and general relativity cannot explain; thus,<br />

also the list <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>on</strong>ly experimental data available to test the complete descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>.<br />

Observable Property unexplained since the year 2000<br />

Local quantities unexplained by the standard model: particle properties<br />

α = 1/137.036(1) the low energy value <str<strong>on</strong>g>of</str<strong>on</strong>g> the electromagnetic coupling or fine structure c<strong>on</strong>stant<br />

α w or θ w the low energy value <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak coupling c<strong>on</strong>stant or the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak<br />

mixing angle<br />

α s<br />

the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g coupling c<strong>on</strong>stant at <strong>on</strong>e specific energy value<br />

m q<br />

the values <str<strong>on</strong>g>of</str<strong>on</strong>g> the 6 quark masses<br />

m l<br />

the values <str<strong>on</strong>g>of</str<strong>on</strong>g> 6 lept<strong>on</strong> masses<br />

m W<br />

the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the W vector bos<strong>on</strong><br />

m H<br />

the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the scalar Higgs bos<strong>on</strong><br />

θ 12 ,θ 13 ,θ 23 the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the three quark mixing angles<br />

δ<br />

the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the CP violating phase for quarks<br />

θ ν 12 ,θν 13 ,θν 23<br />

the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the three neutrino mixing angles<br />

δ ν ,α 1 ,α 2 the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the three CP violating phases for neutrinos<br />

3⋅4<br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong> generati<strong>on</strong>s and <str<strong>on</strong>g>of</str<strong>on</strong>g> particles in each generati<strong>on</strong><br />

J, P, C, etc. the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> all quantum numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> each fermi<strong>on</strong> and each bos<strong>on</strong><br />

C<strong>on</strong>cepts unexplained by the standard model<br />

c, ħ, k<br />

the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the invariant Planck units <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum field theory<br />

3+1 the number <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> physical space and time<br />

SO(3,1) the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> Poincaré symmetry, i.e., <str<strong>on</strong>g>of</str<strong>on</strong>g> spin, positi<strong>on</strong>, energy, momentum<br />

Ψ<br />

the origin and nature <str<strong>on</strong>g>of</str<strong>on</strong>g> wave functi<strong>on</strong>s<br />

S(n)<br />

the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> particle identity, i.e., <str<strong>on</strong>g>of</str<strong>on</strong>g> permutati<strong>on</strong> symmetry<br />

Gauge symmetry the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the gauge groups, in particular:<br />

U(1)<br />

the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the electromagnetic gauge group, i.e., <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electric<br />

charge, <str<strong>on</strong>g>of</str<strong>on</strong>g> the vanishing <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetic charge, and <str<strong>on</strong>g>of</str<strong>on</strong>g> minimal coupling<br />

SU(2)<br />

the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> weak interacti<strong>on</strong> gauge group, its breaking and P violati<strong>on</strong><br />

SU(3)<br />

the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g interacti<strong>on</strong> gauge group and its CP c<strong>on</strong>servati<strong>on</strong><br />

Renorm. group the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> renormalizati<strong>on</strong> properties<br />

δW = 0 the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the least acti<strong>on</strong> principle in quantum theory<br />

W=∫L SM dt the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics<br />

Global quantities unexplained by general relativity and cosmology<br />

0 the observed flatness, i.e., vanishing curvature, <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe<br />

1.2(1) ⋅ 10 26 m the distance <str<strong>on</strong>g>of</str<strong>on</strong>g> the horiz<strong>on</strong>, i.e., the ‘size’ <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe (if it makes sense)<br />

ρ de = Λc 4 /(8πG) the value and nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the observed vacuum energy density, dark energy or<br />

≈0.5nJ/m 3 cosmological c<strong>on</strong>stant<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


20 1 from millennium physics to unificati<strong>on</strong><br />

TABLE 1 (C<strong>on</strong>tinued) <str<strong>on</strong>g>The</str<strong>on</strong>g> millennium list: everything the standard model and general relativity cannot<br />

explain; also the <strong>on</strong>ly experimental data available to test the complete descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>.<br />

Observable Property unexplained since the year 2000<br />

(5 ± 4) ⋅ 10 79 the number <str<strong>on</strong>g>of</str<strong>on</strong>g> bary<strong>on</strong>s in the universe (if it makes sense), i.e., the average<br />

visible matter density in the universe<br />

ρ dm<br />

the density and nature <str<strong>on</strong>g>of</str<strong>on</strong>g> dark matter<br />

f 0 (1, ..., c. 10 90 ) the initial c<strong>on</strong>diti<strong>on</strong>s for c. 10 90 particle fields in the universe (if or as l<strong>on</strong>g as<br />

they make sense), including the homogeneity and isotropy <str<strong>on</strong>g>of</str<strong>on</strong>g> matter distributi<strong>on</strong>,<br />

and the density fluctuati<strong>on</strong>s at the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> galaxies<br />

C<strong>on</strong>cepts unexplained by general relativity and cosmology<br />

c, G<br />

the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the invariant Planck units <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity<br />

R × S 3<br />

the observed topology <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe<br />

G μν<br />

the origin and nature <str<strong>on</strong>g>of</str<strong>on</strong>g> curvature, the metric and horiz<strong>on</strong>s<br />

δW = 0 the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the least acti<strong>on</strong> principle in general relativity<br />

W=∫L GR dt the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> millennium list c<strong>on</strong>tains everything that particle physics and general relativity<br />

cannot explain. In other words, the list c<strong>on</strong>tains every issue that was unexplained in the<br />

domain <str<strong>on</strong>g>of</str<strong>on</strong>g> fundamental moti<strong>on</strong> in the year 2000. <str<strong>on</strong>g>The</str<strong>on</strong>g> list is short, but it is not empty.<br />

Every line in the millennium list asks for an explanati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> quest for unificati<strong>on</strong> – and<br />

the topic <str<strong>on</strong>g>of</str<strong>on</strong>g> this text – is the quest for these explanati<strong>on</strong>s. We can thus say that a complete<br />

theory <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> is a theory that eliminates the millennium list <str<strong>on</strong>g>of</str<strong>on</strong>g> open issues.<br />

How to name the result <str<strong>on</strong>g>of</str<strong>on</strong>g> the quest<br />

An number <str<strong>on</strong>g>of</str<strong>on</strong>g> expressi<strong>on</strong>s have been used for the result <str<strong>on</strong>g>of</str<strong>on</strong>g> the present quest. <str<strong>on</strong>g>The</str<strong>on</strong>g> term<br />

theory <str<strong>on</strong>g>of</str<strong>on</strong>g> everything is found in many media. However, the expressi<strong>on</strong> is pompous and<br />

wr<strong>on</strong>g; the quest does not have this aim. Many problems <str<strong>on</strong>g>of</str<strong>on</strong>g> physics, science and life<br />

remain unsolved even if the quest presented here comes to an end. <str<strong>on</strong>g>The</str<strong>on</strong>g> tern is now used<br />

mainly by esoteric healers for their unsuccessful healing practices.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> term final theory has also been popular. In the meantime, it is mainly used in titles<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mediocre books and films.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> term world formula has been invented by German journalists. It never became<br />

popular am<strong>on</strong>g physicists. It is now used for calculating the optimal way to park a car<br />

backwards.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> quest to eliminate the millennium list <str<strong>on</strong>g>of</str<strong>on</strong>g> open issues implies to find a complete<br />

theory <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>, i.e., a complete descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>se are adequate and correct<br />

expressi<strong>on</strong>s. Also the expressi<strong>on</strong>s unified theory <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> or unified descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong><br />

are acceptable. <str<strong>on</strong>g>The</str<strong>on</strong>g>y stress that a complete descripti<strong>on</strong> must combine general relativity<br />

and the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics.<br />

Against a complete theory<br />

We know that a complete theory exists: it is the theory that describes how to calculate the<br />

fine structure c<strong>on</strong>stant α = 1/137.036(1). <str<strong>on</strong>g>The</str<strong>on</strong>g> theory does the same for about two dozen<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


from millennium physics to unificati<strong>on</strong> 21<br />

Page 170<br />

Ref. 6<br />

Page 162<br />

Ref. 7<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. IV, page 143<br />

Ref. 8<br />

other c<strong>on</strong>stants, but α is the most famous <strong>on</strong>e. In other terms, the complete theory is the<br />

theory that explains all colours found in nature.<br />

Searching for a complete theory <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> is a fascinating journey. But not everybody<br />

agrees. A number <str<strong>on</strong>g>of</str<strong>on</strong>g> arguments are repeated again and again against the search for a<br />

unified theory. Reaching the complete theory and enjoying the adventure is <strong>on</strong>ly possible<br />

if these arguments are known – and then put gently aside.<br />

— It is regularly claimed that a complete theory cannot exist because nature is infinite<br />

and mysteries will always remain. But this statement is wr<strong>on</strong>g. First, nature is not infinite.<br />

Sec<strong>on</strong>d, even if it were infinite, knowing and describing everything would still<br />

be possible. Third, even if knowing and describing everything would be impossible,<br />

and if mysteries would remain, a complete theory remains possible. A unified theory<br />

is not useful for every issue <str<strong>on</strong>g>of</str<strong>on</strong>g> everyday life, such as choosing your dish <strong>on</strong> a menu or<br />

your future pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>. A complete theory is simply a full descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the foundati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>: the unified theory just combines and explains particle physics and<br />

general relativity.<br />

— It is sometimes argued that a complete theory cannot exist due to Gödel’s incompleteness<br />

theorem or due to computati<strong>on</strong>al irreducibility. However, in such arguments,<br />

both theorems are applied to domains were they are not valid. <str<strong>on</strong>g>The</str<strong>on</strong>g> reas<strong>on</strong>ing is thus<br />

wr<strong>on</strong>g.<br />

— Some state that it is not clear whether a complete theory exists at all. But we all know<br />

from experience that this is wr<strong>on</strong>g. <str<strong>on</strong>g>The</str<strong>on</strong>g> reas<strong>on</strong> is simple: Weareabletotalkabout<br />

everything. In other words, all <str<strong>on</strong>g>of</str<strong>on</strong>g> us already have a ‘theory <str<strong>on</strong>g>of</str<strong>on</strong>g> everything’, or a complete<br />

theory <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. Also a physical theory is a way to talk about nature, and for<br />

the complete theory we <strong>on</strong>ly have to search for those c<strong>on</strong>cepts that enable us to talk<br />

about all <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> with full precisi<strong>on</strong>. Because we are just looking for a way to talk, we<br />

know that the unified theory exists. And searching for it is fascinating and exciting,<br />

as everybody busy with this adventure will c<strong>on</strong>firm.<br />

— Some claim that the search for a unified theory is a reducti<strong>on</strong>ist endeavour and cannot<br />

lead to success, because reducti<strong>on</strong>ism is flawed. This claim is wr<strong>on</strong>g <strong>on</strong> three counts.<br />

First, it is not clear whether the search is a reducti<strong>on</strong>ist endeavour, as will become<br />

clear later <strong>on</strong>. Sec<strong>on</strong>d, there is no evidence that reducti<strong>on</strong>ism is flawed. Third, even<br />

if it were, no reas<strong>on</strong> not to pursue the quest would follow. <str<strong>on</strong>g>The</str<strong>on</strong>g> claim in fact invites<br />

to search with a larger scope than was d<strong>on</strong>e in the past decades – an advice that will<br />

turn out to be spot <strong>on</strong>.<br />

— Some argue that searching for a unified theory makes no sense as l<strong>on</strong>g as the measurement<br />

problem <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory is not solved, or c<strong>on</strong>sciousness is not understood,<br />

or the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> life is not understood. Now, the measurement problem is solved by<br />

decoherence, and in order to combine particle physics with general relativity, understanding<br />

the details <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sciousness or <str<strong>on</strong>g>of</str<strong>on</strong>g> the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> life is not required. Neither<br />

is understanding child educati<strong>on</strong> required – though this can help.<br />

— Some people claim that searching for a complete theory is a sign <str<strong>on</strong>g>of</str<strong>on</strong>g> foolishness or a<br />

sin <str<strong>on</strong>g>of</str<strong>on</strong>g> pride. Such defeatist or envious comments should simply be ignored. After all,<br />

the quest is just the search for the soluti<strong>on</strong> to a riddle.<br />

— Some believe that understanding the unified theory means to read the mind <str<strong>on</strong>g>of</str<strong>on</strong>g> god,<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


22 1 from millennium physics to unificati<strong>on</strong><br />

Ref. 9<br />

Ref. 10<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. V, page 269<br />

or to think like god, or to be like god. This is false, as any expert <strong>on</strong> god will c<strong>on</strong>firm.<br />

In fact, solving a riddle or reading a physics textbook does not transform people into<br />

gods. This is unfortunate, as such an effect would provide excellent advertising.<br />

— Some fear that knowing the complete theory will yield immense power that harbours<br />

huge dangers <str<strong>on</strong>g>of</str<strong>on</strong>g> misuse. In short, some claim that knowing the complete theory will<br />

change people into devils. However, this fear is purely imaginary; it <strong>on</strong>ly describes the<br />

fantasies <str<strong>on</strong>g>of</str<strong>on</strong>g> the pers<strong>on</strong> that is talking. Indeed, the millennium descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> physics<br />

is already quite near to the complete theory, and nothing to be afraid <str<strong>on</strong>g>of</str<strong>on</strong>g> has happened.<br />

Sadly, another great advertising opportunity evaporates.<br />

— Some people object that various researchers in the past have thought to have found<br />

the unified theory, but were mistaken, and that many great minds tried to find such a<br />

theory, but had no success. That is true. Some failed because they lacked the necessary<br />

data for a successful search, others because they lost c<strong>on</strong>tact with reality, and still<br />

others because they were led astray by prejudices that limited their progress. We just<br />

have to avoid these mistakes.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se arguments show us that we can reach the complete theory <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> – which we<br />

symbolically place at the top <str<strong>on</strong>g>of</str<strong>on</strong>g> Moti<strong>on</strong> Mountain – <strong>on</strong>ly if we are not burdened with<br />

ideological or emoti<strong>on</strong>al baggage. (We get rid <str<strong>on</strong>g>of</str<strong>on</strong>g> all baggage in the first six chapters <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this volume.) <str<strong>on</strong>g>The</str<strong>on</strong>g> goal we have set thus requires extreme thinking, i.e., thinking up to the<br />

limits. After all, unificati<strong>on</strong> is the precise descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all moti<strong>on</strong>, including its most<br />

extreme cases.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>refore, unificati<strong>on</strong> is, first <str<strong>on</strong>g>of</str<strong>on</strong>g> all, a riddle. <str<strong>on</strong>g>The</str<strong>on</strong>g> search for unificati<strong>on</strong> is a pastime.<br />

Any pastime is best approached with the light-heartedness <str<strong>on</strong>g>of</str<strong>on</strong>g> playing. Life is short: we<br />

should play whenever we can.<br />

What went wr<strong>on</strong>g in the past<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> twentieth century was the golden age <str<strong>on</strong>g>of</str<strong>on</strong>g> physics. Scholars searching for the unified<br />

theory explored candidates such as grand unified theories, supersymmetry and numerous<br />

other opti<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>se candidates will be discussed later <strong>on</strong>; all were falsified by experiment.<br />

Despite a record number <str<strong>on</strong>g>of</str<strong>on</strong>g> physicists working <strong>on</strong> the problem, despite the<br />

availability <str<strong>on</strong>g>of</str<strong>on</strong>g> extensive experimental data, and despite several decades <str<strong>on</strong>g>of</str<strong>on</strong>g> research, no<br />

unified theory was found. Why?<br />

During the twentieth century, many successful descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> nature were deformed<br />

into dogmatic beliefs about unificati<strong>on</strong>. Here are the main examples, with some <str<strong>on</strong>g>of</str<strong>on</strong>g> their<br />

best known prop<strong>on</strong>ents:<br />

— ‘Unificati<strong>on</strong> requires generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> existing theories.’<br />

— ‘Unificati<strong>on</strong> requires finding higher symmetries.’ (Werner Heisenberg)<br />

— ‘Unificati<strong>on</strong> requires generalizing electroweak mixing to include the str<strong>on</strong>g interacti<strong>on</strong>.’<br />

(Abdus Salam)<br />

— ‘Unificati<strong>on</strong> requires extending the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics with supersymmetry.’<br />

(Steven Weinberg)<br />

— ‘Unificati<strong>on</strong> requires axiomatizati<strong>on</strong>.’ (David Hilbert)<br />

— ‘Unificati<strong>on</strong> requires searching for beauty.’ (Paul Dirac)<br />

— ‘Unificati<strong>on</strong> requires new quantum evoluti<strong>on</strong> equati<strong>on</strong>s.’ (Werner Heisenberg)<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


from millennium physics to unificati<strong>on</strong> 23<br />

Page 8<br />

— ‘Unificati<strong>on</strong> requires new field equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> gravitati<strong>on</strong>.’ (Albert Einstein)<br />

— ‘Unificati<strong>on</strong> requires more dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> space.’ (<str<strong>on</strong>g>The</str<strong>on</strong>g>odor Kaluza)<br />

— ‘Unificati<strong>on</strong> requires topology change.’ (John Wheeler)<br />

— ‘Unificati<strong>on</strong> is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> Planck’s natural units.’<br />

— ‘Unificati<strong>on</strong> requires using complicated mathematics and solving huge c<strong>on</strong>ceptual<br />

difficulties.’ (Edward Witten)<br />

— ‘Unificati<strong>on</strong> is <strong>on</strong>ly for a selected few.’<br />

— ‘Unificati<strong>on</strong> is extremely useful, important and valuable.’<br />

All these beliefs appeared in the same way: first, some famous scholar – in fact, many<br />

more than those menti<strong>on</strong>ed – explained the idea that guided his own discovery; then,<br />

he and most other researchers started to believe the guiding idea more than the discovery<br />

itself. <str<strong>on</strong>g>The</str<strong>on</strong>g> most explored beliefs were those propagated by Salam and Weinberg:<br />

they – unknowingly – set thousands <str<strong>on</strong>g>of</str<strong>on</strong>g> researchers <strong>on</strong> the wr<strong>on</strong>g path for many decades.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> most detrimental belief was that unificati<strong>on</strong> is complicated and difficult: it kept the<br />

smartest physicists from producing progress. In fact, all the menti<strong>on</strong>ed beliefs can be<br />

seen as special cases <str<strong>on</strong>g>of</str<strong>on</strong>g> the first <strong>on</strong>e. And like the first belief, also all the others are, as we<br />

will discover in the following, wr<strong>on</strong>g.<br />

An encouraging argument<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Br<strong>on</strong>shtein cube in Figure 1 shows that physics started from the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong><br />

in everyday life. At the next level <str<strong>on</strong>g>of</str<strong>on</strong>g> precisi<strong>on</strong>, physics introduced the observed limits<br />

to moti<strong>on</strong> and added the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> powerful, i.e., as uniform as possible moti<strong>on</strong><br />

(classical gravity), as fast as possible moti<strong>on</strong> (special relativity), and as tiny as possible<br />

moti<strong>on</strong> (quantum theory). At the following level <str<strong>on</strong>g>of</str<strong>on</strong>g> precisi<strong>on</strong>, physics achieved all<br />

possible combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> two <str<strong>on</strong>g>of</str<strong>on</strong>g> these moti<strong>on</strong> types, by taking care <str<strong>on</strong>g>of</str<strong>on</strong>g> two moti<strong>on</strong> limits<br />

at the same time: fast and uniform moti<strong>on</strong> (general relativity), fast and tiny moti<strong>on</strong><br />

(quantum field theory), and tiny and uniform moti<strong>on</strong> (quantum theory with gravity).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>on</strong>ly domain left over is the domain where moti<strong>on</strong> is fast, tiny and as uniform as<br />

possible at the same time. When this last domain is reached, the precise descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

all moti<strong>on</strong> is completed.<br />

But Figure 1 suggests even str<strong>on</strong>ger statements. First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, no domain <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> is<br />

left: the figure covers all moti<strong>on</strong>. Sec<strong>on</strong>dly, the unified descripti<strong>on</strong> appears when general<br />

relativity, quantum field theory and quantum theory with gravity are combined. In other<br />

words, the unified theory appears when relativity and quantum theory and interacti<strong>on</strong>s<br />

are described together. But a third c<strong>on</strong>clusi<strong>on</strong> is especially important. Each <str<strong>on</strong>g>of</str<strong>on</strong>g> these three<br />

fields <str<strong>on</strong>g>of</str<strong>on</strong>g> physics can be deduced from the unified theory by eliminating a limitati<strong>on</strong>:<br />

either that <str<strong>on</strong>g>of</str<strong>on</strong>g> tiny moti<strong>on</strong>, that <str<strong>on</strong>g>of</str<strong>on</strong>g> straight moti<strong>on</strong>, or that <str<strong>on</strong>g>of</str<strong>on</strong>g> fast moti<strong>on</strong>. In other words:<br />

⊳ General relativity follows from the unified theory by eliminating the<br />

quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> ħ, i.e., taking the limit ħ→0.<br />

⊳ Quantum field theory, including quantum electrodynamics, follows from<br />

the unified theory by eliminating G, i.e., taking the limit G→0.<br />

⊳ Quantum theory with gravity follows from the unified theory by eliminating<br />

the speed limit c, i.e., taking the limit 1/c → 0.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


24 1 from millennium physics to unificati<strong>on</strong><br />

Speaking even more bluntly, and against a comm<strong>on</strong> c<strong>on</strong>victi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> researchers in the<br />

field, the figure suggests: <str<strong>on</strong>g>The</str<strong>on</strong>g> standard model follows from the complete theory by eliminating<br />

gravity. <str<strong>on</strong>g>The</str<strong>on</strong>g>se c<strong>on</strong>necti<strong>on</strong>s eliminate many candidates for the unified theory that<br />

were proposed in the research literature in the twentieth and twenty-first century. But<br />

more importantly, the c<strong>on</strong>necti<strong>on</strong>s leave open a range <str<strong>on</strong>g>of</str<strong>on</strong>g> possibilities – and interestingly<br />

enough, this range is very narrow.<br />

Figure 1 allows str<strong>on</strong>ger statements still. Progress towards the unified theory is<br />

achieved by taking limitati<strong>on</strong>s to moti<strong>on</strong> into account. Whatever path we take from<br />

everyday physics to the unified theory, we must take into c<strong>on</strong>siderati<strong>on</strong> all limits to moti<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> order can differ, but all limits have to be taken into account. Now, if any intermediate<br />

steps – due to additi<strong>on</strong>al moti<strong>on</strong> limitati<strong>on</strong>s – between quantum field theory<br />

and the unified theory existed in the upper part <str<strong>on</strong>g>of</str<strong>on</strong>g> the figure, corresp<strong>on</strong>ding steps would<br />

have to appear also in the lower part <str<strong>on</strong>g>of</str<strong>on</strong>g> the figure, between everyday physics and classical<br />

gravity. Since no such intermediate steps exist, there are no intermediate steps between<br />

the standard model and the unified theory. In the same way, if any intermediate limits<br />

or steps between general relativity and the complete theory really existed, these limits<br />

and the corresp<strong>on</strong>ding steps would also have to appear between everyday moti<strong>on</strong> and<br />

quantum theory.<br />

Experiments show clearly that no intermediate steps or limits exist between everyday<br />

moti<strong>on</strong> and the next level <str<strong>on</strong>g>of</str<strong>on</strong>g> precisi<strong>on</strong>. Using the top-down symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 1, this<br />

implies:<br />

⊳ Intermediate steps or theories do not exist before the complete theory.<br />

This is a str<strong>on</strong>g statement. In the foundati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>, apart from the unified theory,<br />

no further theory is missing. For example, the Br<strong>on</strong>shtein cube implies that there is no<br />

separate theory <str<strong>on</strong>g>of</str<strong>on</strong>g> relativistic quantum gravity or no doubly special relativity.<br />

Figure 1 also implies that, c<strong>on</strong>ceptually, we are already close to the unified theory. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

figure suggests that there is no need for overly elaborate hypotheses or c<strong>on</strong>cepts to reach<br />

the complete theory:<br />

⊳ We just have to add G to the standard model or ħ and e to general relativity.<br />

In short, the complete, unified theory <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> cannot be far.<br />

summary: how to find the complete theory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

moti<strong>on</strong><br />

We have a riddle to solve: we want to describe precisely all moti<strong>on</strong> and discover its origin.<br />

In order to achieve this, we need to find a complete theory that solves and explains each<br />

open issue given in the millennium list. This is our starting point.<br />

We proceed in steps. We first simplify quantum theory and gravitati<strong>on</strong> as much as<br />

possible, we explore what happens when the two are combined, and we deduce the requirement<br />

list that any unified theory must fulfil. <str<strong>on</strong>g>The</str<strong>on</strong>g>n we deduce the simplest possible<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


summary: how to find the complete theory <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> 25<br />

Page 149<br />

model that fulfils the requirements; we check the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the model against every<br />

experiment performed so far and against every open issue from the millennium list. Discovering<br />

that there are no disagreements, no points left open and no possible alternatives,<br />

we know that we have found the unified theory. We thus end our adventure with a list <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

testable predicti<strong>on</strong>s for the proposed theory.<br />

In short, three lists structure our quest for a complete theory: the millennium list<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> open issues, the list <str<strong>on</strong>g>of</str<strong>on</strong>g> requirements for the complete theory, and the list <str<strong>on</strong>g>of</str<strong>on</strong>g> testable<br />

predicti<strong>on</strong>s. To get from <strong>on</strong>e list to the next, we proceed al<strong>on</strong>g the following legs.<br />

1. We first simplify modern physics. Twentieth century physics deduced several invariant<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>se invariants, such as the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light or the quantum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong>, are called Planck units. <str<strong>on</strong>g>The</str<strong>on</strong>g> invariant Planck units allow moti<strong>on</strong> to be measured.<br />

Above all, these invariants are also found to be limit values, validforeveryexample<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>.<br />

2. Combining quantum theory and general relativity, we discover that at the Planck limits,<br />

the universe, space and particles are not described by points. We find that as l<strong>on</strong>g as<br />

we use points to describe particles and space, and as l<strong>on</strong>g as we use sets and elements<br />

to describe nature, a unified descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> is impossible.<br />

3. <str<strong>on</strong>g>The</str<strong>on</strong>g> combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory and general relativity teaches us that space and<br />

particles have comm<strong>on</strong> c<strong>on</strong>stituents.<br />

4. By exploring black holes, spin, and the limits <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory and gravity, we discover<br />

that the comm<strong>on</strong> c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> space and particles are extended,withoutends,<br />

<strong>on</strong>e-dimensi<strong>on</strong>al and fluctuating: the comm<strong>on</strong> c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> space and particles are<br />

fluctuating strands.<br />

5. We discover that we cannot think or talk without c<strong>on</strong>tinuity. We need a background<br />

to describe nature. We c<strong>on</strong>clude that to talk about moti<strong>on</strong>, we have to combine c<strong>on</strong>tinuity<br />

and n<strong>on</strong>-c<strong>on</strong>tinuity in an appropriate way. This is achieved by imagining that<br />

fluctuating strands move in a c<strong>on</strong>tinuous three-dimensi<strong>on</strong>al background.<br />

At this point, after the first half <str<strong>on</strong>g>of</str<strong>on</strong>g> our adventure, we obtain a detailed requirement list for<br />

the unified theory. This list allows us to proceed rapidly towards our goal, without being<br />

led astray:<br />

6. We discover a simple fundamental principle that explains how the maximum speed<br />

c,theminimumacti<strong>on</strong>ħ,themaximumforcec 4 /4G and the cosmological c<strong>on</strong>stant Λ<br />

follow from strands. We also discover how to deduce quantum theory, relativity and<br />

cosmology from strands.<br />

7. We discover that strands naturally yield the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> three spatial dimensi<strong>on</strong>s,<br />

flat and curved space, black holes, the cosmological horiz<strong>on</strong>, fermi<strong>on</strong>s and bos<strong>on</strong>s.<br />

We find that all known physical systems are made from strands. Also the process <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

measurement and all properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the background result from strands.<br />

8. We discover that fermi<strong>on</strong>s emit and absorb bos<strong>on</strong>s, and that they do so with exactly<br />

those properties that are observed for the electromagnetic, the weak and the str<strong>on</strong>g<br />

nuclear interacti<strong>on</strong>. In short, the three known gauge interacti<strong>on</strong>s –andtheirparity<br />

c<strong>on</strong>servati<strong>on</strong> or violati<strong>on</strong> – follow from strands in a unique way. In additi<strong>on</strong>, we discover<br />

that other interacti<strong>on</strong>s do not exist.<br />

9. We discover that strands naturally yield the known elementary fermi<strong>on</strong>s and bos<strong>on</strong>s,<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


26 1 from millennium physics to unificati<strong>on</strong><br />

Page 412<br />

grouped in three generati<strong>on</strong>s, and all their observed properties. Other elementary<br />

particles do not exist. We thus recover the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles.<br />

10. We discover that the fundamental principle allows us to solve all the issues in the<br />

millennium list, and that all properties deduced from strands agree with experiment.<br />

In particular, the strand c<strong>on</strong>jecture allows us to calculate the fine structure c<strong>on</strong>stant<br />

and the other gauge coupling strengths. An extensive list <str<strong>on</strong>g>of</str<strong>on</strong>g> testable predicti<strong>on</strong>s arises.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se predicti<strong>on</strong>s will all be tested – by experiment or by calculati<strong>on</strong> – in the coming<br />

years.<br />

11. We discover that moti<strong>on</strong> is due to crossing switches <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. Moti<strong>on</strong> is an inescapable<br />

c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>: moti<strong>on</strong> is an experience that we make because we<br />

are, like every observer, a small, approximate part <str<strong>on</strong>g>of</str<strong>on</strong>g> a large whole.<br />

At the end <str<strong>on</strong>g>of</str<strong>on</strong>g> this journey, we will thus have unravelled the mystery <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>. It is a<br />

truly special adventure. But be warned: almost all <str<strong>on</strong>g>of</str<strong>on</strong>g> the story presented here is still speculative,<br />

and thus open to questi<strong>on</strong>. Everything presented in the following agrees with experiment.<br />

Nevertheless, with almost every sentence you will find at least <strong>on</strong>e physicist or<br />

philosopher who disagrees. That makes the adventure even more fascinating.<br />

“Es ist fast unmöglich, die Fackel der Wahrheit<br />

durch ein Gedränge zu tragen, ohne jemandem<br />

den Bart zu sengen.*<br />

Georg Christoph Lichtenberg”<br />

* ‘It is almost impossible to carry the torch <str<strong>on</strong>g>of</str<strong>on</strong>g> truth through a crowd without scorching somebody’s beard.’<br />

Georg Christoph Lichtenberg (b. 1742 Ober-Ramstadt, d. 1799 Göttingen) was a famous physicist and essayist.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


Chapter2<br />

PHYSICS IN LIMIT STATEMENTS<br />

Twentieth century physics deduced several invariant properties <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>.<br />

hese invariants, such as the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light or the quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong>, define<br />

he so-called Planck units. <str<strong>on</strong>g>The</str<strong>on</strong>g> invariant Planck units are important for two reas<strong>on</strong>s:<br />

first, they allow moti<strong>on</strong> to be measured; sec<strong>on</strong>d, the invariants are limit values. In<br />

fact, the Planck units provide bounds for all observables.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> main less<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> modern physics is thus the following: When we simplify physics<br />

as much as possible, we discover that nature limits the possibilities <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>.Suchlimits<br />

lie at the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> special relativity, <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity and <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory. In fact,<br />

we will see that nature limits every aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>. Exploring the limits <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> will<br />

allow us to deduce several ast<strong>on</strong>ishing c<strong>on</strong>clusi<strong>on</strong>s. And these c<strong>on</strong>clusi<strong>on</strong>s c<strong>on</strong>tradict all<br />

that we learned about nature so far.<br />

simplifying physics as much as possible<br />

At dinner parties, physicists are regularly asked to summarize physics in a few sentences.<br />

It is useful to have a few simple statements ready to answer such a request. Such statements<br />

are not <strong>on</strong>ly useful to make other people think; they are also useful in our quest<br />

for the unified theory. Here they are.<br />

Everyday, or Galilean, physics in <strong>on</strong>e statement<br />

Everyday moti<strong>on</strong> is described by Galilean physics. It c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly <strong>on</strong>e statement:<br />

⊳ Moti<strong>on</strong> minimizes change.<br />

In nature, change is measured by physical acti<strong>on</strong> W. Moreprecisely,changeismeasured<br />

by the time-averaged difference between kinetic energy T and potential energy U. In<br />

other words, all moti<strong>on</strong> obeys the so-called least acti<strong>on</strong> principle. It can be written as<br />

δW = 0 , where W=∫(T−U)dt . (1)<br />

This statement determines the effort we need to move or throw st<strong>on</strong>es, and explains why<br />

cars need petrol and people need food. In simpler terms, nature is as lazy as possible. Or:<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


28 2 physics in limit statements<br />

⊳ Nature is maximally efficient.<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. I, page 29<br />

Ref. 11<br />

Challenge 1 e<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 100<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 27<br />

Inefficient moti<strong>on</strong> is not observed. <str<strong>on</strong>g>The</str<strong>on</strong>g> efficiency and laziness <str<strong>on</strong>g>of</str<strong>on</strong>g> nature implies that moti<strong>on</strong><br />

is c<strong>on</strong>served, relative and predictable. In fact, the laziness <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> and nature is<br />

valid throughout nature. A few additi<strong>on</strong>al ways to distinguish observed moti<strong>on</strong> from<br />

impossible moti<strong>on</strong> were discovered by modern physics.<br />

Special relativity in <strong>on</strong>e statement<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> step from everyday, or Galilean, physics to special relativity can be summarized in a<br />

single limit statement <strong>on</strong> moti<strong>on</strong>. It was popularized by Hendrik Anto<strong>on</strong> Lorentz:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a maximum energy speed value c in nature.<br />

For all physical systems and all observers, the local energy speed v is limited by the speed<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> light c:<br />

v ⩽ c = 3.0 ⋅ 10 8 m/s . (2)<br />

All results peculiar to special relativity follow from this principle. A few well-known facts<br />

set the framework for the discussi<strong>on</strong> that follows. <str<strong>on</strong>g>The</str<strong>on</strong>g> speed v is less than or equal to the<br />

speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light c for all physical systems;* in particular, this speed limit is valid both for<br />

composite systems and for elementary particles, for matter and radiati<strong>on</strong>. No excepti<strong>on</strong><br />

has ever been found. (Try it.)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> energy speed limit is an invariant: the local energy speed limit is valid for all observers.<br />

In this c<strong>on</strong>text it is essential to note that any observer must be a physical system,<br />

and must be close to the moving energy.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> speed limit c is realized by massless particles and systems; in particular, it is realized<br />

by electromagnetic waves. For matter systems, the speed is always below c.<br />

Only a maximum energy speed ensures that cause and effect can be distinguished in<br />

nature, or that sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>s can be defined. <str<strong>on</strong>g>The</str<strong>on</strong>g> opposite hypothesis, that<br />

energy speeds greater than c are possible, which implies the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> so-called (real)<br />

tachy<strong>on</strong>s, has been explored and tested in great detail; it leads to numerous c<strong>on</strong>flicts with<br />

observati<strong>on</strong>s. Tachy<strong>on</strong>s do not exist.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> maximum energy speed forces us to use the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time to describe<br />

nature, because the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a maximum energy speed implies that space and time<br />

mix. It also implies observer-dependent time and space coordinates, length c<strong>on</strong>tracti<strong>on</strong>,<br />

time dilati<strong>on</strong>, mass–energy equivalence, horiz<strong>on</strong>s for accelerated observers, and all the<br />

other effects that characterize special relativity. Only a maximum speed leads to the principle<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> maximum ageing that governs special relativity; and <strong>on</strong>ly this principle leads to<br />

the principle <str<strong>on</strong>g>of</str<strong>on</strong>g> least acti<strong>on</strong> at low speeds. In additi<strong>on</strong>, <strong>on</strong>ly with a finite speed limit is<br />

it possible to define a unit <str<strong>on</strong>g>of</str<strong>on</strong>g> speed that is valid at all places and at all times. If there<br />

*Aphysical system is a regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time c<strong>on</strong>taining mass–energy, the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> which can be followed<br />

over time and which interacts incoherently with its envir<strong>on</strong>ment. <str<strong>on</strong>g>The</str<strong>on</strong>g> speed <str<strong>on</strong>g>of</str<strong>on</strong>g> a physical system is<br />

thus an energy speed. <str<strong>on</strong>g>The</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> physical system excludes images, geometrical points or incomplete,<br />

entangled situati<strong>on</strong>s.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


simplifying physics as much as possible 29<br />

were no global speed limit, there could be no natural measurement standard for speed,<br />

independent <str<strong>on</strong>g>of</str<strong>on</strong>g> all interacti<strong>on</strong>s; speed would not then be a measurable quantity.<br />

Special relativity also limits the size <str<strong>on</strong>g>of</str<strong>on</strong>g> systems – whether composite or elementary.<br />

Indeed, the limit speed implies that accelerati<strong>on</strong> a and size l cannot be increased independently<br />

without bounds, because the two ends <str<strong>on</strong>g>of</str<strong>on</strong>g> a system must not interpenetrate.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> most important case c<strong>on</strong>cerns massive systems, for which we have<br />

Challenge 2 s<br />

Ref. 12<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. IV, page 15<br />

Challenge 3 e<br />

l⩽ c2<br />

a . (3)<br />

This size limit is induced by the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light c; itisalsovalidforthedisplacement d <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a system, if the accelerati<strong>on</strong> measured by an external observer is used. Finally, the speed<br />

limit implies a relativistic ‘indeterminacy relati<strong>on</strong>’<br />

Δl Δa⩽ c 2 (4)<br />

for the length and accelerati<strong>on</strong> indeterminacies. You may wish to take a minute to deduce<br />

this relati<strong>on</strong> from the time–frequency indeterminacy. All this is standard knowledge.<br />

Quantum theory in <strong>on</strong>e statement<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> difference between Galilean physics and quantum theory can be summarized in a<br />

single statement <strong>on</strong> moti<strong>on</strong>, due to Niels Bohr:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a minimum acti<strong>on</strong> value ħ in nature.<br />

For all physical systems and all observers, the acti<strong>on</strong> W obeys<br />

W ⩾ ħ = 1.1 ⋅ 10 −34 Js . (5)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Planck c<strong>on</strong>stant ħ is the smallest observable acti<strong>on</strong> value, and the smallest observable<br />

change <str<strong>on</strong>g>of</str<strong>on</strong>g> angular momentum. <str<strong>on</strong>g>The</str<strong>on</strong>g> acti<strong>on</strong> limit is valid for all systems, thus both<br />

for composite and elementary systems. No excepti<strong>on</strong> has ever been found. (Try it.) <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

principle c<strong>on</strong>tains all <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory. We can call it the principle <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-zero acti<strong>on</strong>,<br />

in order to avoid c<strong>on</strong>fusi<strong>on</strong> with the principle <str<strong>on</strong>g>of</str<strong>on</strong>g> least acti<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> n<strong>on</strong>-zero acti<strong>on</strong> limit ħ is an invariant: it is valid with the same numerical value<br />

for all observers. Again, any such observer must be a physical system.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> acti<strong>on</strong> limit is realized by many physical processes, from the absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> light<br />

to the flip <str<strong>on</strong>g>of</str<strong>on</strong>g> a spin 1/2 particle. More precisely, the acti<strong>on</strong> limit is realized by microscopic<br />

systems where the process involves a single particle.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> n<strong>on</strong>-zero acti<strong>on</strong> limit is stated less frequently than the speed limit. It starts from<br />

the usual definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the acti<strong>on</strong>, W=∫(T−U)dt, and states that between two observati<strong>on</strong>s<br />

performed at times t and t+Δt,eveniftheevoluti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>asystemisnotknown,the<br />

measured acti<strong>on</strong> is at least ħ. Since physical acti<strong>on</strong> measures the change in the state <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

physical system, there is always a minimum change <str<strong>on</strong>g>of</str<strong>on</strong>g> state between two different obser-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


30 2 physics in limit statements<br />

Ref. 13<br />

Ref. 14<br />

Challenge 5 e<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. IV, page 24<br />

Challenge 4 e<br />

vati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a system.* <str<strong>on</strong>g>The</str<strong>on</strong>g> n<strong>on</strong>-zero acti<strong>on</strong> limit expresses the fundamental fuzziness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nature at a microscopic scale.<br />

It can easily be checked that no observati<strong>on</strong> – whether <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s, electr<strong>on</strong>s or macroscopic<br />

systems – gives a smaller acti<strong>on</strong> than the value ħ. <str<strong>on</strong>g>The</str<strong>on</strong>g> n<strong>on</strong>-zero acti<strong>on</strong> limit has<br />

been verified for fermi<strong>on</strong>s, bos<strong>on</strong>s, laser beams, matter systems, and for any combinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these. <str<strong>on</strong>g>The</str<strong>on</strong>g> opposite hypothesis, implying the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> arbitrary small change, has<br />

been explored in detail: Einstein’s l<strong>on</strong>g discussi<strong>on</strong> with Bohr, for example, can be seen as<br />

a repeated attempt by Einstein to find experiments that would make it possible to measure<br />

arbitrarily small changes or acti<strong>on</strong> values in nature. In every case, Bohr found that<br />

this could not be achieved. All subsequent attempts were equally unsuccessful.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> principle <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-zero acti<strong>on</strong> can be used to deduce the indeterminacy relati<strong>on</strong>, the<br />

tunnelling effect, entanglement, permutati<strong>on</strong> symmetry, the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> probabilities<br />

in quantum theory, the informati<strong>on</strong>-theoretic formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory, and the<br />

existence <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particle reacti<strong>on</strong>s. Whenever we try to overcome the smallest<br />

acti<strong>on</strong> value, the experimental outcome is probabilistic. <str<strong>on</strong>g>The</str<strong>on</strong>g> minimum acti<strong>on</strong> value also<br />

implies that in quantum theory, the three c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> state, measurement operati<strong>on</strong>, and<br />

measurement result need to be distinguished from each other; this is d<strong>on</strong>e by means<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a so-called Hilbert space. Finally, the n<strong>on</strong>-zero acti<strong>on</strong> limit is also the foundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Einstein–Brillouin–Keller quantizati<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>-zero acti<strong>on</strong> limit has been known from the very beginning<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory. It is at the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> – and completely equivalent to – all the usual<br />

formulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory, including the many-path and the informati<strong>on</strong>-theoretic<br />

formulati<strong>on</strong>s.<br />

We also note that <strong>on</strong>ly a n<strong>on</strong>-zero acti<strong>on</strong> limit makes it possible to define a unit <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

acti<strong>on</strong>. If there were no acti<strong>on</strong> limit, there could be no natural measurement standard<br />

for acti<strong>on</strong>: acti<strong>on</strong> would not then be a measurable quantity.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> upper bounds for speed and for acti<strong>on</strong> for any physical system, v ⩽ c and<br />

W ⩽ pd ⩽ mcd, when combined with the quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong>, imply a limit <strong>on</strong> the<br />

displacement d <str<strong>on</strong>g>of</str<strong>on</strong>g> a system between any two observati<strong>on</strong>s:<br />

d⩾ ħ mc . (6)<br />

In other words, the (reduced) Compt<strong>on</strong> wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory appears as the<br />

lower limit <strong>on</strong> the displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> a system, whenever gravity plays no role. Since this<br />

quantum displacement limit also applies to elementary systems, it also applies to the size<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a composite system. However, for the same reas<strong>on</strong>, this size limit is not valid for the<br />

sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> limit <strong>on</strong> acti<strong>on</strong> also implies Heisenberg’s well-known indeterminacy relati<strong>on</strong> for<br />

the displacement d and momentum p <str<strong>on</strong>g>of</str<strong>on</strong>g> physical systems:<br />

Δd Δp ⩾ ħ 2 . (7)<br />

* For systems that seem c<strong>on</strong>stant in time, such as a spinningparticle or a system showing the quantum Zeno<br />

effect, finding this minimum change is tricky. Enjoy the challenge.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


simplifying physics as much as possible 31<br />

This relati<strong>on</strong> is valid for both massless and massive systems. All this is textbook knowledge.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>rmodynamics in <strong>on</strong>e statement<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>rmodynamics can also be summarized in a single statement about moti<strong>on</strong>:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a smallest entropy value k in nature.<br />

Written symbolically,<br />

S ⩾ k = 1.3 ⋅ 10 −23 J/K . (8)<br />

Challenge 6 e<br />

Ref. 15<br />

Ref. 16<br />

Page 55<br />

Challenge 7 e<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> entropy S is limited by the Boltzmann c<strong>on</strong>stant k. No excepti<strong>on</strong> has ever been found.<br />

(Try it.) This result is almost 100 years old; it was stated most clearly by Leo Szilard. All <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

thermodynamics can be deduced from this relati<strong>on</strong>, in combinati<strong>on</strong> with the quantum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> entropy limit is an invariant: itisvalidforall observers. Again, any observer must<br />

be a physical system.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> entropy limit is realized <strong>on</strong>ly by physical systems made <str<strong>on</strong>g>of</str<strong>on</strong>g> a single particle. In<br />

other words, the entropy limit is again realized <strong>on</strong>ly by microscopic systems. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore<br />

the entropy limit provides the same length limit for physical systems as the acti<strong>on</strong> limit.<br />

Like the other limit statements we have examined, the entropy limit can also be<br />

phrased as a indeterminacy relati<strong>on</strong> between temperature T and energy U:<br />

Δ 1 T ΔU ⩾ k 2 . (9)<br />

This relati<strong>on</strong> was first given by Bohr and then discussed by Heisenberg and many others.<br />

General relativity in <strong>on</strong>e statement<br />

This text can be enjoyed most when a compact and unc<strong>on</strong>venti<strong>on</strong>al descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> general<br />

relativity is used; it is presented in the following. However, the c<strong>on</strong>clusi<strong>on</strong>s do not depend<br />

<strong>on</strong> this descripti<strong>on</strong>; the results are also valid if the usual approach to general relativity is<br />

used; this will be shown later <strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> most compact descripti<strong>on</strong> summarizes the step from universal gravity to general<br />

relativity in a single statement <strong>on</strong> moti<strong>on</strong>:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g>re are maximum force and power values in nature.<br />

For all physical systems and all observers, force F and power P are limited by<br />

F⩽ c4<br />

4G =3.0⋅1043 N and P⩽ c5<br />

4G =9.1⋅1051 W . (10)<br />

No excepti<strong>on</strong> has ever been found. (Try it.) <str<strong>on</strong>g>The</str<strong>on</strong>g>se limit statements c<strong>on</strong>tain both the speed<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> light c and the gravitati<strong>on</strong>al c<strong>on</strong>stant G; they thus qualify as statements about relativ-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


32 2 physics in limit statements<br />

Ref. 17<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. I, page 231<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 110<br />

Ref. 18<br />

Challenge 8 e<br />

Challenge 9 e<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 107<br />

istic gravitati<strong>on</strong>. Before we deduce general relativity, let us explore these limits.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> numerical values <str<strong>on</strong>g>of</str<strong>on</strong>g> the limits are huge. <str<strong>on</strong>g>The</str<strong>on</strong>g> maximum power corresp<strong>on</strong>ds to<br />

radiating 50 solar masses within 1 millisec<strong>on</strong>d. And applying the maximum force value<br />

al<strong>on</strong>g a distance l requires as much energy as is stored in a black hole <str<strong>on</strong>g>of</str<strong>on</strong>g> diameter l.<br />

Force is change <str<strong>on</strong>g>of</str<strong>on</strong>g> momentum; power is change <str<strong>on</strong>g>of</str<strong>on</strong>g> energy. Since momentum and energy<br />

are c<strong>on</strong>served, force and power are the flow <str<strong>on</strong>g>of</str<strong>on</strong>g> momentum and energy through a<br />

surface. Forceand power, like electric current, describe the change in time <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>served<br />

quantity. For electric current, the c<strong>on</strong>served quantity is charge, for force, it is momentum,<br />

for power, it is energy. In other words, like current, also force is a flow across a surface.<br />

This is a simple c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tinuity equati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, every discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

maximum force implies a clarificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the underlying surface.<br />

Both the force and the power limits state that the flow <str<strong>on</strong>g>of</str<strong>on</strong>g> momentum or <str<strong>on</strong>g>of</str<strong>on</strong>g> energy<br />

through any physical surface – a surface to which an observed can be attached at every<br />

<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> its points – <str<strong>on</strong>g>of</str<strong>on</strong>g> any size, for any observer, in any coordinate system, never exceeds<br />

the limit value. In particular:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> force limit is <strong>on</strong>ly realized at horiz<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> power limit is <strong>on</strong>ly realized<br />

with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong>s.<br />

In all other situati<strong>on</strong>s, the observed values are strictly smaller than the maximum values.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> force and power limit values are invariants: theyarevalidforall observers and<br />

for all interacti<strong>on</strong>s. Again, any observer must be a physical system and it must be located<br />

<strong>on</strong> or near the surface used to define the flow <str<strong>on</strong>g>of</str<strong>on</strong>g> momentum or energy.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> the force limit is the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> a Schwarzschild black hole divided by its<br />

diameter; here the ‘diameter’ is defined as the circumference divided by π. <str<strong>on</strong>g>The</str<strong>on</strong>g>power<br />

limit is realized when such a black hole is radiated away in the time that light takes to<br />

travel al<strong>on</strong>g a length corresp<strong>on</strong>ding to the diameter.<br />

An object <str<strong>on</strong>g>of</str<strong>on</strong>g> mass m that has the size <str<strong>on</strong>g>of</str<strong>on</strong>g> its own Schwarzschild radius 2Gm/c 2 is<br />

called a black hole, because according to general relativity, no signals and no light from<br />

inside the Schwarzschild radius can reach the outside world. In this text, black holes<br />

are usually n<strong>on</strong>-rotating and usually uncharged; in this case, the terms ‘black hole’ and<br />

‘Schwarzschild black hole’ are syn<strong>on</strong>ymous.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> the maximum force, as well as being the mass–energy <str<strong>on</strong>g>of</str<strong>on</strong>g> a black hole<br />

divided by its diameter, is also the surface gravity <str<strong>on</strong>g>of</str<strong>on</strong>g> a black hole times its mass. Thus the<br />

force limit means that no physical system <str<strong>on</strong>g>of</str<strong>on</strong>g> a given mass can be c<strong>on</strong>centrated in a regi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> space-time smaller than a (n<strong>on</strong>-rotating) black hole <str<strong>on</strong>g>of</str<strong>on</strong>g> that mass. (This is the so-called<br />

hoop c<strong>on</strong>jecture.) In fact, the mass–energy c<strong>on</strong>centrati<strong>on</strong> limit can easily be transformed<br />

algebraically into the force limit: they are equivalent.<br />

It is easily checked that the maximum force limit is valid for all systems observed<br />

in nature, whether they are microscopic, macroscopic or astrophysical. Neither the<br />

‘gravitati<strong>on</strong>al force’ (as l<strong>on</strong>g as it is operati<strong>on</strong>ally defined) nor the electromagnetic or<br />

nuclear interacti<strong>on</strong>s are ever found to exceed this limit.<br />

Butisitpossibletoimagine a system that exceeds the force limit? An extensive discussi<strong>on</strong><br />

shows that this is impossible. For example, the force limit cannot be overcome with<br />

Lorentz boosts. We might think that a boost can be chosen in such a way that a 3-force<br />

value F in <strong>on</strong>e frame is transformed into any desired value F in another, boosted frame.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


simplifying physics as much as possible 33<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 83<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 107<br />

Ref. 19<br />

Ref. 20<br />

This thought turns out to be wr<strong>on</strong>g. In relativity, 3-force cannot be increased bey<strong>on</strong>d all<br />

bounds using boosts. In all reference frames, the measured 3-force can never exceed the<br />

proper force, i.e., the 3-force value measured in the comoving frame.<br />

Alsochangingtoanacceleratedframedoesnothelptoovercometheforcelimit,because<br />

for high accelerati<strong>on</strong>s a, horiz<strong>on</strong>s appear at distance c 2 /a, andamassm has a<br />

minimum diameter given by l⩾4Gm/c 2 .<br />

In fact, the force and power limits cannot be exceeded in any thought experiment,<br />

as l<strong>on</strong>g as the sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> observers or <str<strong>on</strong>g>of</str<strong>on</strong>g> test masses are taken into account. All apparent<br />

excepti<strong>on</strong>s or paradoxes assume the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> point particles or point-like observers;<br />

these, however, are not physical: they do not exist in general relativity.<br />

Fortunately for us, nearby black holes or horiz<strong>on</strong>s are rare. Unfortunately, this means<br />

that neither the force limit nor the power limit are realized in any physical system at<br />

hand, neither at everyday length scales, nor in the microscopic world, nor in astrophysical<br />

systems. Even though the force and power limits have never been exceeded, a direct<br />

experimental c<strong>on</strong>firmati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the limits will take some time.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> a maximum force is not<br />

comm<strong>on</strong>; in fact, it seems that it was <strong>on</strong>ly discovered 80 years after the theory <str<strong>on</strong>g>of</str<strong>on</strong>g> general<br />

relativity had first been proposed.<br />

Deducing general relativity*<br />

In order to elevate the force or power limit to a principle <str<strong>on</strong>g>of</str<strong>on</strong>g> nature, we have to show that,<br />

just as special relativity follows from the maximum speed, so general relativity follows<br />

from the maximum force.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> maximum force and the maximum power are <strong>on</strong>ly realized at horiz<strong>on</strong>s. Horiz<strong>on</strong>s<br />

are regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time where the curvature is so high that it limits the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

observati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> name ‘horiz<strong>on</strong>’ is due to an analogy with the usual horiz<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> everyday<br />

life, which also limits the distance to which we can see. However, in general relativity<br />

horiz<strong>on</strong>s are surfaces, notlines.Infact,wecandefine the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong> in general<br />

relativity as a regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> maximum force; it is then easy to prove that a horiz<strong>on</strong> is always<br />

a two-dimensi<strong>on</strong>al surface, and that it is essentially black (except for quantum effects).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong> between horiz<strong>on</strong>s and the maximum force or power allows us to deduce<br />

the field equati<strong>on</strong>s in a simple way. First, there is always a flow <str<strong>on</strong>g>of</str<strong>on</strong>g> energy at a horiz<strong>on</strong>.<br />

Horiz<strong>on</strong>s cannot be planes, since an infinitely extended plane would imply an infinite<br />

energy flow. To characterize the finite extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a given horiz<strong>on</strong>, we use its radius<br />

R and its total area A.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> energy flow across a horiz<strong>on</strong> is characterized by an energy E and a proper length<br />

L <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy pulse. When such an energy pulse flows perpendicularly across a horiz<strong>on</strong>,<br />

the momentum change dp/dt =Fis given by<br />

F= E L . (11)<br />

Since we are at a horiz<strong>on</strong>, we need to insert the maximum possible values. In terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

* This secti<strong>on</strong> can be skipped at first reading.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


34 2 physics in limit statements<br />

the horiz<strong>on</strong> area A and radius R, we can rewrite the limit case as<br />

c 4<br />

4G = E A 4πR2 1<br />

L<br />

(12)<br />

Ref. 21<br />

Ref. 22<br />

where we have introduced the maximum force and the maximum possible area 4πR 2 <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a horiz<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (maximum local) radius R.<str<strong>on</strong>g>The</str<strong>on</strong>g>ratioE/A is the energy per unit area flowing<br />

across the horiz<strong>on</strong>.<br />

Horiz<strong>on</strong>s are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten characterized by the so-called surface gravity a instead <str<strong>on</strong>g>of</str<strong>on</strong>g> the radius<br />

R. In the limit case, two are related by a=c 2 /2R.Thisleadsto<br />

E= 1<br />

4πG a2 AL. (13)<br />

Special relativity shows that at horiz<strong>on</strong>s the product aL <str<strong>on</strong>g>of</str<strong>on</strong>g> proper length and accelerati<strong>on</strong><br />

is limited by the value c 2 /2. This leads to the central relati<strong>on</strong> for the energy flow at<br />

horiz<strong>on</strong>s:<br />

E=<br />

c2<br />

aA . (14)<br />

8πG<br />

This horiz<strong>on</strong> relati<strong>on</strong> makes three points. First, the energy flowing across a horiz<strong>on</strong> is limited.<br />

Sec<strong>on</strong>dly, this energy is proporti<strong>on</strong>al to the area <str<strong>on</strong>g>of</str<strong>on</strong>g> the horiz<strong>on</strong>. Thirdly, the energy<br />

flow is proporti<strong>on</strong>al to the surface gravity. <str<strong>on</strong>g>The</str<strong>on</strong>g>se three points are fundamental, and characteristic,<br />

statements <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity. (We also note that due to the limit property<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong>s, the energy flow towards the horiz<strong>on</strong> just outside it, the energy flow across a<br />

horiz<strong>on</strong>, and the energy inside a horiz<strong>on</strong> are all the same.)<br />

Taking differentials, the horiz<strong>on</strong> relati<strong>on</strong> can be rewritten as<br />

δE =<br />

c2<br />

aδA . (15)<br />

8πG<br />

In this form, the relati<strong>on</strong> between energy and area can be applied to general horiz<strong>on</strong>s,<br />

including those that are irregularly curved or time-dependent.*<br />

In a well-known paper, Jacobs<strong>on</strong> has given a beautiful pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a simple c<strong>on</strong>necti<strong>on</strong>:<br />

if energy flow is proporti<strong>on</strong>al to horiz<strong>on</strong> area for all observers and all horiz<strong>on</strong>s, and if<br />

the proporti<strong>on</strong>ality c<strong>on</strong>stant is the correct <strong>on</strong>e, then general relativity follows. To see<br />

the c<strong>on</strong>necti<strong>on</strong> to general relativity, we generalize the horiz<strong>on</strong> relati<strong>on</strong> (15) to general<br />

coordinate systems and general directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> energy flow.<br />

* <str<strong>on</strong>g>The</str<strong>on</strong>g> horiz<strong>on</strong> relati<strong>on</strong> (15) is well known, though with different names for the observables. Since no communicati<strong>on</strong><br />

is possibleacross a horiz<strong>on</strong>, the detailed fate <str<strong>on</strong>g>of</str<strong>on</strong>g> energyflowing across a horiz<strong>on</strong> is also unknown.<br />

Energy whose detailed fate is unknown is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten called heat, and abbreviated Q. <str<strong>on</strong>g>The</str<strong>on</strong>g> horiz<strong>on</strong> relati<strong>on</strong> (15)<br />

therefore states that the heat flowing through a horiz<strong>on</strong> is proporti<strong>on</strong>al to the horiz<strong>on</strong> area. When quantum<br />

theory is introduced into the discussi<strong>on</strong>, the area <str<strong>on</strong>g>of</str<strong>on</strong>g> a horiz<strong>on</strong> can be called ‘entropy’ S and its surface<br />

gravity can be called ‘temperature’ T;relati<strong>on</strong>(15) can then be rewritten as δQ = TδS. However, this translati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> relati<strong>on</strong> (15), which requires the quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong>, is unnecessary here. We <strong>on</strong>ly cite it to show<br />

the relati<strong>on</strong> between horiz<strong>on</strong> behaviour and quantum aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


simplifying physics as much as possible 35<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> uses tensor notati<strong>on</strong>. We introduce the general surface element dΣ and the<br />

local boost Killing vector field k that generates the horiz<strong>on</strong> (with suitable norm). We then<br />

rewrite the left-hand side <str<strong>on</strong>g>of</str<strong>on</strong>g> relati<strong>on</strong> (15)as<br />

δE = ∫ T ab k a dΣ b , (16)<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 98<br />

Ref. 23<br />

where T ab is the energy–momentum tensor. This is valid in arbitrary coordinate systems<br />

and for arbitrary energy flow directi<strong>on</strong>s. Jacobs<strong>on</strong>’s main result is that the righthand<br />

side <str<strong>on</strong>g>of</str<strong>on</strong>g> the horiz<strong>on</strong> relati<strong>on</strong> (15) can be rewritten, using the (purely geometric)<br />

Raychaudhuri equati<strong>on</strong>, as<br />

aδA = c 2 ∫R ab k a dΣ b , (17)<br />

where R ab is the Ricci tensor describing space-time curvature.<br />

Combining these two steps, we find that the energy–area horiz<strong>on</strong> relati<strong>on</strong> (15)canbe<br />

rewritten as<br />

∫T ab k a dΣ b =<br />

c4<br />

8πG ∫R abk a dΣ b . (18)<br />

Jacobs<strong>on</strong> shows that this equati<strong>on</strong>, together with local c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy (i.e., vanishing<br />

divergence <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy–momentum tensor), can <strong>on</strong>ly be satisfied if<br />

T ab =<br />

c4<br />

8πG (R ab −( 1 2 R+Λ)g ab) , (19)<br />

where Λ is a c<strong>on</strong>stant <str<strong>on</strong>g>of</str<strong>on</strong>g> integrati<strong>on</strong> whose value is not determined by the problem. <str<strong>on</strong>g>The</str<strong>on</strong>g>se<br />

are the full field equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity, including the cosmological c<strong>on</strong>stant Λ.<br />

This value <str<strong>on</strong>g>of</str<strong>on</strong>g> this c<strong>on</strong>stant remains undetermined, though.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> field equati<strong>on</strong>s are thus shown to be valid at horiz<strong>on</strong>s. Now, it is possible, by<br />

choosing a suitable coordinate transformati<strong>on</strong>, to positi<strong>on</strong> a horiz<strong>on</strong> at any desired<br />

space-time event. To achieve this, simply change to the frame <str<strong>on</strong>g>of</str<strong>on</strong>g> an observer accelerating<br />

away from that point at the correct distance, as explained in the volume <strong>on</strong> relativity.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>refore, because a horiz<strong>on</strong> can be positi<strong>on</strong>ed anywhere at any time, the field equati<strong>on</strong>s<br />

must be valid over the whole <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time.<br />

Since it is possible to have a horiz<strong>on</strong> at every event in space-time, there is the same<br />

maximum possible force (or power) at every event in nature. This maximum force (or<br />

power) is thus a c<strong>on</strong>stant <str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

In other words, the field equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity are a direct c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the limited energy flow at horiz<strong>on</strong>s, which in turn is due to the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a maximum<br />

force or power. We can thus speak <str<strong>on</strong>g>of</str<strong>on</strong>g> the maximum force principle. C<strong>on</strong>versely, the field<br />

equati<strong>on</strong>s imply maximum force and power. Maximum force and general relativity are<br />

thus equivalent.<br />

By the way, modern scholars <str<strong>on</strong>g>of</str<strong>on</strong>g>ten state that general relativity and gravity follow from<br />

the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a minimum measurable length. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong> was already stated by<br />

Sakharov in 1969. This c<strong>on</strong>necti<strong>on</strong> is correct, but unnecessarily restrictive. <str<strong>on</strong>g>The</str<strong>on</strong>g> maximum<br />

force, which is implicit in the minimal length, is sufficient to imply gravity. Quantum<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


36 2 physics in limit statements<br />

theory – or ħ – is (obviously) not necessary to deduce gravity.<br />

Challenge 10 e<br />

Challenge 11 e<br />

Page 283<br />

Page 302<br />

Ref. 24<br />

Deducing universal gravitati<strong>on</strong><br />

Universal gravitati<strong>on</strong> follows from the force limit in the case where both forces and<br />

speeds are much smaller than the maximum values. <str<strong>on</strong>g>The</str<strong>on</strong>g> first c<strong>on</strong>diti<strong>on</strong> implies<br />

√4GMa ≪ c 2 , the sec<strong>on</strong>d v ≪ c and a l ≪ c 2 . Let us apply this to a specific case.<br />

C<strong>on</strong>sider a satellite circling a central mass M at distance R with accelerati<strong>on</strong> a. This<br />

system, with length l=2R, has <strong>on</strong>ly <strong>on</strong>e characteristic speed. Whenever this speed v is<br />

much smaller than c, v 2 must be proporti<strong>on</strong>al both to the squared speed calculated by<br />

al=2aRand to the squared speed calculated from √4GMa . Taken together, these two<br />

c<strong>on</strong>diti<strong>on</strong>s imply that a=fGM/R 2 ,wheref is a numerical factor. A quick check, for<br />

example using the observed escape velocity values, shows that f=1.<br />

Forces and speeds much smaller than the limit values thus imply that gravity changes<br />

with the inverse square <str<strong>on</strong>g>of</str<strong>on</strong>g> distance. In other words, nature’s limit <strong>on</strong> force implies universal<br />

gravitati<strong>on</strong>. Other deducti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> universal gravity from limit quantities are given<br />

later.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> physical systems in general relativity<br />

General relativity, like the other theories <str<strong>on</strong>g>of</str<strong>on</strong>g> modern physics, implies a limit <strong>on</strong> the size l<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> systems. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a limit to the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> matter that can be c<strong>on</strong>centrated into a small<br />

volume:<br />

l⩾ 4Gm<br />

c 2 . (20)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> size limit is <strong>on</strong>ly realized for black holes, those well-known systems which swallow<br />

everything that is thrown into them. <str<strong>on</strong>g>The</str<strong>on</strong>g> size limit is fully equivalent to the force limit.<br />

(Also the hoop c<strong>on</strong>jecture is understood to be true.) All composite systems in nature<br />

comply with the lower size limit. Whether elementary particles fulfil or even match this<br />

limit remains open at this point. This issue will be explored below.<br />

General relativity also implies an ‘indeterminacy relati<strong>on</strong>’ for the measurement errors<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> size l and energy E <str<strong>on</strong>g>of</str<strong>on</strong>g> systems:<br />

ΔE<br />

Δl<br />

⩽ c4<br />

4G . (21)<br />

Experimental data are available <strong>on</strong>ly for composite systems; all known systems<br />

Ref. 25 comply with it. For example, the latest measurements for the Sun give GM ⊙ /c 3 =<br />

4.925 490 947(1) μs; the error in E is thus much smaller than the (scaled) error in its<br />

radius, which is known with much smaller precisi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> ‘indeterminacy relati<strong>on</strong>’ (21)<br />

is not as well known as that from quantum theory. In fact, tests <str<strong>on</strong>g>of</str<strong>on</strong>g> it – for example with<br />

binary pulsars – may distinguish general relativity from competing theories. We cannot<br />

yet say whether this inequality also holds for elementary particles.<br />

A mechanical analogy forthe maximum force<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> maximum force is central to the theory <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity. Indeed, its value (adorned<br />

with a factor 2π) appears in the field equati<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> the maximum<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


planck limits for all physical observables 37<br />

Challenge 12 e<br />

force becomes clearer when we return to our old image <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time as a deformable<br />

mattress. Like any material body, a mattress is described by a material c<strong>on</strong>stant that<br />

relates the deformati<strong>on</strong> values to the values <str<strong>on</strong>g>of</str<strong>on</strong>g> applied energy. Similarly, a mattress, like<br />

any material, is described by the maximum stress it can bear before it breaks. <str<strong>on</strong>g>The</str<strong>on</strong>g>se<br />

two values describe all materials, from crystals to mattresses. In fact, for perfect crystals<br />

(without dislocati<strong>on</strong>s), these two material c<strong>on</strong>stants are the same.<br />

Empty space somehow behaves like a perfect crystal, or a perfect mattress: it has a<br />

deformati<strong>on</strong>-energy c<strong>on</strong>stant that is equal to the maximum force that can be applied<br />

to it. <str<strong>on</strong>g>The</str<strong>on</strong>g> maximum force describes the elasticity <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time. <str<strong>on</strong>g>The</str<strong>on</strong>g> high value <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

maximum force tells us that it is difficult to bend space.<br />

Now, materials are not homogeneous: crystals are made up <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms, and mattresses<br />

are made up <str<strong>on</strong>g>of</str<strong>on</strong>g> foam bubbles. What is the corresp<strong>on</strong>ding structure <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time? This is<br />

a central questi<strong>on</strong> in the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> our adventure. One thing is sure: unlike crystals, vacuum<br />

has no preferred directi<strong>on</strong>s. We now take a first step towards answering the questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time and particles by putting together all the limits found so far.<br />

planck limits for all physical observables<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a maximum force in nature is equivalent to general relativity. As a result,<br />

a large part <str<strong>on</strong>g>of</str<strong>on</strong>g> modern physics can be summarized in four simple and fundamental limit<br />

statements <strong>on</strong> moti<strong>on</strong>:<br />

Quantum theory follows from the acti<strong>on</strong> limit:<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>rmodynamics follows from the entropy limit:<br />

Special relativity follows from the speed limit:<br />

General relativity follows from the force limit:<br />

W ⩾ ħ<br />

S ⩾ k<br />

v ⩽ c<br />

F ⩽ c4<br />

4G . (22)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se (corrected) Planck limits are valid for all physical systems, whether composite or<br />

elementary, and for all observers. Note that the limit quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory, thermodynamics,<br />

special and general relativity can also be seen as the right-hand sides <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

respective indeterminacy relati<strong>on</strong>s. Indeed, the set (4, 7, 9, 21) <str<strong>on</strong>g>of</str<strong>on</strong>g> indeterminacy relati<strong>on</strong>s<br />

is fully equivalent to the four limit statements (22).<br />

We note that the different dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the four fundamental limits (22) innature<br />

mean that the four limits are independent. For example, quantum effects cannot be used<br />

to overcome the force limit; similarly, the power limit cannot be used to overcome the<br />

speed limit. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are thus four independent limits <strong>on</strong> moti<strong>on</strong> in nature.<br />

By combining the four fundamental limits, we can obtain limits <strong>on</strong> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> physical<br />

observables. <str<strong>on</strong>g>The</str<strong>on</strong>g> following limits are valid generally, for both composite and elementary<br />

systems:<br />

time interval:<br />

t⩾√ 4Għ<br />

c 5 = 1.1⋅10 −43 s (23)<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


38 2 physics in limit statements<br />

time-distance product:<br />

td ⩾ 4Għ<br />

c 4 = 3.5⋅10 −78 ms (24)<br />

accelerati<strong>on</strong>:<br />

a⩽√ c7<br />

4Għ<br />

= 2.8⋅10 51 m/s 2 (25)<br />

angular frequency:<br />

ω⩽2π√ c5<br />

2Għ = 5.8⋅1043 /s . (26)<br />

Adding the knowledge that space and time can mix, we get<br />

Page 59<br />

Ref. 26<br />

Ref. 27<br />

distance:<br />

area:<br />

d⩾√ 4Għ<br />

c 3 = 3.2⋅10 −35 m (27)<br />

A⩾ 4Għ<br />

c 3 = 1.0⋅10 −69 m 2 (28)<br />

volume:<br />

V⩾( 4Għ 3/2<br />

c 3 ) = 3.4⋅10 −104 m 3 (29)<br />

curvature: K⩽ c3<br />

= 1.0⋅10 69 /m 2 (30)<br />

4Għ<br />

c 5<br />

mass density:<br />

ρ⩽<br />

16G 2 = 3.2⋅10 95 kg/m 3 . (31)<br />

ħ<br />

Of course, speed, acti<strong>on</strong>, angular momentum, entropy, power and force are also limited,<br />

as already stated. <str<strong>on</strong>g>The</str<strong>on</strong>g> limit values are deduced from the comm<strong>on</strong>ly used Planck values<br />

simply by substituting 4G for G. <str<strong>on</strong>g>The</str<strong>on</strong>g>se limit values are the true natural units <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. In<br />

fact, the ideal case would be to redefine the usual Planck values for all observables to these<br />

extremal values, by absorbing the numerical factor 4 into the respective definiti<strong>on</strong>s. In<br />

the following, we call the limit values the corrected Planck units or corrected Planck limits<br />

and assume that the numerical factor 4 has been properly included. In other words:<br />

⊳ Every natural unit or (corrected) Planck unit is the limit value <str<strong>on</strong>g>of</str<strong>on</strong>g> the corresp<strong>on</strong>ding<br />

physical observable.<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> these limit statements are found scattered throughout the research literature,<br />

though the numerical factors <str<strong>on</strong>g>of</str<strong>on</strong>g>ten differ. Each limit has attracted a string <str<strong>on</strong>g>of</str<strong>on</strong>g> publicati<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a smallest measurable distance and time interval <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Planck values is discussed in all approaches to quantum gravity. <str<strong>on</strong>g>The</str<strong>on</strong>g> maximum curvature<br />

has been studied in quantum gravity; it has important c<strong>on</strong>sequences for the ‘beginning’<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the universe, where it excludes any infinitely large or small observable. <str<strong>on</strong>g>The</str<strong>on</strong>g> maximum<br />

mass density appears regularly in discussi<strong>on</strong>s <strong>on</strong> the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum.<br />

In the following, we <str<strong>on</strong>g>of</str<strong>on</strong>g>ten call the collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Planck limits the Planck scales. Wewill<br />

discover shortly that at Planck scales, nature differs in many ways from what we are used<br />

to at everyday scales.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


planck limits for all physical observables 39<br />

“Die Frage über die Gültigkeit der Voraussetzungen der Geometrie im<br />

Unendlichkleinen hängt zusammen mit der Frage nach dem innern Grunde der<br />

Massverhältnisse des Raumes. Bei dieser Frage, welche wohl noch zur Lehre<br />

vomRaumegerechnetwerdendarf,kommtdieobigeBemerkungzur<br />

Anwendung, dass bei einer discreten Mannigfaltigkeit das Princip der<br />

Massverhältnisse sch<strong>on</strong> in dem Begriffe dieser Mannigfaltigkeit enthalten ist,<br />

bei einer stetigen aber anders woher hinzukommen muss. Es muss also<br />

entweder das dem Raume zu Grunde liegende Wirkliche eine discrete<br />

Mannigfaltigkeit bilden, oder der Grund der Massverhältnisse ausserhalb, in<br />

darauf wirkenden bindenden Kräften, gesucht werden.*<br />

Bernhard Riemann, 1854, Über die Hypothesen, welche der Geometrie<br />

Grunde liegen.<br />

zu”<br />

<str<strong>on</strong>g>Physics</str<strong>on</strong>g>, mathematics and simplicity<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> four limits <str<strong>on</strong>g>of</str<strong>on</strong>g> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong> (22) – <strong>on</strong> acti<strong>on</strong>, entropy, speed and force – are ast<strong>on</strong>ishing.<br />

Above all, the four limits are simple. For many decades, a silent assumpti<strong>on</strong> has<br />

guided many physicists: physics requires difficult mathematics, and unificati<strong>on</strong> requires<br />

even more difficult mathematics.<br />

For example, for over thirty years, Albert Einstein searched with his legendary intensity<br />

for the unified theory by exploring more and more complex equati<strong>on</strong>s. He did so even<br />

<strong>on</strong> his deathbed!** Also most theoretical physicists in the year 2000 held the prejudice<br />

that unificati<strong>on</strong> requires difficult mathematics. This prejudice is a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> over a<br />

century <str<strong>on</strong>g>of</str<strong>on</strong>g> flawed teaching <str<strong>on</strong>g>of</str<strong>on</strong>g> physics. Flawed teaching is thus <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the reas<strong>on</strong>s that the<br />

search for a unified theory was not successful for so l<strong>on</strong>g.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> summary <str<strong>on</strong>g>of</str<strong>on</strong>g> physics with limit statements shows that nature and physics are<br />

simple. In fact, the essence <str<strong>on</strong>g>of</str<strong>on</strong>g> the important physical theories is extremely simple: special<br />

relativity, general relativity, thermodynamics and quantum theory are each based <strong>on</strong><br />

asimpleinequality.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> summary <str<strong>on</strong>g>of</str<strong>on</strong>g> a large part <str<strong>on</strong>g>of</str<strong>on</strong>g> physics with inequalities is suggestive. <str<strong>on</strong>g>The</str<strong>on</strong>g> summary<br />

makes us dream that the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the remaining parts <str<strong>on</strong>g>of</str<strong>on</strong>g> physics – gauge fields,<br />

elementary particles and the complete theory – might be equally simple. Let us c<strong>on</strong>tinue<br />

to explore where the dream <str<strong>on</strong>g>of</str<strong>on</strong>g> simplicity leads us to.<br />

Limits to space, time and size“Those are my principles, and if you d<strong>on</strong>’t like<br />

them ... well, I have others.<br />

Groucho Marx***”<br />

* ‘<str<strong>on</strong>g>The</str<strong>on</strong>g> questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the validity <str<strong>on</strong>g>of</str<strong>on</strong>g> the hypotheses <str<strong>on</strong>g>of</str<strong>on</strong>g> geometry in the infinitely small is c<strong>on</strong>nected to the<br />

questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the foundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the metric relati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> space. To this questi<strong>on</strong>, which may still be regarded as<br />

bel<strong>on</strong>ging to the study <str<strong>on</strong>g>of</str<strong>on</strong>g> space, applies the remark made above; that in a discrete manifold the principles<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its metric relati<strong>on</strong>s are given in the noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this manifold, while in a c<strong>on</strong>tinuous manifold, they must<br />

come from outside. Either therefore the reality which underlies space must form a discrete manifold, or the<br />

principles <str<strong>on</strong>g>of</str<strong>on</strong>g> its metric relati<strong>on</strong>s must be sought outside it, in binding forces which act up<strong>on</strong> it.’<br />

Bernhard Riemann is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most important mathematicians. 45 years after this statement, Max<br />

Planck c<strong>on</strong>firmed that natural units are due to gravitati<strong>on</strong>, and thus to ‘binding forces’.<br />

** Interestingly, he also regularly wrote the opposite, as shown <strong>on</strong> page 87.<br />

*** Groucho Marx (b. 1890 New York City, d. 1977 Los Angeles), well-known comedian.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


40 2 physics in limit statements<br />

Page 59<br />

Ref. 28<br />

We have seen that the four fundamental limits <str<strong>on</strong>g>of</str<strong>on</strong>g> nature (22) resultinaminimumdistance<br />

and a minimum time interval. As the expressi<strong>on</strong>s for the limits shows, these minimum<br />

intervals arise directly from the unificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory and relativity: they<br />

do not appear if the theories are kept separate. In other terms, unificati<strong>on</strong> implies that<br />

there is a smallest length in nature. This result is important: the formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> physicsasaset<str<strong>on</strong>g>of</str<strong>on</strong>g>limitstatementsshowsthatthe<br />

c<strong>on</strong>tinuum model <str<strong>on</strong>g>of</str<strong>on</strong>g> space and time is not<br />

completely correct. C<strong>on</strong>tinuity and manifolds are <strong>on</strong>ly approximati<strong>on</strong>s, valid for large acti<strong>on</strong>s,<br />

low speeds and small forces. Formulating general relativity and quantum theory<br />

with limit statements makes this especially clear.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a force limit in nature implies that no physical system can be smaller<br />

than a Schwarzschild black hole <str<strong>on</strong>g>of</str<strong>on</strong>g> the same mass. In particular, point particles do not<br />

exist. <str<strong>on</strong>g>The</str<strong>on</strong>g> density limit makes the same point. In additi<strong>on</strong>, elementary particles are predicted<br />

to be larger than the corrected Planck length. So far, this predicti<strong>on</strong> has not been<br />

tested by observati<strong>on</strong>s, as the scales in questi<strong>on</strong> are so small that they are bey<strong>on</strong>d experimental<br />

reach. Detecting the sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles – for example, with electric<br />

dipole measurements – would make it possible to check all limits directly.<br />

Mass and energy limits<br />

Mass plays a special role in all these arguments. <str<strong>on</strong>g>The</str<strong>on</strong>g> four limits (22)d<strong>on</strong>otmakeitpossible<br />

to extract a limit statement <strong>on</strong> the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> physical systems. To find <strong>on</strong>e, we have<br />

to restrict our aim somewhat.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Planck limits menti<strong>on</strong>ed so far apply to all physical systems, whether composite<br />

or elementary. Other limits apply <strong>on</strong>ly to elementary systems. In quantum theory, the<br />

distance limit is a size limit <strong>on</strong>ly for composite systems. A particle is elementary if its size<br />

l is smaller than any measurable dimensi<strong>on</strong>. In particular, it must be smaller than the<br />

reduced Compt<strong>on</strong> wavelength:<br />

for elementary particles: l⩽ ħ mc . (32)<br />

Using this limit, we find the well-known mass, energy and momentum limits that are<br />

valid <strong>on</strong>ly for elementary particles:<br />

for (real) elementary particles:<br />

for (real) elementary particles:<br />

for (real) elementary particles:<br />

m⩽√ ħc<br />

4G =1.1⋅10−8 kg =0.60⋅10 19 GeV/c 2<br />

E⩽√ ħc5<br />

4G<br />

=9.8⋅108 J =0.60⋅10 19 GeV<br />

p⩽√ ħc3<br />

4G =3.2kg m/s =0.60⋅1019 GeV/c . (33)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se elementary-particle limits are the (corrected) Planck mass, Planck energy and<br />

Planck momentum. <str<strong>on</strong>g>The</str<strong>on</strong>g>y were discussed in 1968 by Andrei Sakharov, though with different<br />

numerical factors. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are regularly cited in elementary particle theory. All known<br />

measurements comply with them.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


planck limits for all physical observables 41<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 72<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. IV, page 193<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 107<br />

Virtual particles – a new definiti<strong>on</strong><br />

In fact, there are elementary particles that exceed all three limits that we have encountereds<str<strong>on</strong>g>of</str<strong>on</strong>g>ar.Naturedoeshaveparticleswhichmovefasterthanlight,whichshow<br />

acti<strong>on</strong>s below the quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong>, and which experience forces larger than the force<br />

limit.<br />

We know from special relativity that the virtual particles exchanged in collisi<strong>on</strong>s move<br />

faster than light. We know from quantum theory that the exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> a virtual particle<br />

implies acti<strong>on</strong>s below the minimum acti<strong>on</strong>. Virtual particles also imply an instantaneous<br />

change <str<strong>on</strong>g>of</str<strong>on</strong>g> momentum; they thus exceed the force limit.<br />

In short, virtual particles exceed all the limits that hold for real elementary particles.<br />

Curiosities and fun challenges about Planck limits*<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> (corrected) Planck limits are statements about properties <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is no way<br />

to measure values exceeding these limits, with any kind <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment. Naturally, such a<br />

claim provokes the search for counter-examples and leads to many paradoxes.<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> minimum acti<strong>on</strong> may come as a surprise at first, because angular momentum and<br />

spin have the same unit as acti<strong>on</strong>; and nature c<strong>on</strong>tains particles with spin 0 or with spin<br />

1/2 ħ. A minimum acti<strong>on</strong> indeed implies a minimum angular momentum. However, the<br />

angular momentum in questi<strong>on</strong> is total angular momentum, including the orbital part<br />

with respect to the observer. <str<strong>on</strong>g>The</str<strong>on</strong>g> measured total angular momentum <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle is never<br />

smaller than ħ, even if the spin is smaller.<br />

∗∗<br />

In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> mass flows, the power limit implies that flow <str<strong>on</strong>g>of</str<strong>on</strong>g> water through a tube is limited<br />

in throughput. <str<strong>on</strong>g>The</str<strong>on</strong>g> resulting limit dm/dt ⩽c 3 /4G for the change <str<strong>on</strong>g>of</str<strong>on</strong>g> mass with time seems<br />

to be unrecorded in the research literature <str<strong>on</strong>g>of</str<strong>on</strong>g> the twentieth century.<br />

∗∗<br />

A further way to deduce the minimum length using the limit statements which structure<br />

this adventure is the following. General relativity is based <strong>on</strong> a maximum force in nature,<br />

or alternatively, <strong>on</strong> a maximum mass change per time, whose value is given by dm/dt =<br />

c 3 /4G. Quantum theory is based <strong>on</strong> a minimum acti<strong>on</strong> W in nature, given by ħ.Sincea<br />

distance d can be expressed as<br />

d 2 W<br />

=<br />

dm/dt , (34)<br />

we see directly that a minimum acti<strong>on</strong> and a maximum rate <str<strong>on</strong>g>of</str<strong>on</strong>g> change <str<strong>on</strong>g>of</str<strong>on</strong>g> mass imply<br />

a minimum distance. In other words, quantum theory and general relativity force us to<br />

c<strong>on</strong>clude that in nature there is a minimum distance. In other words, at Planck scales the<br />

term ‘point in space’ has no theoretical or experimental basis.<br />

* Secti<strong>on</strong>s called ‘Curiosities’ can be skipped at first reading.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


42 2 physics in limit statements<br />

∗∗<br />

With the single-particle limits, the entropy limit leads to an upper limit for temperature:<br />

Challenge 13 e<br />

Ref. 29<br />

T⩽√ ħc5<br />

4Gk 2 =0.71⋅1032 K . (35)<br />

This corresp<strong>on</strong>ds to the temperature at which the energy per degree <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom is given<br />

by the (corrected) Planck energy √ħc 5 /4G . A more realistic value would have to take<br />

account <str<strong>on</strong>g>of</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle at Planck energy. This would<br />

change the numerical factor. However, no system that is even near this temperature value<br />

has been studied yet. Only Planck-size horiz<strong>on</strong>s are expected to realize the temperature<br />

limit, but nobody has managed to explore them experimentally, so far.<br />

∗∗<br />

How can the maximum force be determined by gravity al<strong>on</strong>e, which is the weakest interacti<strong>on</strong>?<br />

It turns out that in situati<strong>on</strong>s near the maximum force, the other interacti<strong>on</strong>s<br />

are usually negligible. This is the reas<strong>on</strong> why gravity must be included in a unified descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

∗∗<br />

At first sight, it seems that electric charge can be used in such a way that the accelerati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a charged body towards a charged black hole is increased to a value, when multiplied<br />

with the mass, that exceeds the force limit. However, the changes in the horiz<strong>on</strong> for<br />

charged black holes prevent this.<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> gravitati<strong>on</strong>al attracti<strong>on</strong> between two masses never yields force values high enough<br />

to exceed the force limit. Why? First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, masses m and M cannot come closer together<br />

than the sum <str<strong>on</strong>g>of</str<strong>on</strong>g> their horiz<strong>on</strong> radii. Using F=GmM/r 2 with the distance r given by the<br />

(naive) sum <str<strong>on</strong>g>of</str<strong>on</strong>g> the two black hole radii as r = 2G(M + m)/c 2 ,weget<br />

F⩽ c4<br />

4G<br />

Mm<br />

(M + m) 2 , (36)<br />

which is never larger than the force limit. Thus even two attracting black holes cannot<br />

exceed the force limit – in the inverse-square approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> universal gravity. In short,<br />

the minimum size <str<strong>on</strong>g>of</str<strong>on</strong>g> masses means that the maximum force cannot be exceeded.<br />

∗∗<br />

It is well known that gravity bends space. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, if they are to be fully c<strong>on</strong>vincing,<br />

our calculati<strong>on</strong> for two attracting black holes needs to be repeated taking into account<br />

the curvature <str<strong>on</strong>g>of</str<strong>on</strong>g> space. <str<strong>on</strong>g>The</str<strong>on</strong>g> simplest way is to study the force generated by a black hole<br />

<strong>on</strong> a test mass hanging from a wire that is lowered towards a black hole horiz<strong>on</strong>. For an<br />

unrealistic point mass, the force would diverge at the horiz<strong>on</strong>. Indeed, for a point mass<br />

m lowered towards a black hole <str<strong>on</strong>g>of</str<strong>on</strong>g> mass M at (c<strong>on</strong>venti<strong>on</strong>ally defined radial) distance d,<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


planck limits for all physical observables 43<br />

the force would be<br />

F=<br />

GMm<br />

d 2 √1− 2GM<br />

dc 2 . (37)<br />

Challenge 14 e<br />

Challenge 15 e<br />

Ref. 19<br />

Thisdivergesatd=0, the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the horiz<strong>on</strong>. However, even a test mass cannot be<br />

smaller than its own gravitati<strong>on</strong>al radius. If we want to reach the horiz<strong>on</strong> with a realistic<br />

test mass, we need to choose a small test mass m: <strong>on</strong>ly a small mass can get near the<br />

horiz<strong>on</strong>. For vanishingly small masses, however, the resulting force tends to zero. Indeed,<br />

letting the distance tend to the smallest possible value by letting d = 2G(m + M)/c 2 →<br />

2GM/c 2 requires m→0, which makes the force F(m, d) vanish. If <strong>on</strong> the other hand,<br />

we remain away from the horiz<strong>on</strong> and look for the maximum force by using a mass as<br />

large as can possibly fit into the available distance (the calculati<strong>on</strong> is straightforward),<br />

then again the force limit is never exceeded. In other words, for realistic test masses,<br />

expressi<strong>on</strong> (37)isnever larger than c 4 /4G. Taking into account the minimal size <str<strong>on</strong>g>of</str<strong>on</strong>g> test<br />

masses, we thus see that the maximum force is never exceeded in gravitati<strong>on</strong>al systems.<br />

∗∗<br />

An absolute power limit implies a limit <strong>on</strong> the energy that can be transported per unit<br />

time through any imaginable physical surface. At first sight, it may seem that the combined<br />

power emitted by two radiati<strong>on</strong> sources that each emit 3/4 <str<strong>on</strong>g>of</str<strong>on</strong>g> the maximum value<br />

should give 3/2 times the maximum value. However, the combinati<strong>on</strong> forms a black hole,<br />

or at least prevents part <str<strong>on</strong>g>of</str<strong>on</strong>g> the radiati<strong>on</strong> from being emitted by swallowing it between the<br />

two sources.<br />

∗∗<br />

One possible system that actually achieves the Planck power limit is the final stage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

black hole evaporati<strong>on</strong>. But even in this case, the power limit is not exceeded.<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> maximum force limit states that the stress-energy tensor, when integrated over any<br />

physical surface, does not exceed the limit value. No such integral, over any physical<br />

surface, <str<strong>on</strong>g>of</str<strong>on</strong>g> any tensor comp<strong>on</strong>ent in any coordinate system, can exceed the force limit,<br />

provided that it is measured by a realistic observer, in particular, by an observer with a<br />

realistic proper size. <str<strong>on</strong>g>The</str<strong>on</strong>g> maximum force limit thus applies to any comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> any force<br />

vector, as well as to its magnitude. It applies to gravitati<strong>on</strong>al, electromagnetic, and nuclear<br />

forces; and it applies to all realistic observers. It is not important whether the forces are<br />

real or fictitious; nor whether we are discussing the 3-forces <str<strong>on</strong>g>of</str<strong>on</strong>g> Galilean physics or the<br />

4-forces <str<strong>on</strong>g>of</str<strong>on</strong>g> special relativity. Indeed, the force limit applied to the zeroth comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the 4-force is the power limit.<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> power limit is <str<strong>on</strong>g>of</str<strong>on</strong>g> interest if applied to the universe as a whole. Indeed, it can be used to<br />

partly explain Olbers’ paradox: the sky is dark at night because the combined luminosity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all light sources in the universe cannot be brighter than the maximum value.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


44 2 physics in limit statements<br />

Page 36<br />

Challenge 16 s<br />

Ref. 23<br />

Ref. 30<br />

Challenge 17 e<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> force limit and its solid state analogy might be seen to suggest that the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

matter might be nature’s way <str<strong>on</strong>g>of</str<strong>on</strong>g> preventing space from ripping apart. Does this analogy<br />

make sense?<br />

∗∗<br />

In fact, the c<strong>on</strong>necti<strong>on</strong> between minimum length and gravity is not new. Already in 1967,<br />

Andrei Sakharov pointed out that a minimum length implies gravity. He showed that<br />

regularizing quantum field theory <strong>on</strong> curved space with a cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f at small distances will<br />

induce counter-terms that include to lowest order the cosmological c<strong>on</strong>stant and then<br />

the Einstein–Hilbert acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity.<br />

∗∗<br />

We said above that a surface is physical if an observer can be attached to each <str<strong>on</strong>g>of</str<strong>on</strong>g> its points.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a smallest length – and a corresp<strong>on</strong>ding shortest time interval – implies<br />

⊳ No surface is physical if any part <str<strong>on</strong>g>of</str<strong>on</strong>g> it requires a localizati<strong>on</strong> in space-time to<br />

scales below the minimum length.<br />

For example, a physical surface must not cross any horiz<strong>on</strong>. Only by insisting <strong>on</strong> physical<br />

surfaces can we eliminate unphysical examples that c<strong>on</strong>travene the force and power<br />

limits. For example, this c<strong>on</strong>diti<strong>on</strong> was overlooked in Bousso’s early discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Bekenstein’s<br />

entropy bound – though not in his more recent <strong>on</strong>es.<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> equati<strong>on</strong> E=c 2 m implies that energy and mass are equivalent. What do the equati<strong>on</strong>s<br />

l=(4G/c 2 )m = (4G/c 4 )E for length and W=ħφfor acti<strong>on</strong> imply?<br />

∗∗<br />

Our discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> limits can be extended to include electromagnetism. Using the (lowenergy)<br />

electromagnetic coupling c<strong>on</strong>stant α, the fine structure c<strong>on</strong>stant, we get the following<br />

limits for physical systems interacting electromagnetically:<br />

electric charge: q⩾√4πε 0 αcħ =e=0.16aC (38)<br />

electric field:<br />

magnetic field:<br />

c 7<br />

E⩽√<br />

64πε o αħG 2 = c4<br />

4Ge =1.9⋅1062 V/m (39)<br />

c 5<br />

B⩽√<br />

64πε 0 αħG 2 = c3<br />

4Ge =6.3⋅1053 T (40)<br />

voltage: U⩽√ c4<br />

16πε 0 αG = 1 e √ħc5<br />

4G =6.1⋅1027 V (41)<br />

inductance:<br />

L⩾<br />

1<br />

4πε o α √4Għ<br />

c 7<br />

= 1 e 2 √4Għ3<br />

c 5 =4.4⋅10 −40 H . (42)<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


planck limits for all physical observables 45<br />

With the additi<strong>on</strong>al assumpti<strong>on</strong> that in nature at most <strong>on</strong>e particle can occupy <strong>on</strong>e Planck<br />

volume, we get<br />

charge density:<br />

capacitance:<br />

ρ e ⩽ √ πε oα c 5<br />

16G 3 ħ =e √<br />

c9<br />

64G 3 ħ 3 =4.7⋅1084 C/m 3 (43)<br />

C⩾4πε 0 α√ 4Għ<br />

c 3<br />

=e 2 √ 4G<br />

c 5 ħ =2.6⋅10−47 F . (44)<br />

Ref. 31<br />

Ref. 32<br />

Ref. 33<br />

For the case <str<strong>on</strong>g>of</str<strong>on</strong>g> a single c<strong>on</strong>ducti<strong>on</strong> channel, we get<br />

electric resistance:<br />

electric c<strong>on</strong>ductivity:<br />

R⩾<br />

1<br />

4πε 0 αc = ħ =4.1kΩ (45)<br />

e2 G⩽4πε 0 αc = e2<br />

ħ<br />

electric current: I⩽√ πε 0αc 6<br />

G<br />

=0.24mS (46)<br />

=e√ c5<br />

4ħG =1.5⋅1024 A . (47)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> magnetic field limit is significant in the study <str<strong>on</strong>g>of</str<strong>on</strong>g> extreme stars and black holes. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

maximum electric field plays a role in the theory <str<strong>on</strong>g>of</str<strong>on</strong>g> gamma-ray bursters. For current,<br />

c<strong>on</strong>ductivity and resistance in single channels, the limits and their effects were studied<br />

extensively in the 1980s and 1990s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks and <str<strong>on</strong>g>of</str<strong>on</strong>g> collective excitati<strong>on</strong>s in semic<strong>on</strong>ductors with charge<br />

e/3 does not necessarily invalidate the charge limit for physical systems. In neither case<br />

is there is a physical system – defined as localized mass–energy interacting incoherently<br />

with the envir<strong>on</strong>ment – with charge e/3.<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> general relati<strong>on</strong> that to every limit value in nature there is a corresp<strong>on</strong>ding indeterminacy<br />

relati<strong>on</strong> is valid also for electricity. Indeed, there is an indeterminacy relati<strong>on</strong><br />

for capacitors, <str<strong>on</strong>g>of</str<strong>on</strong>g> the form<br />

ΔC ΔU ⩾ e , (48)<br />

where e is the positr<strong>on</strong> charge, C capacity and U potential difference. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is also an<br />

indeterminacy relati<strong>on</strong> between electric current I and time t<br />

Both these relati<strong>on</strong>s may be found in the research literature.<br />

ΔI Δt ⩾ e . (49)<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


46 2 physics in limit statements<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 107<br />

Challenge 18 e<br />

Ref. 34<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. IV, page 151<br />

cosmological limits for all physical observables<br />

In our quest to understand moti<strong>on</strong>, we have focused our attenti<strong>on</strong> <strong>on</strong> the four fundamental<br />

limitati<strong>on</strong>s to which moti<strong>on</strong> is subject. Special relativity posits a limit to speed,<br />

namely the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light c. General relativity limits force and power respectively by<br />

c 4 /4G and c 5 /4G, and quantum theory introduces a smallest value ħ for acti<strong>on</strong>. Nature<br />

imposes the lower limit k <strong>on</strong> entropy. If we include the limit e <strong>on</strong> electric charge changes,<br />

theselimitsinduceextremalvaluesforall physical observables, given by the corresp<strong>on</strong>ding<br />

(corrected) Planck values.<br />

A questi<strong>on</strong> arises: does nature also impose limits <strong>on</strong> physical observables at the opposite<br />

end <str<strong>on</strong>g>of</str<strong>on</strong>g> the measurement scale? For example, there is a highest force and a highest<br />

power in nature. Is there also a lowest force and a lowest power? Is there also a lowest<br />

speed? We will show that there are indeed such limits, for all observables. We give the<br />

general method to generate such bounds, and explore several examples. This explorati<strong>on</strong><br />

will take us <strong>on</strong> an interesting survey <str<strong>on</strong>g>of</str<strong>on</strong>g> modern physics. We start by deducing systemdependent<br />

limits and then go <strong>on</strong> to cosmological limits.<br />

Size and energy dependence<br />

While looking for additi<strong>on</strong>al limits in nature, we note a fundamental fact. Any upper<br />

limit for angular momentum, and any lower limit for power, must be system-dependent.<br />

Such limits will not be absolute, but will depend <strong>on</strong> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the system. Now, a<br />

physical system is a part <str<strong>on</strong>g>of</str<strong>on</strong>g> nature characterized by a boundary and its c<strong>on</strong>tent.* Thus the<br />

simplest properties shared by all systems are their size (characterized in the following by<br />

the diameter) L and their energy E. With these characteristics we can deduce systemdependent<br />

limits for every physical observable. <str<strong>on</strong>g>The</str<strong>on</strong>g> general method is straightforward:<br />

we take the known inequalities for speed, acti<strong>on</strong>, power, charge and entropy, and then<br />

extract a limit for any observable, by inserting the length and energy as required. We<br />

then have to select the strictest <str<strong>on</strong>g>of</str<strong>on</strong>g> the limits we find.<br />

Angularmomentum and acti<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> angular momentum D to energy E times length L has the dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

inverse speed. Since rotati<strong>on</strong> speeds are limited by the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light, we get<br />

D system ⩽ 1 LE . (50)<br />

c<br />

Indeed, in nature there do not seem to be any excepti<strong>on</strong>s to this limit <strong>on</strong> angular momentum.<br />

In no known system, from atoms to molecules, from ice skaters to galaxies,<br />

does the angular momentum exceed this value. Even the most violently rotating objects,<br />

the so-called extremal black holes, are limited in angular momentum by D⩽LE/c. (Actually,<br />

this limit is correct for black holes <strong>on</strong>ly if the energy is taken as the irreducible<br />

mass times c 2 ; if the usual mass is used, the limit is too large by a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> 4.) <str<strong>on</strong>g>The</str<strong>on</strong>g> limit<br />

* Quantum theory refines this definiti<strong>on</strong>: a physical system is a part <str<strong>on</strong>g>of</str<strong>on</strong>g> nature that in additi<strong>on</strong> interacts<br />

incoherently with its envir<strong>on</strong>ment. In the following discussi<strong>on</strong> we will assume that this c<strong>on</strong>diti<strong>on</strong> is satisfied.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


cosmological limits for all physical observables 47<br />

deduced from general relativity, given by D⩽L 2 c 3 /4G, is not stricter than the <strong>on</strong>e just<br />

given. By the way, no system-dependent lower limit for angular momentum can be deduced.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> maximum value for angular momentum is also interesting when it is seen as an<br />

acti<strong>on</strong> limit. Acti<strong>on</strong> is the time integral <str<strong>on</strong>g>of</str<strong>on</strong>g> the difference between kinetic and potential<br />

energy. Though nature always seeks to minimize the acti<strong>on</strong> W, systems,<str<strong>on</strong>g>of</str<strong>on</strong>g>sizeL, that<br />

maximize acti<strong>on</strong> are also interesting. You might check for yourself that the acti<strong>on</strong> limit<br />

W⩽LE/c (51)<br />

Challenge 19 e<br />

Challenge 20 e<br />

Challenge 21 e<br />

Challenge 22 s<br />

is not exceeded in any physical process.<br />

Speed<br />

Speed times mass times length is an acti<strong>on</strong>. Since acti<strong>on</strong> values in nature are limited from<br />

below by ħ, we get a limit for the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> a system:<br />

v system ⩾ħc 2 1<br />

LE . (52)<br />

This is not a new result; it is just a form <str<strong>on</strong>g>of</str<strong>on</strong>g> the indeterminacy relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory.<br />

It gives a minimum speed for any system <str<strong>on</strong>g>of</str<strong>on</strong>g> energy E and diameter L. Even the extremely<br />

slow radius change <str<strong>on</strong>g>of</str<strong>on</strong>g> a black hole by evaporati<strong>on</strong> just realizes this minimal speed.<br />

C<strong>on</strong>tinuing with the same method, we also find that the limit deduced from general<br />

relativity, v⩽(c 2 /4G)(L/E), gives no new informati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, no system-dependent<br />

upper speed limit exists – just the global limit c.<br />

Incidentally, the limits are not unique. Other limits can be found in a systematic way.<br />

Upper limits can be multiplied, for example, by factors <str<strong>on</strong>g>of</str<strong>on</strong>g> (L/E)(c 4 /4G) or (LE)(2/ħc),<br />

yielding less strict upper limits. A similar rule can be given for lower limits.<br />

Force, power and luminosity<br />

We have seen that force and power are central to general relativity. <str<strong>on</strong>g>The</str<strong>on</strong>g> force exerted<br />

by a system is the flow <str<strong>on</strong>g>of</str<strong>on</strong>g> momentum out <str<strong>on</strong>g>of</str<strong>on</strong>g> the system; emitted power is the flow <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

energy out <str<strong>on</strong>g>of</str<strong>on</strong>g> the system. Thanks to the c<strong>on</strong>necti<strong>on</strong> W=FLTbetween acti<strong>on</strong> W, force<br />

F,distanceL and time T,wecandeduce<br />

F system ⩾ ħ 2c<br />

1<br />

T 2 . (53)<br />

Experiments do not reach this limit. <str<strong>on</strong>g>The</str<strong>on</strong>g> smallest forces measured in nature are those<br />

in atomic force microscopes, where values as small as 1 aN are observed. But even these<br />

values are above the lower force limit.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> power P emitted by a system <str<strong>on</strong>g>of</str<strong>on</strong>g> size L and mass M is limited by<br />

c 3 M<br />

L ⩾P system ⩾2ħG M L 3 . (54)<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


48 2 physics in limit statements<br />

Ref. 35<br />

Ref. 30<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> limit <strong>on</strong> the left is the upper limit for any engine or lamp, as deduced from relativity;<br />

not even the universe exceeds it. <str<strong>on</strong>g>The</str<strong>on</strong>g> limit <strong>on</strong> the right is the minimum power emitted<br />

by any system through quantum gravity effects. Indeed, no physical system is completely<br />

tight. Even black holes, the systems with the best ability to keep comp<strong>on</strong>ents inside<br />

their enclosure, radiate. <str<strong>on</strong>g>The</str<strong>on</strong>g> power radiated by black holes should just meet this<br />

limit, provided the length L is taken to be the circumference <str<strong>on</strong>g>of</str<strong>on</strong>g> the black hole. Thus the<br />

claim <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantum gravity limit is that the power emitted by a black hole is the smallest<br />

power that is emitted by any composite system <str<strong>on</strong>g>of</str<strong>on</strong>g> the same surface gravity. (However,<br />

the numerical factors in the black hole power appearing in the research literature are not<br />

yet c<strong>on</strong>sistent.)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strange charm <str<strong>on</strong>g>of</str<strong>on</strong>g> the entropy bound<br />

In 1973, Bekenstein discovered a famous limit that c<strong>on</strong>nects the entropy S <str<strong>on</strong>g>of</str<strong>on</strong>g> a physical<br />

system with its size and mass. No system has a larger entropy than <strong>on</strong>e bounded by a<br />

horiz<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> larger the horiz<strong>on</strong> surface, the larger the entropy. We write<br />

which gives<br />

S<br />

S c.Planck<br />

⩽<br />

A<br />

A c.Planck<br />

(55)<br />

S⩽ kc3 A , (56)<br />

4Għ<br />

where A is the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the system. Equality is realized <strong>on</strong>ly for black holes. <str<strong>on</strong>g>The</str<strong>on</strong>g> old<br />

questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the factor 4 in the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes is thus answered here:<br />

it is due to the factor 4 in the force or power bound in nature. Time will tell whether this<br />

explanati<strong>on</strong> will be generally accepted.<br />

We can also derive a more general relati<strong>on</strong> by using a mysterious assumpti<strong>on</strong>, which<br />

we will discuss afterwards. We assume that the limits for vacuum are opposite to those<br />

for matter. We can then write c 2 /4G ⩽ M/L for the vacuum. Using<br />

we get<br />

S<br />

S c.Planck<br />

⩽<br />

S⩽ πkc<br />

ħ<br />

M<br />

M c.Planck<br />

A L c.Planck<br />

A c.Planck L<br />

(57)<br />

2πkc<br />

ML = MR . (58)<br />

ħ<br />

ThisiscalledBekenstein’s entropy bound. It states that the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> any physical system<br />

is finite and limited by its mass M and size L. No excepti<strong>on</strong> has ever been found or<br />

c<strong>on</strong>structed, despite many attempts. Again, the limit value itself is <strong>on</strong>ly realized for black<br />

holes.<br />

We need to explain the strange assumpti<strong>on</strong> used above. We are investigating the entropy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a horiz<strong>on</strong>. Horiz<strong>on</strong>s are not matter, but limits to empty space. <str<strong>on</strong>g>The</str<strong>on</strong>g> entropy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

horiz<strong>on</strong>s is due to the large number <str<strong>on</strong>g>of</str<strong>on</strong>g> virtual particles found at them. In order to deduce<br />

the maximum entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> expressi<strong>on</strong> (57)wethereforehavetousetheproperties<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


cosmological limits for all physical observables 49<br />

Ref. 36<br />

the vacuum. In other words, either we use a mass-to-length ratio for vacuum above the<br />

Planck limit, or we use the Planck entropy as the maximum value for vacuum.<br />

Other, equivalent limits for entropy can be found if other variables are introduced. For<br />

example, since the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the shear viscosity η to the volume density <str<strong>on</strong>g>of</str<strong>on</strong>g> entropy (times<br />

k) has the dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong>, we can directly write<br />

S⩽ k ħ<br />

ηV . (59)<br />

Challenge 23 e<br />

Challenge 24 r<br />

Challenge 25 s<br />

Challenge 26 e<br />

Again, equality is <strong>on</strong>ly attained in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes. In time, no doubt, the list <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

similar bounds will grow l<strong>on</strong>ger.<br />

Is there also a smallest, system-dependent entropy? So far, there does not seem to be a<br />

system-dependent minimum value for entropy: the present approach gives no expressi<strong>on</strong><br />

that is larger than k.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> the entropy limit is an important step towards making our descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> c<strong>on</strong>sistent. If space-time can move, as general relativity maintains, it<br />

also has an entropy. How could entropy be finite if space-time were c<strong>on</strong>tinuous? Clearly,<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a minimum distance and minimum time in nature, spacetime<br />

cannot be c<strong>on</strong>tinuous, but must have a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom, and<br />

thus a finite entropy.<br />

Curiosities and fun challenges about system-dependent limits to<br />

observables<br />

Like the Planck values, also the system-dependent limit values for all physical observables<br />

yield a plethora <str<strong>on</strong>g>of</str<strong>on</strong>g> interesting questi<strong>on</strong>s. We study a few examples.<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> a system is characterized not <strong>on</strong>ly by its mass and charge, but also by<br />

its strangeness, isospin, colour charge, charge and parity. Can you deduce the limits for<br />

these quantities?<br />

∗∗<br />

In our discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> black hole limits, we silently assumed that they interact, like any<br />

thermal system, in an incoherent way with the envir<strong>on</strong>ment. Which <str<strong>on</strong>g>of</str<strong>on</strong>g> the results <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

secti<strong>on</strong> change when this c<strong>on</strong>diti<strong>on</strong> is dropped, and how? Which limits can be overcome?<br />

∗∗<br />

Can you find a general method to deduce all limits <str<strong>on</strong>g>of</str<strong>on</strong>g> observables?<br />

∗∗<br />

Bekenstein’s entropy bound leads to some interesting speculati<strong>on</strong>s. Let us speculate that<br />

the universe itself, being surrounded by a horiz<strong>on</strong>, meets the Bekenstein bound. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

entropy bound gives a bound to all degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom inside a system: it tells us that the<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


50 2 physics in limit statements<br />

Challenge 27 e<br />

number N d.o.f. <str<strong>on</strong>g>of</str<strong>on</strong>g> degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom in the universe is roughly<br />

N d.o.f. ≈10 132 . (60)<br />

Compare this with the number N Pl. vol. <str<strong>on</strong>g>of</str<strong>on</strong>g> Planck volumes in the universe<br />

N Pl. vol. ≈10 183 (61)<br />

and with the number N part. <str<strong>on</strong>g>of</str<strong>on</strong>g> particles in the universe<br />

Challenge 28 s<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 62<br />

Challenge 29 ny<br />

N part. ≈10 91 . (62)<br />

We see that particles are <strong>on</strong>ly a tiny fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> what moves around. Most moti<strong>on</strong> must be<br />

movement <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time. At the same time, space-time moves far less than might be naively<br />

expected. To find out how all this happens is the challenge <str<strong>on</strong>g>of</str<strong>on</strong>g> the unified descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>.<br />

∗∗<br />

A lower limit for the temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> a thermal system can be found using the following<br />

idea: the number <str<strong>on</strong>g>of</str<strong>on</strong>g> degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom <str<strong>on</strong>g>of</str<strong>on</strong>g> a system is limited by its surface, or more<br />

precisely, by the ratio between the surface and the Planck surface. We get the limit<br />

T⩾ 4Għ<br />

πkc<br />

M<br />

L 2 . (63)<br />

This is the smallest temperature that a system <str<strong>on</strong>g>of</str<strong>on</strong>g> mass M and size L can have. Alternatively,<br />

using the method given above, we can use the limit <strong>on</strong> the thermal energy<br />

kT/2 ⩾ ħc/2πL (the thermal wavelength must be smaller than the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the system)<br />

together with the limit <strong>on</strong> mass c 2 /4G ⩾ M/L, and deduce the same result.<br />

We have met the temperature limit already: when the system is a black hole, the limit<br />

yields the temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> the emitted radiati<strong>on</strong>. In other words, the temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> black<br />

holes is the lower limit for all physical systems for which a temperature can be defined,<br />

provided they share the same boundary gravity. <str<strong>on</strong>g>The</str<strong>on</strong>g> latter c<strong>on</strong>diti<strong>on</strong> makes sense: boundary<br />

gravity is accessible from the outside and describes the full physical system, since it<br />

depends <strong>on</strong> both its boundary and its c<strong>on</strong>tent.<br />

So far, no excepti<strong>on</strong> to the claim <strong>on</strong> the minimum system temperature is known. All<br />

systems from everyday life comply with it, as do all stars. Also the coldest known systems<br />

in the universe, namely Bose–Einstein c<strong>on</strong>densates and other cold gases produced<br />

in laboratories, are much hotter than the limit, and thus much hotter than black holes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>thesamesurfacegravity.(Wesawearlierthat a c<strong>on</strong>sistent Lorentz transformati<strong>on</strong> for<br />

temperature is not possible; so the minimum temperature limit is <strong>on</strong>ly valid for an observer<br />

at the same gravitati<strong>on</strong>al potential as the system under c<strong>on</strong>siderati<strong>on</strong> and stati<strong>on</strong>ary<br />

relative to it.)<br />

By the way, there seems to be no c<strong>on</strong>sistent way to define an upper limit for a sizedependent<br />

temperature. Limits for other thermodynamic quantities can be found, but<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


cosmological limits for all physical observables 51<br />

we do not discuss them here.<br />

∗∗<br />

When electromagnetism plays a role in a system, the system also needs to be characterized<br />

by a charge Q. Our method then gives the following limit for the electric field E:<br />

Challenge 30 s<br />

E⩾4Ge M2<br />

Q 2 L 2 . (64)<br />

We write the field limit in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the elementary charge e,thoughitmightbemoreappropriate<br />

to write it using the fine structure c<strong>on</strong>stant via e=√4πε 0 αħc .Inobservati<strong>on</strong>s,<br />

the electric field limit has never been exceeded. For the magnetic field we get<br />

B⩾ 4Ge<br />

c<br />

M 2<br />

Q 2 L 2 . (65)<br />

Again, this limit is satisfied by all known systems in nature.<br />

Similar limits can be found for the other electromagnetic observables. In fact, several<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the limits given earlier are modified when electric charge is included. Does the size<br />

limit change when electric charge is taken into account? In fact, an entire research field<br />

is dedicated to deducing and testing the most general limits valid in nature.<br />

∗∗<br />

Many cosmological limits have not been discussed here nor anywhere else. <str<strong>on</strong>g>The</str<strong>on</strong>g> following<br />

could all be worth a publicati<strong>on</strong>: What is the limit for momentum? Energy? Pressure?<br />

Accelerati<strong>on</strong>? Mass change? Lifetime?<br />

Simplified cosmology in <strong>on</strong>e statement<br />

We now c<strong>on</strong>tinue our explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> limits by focussing <strong>on</strong> the largest systems possible<br />

in nature. In order to do that, we have a simplified look at cosmology.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> dark sky at night tells us there is a cosmological horiz<strong>on</strong>. This implies<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a maximum distance value in nature, given by the radius <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

cosmological horiz<strong>on</strong> R c .<br />

For all systems and all observers, sizes, distances and lengths l are observed to be limited<br />

by<br />

l≲R C ≈4.3×10 26 m =4.4×10 10 al ≈3.3ct 0 . (66)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> cosmological horiz<strong>on</strong> limits system sizes. <str<strong>on</strong>g>The</str<strong>on</strong>g> observed radius is about 3.3 times the<br />

age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe t 0 ,timesc.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> cosmological horiz<strong>on</strong> also limits the age <str<strong>on</strong>g>of</str<strong>on</strong>g> systems.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


52 2 physics in limit statements<br />

Challenge 31 e<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> cosmological limits to observables<br />

From the system-dependent limits for speed, acti<strong>on</strong>, force and entropy we can deduce<br />

system-dependent limits for all other physical observables. In additi<strong>on</strong>, we note that the<br />

system-dependent limits can (usually) be applied to the universe as a whole; we <strong>on</strong>ly need<br />

to insert the size and energy c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe. Usually, we can do this through a<br />

limit process, even though the universe itself is not a physical system. In this way, we<br />

get an absolute limit for every physical observable that c<strong>on</strong>tains the cosmological radius<br />

R C . <str<strong>on</strong>g>The</str<strong>on</strong>g>se limits are <strong>on</strong> the opposite end <str<strong>on</strong>g>of</str<strong>on</strong>g> the Planck limit for each observable. We call<br />

these limits the cosmological limits.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> simplest cosmological limit is the upper limit to length in the universe. Since the<br />

cosmological length limit also implies a maximum possible Compt<strong>on</strong> wavelength, we<br />

get a minimum particle mass and energy. We also get an cosmological lower limit <strong>on</strong><br />

luminosity.<br />

For single particles, we find an absolute lower speed limit, the cosmological speed limit,<br />

given by<br />

v particle ⩾ L c. Planck<br />

c≈7⋅10 −53 m/s . (67)<br />

R C<br />

This speed value has never been reached or approached by any observati<strong>on</strong>.<br />

Many cosmological limits are related to black hole limits. For example, the observed<br />

average mass density <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe is not far from the corresp<strong>on</strong>ding black hole limit.<br />

As another example, the black hole lifetime limit might be imagined to provide an upper<br />

limit for the full lifetime <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe. However, the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe is far from that<br />

limit by a large factor. In fact, since the universe’s size and age are increasing, the lifetime<br />

limit is pushed further into the future with every sec<strong>on</strong>d that passes. <str<strong>on</strong>g>The</str<strong>on</strong>g> universe could<br />

besaidtoevolvesoastoescapeitsowndecay...<br />

Minimum force<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> negative energy volume density −Λc 4 /4πG introduced by the positive cosmological<br />

c<strong>on</strong>stant Λ corresp<strong>on</strong>ds to a negative pressure (both quantities have the same dimensi<strong>on</strong>s).<br />

When multiplied by the minimum area it yields a force value<br />

F= Λħc<br />

2π =4.8⋅10−79 N . (68)<br />

Apart from the numerical factor, this is the cosmological force limit, the smallest possible<br />

force in nature. This is also the gravitati<strong>on</strong>al force between two corrected Planck masses<br />

located at the cosmological distance √π/4Λ ≈R C .<br />

As a note, this leads to the fascinating c<strong>on</strong>jecture that the full theory <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity,<br />

including the cosmological c<strong>on</strong>stant, might be defined by the combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

maximum and a minimum force in nature.<br />

Summary <strong>on</strong> cosmological limits<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> above short explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cosmological limits could be extended. Overall, it appears<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


cosmological limits for all physical observables 53<br />

⊳ Nature provides two limits for each observable: a Planck limit and a cosmological<br />

limit.<br />

Challenge 32 s<br />

Page 59<br />

Ref. 37<br />

Every observable has a lower and an upper limit. You may want to summarize them into<br />

atable.<br />

All these limits <strong>on</strong>ly appear when quantum theory and gravity are brought together.<br />

But the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> these limits, and in particular the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> limits to measurement<br />

precisi<strong>on</strong>, forces us to aband<strong>on</strong> some cherished assumpti<strong>on</strong>s.<br />

Limits to measurement precisi<strong>on</strong><br />

We now know that in nature, every physical measurement has a lower and an upper<br />

bound. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the bounds is cosmological, the other is given by the (corrected) Planck<br />

unit. As a c<strong>on</strong>sequence, for every observable, the smallest relative measurement error<br />

that is possible in nature is the ratio between the smaller and the larger limit. In particular,<br />

we have to c<strong>on</strong>clude that all measurements are limited in precisi<strong>on</strong>.<br />

No real numbers<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental limits to measurement precisi<strong>on</strong>, the measured values <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

physical observables do not require the full set <str<strong>on</strong>g>of</str<strong>on</strong>g> real numbers. In fact, limited precisi<strong>on</strong><br />

implies that observables cannot be described by the real numbers! This staggering result<br />

appears whenever quantum theory and gravity are brought together. But there is more.<br />

Vacuumandmass:twosides<str<strong>on</strong>g>of</str<strong>on</strong>g>thesamecoin<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re is a limit to the precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> length measurements in nature. This limit is valid both<br />

for length measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> empty space and for length measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> matter (or radiati<strong>on</strong>).<br />

Now let us recall what we do when we measure the length <str<strong>on</strong>g>of</str<strong>on</strong>g> a table with a ruler.<br />

To find the ends <str<strong>on</strong>g>of</str<strong>on</strong>g> the table, we must be able to distinguish the table from the surrounding<br />

air. In more precise terms, we must be able to distinguish matter from vacuum.<br />

Whenever we want high measurement precisi<strong>on</strong>, we need to approach Planck scales.<br />

But at Planck scales, the measurement values and the measurement errors are <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

same size. In short, at Planck scales, the intrinsic measurement limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> nature imply<br />

that we cannot say whether we are measuring vacuum or matter. We will check this<br />

c<strong>on</strong>clusi<strong>on</strong> in detail later <strong>on</strong>.<br />

In fact, we can pick any other observable that distinguishes vacuum from matter –<br />

for example, colour, mass, size, charge, speed or angular momentum – and we have the<br />

same problem: at Planck scales, the limits to observables lead to limits to measurement<br />

precisi<strong>on</strong>, and therefore, at Planck scales it is impossible to distinguish between matter<br />

and vacuum. At Planck scales, we cannot tell whether a box is full or empty.<br />

To state the c<strong>on</strong>clusi<strong>on</strong> in the sharpest possible terms: vacuum and matter do not differ<br />

at Planck scales. This counter-intuitive result is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the charms <str<strong>on</strong>g>of</str<strong>on</strong>g> the search for a<br />

complete, unified theory. It has inspired many researchers in the field and some have<br />

written best-sellers about it.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>clusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> indistinguishability <str<strong>on</strong>g>of</str<strong>on</strong>g> matter and vacuum also arises at cosmological<br />

scale: it is intrinsic to the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> a horiz<strong>on</strong>.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


54 2 physics in limit statements<br />

Page 82<br />

Page 59<br />

Page 59<br />

Page 59<br />

Page 59<br />

No points<br />

Limited measurement precisi<strong>on</strong> also implies that at the Planck energy it is impossible to<br />

speak about points, instants, events or dimensi<strong>on</strong>ality. Similarly, at the Planck length it<br />

is impossible to distinguish between positive and negative time values: so particles and<br />

antiparticles are not clearly distinguished at Planck scales. All these c<strong>on</strong>clusi<strong>on</strong>s are so<br />

far-reaching that we must check them in more detail. We will do this shortly.<br />

Measurement precisi<strong>on</strong> and the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> sets<br />

In physics, it is generally assumed that nature is a set <str<strong>on</strong>g>of</str<strong>on</strong>g> comp<strong>on</strong>ents or parts. <str<strong>on</strong>g>The</str<strong>on</strong>g>se comp<strong>on</strong>ents,<br />

called elements by mathematicians, are assumed to be separable from each other.<br />

This tacit assumpti<strong>on</strong> is introduced in three main situati<strong>on</strong>s: it is assumed that matter<br />

c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> separable particles, that space-time c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> separable events or points, and<br />

that the set <str<strong>on</strong>g>of</str<strong>on</strong>g> states c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> separable initial c<strong>on</strong>diti<strong>on</strong>s. Until the year 2000, physics<br />

has built the whole <str<strong>on</strong>g>of</str<strong>on</strong>g> its descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature <strong>on</strong> the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> a set.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a fundamental limit to measurement precisi<strong>on</strong> implies that nature is<br />

not a set <str<strong>on</strong>g>of</str<strong>on</strong>g> such separable elements. Precisi<strong>on</strong> limits imply that physical entities can be<br />

distinguished <strong>on</strong>ly approximately. <str<strong>on</strong>g>The</str<strong>on</strong>g> approximate distincti<strong>on</strong> is <strong>on</strong>ly possible at energies<br />

much lower than the Planck energy √ħc 5 /4G . As humans, we do live at such small<br />

energies, and we can safely make the approximati<strong>on</strong>. Indeed, the approximati<strong>on</strong> is excellent<br />

in practice; we do not notice any error. But at Planck energy, distincti<strong>on</strong> and separati<strong>on</strong><br />

is impossible in principle. In particular, at the cosmic horiz<strong>on</strong>, at the big bang, and<br />

at Planck scales, any precise distincti<strong>on</strong> between two events, two points or two particles<br />

becomes impossible.<br />

Another way to reach this result is the following. Separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two entities requires<br />

different measurement results – for example, different positi<strong>on</strong>s, different masses or different<br />

velocities. Whatever observable is chosen, at the Planck energy the distincti<strong>on</strong><br />

becomes impossible because <str<strong>on</strong>g>of</str<strong>on</strong>g> the large measurements errors. Only at everyday energies<br />

is a distincti<strong>on</strong> possible. In fact, even at everyday energies, any distincti<strong>on</strong> between<br />

two physical systems – for example, between a toothpick and a mountain – is possible<br />

<strong>on</strong>ly approximately. At Planck scales, a boundary can never be drawn.<br />

A third argument is the following. In order to count any entities in nature – a set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particles, a discrete set <str<strong>on</strong>g>of</str<strong>on</strong>g> points, or any other discrete set <str<strong>on</strong>g>of</str<strong>on</strong>g> physical observables – the<br />

entities have to be separable. But the inevitable measurement errors c<strong>on</strong>tradict separability.<br />

Thus at the Planck energy it is impossible to count physical objects with precisi<strong>on</strong>:<br />

⊳ Nature has no parts.<br />

In summary, at Planck scales, perfect separati<strong>on</strong> is impossible in principle. We cannot<br />

distinguish observati<strong>on</strong>s. At Planck scales it is impossible to split nature into separate parts<br />

or entities. In nature, elements <str<strong>on</strong>g>of</str<strong>on</strong>g> sets cannot be defined. Neither discrete nor c<strong>on</strong>tinuous<br />

sets can be c<strong>on</strong>structed:<br />

⊳ Nature does not c<strong>on</strong>tain sets or elements.<br />

Since sets and elements are <strong>on</strong>ly approximati<strong>on</strong>s, the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> a ‘set’, which assumes<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


summary <strong>on</strong> limits in nature 55<br />

Page 110<br />

separable elements, is too specialized to describe nature. Nature cannot be described at<br />

Planck scales – i.e., with full precisi<strong>on</strong> – if any <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>cepts used for its descripti<strong>on</strong><br />

presupposes sets. However, all c<strong>on</strong>cepts used in the past 25 centuries to describe nature<br />

– particles, space, time, observables, phase space, wave functi<strong>on</strong>s, Hilbert space, Fock<br />

space, Riemannian space, particle space, loop space or moduli space – are based <strong>on</strong> sets.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>y must all be aband<strong>on</strong>ed at Planck energy.<br />

⊳ No correct mathematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> nature can be based <strong>on</strong> sets.<br />

This is a central requirement for the complete theory. In other terms, nature has no parts:<br />

nature is <strong>on</strong>e.<br />

N<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the approaches to unificati<strong>on</strong> pursued in the twentieth century has aband<strong>on</strong>ed<br />

sets. <str<strong>on</strong>g>The</str<strong>on</strong>g> requirement about the unified descripti<strong>on</strong> tells us too search for other<br />

approaches. But the requirement about the complete descripti<strong>on</strong> does more than that.<br />

Indeed, the requirement to aband<strong>on</strong> sets will be an efficient guide in our search for the<br />

unificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> relativity and quantum theory. <str<strong>on</strong>g>The</str<strong>on</strong>g> requirement will even settle Hilbert’s<br />

sixth problem.<br />

summary <strong>on</strong> limits in nature<br />

Ifweexcludegaugeinteracti<strong>on</strong>s,wecansummarizetherest<str<strong>on</strong>g>of</str<strong>on</strong>g>physicsfivelimitstatements:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> speed limit is equivalent to special relativity.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> force limit is equivalent to general relativity.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> acti<strong>on</strong> limit is equivalent to quantum theory.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> entropy limit is equivalent to thermodynamics.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> distance limit is equivalent to cosmology.<br />

All these limits are observer-invariant. <str<strong>on</strong>g>The</str<strong>on</strong>g> invariance <str<strong>on</strong>g>of</str<strong>on</strong>g> the limits suggests interesting<br />

thought experiments, n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> which leads to their violati<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> invariant limits imply that in nature every physical observable is bound <strong>on</strong> <strong>on</strong>e<br />

end by the corresp<strong>on</strong>ding (corrected) Planck unit and <strong>on</strong> the other end by a cosmological<br />

limit. Every observable in nature has an upper and lower limit value.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> lower and upper limit values to all observables implies that measurement<br />

precisi<strong>on</strong> is limited. As a c<strong>on</strong>sequence, matter and vacuum are indistinguishable,<br />

the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time as a c<strong>on</strong>tinuous manifold <str<strong>on</strong>g>of</str<strong>on</strong>g> points is not correct, and<br />

nature can be described by sets and parts <strong>on</strong>ly approximately. At Planck scales, nature<br />

does not c<strong>on</strong>tain sets or elements.<br />

Nature’s limits imply that Planck units are the key to the unified theory. Since the<br />

most precise physical theories known, quantum theory and general relativity, can be reduced<br />

to limit statements, there is a good chance that the complete, unified theory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

physics will allow an equally simple descripti<strong>on</strong>. Nature’s limits thus suggest that the<br />

mathematics <str<strong>on</strong>g>of</str<strong>on</strong>g> the complete, unified theory might be simple.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


56 2 physics in limit statements<br />

Page 19<br />

At this point <str<strong>on</strong>g>of</str<strong>on</strong>g> our adventure, many questi<strong>on</strong>s are still open. Answering any <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

open issues <str<strong>on</strong>g>of</str<strong>on</strong>g> the millennium list still seems out <str<strong>on</strong>g>of</str<strong>on</strong>g> reach. But this impressi<strong>on</strong> is too<br />

pessimistic. Our discussi<strong>on</strong> implies that we <strong>on</strong>ly need to find a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature that<br />

is simple and without sets. And a natural way to avoid the use <str<strong>on</strong>g>of</str<strong>on</strong>g> sets is a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

empty space, radiati<strong>on</strong> and matter as being made <str<strong>on</strong>g>of</str<strong>on</strong>g> comm<strong>on</strong> c<strong>on</strong>stituents. But before we<br />

explore this opti<strong>on</strong>, we check the c<strong>on</strong>clusi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter in another way. In particular,<br />

as a help to more c<strong>on</strong>servative physicists, we check all c<strong>on</strong>clusi<strong>on</strong>s we found so far<br />

without making use <str<strong>on</strong>g>of</str<strong>on</strong>g> the maximum force principle.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


Chapter3<br />

GENERAL RELATI<str<strong>on</strong>g>VI</str<strong>on</strong>g>TY VERSUS<br />

QUANTUM THEORY<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. I, page 248<br />

“Man muß die Denkgewohnheiten durch<br />

Denknotwendigkeiten ersetzen.**<br />

Albert Einstein”<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> two accurate descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> available in the year 2000, namely<br />

hat <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity and that <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard model, are both useful and<br />

horoughly beautiful. This millennium descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> is useful because its<br />

c<strong>on</strong>sequences are c<strong>on</strong>firmed by all experiments, to the full measurement precisi<strong>on</strong>. We<br />

are able to describe and understand all examples <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> that have ever been encountered.<br />

We can use this understanding to save lives, provide food and enjoy life. We<br />

have thus reached a c<strong>on</strong>siderable height in our mountain ascent. Our quest for the full<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> is not far from completi<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> twentieth century physics are also beautiful. By this, physicists just mean<br />

that they can be phrased in simple terms. This is a poor definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> beauty, but physicists<br />

are rarely experts <strong>on</strong> beauty. Nevertheless, if a physicist has some other c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> beauty<br />

in physics, avoid him, because in that case he is really talking n<strong>on</strong>sense.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> simplicity <str<strong>on</strong>g>of</str<strong>on</strong>g> twentieth-century physics is well-known: all moti<strong>on</strong> observed in<br />

nature minimizes acti<strong>on</strong>. Since in physics, acti<strong>on</strong> is a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> change, we can say that<br />

all moti<strong>on</strong> observed in nature minimizes change. In particular, every example <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong><br />

due to general relativity or to the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics minimizes acti<strong>on</strong>:<br />

both theories can be described c<strong>on</strong>cisely with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> a Lagrangian.<br />

On the other hand, some important aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> any type <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>, the masses <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

involved elementary particles and the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> their coupling, are unexplained by general<br />

relativity and by the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics. <str<strong>on</strong>g>The</str<strong>on</strong>g> same applies to the origin<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all the particles in the universe, their initial c<strong>on</strong>diti<strong>on</strong>s, and the dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

space-time. Obviously, the millennium descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> physics is not yet complete.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> remaining part <str<strong>on</strong>g>of</str<strong>on</strong>g> our adventure will be the most demanding. In the ascent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

any high mountain, the head gets dizzy because <str<strong>on</strong>g>of</str<strong>on</strong>g> the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen. <str<strong>on</strong>g>The</str<strong>on</strong>g> finite amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> energy at our disposal requires that we leave behind all unnecessary baggage and<br />

everything that slows us down. In order to determine what is unnecessary, we need to<br />

focus <strong>on</strong> what we want to achieve. Our aim is the precise descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>. But even<br />

though general relativity and quantum theory are extremely precise, useful and simple,<br />

we do carry a burden: the two theories and their c<strong>on</strong>cepts c<strong>on</strong>tradict each other.<br />

** ‘One needs to replace habits <str<strong>on</strong>g>of</str<strong>on</strong>g> thought by necessities <str<strong>on</strong>g>of</str<strong>on</strong>g> thought.’<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


58 3general relativity versus quantum theory<br />

Ref. 38<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 243<br />

Ref. 39<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. V, page 123<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. V, page 129<br />

Page 40<br />

Ref. 41<br />

Ref. 40<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>tradicti<strong>on</strong>s<br />

In classical physics and in general relativity, the vacuum, or empty space, is a regi<strong>on</strong> with<br />

no mass, no energy and no momentum. If particles or gravitati<strong>on</strong>al fields are present, the<br />

energy density is not zero, space is curved and there is no complete vacuum.<br />

In everyday life, vacuum has an energy density that cannot be distinguished from<br />

zero. However, general relativity proposes a way to check this with high precisi<strong>on</strong>: we<br />

measure the average curvature <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe. Nowadays, cosmological measurements<br />

performed with dedicated satellites reveal an average energy density E/V <str<strong>on</strong>g>of</str<strong>on</strong>g> the intergalactic<br />

‘vacuum’ with the value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

E<br />

V ≈0.5nJ/m3 . (69)<br />

In short, cosmological data show that the energy density <str<strong>on</strong>g>of</str<strong>on</strong>g> intergalactic space is not<br />

exactly zero; nevertheless, the measured value is extremely small and can be neglected<br />

in all laboratory experiments.<br />

On the other hand, quantum field theory tells a different story <strong>on</strong> vacuum energy<br />

density. A vacuum is a regi<strong>on</strong> with zero-point fluctuati<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> energy c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> a vacuum<br />

is the sum <str<strong>on</strong>g>of</str<strong>on</strong>g> the zero-point energies <str<strong>on</strong>g>of</str<strong>on</strong>g> all the fields it c<strong>on</strong>tains. Indeed, the Casimir<br />

effect ‘proves’ the reality <str<strong>on</strong>g>of</str<strong>on</strong>g> these zero-point energies. Following quantum field theory,<br />

the most precise theory known, their energy density is given, within <strong>on</strong>e order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude,<br />

by<br />

E<br />

V ≈ 4πh ν<br />

c 3 ∫ max<br />

ν 3 dν= πh<br />

0 c 3 ν4 max . (70)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> approximati<strong>on</strong> is valid for the case in which the cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f frequency ν max is much larger<br />

than the rest mass m <str<strong>on</strong>g>of</str<strong>on</strong>g> the particles corresp<strong>on</strong>ding to the field under c<strong>on</strong>siderati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

limit c<strong>on</strong>siderati<strong>on</strong>s given above imply that the cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f energy has to be <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Planck energy √ħc 5 /4G ,about0.6 ⋅ 10 19 GeV= 1.0GJ. That would give a vacuum<br />

energy density <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

E<br />

V ≈10111 J/m 3 , (71)<br />

which is about 10 120 times higher than the experimental measurement. In other words,<br />

something is slightly wr<strong>on</strong>g in the calculati<strong>on</strong> due to quantum field theory.*<br />

General relativity and quantum theory c<strong>on</strong>tradict each other in other ways. Gravity<br />

is curved space-time. Extensive research has shown that quantum field theory, which<br />

describes electrodynamics and nuclear forces, fails for situati<strong>on</strong>s with str<strong>on</strong>gly curved<br />

space-time. In these cases the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘particle’ is not precisely defined. Quantum<br />

field theory cannot be extended to include gravity c<strong>on</strong>sistently, and thus to include general<br />

relativity. Without the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle as a discrete entity, we also lose the<br />

ability to perform perturbati<strong>on</strong> calculati<strong>on</strong>s – and these are the <strong>on</strong>ly calculati<strong>on</strong>s possible<br />

* It is worthwhile to stress that the ‘slight’ mistake lies in the domain <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum field theory. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is no<br />

mistake and no mystery, despite the many claims to the c<strong>on</strong>trary found in newspapers and in bad research<br />

articles, in general relativity. This well-known point is made especially clear by Bianchi and Rovelli.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


general relativity versus quantum theory 59<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. V, page 295<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. V, page 45<br />

Page 65<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 284<br />

Ref. 42, Ref. 43<br />

Ref. 44, Ref. 45<br />

Ref. 46<br />

Ref. 47<br />

in quantum field theory. In short, quantum theory <strong>on</strong>ly works because it assumes that<br />

gravity does not exist. Indeed, the gravitati<strong>on</strong>al c<strong>on</strong>stant G does not appear in quantum<br />

field theory.<br />

On the other hand, general relativity neglects the commutati<strong>on</strong> rules between physical<br />

quantities discovered in experiments <strong>on</strong> a microscopic scale. General relativity assumes<br />

that the classical noti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> positi<strong>on</strong> and momentum <str<strong>on</strong>g>of</str<strong>on</strong>g> material objects are meaningful.<br />

It thus ignores Planck’s c<strong>on</strong>stant ħ, and <strong>on</strong>ly works by neglecting quantum effects.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement also differs. In general relativity, as in classical physics,<br />

it is assumed that arbitrary precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement is possible – for example, by using<br />

finer and finer ruler marks. In quantum mechanics, <strong>on</strong> the other hand, the precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

measurement is limited. <str<strong>on</strong>g>The</str<strong>on</strong>g> indeterminacy relati<strong>on</strong> yields limits that follow from the<br />

mass M <str<strong>on</strong>g>of</str<strong>on</strong>g> the measurement apparatus.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>tradicti<strong>on</strong>s also c<strong>on</strong>cern the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> time. According to relativity and classical<br />

physics, time is what is read from clocks. But quantum theory says that precise<br />

clocks do not exist, especially if gravitati<strong>on</strong> is taken into account. What does ‘waiting 10<br />

minutes’ mean, if the clock goes into a quantum-mechanical superpositi<strong>on</strong> as a result <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

its coupling to space-time geometry? It means nothing.<br />

Similarly, general relativity implies that space and time cannot be distinguished,<br />

whereas quantum theory implies that matter does make a distincti<strong>on</strong> between them. A<br />

related difference is the following. Quantum theory is a theory <str<strong>on</strong>g>of</str<strong>on</strong>g> – admittedly weird –<br />

local observables. In general relativity, there are no local observables, as Einstein’s hole<br />

argument shows.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>tradicti<strong>on</strong> between the two theories is shown most clearly by the failure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

general relativity to describe the pair creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particles with spin 1/2, a typical and<br />

essential quantum process. John Wheeler* and others have argued that, in such a case, the<br />

topology <str<strong>on</strong>g>of</str<strong>on</strong>g> space necessarily has to change; in general relativity, however, the topology<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> space is fixed. Equivalently, quantum theory says that matter is made <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong>s, but<br />

fermi<strong>on</strong>s cannot be incorporated into general relativity.**<br />

Another striking c<strong>on</strong>tradicti<strong>on</strong> was pointed out by Jürgen Ehlers. Quantum theory is<br />

built <strong>on</strong> point particles, and point particles move <strong>on</strong> time-like world lines. But following<br />

general relativity, point particles have a singularity inside their black hole horiz<strong>on</strong>; and<br />

singularities always move <strong>on</strong> space-like world lines. <str<strong>on</strong>g>The</str<strong>on</strong>g> two theories thus c<strong>on</strong>tradict each<br />

other at smallest distances.<br />

No descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature that c<strong>on</strong>tains c<strong>on</strong>tradicti<strong>on</strong>s can lead to a unified or to a<br />

completely correct descripti<strong>on</strong>. To eliminate the c<strong>on</strong>tradicti<strong>on</strong>s, we need to understand<br />

their origin.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tradicti<strong>on</strong>s<br />

All c<strong>on</strong>tradicti<strong>on</strong>s between general relativity and quantum mechanics have the same<br />

origin. In 20th-century physics, moti<strong>on</strong> is described in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> objects, made up <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

* John Archibald Wheeler (b. 1911, Jacks<strong>on</strong>ville, d. 2008, Hightstown), was a physicist and influential teacher<br />

who worked <strong>on</strong> general relativity.<br />

** As we will see below, the strand c<strong>on</strong>jecture provides a way to incorporate fermi<strong>on</strong>s into an extremely<br />

accurate approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity, without requiring any topology change. This effectively invalidates<br />

Wheeler’s argument.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


60 3general relativity versus quantum theory<br />

Ref. 48<br />

Ref. 42, Ref. 49<br />

particles, andspace-time,madeup<str<strong>on</strong>g>of</str<strong>on</strong>g>events. Let us see how these two c<strong>on</strong>cepts are<br />

defined.<br />

A particle – and in general any object – is defined as a c<strong>on</strong>served entity that has a<br />

positi<strong>on</strong> and that can move. In fact, the etymology <str<strong>on</strong>g>of</str<strong>on</strong>g> the word object is c<strong>on</strong>nected to the<br />

latter property. In other words, a particle is a small entity with c<strong>on</strong>served mass, charge,<br />

spin and so <strong>on</strong>, whose positi<strong>on</strong> can vary with time.<br />

An event is a point in space and time. In every physics text, time is defined with the<br />

help <str<strong>on</strong>g>of</str<strong>on</strong>g> moving objects, usually called ‘clocks’, or moving particles, such as those emitted<br />

by light sources. Similarly, length is defined in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> objects, either with an oldfashi<strong>on</strong>ed<br />

ruler or in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> light, which is itself moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particles.<br />

Modern physics has sharpened our definiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> particles and space-time. Quantum<br />

mechanics assumes that space-time is given (as a symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> the Hamilt<strong>on</strong>ian), and<br />

studies the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> particles and their moti<strong>on</strong>, both for matter and for radiati<strong>on</strong>.<br />

Quantum theory has deduced the full list <str<strong>on</strong>g>of</str<strong>on</strong>g> properties that define a particle. General relativity,<br />

and especially cosmology, takes the opposite approach: it assumes that the properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> matter and radiati<strong>on</strong> are given (for example, via their equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> state), and<br />

describes in detail the space-time that follows from them, in particular its curvature.<br />

However, <strong>on</strong>e fact remains unchanged throughout all these advances: in the millennium<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature, the two c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> particle and <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time are each defined<br />

with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> the other. This circular definiti<strong>on</strong> is the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tradicti<strong>on</strong>s<br />

between quantum mechanics and general relativity. In order to eliminate the c<strong>on</strong>tradicti<strong>on</strong>s<br />

and to formulate a complete theory, we must eliminate this circular definiti<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> domain <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tradicti<strong>on</strong>s: Planck scales<br />

Despite their c<strong>on</strong>tradicti<strong>on</strong>s and the underlying circular definiti<strong>on</strong>, both general relativity<br />

and quantum theory are successful theories for the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature: they agree<br />

with all data. How can this be?<br />

Each theory <str<strong>on</strong>g>of</str<strong>on</strong>g> modern physics provides a criteri<strong>on</strong> for determining when it is necessary<br />

and when classical Galilean physics is no l<strong>on</strong>ger applicable. <str<strong>on</strong>g>The</str<strong>on</strong>g>se criteria are the<br />

basis for many arguments in the following chapters.<br />

General relativity shows that it is necessary to take into account the curvature <str<strong>on</strong>g>of</str<strong>on</strong>g> empty<br />

space* and space-time whenever we approach an object <str<strong>on</strong>g>of</str<strong>on</strong>g> mass m to within a distance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> the Schwarzschild radius r S ,givenby<br />

r S =2Gm/c 2 . (72)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> gravitati<strong>on</strong>al c<strong>on</strong>stant G and the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light c act as c<strong>on</strong>versi<strong>on</strong> c<strong>on</strong>stants. Indeed,<br />

as the Schwarzschild radius <str<strong>on</strong>g>of</str<strong>on</strong>g> an object is approached, the difference between general<br />

relativity and the classical 1/r 2 descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity becomes larger and larger. For example,<br />

the barely measurable gravitati<strong>on</strong>al deflecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> light by the Sun is due to the<br />

light approaching the Sun to within 2.4 ⋅ 10 5 times its Schwarzschild radius. Usually, we<br />

are forced to stay away from objects at a distance that is an even larger multiple <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Schwarzschild radius, as shown in Table 2. Only for this reas<strong>on</strong> is general relativity unne-<br />

* In the following, we use the terms ‘vacuum’ and ‘empty space’ interchangeably.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


general relativity versus quantum theory 61<br />

Challenge 33 e<br />

TABLE 2 <str<strong>on</strong>g>The</str<strong>on</strong>g> size, Schwarzschild radius and Compt<strong>on</strong> wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> some objects appearing in nature.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> lengths in quotati<strong>on</strong> marks make no physical sense, as explained in the text.<br />

Object<br />

Diameter<br />

d<br />

Mass m<br />

Schwarzschild<br />

radius r S<br />

Ratio<br />

d/r S<br />

Compt<strong>on</strong><br />

wavelength<br />

λ C<br />

(red.)<br />

Ratio<br />

d/λ C<br />

galaxy ≈1Zm ≈5⋅10 40 kg ≈70Tm ≈10 7 ‘≈10 −83 m’ ≈10 104<br />

neutr<strong>on</strong> star 10 km 2.8 ⋅ 10 30 kg 4.2 km 2.4 ‘1.3 ⋅ 10 −73 m’ 8.0 ⋅ 10 76<br />

Sun 1.4 Gm 2.0 ⋅ 10 30 kg 3.0 km 4.8 ⋅ 10 5 ‘1.0 ⋅ 10 −73 m’ 8.0 ⋅ 10 81<br />

Earth 13 Mm 6.0 ⋅ 10 24 kg 8.9 mm 1.4 ⋅ 10 9 ‘5.8 ⋅ 10 −68 m’ 2.2 ⋅ 10 74<br />

human 1.8 m 75 kg 0.11 ym 1.6 ⋅ 10 25 ‘4.7 ⋅ 10 −45 m’ 3.8 ⋅ 10 44<br />

molecule 10 nm 0.57 zg ‘8.5 ⋅ 10 −52 m’ 1.2 ⋅ 10 43 6.2 ⋅ 10 −19 m 1.6 ⋅ 10 10<br />

atom ( 12 C) 0.6 nm 20 yg ‘3.0 ⋅ 10 −53 m’ 2.0 ⋅ 10 43 1.8 ⋅ 10 −17 m 3.2 ⋅ 10 7<br />

prot<strong>on</strong> p 2 fm 1.7 yg ‘2.5 ⋅ 10 −54 m’ 8.0 ⋅ 10 38 2.0 ⋅ 10 −16 m 9.6<br />

pi<strong>on</strong> π 2fm 0.24 yg ‘3.6 ⋅ 10 −55 m’ 5.6 ⋅ 10 39 1.5 ⋅ 10 −15 m 1.4<br />

up-quark u


62 3general relativity versus quantum theory<br />

Challenge 34 e<br />

Whenever we approach objects at these scales, both general relativity and quantum<br />

mechanics play a role, and effects <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum gravity appear. Because the values <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Planck dimensi<strong>on</strong>s are extremely small, this level <str<strong>on</strong>g>of</str<strong>on</strong>g> sophisticati<strong>on</strong> is unnecessary in<br />

everyday life, in astr<strong>on</strong>omy and even in particle physics.<br />

In the millennium descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature, all the c<strong>on</strong>tradicti<strong>on</strong>s and also the circular<br />

definiti<strong>on</strong> just menti<strong>on</strong>ed are effective <strong>on</strong>ly at Planck scales. You can check this yourself.<br />

This is the reas<strong>on</strong> that general relativity and quantum theory work so well in practice.<br />

However, to answer the questi<strong>on</strong>s posed at the beginning – why do we live in three dimensi<strong>on</strong>s,<br />

why are there three interacti<strong>on</strong>s, and why is the prot<strong>on</strong> 1836.15 times heavier<br />

than the electr<strong>on</strong>? – we require a precise and complete descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. To answer<br />

these questi<strong>on</strong>s, we must understand physics at Planck scales.<br />

In summary, general relativity and quantum theory do c<strong>on</strong>tradict each other. However,<br />

the domains where these c<strong>on</strong>tradicti<strong>on</strong>s play a role, the Planck scales, are not accessible<br />

by experiment. As a c<strong>on</strong>sequence, the c<strong>on</strong>tradicti<strong>on</strong>s and our lack <str<strong>on</strong>g>of</str<strong>on</strong>g> knowledge<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> how nature behaves at the Planck scales have <strong>on</strong>ly <strong>on</strong>e effect: we do not see the soluti<strong>on</strong>s<br />

to the millennium issues.<br />

We note that some researchers argue that the Planck scales specify <strong>on</strong>ly <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> several<br />

domains <str<strong>on</strong>g>of</str<strong>on</strong>g> nature where quantum mechanics and general relativity apply simultaneously.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>y menti<strong>on</strong> horiz<strong>on</strong>s and the big bang as separate domains. However, it is more<br />

appropriate to argue that horiz<strong>on</strong>s and the big bang are situati<strong>on</strong>s where Planck scales<br />

are essential.<br />

Resolving the c<strong>on</strong>tradicti<strong>on</strong>s<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>tradicti<strong>on</strong>s between general relativity and quantum theory have little practical<br />

c<strong>on</strong>sequences. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, for a l<strong>on</strong>g time, the c<strong>on</strong>tradicti<strong>on</strong>s were accommodated by<br />

keeping the two theories separate. It is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten said that quantum mechanics is valid at<br />

small scales and general relativity is valid at large scales. This attitude is acceptable as<br />

l<strong>on</strong>g as we remain far from the Planck length. However, this accommodating attitude<br />

also prevents us from resolving the circular definiti<strong>on</strong>, the c<strong>on</strong>tradicti<strong>on</strong>s and therefore,<br />

the millennium issues.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> situati<strong>on</strong> resembles the well-known drawing, Figure 2,byMauritsEscher(b.1898<br />

Leeuwarden, d. 1972 Hilversum) in which two hands, each holding a pencil, seem to<br />

be drawing each other. If <strong>on</strong>e hand is taken as a symbol <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum and the other as a<br />

symbol <str<strong>on</strong>g>of</str<strong>on</strong>g> particles, with the act <str<strong>on</strong>g>of</str<strong>on</strong>g> drawing taken as the act <str<strong>on</strong>g>of</str<strong>on</strong>g> defining, the picture gives<br />

a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> twentieth-century physics. <str<strong>on</strong>g>The</str<strong>on</strong>g> apparent circular definiti<strong>on</strong> is solved by<br />

recognizing that the two c<strong>on</strong>cepts (the two hands) both originate from a third, hidden<br />

c<strong>on</strong>cept. In the picture, this third entity is the hand <str<strong>on</strong>g>of</str<strong>on</strong>g> the artist. In physics, the third<br />

c<strong>on</strong>cept is the comm<strong>on</strong> origin <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum and particles.<br />

We thus c<strong>on</strong>clude that the c<strong>on</strong>tradicti<strong>on</strong>s in physics and the circular definiti<strong>on</strong> are<br />

solved by comm<strong>on</strong> c<strong>on</strong>stituents for vacuum and matter. In order to find out what these<br />

comm<strong>on</strong> c<strong>on</strong>stituents are and what they are not, we must explore the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> nature<br />

at the Planck scales.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


general relativity versus quantum theory 63<br />

Page 58<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> origin <str<strong>on</strong>g>of</str<strong>on</strong>g> points<br />

FIGURE 2 ‘Tekenen’ by Maurits<br />

Escher, 1948 – a metaphor for the<br />

way in which ‘particles’ and<br />

‘space-time’ are defined: each with<br />

the help <str<strong>on</strong>g>of</str<strong>on</strong>g> the other (© M.C. Escher<br />

Heirs).<br />

General relativity is built <strong>on</strong> the assumpti<strong>on</strong> that space is a c<strong>on</strong>tinuum <str<strong>on</strong>g>of</str<strong>on</strong>g> points. Already<br />

atschoolwelearnthatlines,surfacesandareasaremade<str<strong>on</strong>g>of</str<strong>on</strong>g>points.Wetakethisasgranted,<br />

because we imagine that finer and finer measurements are always possible. And all<br />

experiments so far agree with the assumpti<strong>on</strong>. Fact is: in this reas<strong>on</strong>ing, we first idealized<br />

measurement rulers – which are made <str<strong>on</strong>g>of</str<strong>on</strong>g> matter – and then ‘deduced’ that points<br />

in space exist.<br />

Quantum theory is built <strong>on</strong> the assumpti<strong>on</strong> that elementary particles are point-like.<br />

We take this as granted, because we imagine that collisi<strong>on</strong>s at higher and higher energy<br />

are possible that allow elementary particles to get as close as possible. And all experiments<br />

so far agree with the assumpti<strong>on</strong>. Fact is: in this reas<strong>on</strong>ing, we first imagined infinite<br />

energy and momentum values – which is a statement <strong>on</strong> time and space properties<br />

– and then ‘deduce’ that point particles exist.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> points in space and <str<strong>on</strong>g>of</str<strong>on</strong>g> separate, point-like particles are the reas<strong>on</strong>s<br />

for the mistaken vacuum energy calculati<strong>on</strong> (71) that is wr<strong>on</strong>g by 120 orders<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude.<br />

In short, <strong>on</strong>ly the circular definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> space and matter allows us to define points<br />

and point particles. This puts us in a strange situati<strong>on</strong>. On the <strong>on</strong>e hand, experiment tells<br />

us that describing nature with space points and with point particles works. On the other<br />

hand, reas<strong>on</strong> tells us that this is a fallacy and cannot be correct at Planck scales. We need<br />

asoluti<strong>on</strong>.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


64 3general relativity versus quantum theory<br />

summary <strong>on</strong> the clash between the two theories<br />

General relativity and quantum theory c<strong>on</strong>tradict each other. In practice however, this<br />

happens <strong>on</strong>ly at Planck scales; and this includes horiz<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> reas<strong>on</strong> for the c<strong>on</strong>tradicti<strong>on</strong><br />

is our insistence <strong>on</strong> a circular definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> space and particles. Indeed, we need<br />

this circularity: Only such a circular definiti<strong>on</strong> allows us to define space points and point<br />

particles at all.<br />

In order to solve the c<strong>on</strong>tradicti<strong>on</strong>s between general relativity and quantum theory<br />

and in order to understand nature at Planck scales, we must introduce comm<strong>on</strong> c<strong>on</strong>stituents<br />

for space and particles. But comm<strong>on</strong> c<strong>on</strong>stituents have an important c<strong>on</strong>sequence:<br />

comm<strong>on</strong> c<strong>on</strong>stituents force us to stop using points to describe nature. We now explore<br />

this c<strong>on</strong>necti<strong>on</strong>.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


Chapter4<br />

DOES MATTER DIFFER FROM<br />

VACUUM?<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 24<br />

Ref. 50, Ref. 51<br />

Ref. 52, Ref. 53<br />

Ref. 54<br />

Page 75<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> in the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> leads<br />

o limitati<strong>on</strong>s for all measurements: Heisenberg’s indeterminacy relati<strong>on</strong>s.<br />

hese relati<strong>on</strong>s, when combined with the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> gravitati<strong>on</strong>, imply an almost<br />

unbelievable series <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sequences for the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> nature at Planck scales. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

most important <strong>on</strong>es are the necessity to aband<strong>on</strong> points, instants and events, and the<br />

equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum and matter. Here we show how these surprising and important<br />

c<strong>on</strong>clusi<strong>on</strong>s follow from simple arguments based <strong>on</strong> the indeterminacy relati<strong>on</strong>s, the<br />

Compt<strong>on</strong> wavelength and the Schwarzschild radius.<br />

Farewell to instants <str<strong>on</strong>g>of</str<strong>on</strong>g> time“Time is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> time atoms ... which in<br />

fact are indivisible.<br />

Measurement limits appear most clearly when we investigate the properties<br />

Maim<strong>on</strong>ides**”<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> clocks and<br />

metre rules. Is it possible to c<strong>on</strong>struct a clock that is able to measure time intervals shorter<br />

than the Planck time? Surprisingly, the answer is no, even though the time–energy indeterminacy<br />

relati<strong>on</strong> ΔEΔt ⩾ ħ seems to indicate that by making ΔE large enough, we can<br />

make Δt arbitrary small.<br />

Every clock is a device with some moving parts. <str<strong>on</strong>g>The</str<strong>on</strong>g> moving parts can be mechanical<br />

wheels, or particles <str<strong>on</strong>g>of</str<strong>on</strong>g> matter in moti<strong>on</strong>, or changing electrodynamic fields (i.e.,<br />

phot<strong>on</strong>s), or decaying radioactive particles. For each moving comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> a clock the<br />

indeterminacy relati<strong>on</strong> applies. As explained most clearly by Michael Raymer, the indeterminacy<br />

relati<strong>on</strong> for two n<strong>on</strong>-commuting variables describes two different, but related,<br />

situati<strong>on</strong>s: it makes a statement about standard deviati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> separate measurements <strong>on</strong><br />

many identical systems; and it describes the measurement precisi<strong>on</strong> for a joint measurement<br />

<strong>on</strong> a single system. In what follows, we will c<strong>on</strong>sider <strong>on</strong>ly the sec<strong>on</strong>d situati<strong>on</strong>.<br />

For a clock to be useful, we need to know both the time and the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> each hand.<br />

Otherwise it would not be a recording device. More generally, a clock must be a classical<br />

system. We need the combined knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> the n<strong>on</strong>-commuting variables for each<br />

moving comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the clock. Let us focus <strong>on</strong> the comp<strong>on</strong>ent with the largest time indeterminacy<br />

Δt. It is evident that the smallest time interval δt that can be measured by<br />

** Moses Maim<strong>on</strong>ides (b. 1135 Cordoba, d. 1204 Egypt) was a physician, philosopher and influential theologian.<br />

However, there is no evidence for ‘time atoms’ in nature, as explained below.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


66 4doesmatterdifferfromvacuum?<br />

Ref. 59<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 163<br />

Ref. 49<br />

Challenge 35 s<br />

Ref. 55, Ref. 56<br />

Ref. 57, Ref. 58<br />

a clock is always larger than the quantum limit, i.e., larger than the time indeterminacy<br />

Δt for the most ‘uncertain’ comp<strong>on</strong>ent. Thus we have<br />

δt ⩾ Δt ⩾<br />

ħ<br />

ΔE , (75)<br />

where ΔE is the energy indeterminacy <str<strong>on</strong>g>of</str<strong>on</strong>g> the moving comp<strong>on</strong>ent. Now, ΔE must be smaller<br />

than the total energy E=c 2 m <str<strong>on</strong>g>of</str<strong>on</strong>g> the comp<strong>on</strong>ent itself: ΔE < c 2 m.* Furthermore, a<br />

clock provides informati<strong>on</strong>, so signals have to be able to leave it. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore the clock must<br />

not be a black hole: its mass m must be smaller than a black hole <str<strong>on</strong>g>of</str<strong>on</strong>g> its size, i.e., m⩽c 2 l/G,<br />

where l is the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the clock (neglecting factors <str<strong>on</strong>g>of</str<strong>on</strong>g> order unity). Finally, for a sensible<br />

measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the time interval δt, thesizel <str<strong>on</strong>g>of</str<strong>on</strong>g> the clock must be smaller than cδt,<br />

because otherwise different parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the clock could not work together to produce the<br />

same time display: l E, it would be impossible<br />

to distinguish between a single clock and a clock–anticlock pair created from the vacuum, or a comp<strong>on</strong>ent<br />

together with two such pairs, and so <strong>on</strong>.<br />

** It is amusing to explore how a clock larger than cδtwould stop working, as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> rigidity<br />

in its comp<strong>on</strong>ents.<br />

*** Gravitati<strong>on</strong> is essential here. <str<strong>on</strong>g>The</str<strong>on</strong>g> present argument differs from the well-known study <strong>on</strong> the limitati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> clocks due to their mass and their measuring time which was published by Salecker and Wigner and<br />

summarized in pedagogical form by Zimmerman. In our case, both quantum mechanics and gravity are<br />

included, and therefore a different, lower, and more fundamental limit is found. Also the discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> black<br />

hole radiati<strong>on</strong> does not change the argument: black hole radiati<strong>on</strong> notwithstanding, measurement devices<br />

cannot exist inside black holes.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


does matter differ from vacuum? 67<br />

ΔE produces an indeterminacy Δt in the delay:<br />

Δt =<br />

ΔE G<br />

lc 5 . (78)<br />

Ref. 60<br />

Ref. 24<br />

This determines the precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the clock. Furthermore, the energy indeterminacy <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

clock is fixed by the indeterminacy relati<strong>on</strong> for time and energy ΔE ⩾ ħ/Δt. Combining<br />

all this, we again find the relati<strong>on</strong> δt ⩾ t Pl for the minimum measurable time.<br />

We are forced to c<strong>on</strong>clude that in nature, it is impossible to measure time intervals<br />

shorter than the Planck time. Thus<br />

⊳ In nature there is a minimum time interval.<br />

In other words, at Planck scales the term ‘instant <str<strong>on</strong>g>of</str<strong>on</strong>g> time’ has no theoretical or experimental<br />

basis. But let us go <strong>on</strong>. Special relativity, quantum mechanics and general relativity all rely<br />

<strong>on</strong> the idea that time can be defined for all points <str<strong>on</strong>g>of</str<strong>on</strong>g> a given reference frame. However,<br />

two clocks a distance l apart cannot be synchr<strong>on</strong>ized with arbitrary precisi<strong>on</strong>. Since the<br />

distance between two clocks cannot be measured with an error smaller than the Planck<br />

length l Pl , and transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> signals is necessary for synchr<strong>on</strong>izati<strong>on</strong>, it is not possible<br />

to synchr<strong>on</strong>ize two clocks with a better precisi<strong>on</strong> than l Pl /c = t Pl ,thePlancktime.So<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> a single time coordinate for a whole reference frame is <strong>on</strong>ly an approximati<strong>on</strong>.<br />

Reference frames do not have a single time coordinate at Planck scales.<br />

Moreover, since the time difference between events can <strong>on</strong>ly be measured within a<br />

Planck time, for two events distant in time by this order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude, it is not possible<br />

to say with complete certainty which <str<strong>on</strong>g>of</str<strong>on</strong>g> the two precedes the other. But if events cannot<br />

be ordered, then the very c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> time, which was introduced into physics to describe<br />

sequences, makes no sense at Planck scales. In other words, after dropping the idea <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

comm<strong>on</strong> time coordinate for a complete frame <str<strong>on</strong>g>of</str<strong>on</strong>g> reference, we are forced to drop the<br />

idea <str<strong>on</strong>g>of</str<strong>on</strong>g> time at a single ‘point’ as well. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘proper time’ loses its meaning at<br />

Planck scales.<br />

Farewell to points in space<br />

“Our greatest pretenses are built up not to hide<br />

the evil and the ugly in us, but our emptiness.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> hardest thing to hide is something that is<br />

not there.<br />

Eric H<str<strong>on</strong>g>of</str<strong>on</strong>g>fer,* <str<strong>on</strong>g>The</str<strong>on</strong>g> Passi<strong>on</strong>ate State <str<strong>on</strong>g>of</str<strong>on</strong>g> Mind”<br />

In a similar way, we can deduce that it is impossible to make a metre rule, or any other<br />

length-measuring device, that is able to measure lengths shorter than the Planck length.<br />

Obviously, we can already deduce this from l Pl =ct Pl , but an independent pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is also<br />

possible.<br />

For any length measurement, joint measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> positi<strong>on</strong> and momentum are necessary.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> most straightforward way to measure the distance between two points is to<br />

put an object at rest at each positi<strong>on</strong>. Now, the minimal length δl that can be measured<br />

* Eric H<str<strong>on</strong>g>of</str<strong>on</strong>g>fer (b. 1902 New York City, d. 1983 San Francisco), philosopher.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


68 4doesmatterdifferfromvacuum?<br />

must be larger than the positi<strong>on</strong> indeterminacy <str<strong>on</strong>g>of</str<strong>on</strong>g> the two objects. From the indeterminacy<br />

relati<strong>on</strong> we know that neither object’s positi<strong>on</strong> can be determined with a precisi<strong>on</strong><br />

Δl better than that given by Δl Δp = ħ,whereΔp is the momentum indeterminacy. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

requirement that there be <strong>on</strong>ly <strong>on</strong>e object at each end (avoiding pair producti<strong>on</strong> from<br />

the vacuum) means that Δp < mc: together, these requirements give<br />

δl ⩾ Δl ⩾ ħ mc . (79)<br />

Ref. 42, Ref. 49<br />

Ref. 24<br />

Ref. 61<br />

Ref. 62, Ref. 63<br />

Ref. 26<br />

Furthermore, the measurement cannot be performed if signals cannot leave the objects;<br />

thus, they cannot be black holes. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore their masses must be small enough for their<br />

Schwarzschild radius r S =2Gm/c 2 to be less than the distance δl separating them. Again<br />

omitting the factor <str<strong>on</strong>g>of</str<strong>on</strong>g> 2, we get<br />

δl ⩾ √ ħG<br />

c 3 =l Pl . (80)<br />

Length measurements are limited by the Planck length.<br />

Another way to deduce this limit reverses the roles <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity and quantum<br />

theory. To measure the distance between two objects, we have to localize the first object<br />

with respect to the other within a certain interval Δx. <str<strong>on</strong>g>The</str<strong>on</strong>g> corresp<strong>on</strong>ding energy indeterminacy<br />

obeys ΔE = c(c 2 m 2 +(Δp) 2 ) 1/2 ⩾cħ/Δx. However, general relativity shows<br />

that a small volume filled with energy changes the curvature <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time, and thus<br />

changes the metric <str<strong>on</strong>g>of</str<strong>on</strong>g> the surrounding space. For the resulting distance change Δl, compared<br />

with empty space, we find the expressi<strong>on</strong> Δl ≈ GΔE/c 4 .Inshort,ifwelocalizethe<br />

first particle in space with a precisi<strong>on</strong> Δx, the distance to a sec<strong>on</strong>d particle is known<br />

<strong>on</strong>ly with precisi<strong>on</strong> Δl. <str<strong>on</strong>g>The</str<strong>on</strong>g> minimum length δl that can be measured is obviously larger<br />

than either <str<strong>on</strong>g>of</str<strong>on</strong>g> these quantities; inserting the expressi<strong>on</strong> for ΔE, we find again that the<br />

minimum measurable length δl is given by the Planck length.<br />

We note that every length measurement requires a joint measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> positi<strong>on</strong> and<br />

momentum. This is particularly obvious if we approach a metre ruler to an object, but it<br />

is equally true for any other length measurement.<br />

We note that, since the Planck length is the shortest possible length, there can be<br />

no observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum-mechanical effects for a situati<strong>on</strong> where the corresp<strong>on</strong>ding<br />

de Broglie or Compt<strong>on</strong> wavelength is smaller than the Planck length. In prot<strong>on</strong>–<br />

prot<strong>on</strong> collisi<strong>on</strong>s we observe both pair producti<strong>on</strong> and interference effects. In c<strong>on</strong>trast,<br />

the Planck limit implies that in everyday, macroscopic situati<strong>on</strong>s, such as car–car collisi<strong>on</strong>s,<br />

we cannot observe embryo–antiembryo pair producti<strong>on</strong> and quantum interference<br />

effects.<br />

Another way to c<strong>on</strong>vince <strong>on</strong>eself that points have no meaning is to observe that a<br />

point is an entity with vanishing volume; however, the minimum volume possible in<br />

nature is the Planck volume V Pl =l 3 Pl .<br />

We c<strong>on</strong>clude that the Planck units not <strong>on</strong>ly provide natural units; they also provide –<br />

within a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> order <strong>on</strong>e – the limit values <str<strong>on</strong>g>of</str<strong>on</strong>g> space and time intervals.<br />

In summary, from two simple properties comm<strong>on</strong> to all length-measuring devices,<br />

namely that they are discrete and that they can be read, we arrive at the c<strong>on</strong>clusi<strong>on</strong> that<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


does matter differ from vacuum? 69<br />

Ref. 24<br />

Challenge 36 e<br />

Ref. 24<br />

Ref. 64, Ref. 65<br />

Ref. 66, Ref. 67<br />

Ref. 68<br />

⊳ Lengths smaller than the Planck length cannot be measured.<br />

Whatever method is used, be it a metre rule or time-<str<strong>on</strong>g>of</str<strong>on</strong>g>-flight measurement, we cannot<br />

overcome this fundamental limit. It follows that the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> a ‘point in space’ has no<br />

experimental or theoretical basis. In other terms,<br />

⊳ In nature there is a minimum length interval.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> limitati<strong>on</strong>s <strong>on</strong> length measurements imply that we cannot speak <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous space,<br />

except in an approximate sense. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement precisi<strong>on</strong> at Planck<br />

scales, the c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial order, <str<strong>on</strong>g>of</str<strong>on</strong>g> translati<strong>on</strong> invariance, <str<strong>on</strong>g>of</str<strong>on</strong>g> isotropy <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum<br />

and <str<strong>on</strong>g>of</str<strong>on</strong>g> global coordinate systems have no experimental basis.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> generalized indeterminacy relati<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> limit values for length and time measurements are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten expressed by the so-called<br />

generalized indeterminacy relati<strong>on</strong><br />

or<br />

ΔpΔx ⩾ ħ/2 + f G c 3 (Δp)2 (81)<br />

ΔpΔx ⩾ ħ/2 + f l2 Pl<br />

ħ (Δp)2 , (82)<br />

where f is a numerical factor <str<strong>on</strong>g>of</str<strong>on</strong>g> order unity. A similar expressi<strong>on</strong> holds for the time–<br />

energy indeterminacy relati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> first term <strong>on</strong> the right-hand side is the usual<br />

quantum-mechanical indeterminacy. <str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d term is negligible for everyday energies,<br />

and is significant <strong>on</strong>ly near Planck energies; it is due to the changes in space-time<br />

induced by gravity at these high energies. You should be able to show that the generalized<br />

principle (81)impliesthatΔx can never be smaller than f 1/2 l Pl .<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> generalized indeterminacy relati<strong>on</strong> is derived in exactly the same way in which<br />

Heisenberg derived the original indeterminacy relati<strong>on</strong> ΔpΔx ⩾ ħ/2,namelybystudying<br />

the scattering <str<strong>on</strong>g>of</str<strong>on</strong>g> light by an object under a microscope. A careful re-evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

process, this time including gravity, yields equati<strong>on</strong> (81). For this reas<strong>on</strong>, all descripti<strong>on</strong>s<br />

that unify quantum mechanics and gravity must yield this relati<strong>on</strong>, and indeed all known<br />

approaches do so.<br />

Farewell to space-time c<strong>on</strong>tinuity<br />

“Ich betrachte es als durchaus möglich, dass die Physik nicht auf dem Feldbegriff<br />

begründet werden kann, d.h. auf k<strong>on</strong>tinuierlichen Gebilden. Dann bleibt v<strong>on</strong><br />

meinem ganzen Luftschloss inklusive Gravitati<strong>on</strong>stheorie nichts bestehen.*<br />

Albert Einstein, 1954, in a letter to Michele Besso.”<br />

* ‘I c<strong>on</strong>sider it as quite possible that physics cannot be based <strong>on</strong> the field c<strong>on</strong>cept, i.e., <strong>on</strong> c<strong>on</strong>tinuous structures.<br />

In that case, nothing remains <str<strong>on</strong>g>of</str<strong>on</strong>g> my castle in the air, gravitati<strong>on</strong> theory included.’<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


70 4doesmatterdifferfromvacuum?<br />

Ref. 69<br />

Ref. 70<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> classical descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature is based <strong>on</strong> c<strong>on</strong>tinuity: it involves and allows differences<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> time and space that are as small as can be imagined. Between any two points<br />

in time or space, the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> infinitely many other points is assumed. Measurement<br />

results <str<strong>on</strong>g>of</str<strong>on</strong>g> arbitrary small values are deemed possible. <str<strong>on</strong>g>The</str<strong>on</strong>g> same is valid for acti<strong>on</strong> values.<br />

However, quantum mechanics begins with the realizati<strong>on</strong> that the classical c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

acti<strong>on</strong> makes no sense below the value <str<strong>on</strong>g>of</str<strong>on</strong>g> ħ/2; similarly, unified theories begin with the<br />

realizati<strong>on</strong> that the classical c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> time and length make no sense below Planck<br />

scales. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, the c<strong>on</strong>tinuum descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time has to be aband<strong>on</strong>ed in favour<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a more appropriate descripti<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> minimum length distance, the minimum time interval, and equivalently, the new,<br />

generalized indeterminacy relati<strong>on</strong> appearing at Planck scales show that space, time and<br />

in particular, space-time, are not well described as a c<strong>on</strong>tinuum. Inserting cΔp ⩾ ΔE ⩾<br />

ħ/Δt into equati<strong>on</strong> (81), we get<br />

ΔxΔt ⩾ ħG/c 4 =t Pl l Pl , (83)<br />

which <str<strong>on</strong>g>of</str<strong>on</strong>g> course has no counterpart in standard quantum mechanics. This shows that<br />

also space-time events do not exist. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> an ‘event’, being a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

‘point in space’ and an ‘instant <str<strong>on</strong>g>of</str<strong>on</strong>g> time’, loses its meaning for the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature<br />

at Planck scales.<br />

Interestingly, the view that c<strong>on</strong>tinuity must be aband<strong>on</strong>ed is almost <strong>on</strong>e hundred years<br />

old. Already in 1917, Albert Einstein wrote in a letter to Werner Dällenbach:<br />

Wenn die molekulare Auffassung der Materie die richtige (zweckmässige)<br />

ist, d.h. wenn ein Teil Welt durch eine endliche Zahl bewegter Punkte<br />

darzustellen ist, so enthält das K<strong>on</strong>tinuum der heutigen <str<strong>on</strong>g>The</str<strong>on</strong>g>orie zu viel Mannigfaltigkeit<br />

der Möglichkeiten. Auch ich glaube, dass dieses zu viel daran<br />

schuld ist, dass unsere heutige Mittel der Beschreibung an der Quantentheorie<br />

scheitern. Die Frage scheint mir, wie man über ein Disk<strong>on</strong>tinuum<br />

Aussagen formulieren kann, ohne ein K<strong>on</strong>tinuum (Raum-Zeit) zu Hilfe zu<br />

nehmen; letzteres wäre als eine im Wesen des Problems nicht gerechtfertigte<br />

zusätzliche K<strong>on</strong>strukti<strong>on</strong>, der nichts “Reales” entspricht, aus der <str<strong>on</strong>g>The</str<strong>on</strong>g>orie zu<br />

verbannen. Dazu fehlt uns aber leider noch die mathematische Form. Wie<br />

viel habe ich mich in diesem Sinne sch<strong>on</strong> geplagt!<br />

Allerdings sehe ich auch hier prinzipielle Schwierigkeiten. Die Elektr<strong>on</strong>en<br />

(als Punkte) wären in einem solchen System letzte Gegebenheiten (Bausteine).<br />

Gibt es überhaupt letzte Bausteine? Warum sind diese alle v<strong>on</strong> gleicher<br />

Grösse? Ist es befriedigend zu sagen: Gott hat sie in seiner Weisheit alle<br />

gleich gross gemacht, jedes wie jedes andere, weil er so wollte; er hätte sie<br />

auch, wenn es ihm gepasst hätte, verschieden machen können. Da ist man<br />

bei der K<strong>on</strong>tinuum-Auffassung besser dran, weil man nicht v<strong>on</strong> Anfang an<br />

dieElementar-Bausteineangebenmuss.FernerdiealteFragevomVakuum!<br />

Aber diese Bedenken müssen verblassen hinter der blendenden Tatsache:<br />

Das K<strong>on</strong>tinuum ist ausführlicher als die zu beschreibenden Dinge...<br />

Lieber Dällenbach! Was hilft alles Argumentieren, wenn man nicht bis zu<br />

einer befriedigenden Auffassung durchdringt; das aber ist verteufelt schwer.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


does matter differ from vacuum? 71<br />

Page 87<br />

Es wird einen schweren Kampf kosten, bis man diesen Schritt, der uns da<br />

vorschwebt, wirklich gemacht haben wird. Also strengen Sie Ihr Gehirn an,<br />

vielleicht zwingen Sie es.*<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d half <str<strong>on</strong>g>of</str<strong>on</strong>g> this text will propose a way to rise to the challenge. At this point<br />

however, we first complete the explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuum physics.<br />

In 20th century physics, space-time points are idealizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> events – but this idealizati<strong>on</strong><br />

is inadequate. <str<strong>on</strong>g>The</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘point’ is similar to the use <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>cept<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ‘aether’ a century ago: it is impossible to measure or detect.<br />

⊳ Like the ‘aether’, also ‘points’ lead reas<strong>on</strong> astray.<br />

All paradoxes resulting from the infinite divisibility <str<strong>on</strong>g>of</str<strong>on</strong>g> space and time, such as Zeno’s<br />

argument <strong>on</strong> the impossibility <str<strong>on</strong>g>of</str<strong>on</strong>g> distinguishing moti<strong>on</strong> from rest, or the Banach–Tarski<br />

paradox, are now avoided. We can dismiss them straight away because <str<strong>on</strong>g>of</str<strong>on</strong>g> their incorrect<br />

premises c<strong>on</strong>cerning the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> space and time.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> the Planck limits for measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> time and space can be<br />

expressed in other ways. It is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten said that given any two points in space or any two<br />

instants <str<strong>on</strong>g>of</str<strong>on</strong>g> time, there is always a third in between. Physicists sloppily call this property<br />

c<strong>on</strong>tinuity, while mathematicians call it denseness. However, at Planck scales this property<br />

cannot hold, since there are no intervals smaller than the Planck time. Thus points<br />

and instants are not dense, and<br />

⊳ Between two points there is not always a third.<br />

This results again means that spaceandtimearenotc<strong>on</strong>tinuous.Of course, at large scales<br />

they are – approximately – c<strong>on</strong>tinuous, in the same way that a piece <str<strong>on</strong>g>of</str<strong>on</strong>g> rubber or a liquid<br />

seems c<strong>on</strong>tinuous at everyday scales, even though it is not at a small scale. But in nature,<br />

space, time and space-time are not c<strong>on</strong>tinuous entities.<br />

* ‘If the molecular c<strong>on</strong>cepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> matter is the right (appropriate) <strong>on</strong>e, i.e., if a part <str<strong>on</strong>g>of</str<strong>on</strong>g> the world is to be<br />

represented by a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> moving points, then the c<strong>on</strong>tinuum <str<strong>on</strong>g>of</str<strong>on</strong>g> the present theory c<strong>on</strong>tains too<br />

great a manifold <str<strong>on</strong>g>of</str<strong>on</strong>g> possibilities. I also believe that this ‘too great’ is resp<strong>on</strong>sible for our present means <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

descripti<strong>on</strong> failing for quantum theory. <str<strong>on</strong>g>The</str<strong>on</strong>g> questi<strong>on</strong>s seems to me how <strong>on</strong>e can formulate statementsabout<br />

a disc<strong>on</strong>tinuum without using a c<strong>on</strong>tinuum (space-time) as an aid; the latter should be banned from the<br />

theory as a supplementary c<strong>on</strong>structi<strong>on</strong> not justified by the essence <str<strong>on</strong>g>of</str<strong>on</strong>g> the problem, which corresp<strong>on</strong>ds to<br />

nothing “real”. But unfortunately we still lack the mathematical form. How much have I already plagued<br />

myself in this directi<strong>on</strong>!<br />

Yet I also see difficulties <str<strong>on</strong>g>of</str<strong>on</strong>g> principle. In such a system the electr<strong>on</strong>s (as points) would be the ultimate<br />

entities (building blocks). Do ultimate building blocks really exist? Why are they all <str<strong>on</strong>g>of</str<strong>on</strong>g> equal size? Is it satisfactory<br />

to say: God in his wisdom made them all equally big, each like every other <strong>on</strong>e, because he wanted<br />

it that way; he could also have made them, if he had wanted, all different. With the c<strong>on</strong>tinuum viewpoint<br />

<strong>on</strong>e is better <str<strong>on</strong>g>of</str<strong>on</strong>g>f, because <strong>on</strong>e doesn’t have to prescribe elementary building blocks from the outset. Furthermore,<br />

the old questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum! But these c<strong>on</strong>siderati<strong>on</strong>s must pale beside the dazzling fact: <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

c<strong>on</strong>tinuum is more ample than the things to be described...<br />

Dear Dällenbach! All arguing does not help if <strong>on</strong>e does not achieve a satisfying c<strong>on</strong>cepti<strong>on</strong>; but this is<br />

devilishly difficult. It will cost a difficult fight until the step that we are thinking <str<strong>on</strong>g>of</str<strong>on</strong>g> will be realized. Thus,<br />

squeeze your brain, maybe you can force it.’<br />

Compare this letter to what Einstein wrote almost twenty and almost forty years later.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


72 4doesmatterdifferfromvacuum?<br />

Ref. 24, Ref. 71<br />

But there is more to come. <str<strong>on</strong>g>The</str<strong>on</strong>g> very existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a minimum length c<strong>on</strong>tradicts the<br />

theory <str<strong>on</strong>g>of</str<strong>on</strong>g> special relativity, in which it is shown that lengths undergo Lorentz c<strong>on</strong>tracti<strong>on</strong><br />

when the frame <str<strong>on</strong>g>of</str<strong>on</strong>g> reference is changed. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is <strong>on</strong>ly <strong>on</strong>e c<strong>on</strong>clusi<strong>on</strong>: special relativity<br />

(and general relativity) cannot be correct at very small distances. Thus,<br />

⊳ Space-time is not Lorentz-invariant (nor diffeomorphism-invariant) at<br />

Planck scales.<br />

All the symmetries that are at the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> special and general relativity are <strong>on</strong>ly approximately<br />

valid at Planck scales.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> imprecisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement implies that most familiar c<strong>on</strong>cepts used to describe<br />

spatial relati<strong>on</strong>s become useless. For example, the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> a metric loses its usefulness<br />

at Planck scales, since distances cannot be measured with precisi<strong>on</strong>. So it is impossible<br />

to say whether space is flat or curved. <str<strong>on</strong>g>The</str<strong>on</strong>g> impossibility <str<strong>on</strong>g>of</str<strong>on</strong>g> measuring lengths exactly is<br />

equivalent to fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the curvature, and thus <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity.<br />

In short, space and space-time are not smooth at Planck scales. This c<strong>on</strong>clusi<strong>on</strong> has<br />

important implicati<strong>on</strong>s. For example, the c<strong>on</strong>clusi<strong>on</strong> implies that certain mathematical<br />

soluti<strong>on</strong>s found in books <strong>on</strong> general relativity, such as the Eddingt<strong>on</strong>–Finkelstein coordinates<br />

and the Kruskal–Szekeres coordinates do not describe nature! Indeed, these<br />

coordinate systems, which claim to show that space-time goes <strong>on</strong> behind the horiz<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a black hole, are based <strong>on</strong> the idea that space-time is smooth everywhere. However,<br />

quantum physics shows that space-time is not smooth at the horiz<strong>on</strong>, but fluctuates<br />

wildly there. In short, quantum physics c<strong>on</strong>firms what comm<strong>on</strong> sense already knew:<br />

Behind a horiz<strong>on</strong>, nothing can be observed, and thus there is nothing there.<br />

Farewell to dimensi<strong>on</strong>ality<br />

Even the number <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial dimensi<strong>on</strong>s makes no sense at Planck scales. Let us remind<br />

ourselves how to determine this number experimentally. One possible way is to determine<br />

how many points we can choose in space such that all the distances between them<br />

are equal. If we can find at most n such points, the space has n−1dimensi<strong>on</strong>s. But if<br />

reliable length measurement at Planck scales is not possible, there is no way to determine<br />

reliably the number <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> space with this method.<br />

Another way to check for three spatial dimensi<strong>on</strong>s is to make a knot in a shoe string<br />

and glue the ends together: since it stays knotted, we know that space has three dimensi<strong>on</strong>s,<br />

because there is a mathematical theorem that in spaces with greater or fewer than<br />

three dimensi<strong>on</strong>s, knots do not exist. Again, at Planck scales, we cannot say whether a<br />

string is knotted or not, because measurement limits at crossings make it impossible to<br />

say which strand lies above the other.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re are many other methods for determining the dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> space.* In all<br />

cases, the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong>ality is based <strong>on</strong> a precise definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

* For example, we can determine the dimensi<strong>on</strong> using <strong>on</strong>ly the topological properties <str<strong>on</strong>g>of</str<strong>on</strong>g> space. If we draw a<br />

so-called covering <str<strong>on</strong>g>of</str<strong>on</strong>g> a topological space with open sets, there are always points that are elements <str<strong>on</strong>g>of</str<strong>on</strong>g> several<br />

sets <str<strong>on</strong>g>of</str<strong>on</strong>g> the covering. Let p be the maximal number <str<strong>on</strong>g>of</str<strong>on</strong>g> sets <str<strong>on</strong>g>of</str<strong>on</strong>g> which a point can be an element in a given<br />

covering. <str<strong>on</strong>g>The</str<strong>on</strong>g> minimum value <str<strong>on</strong>g>of</str<strong>on</strong>g> p over all possible coverings, minus <strong>on</strong>e, gives the dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the space.<br />

In fact, if physical space is not a manifold, the various methods for determining the dimensi<strong>on</strong>alitymay<br />

give different answers. Indeed, for linear spaces without norm, the dimensi<strong>on</strong>ality cannot be defined in a<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


does matter differ from vacuum? 73<br />

Ref. 72<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. I, page 57<br />

Ref. 73<br />

neighbourhood. At Planck scales, however, length measurements do not allow us to say<br />

whether a given point is inside or outside a given regi<strong>on</strong>. In short, whatever method we<br />

use, the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> precise length measurements means that<br />

⊳ At Planck scales, the dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> physical space is not defined.<br />

Farewell to the space-time manifold<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> reas<strong>on</strong>s for the problems with space-time become most evident when we remember<br />

Euclid’s well-known definiti<strong>on</strong>: ‘A point is that which has no part.’ As Euclid clearly understood,<br />

a physical point, as an idealizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> positi<strong>on</strong>, cannot be defined without some<br />

measurement method. Mathematical points, however, can be defined without reference<br />

to a metric. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are just elements <str<strong>on</strong>g>of</str<strong>on</strong>g> a set, usually called a ‘space’. (A ‘measurable’ or<br />

‘metric’ space is a set <str<strong>on</strong>g>of</str<strong>on</strong>g> points equipped with a measure or a metric.)<br />

In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> physical space-time, the c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> measure and <str<strong>on</strong>g>of</str<strong>on</strong>g> metric are more<br />

fundamental than that <str<strong>on</strong>g>of</str<strong>on</strong>g> a point. C<strong>on</strong>fusi<strong>on</strong> between physical and mathematical space<br />

and points arises from the failure to distinguish a mathematical metric from a physical<br />

length measurement.*<br />

Perhaps the most beautiful way to make this point is the Banach–Tarski theorem,<br />

which clearly shows the limits <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> volume. <str<strong>on</strong>g>The</str<strong>on</strong>g> theorem states that a sphere<br />

made up <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematical points canbecutint<str<strong>on</strong>g>of</str<strong>on</strong>g>ivepiecesinsuchawaythatthepieces<br />

can be put together to form two spheres, each <str<strong>on</strong>g>of</str<strong>on</strong>g> the same volume as the original <strong>on</strong>e.<br />

However, the necessary ‘cuts’ are infinitely curved and detailed: the pieces are wildly disc<strong>on</strong>nected.<br />

For physical matter such as gold, unfortunately – or fortunately – the existence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a minimum length, namely the atomic distance, makes it impossible to perform<br />

such a cut. For vacuum, the puzzle reappears. For example, the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> zero-point<br />

fluctuati<strong>on</strong>s is given by the density times the volume; following the Banach–Tarski theorem,<br />

the zero-point energy c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> a single sphere should be equal to the zero-point<br />

energy <str<strong>on</strong>g>of</str<strong>on</strong>g> two similar spheres each <str<strong>on</strong>g>of</str<strong>on</strong>g> the same volume as the original <strong>on</strong>e. <str<strong>on</strong>g>The</str<strong>on</strong>g> paradox<br />

is resolved by the Planck length, which provides a fundamental length scale even for vacuum,<br />

thus making infinitely complex cuts impossible. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> volume<br />

is <strong>on</strong>ly well defined at Planck scales if a minimum length is introduced.<br />

To sum up:<br />

⊳ Physical space-time cannot be a set <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematical points.<br />

But there are more surprises. At Planck scales, since both temporal and spatial order<br />

break down, there is no way to say if the distance between two nearby space-time regi<strong>on</strong>s<br />

unique way. Different definiti<strong>on</strong>s (fractal dimensi<strong>on</strong>, Lyapunov dimensi<strong>on</strong>, etc.) are possible.<br />

* Where does the incorrect idea <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous space-time have its roots? In everyday life, as well as in physics,<br />

space-time is a book-keeping device introduced to describe observati<strong>on</strong>s. Its properties are extracted<br />

from the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> observables. Since observables can be added and multiplied, like numbers, we infer<br />

that they can take c<strong>on</strong>tinuous values, and, in particular, arbitrarily small values. It is then possible to<br />

define points and sets <str<strong>on</strong>g>of</str<strong>on</strong>g> points. A special field <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematics, topology, shows how to start from a set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

points and c<strong>on</strong>struct, with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> neighbourhood relati<strong>on</strong>s and separati<strong>on</strong> properties, first a topological<br />

space, then, with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> a metric, a metric space. With the appropriate compactness and c<strong>on</strong>nectedness<br />

relati<strong>on</strong>s, a manifold, characterized by its dimensi<strong>on</strong>, metric and topology, can be c<strong>on</strong>structed.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


̸<br />

74 4doesmatterdifferfromvacuum?<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. V, page 359<br />

is space-like or time-like.<br />

⊳ At Planck scales, time and space cannot be distinguished from each other.<br />

In additi<strong>on</strong>, we cannot state that the topology <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time is fixed, as general relativity<br />

implies. <str<strong>on</strong>g>The</str<strong>on</strong>g> topology changes, menti<strong>on</strong>ed above, that are required for particle reacti<strong>on</strong>s<br />

do become possible. In this way another <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tradicti<strong>on</strong>s between general relativity<br />

and quantum theory is resolved.<br />

In summary, space-time at Planck scales is not c<strong>on</strong>tinuous, not ordered, not endowed<br />

with a metric, not four-dimensi<strong>on</strong>al, and not made up <str<strong>on</strong>g>of</str<strong>on</strong>g> points. It satisfies n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

defining properties <str<strong>on</strong>g>of</str<strong>on</strong>g> a manifold.* We c<strong>on</strong>clude that the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> a space-time manifold<br />

has no justificati<strong>on</strong> at Planck scales. This is a str<strong>on</strong>g result. Even though both general<br />

relativity and quantum mechanics use c<strong>on</strong>tinuous space-time, the combined theory does<br />

not.<br />

Farewell to observables, symmetries and measurements<br />

If space and time are not c<strong>on</strong>tinuous, no quantities defined as derivatives with respect<br />

to space or time are precisely defined. Velocity, accelerati<strong>on</strong>, momentum, energy and<br />

so <strong>on</strong> are <strong>on</strong>ly well defined under the assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuity. That important tool,<br />

the evoluti<strong>on</strong> equati<strong>on</strong>, is based <strong>on</strong> derivatives and can thus no l<strong>on</strong>ger be used. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore<br />

the Schrödinger and Dirac equati<strong>on</strong>s lose their basis. C<strong>on</strong>cepts such as ‘derivative’,<br />

‘divergence-free’ and ‘source free’ lose their meaning at Planck scales.<br />

All physical observables are defined using length and time measurements. Each physical<br />

unit is a product <str<strong>on</strong>g>of</str<strong>on</strong>g> powers <str<strong>on</strong>g>of</str<strong>on</strong>g> length and time (and mass) units. (In the SI system,<br />

electrical quantities have a separate base quantity, the ampere, but the argument still<br />

holds: the ampere is itself defined in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> a force, which is measured using the three<br />

base units <str<strong>on</strong>g>of</str<strong>on</strong>g> length, time and mass.) Since time and length are not c<strong>on</strong>tinuous, at Planck<br />

scales, observables cannot be described by real numbers.<br />

In additi<strong>on</strong>, if time and space are not c<strong>on</strong>tinuous, the usual expressi<strong>on</strong> for an observable<br />

field, A(t, x), does not make sense: we have to find a more appropriate descripti<strong>on</strong>.<br />

Physical fields cannot exist at Planck scales. Quantum mechanics also relies <strong>on</strong> the possibility<br />

to add wave functi<strong>on</strong>s; this is sometimes called the superpositi<strong>on</strong> principle. Without<br />

fields and superpositi<strong>on</strong>s, all <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum mechanics comes crumbling down.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> real numbers has severe c<strong>on</strong>sequences. It makes no sense to define multiplicati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> observables by real numbers, but <strong>on</strong>ly by a discrete set <str<strong>on</strong>g>of</str<strong>on</strong>g> numbers. Am<strong>on</strong>g<br />

other implicati<strong>on</strong>s, this means that observables do not form a linear algebra. Observables<br />

are not described by operators at Planck scales. In particular, the most important<br />

observables are the gauge potentials. Since they do not form an algebra, gauge symmetry<br />

is not valid at Planck scales. Even innocuous-looking expressi<strong>on</strong>s such as [x i ,x j ]=0for<br />

x i =x j , which are at the root <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum field theory, become meaningless at Planck<br />

scales. Since at those scales superpositi<strong>on</strong>s cannot be backed up by experiment, even<br />

the famous Wheeler–DeWitt equati<strong>on</strong>, sometimes assumed to describe quantum gravity,<br />

cannot be valid.<br />

* A manifold is what looks locally like a Euclidean space. <str<strong>on</strong>g>The</str<strong>on</strong>g> exact definiti<strong>on</strong> can be found in the previous<br />

volume.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


does matter differ from vacuum? 75<br />

Ref. 74<br />

Ref. 75<br />

Ref. 76<br />

Ref. 77<br />

Ref. 78<br />

Similarly, permutati<strong>on</strong> symmetry is based <strong>on</strong> the premise that we can distinguish two<br />

points by their coordinates, and then exchange particles between those locati<strong>on</strong>s. As we<br />

have just seen, this is not possible if the distance between the two particles is very small.<br />

We c<strong>on</strong>clude that permutati<strong>on</strong> symmetry has no experimental basis at Planck scales.<br />

Even discrete symmetries, like charge c<strong>on</strong>jugati<strong>on</strong>, space inversi<strong>on</strong> and time reversal,<br />

cannot be correct in this domain, because there is no way to verify them exactly by measurement.<br />

CPT symmetry is not valid at Planck scales.<br />

Finally we note that all types <str<strong>on</strong>g>of</str<strong>on</strong>g> scaling relati<strong>on</strong>s break down at small scales, because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a smallest length. As a result, the renormalizati<strong>on</strong> group breaks down<br />

at Planck scales.<br />

In summary, due to the impossibility <str<strong>on</strong>g>of</str<strong>on</strong>g> accurate measurements,<br />

⊳ All symmetries break down at Planck scales.<br />

For example, supersymmetry cannot be valid at Planck scale. All menti<strong>on</strong>ed c<strong>on</strong>clusi<strong>on</strong>s<br />

are c<strong>on</strong>sistent: if there are no symmetries at Planck scales, there are also no observables,<br />

since physical observables are representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> symmetry groups. And thus,<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement has no significance at Planck scales.<br />

This results from the limitati<strong>on</strong>s <strong>on</strong> time and length measurements.<br />

Can space orspace-time be a lattice?<br />

Let us take a breath. Can a space or even a space-time lattice be an alternative to c<strong>on</strong>tinuity?<br />

Discrete models <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time have been studied since the 1940s. Recently, the idea<br />

that space or space-time could be described as a lattice – like a crystal – has been explored<br />

most notably by David Finkelstein and by Gerard ’t Ho<str<strong>on</strong>g>of</str<strong>on</strong>g>t. <str<strong>on</strong>g>The</str<strong>on</strong>g> idea <str<strong>on</strong>g>of</str<strong>on</strong>g> space as a lattice<br />

is based <strong>on</strong> the idea that, if there is a minimum distance, then all distances are multiples<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this minimum.<br />

In order to get an isotropic and homogeneous situati<strong>on</strong> for large, everyday scales,<br />

the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> space cannot be periodic, but must be random. But not <strong>on</strong>ly must it be<br />

random in space, it must also be fluctuating in time. In fact, any fixed structure for spacetime<br />

would violate the result that there are no lengths smaller than the Planck length: as<br />

a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the Lorentz c<strong>on</strong>tracti<strong>on</strong>, any moving observer would find lattice distances<br />

smaller than the Planck value. Worse still, the fixed lattice idea c<strong>on</strong>flicts with general<br />

relativity, in particular with the diffeomorphism-invariance <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum.<br />

Thus, neither space nor space-time can be a lattice. A minimum distance does exist in<br />

nature; however, we cannot hope that all other distances are simple multiples <str<strong>on</strong>g>of</str<strong>on</strong>g> it.<br />

⊳ Space is not discrete. Neither is space-time.<br />

We will discover more evidence for this negative c<strong>on</strong>clusi<strong>on</strong> later <strong>on</strong>.<br />

But in fact, many discrete models <str<strong>on</strong>g>of</str<strong>on</strong>g> space and time have a much bigger limitati<strong>on</strong>.<br />

Any such model has to answer a simple questi<strong>on</strong>: Where is a particle during the jump<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


76 4doesmatterdifferfromvacuum?<br />

Ref. 27<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. V, page 262<br />

from <strong>on</strong>e lattice point to the next? This simple questi<strong>on</strong> eliminates most naive space-time<br />

models.<br />

A glimpse <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum geometry<br />

Given that space-time is not a set <str<strong>on</strong>g>of</str<strong>on</strong>g> points or events, it must be something else. We have<br />

three hints at this stage. <str<strong>on</strong>g>The</str<strong>on</strong>g> first is that in order to improve our descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong><br />

we must aband<strong>on</strong> ‘points’, and with them, aband<strong>on</strong> the local descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. Both<br />

quantum mechanics and general relativity assume that the phrase ‘observable at a point’<br />

has a precise meaning. Because it is impossible to describe space as a manifold, this<br />

expressi<strong>on</strong> is no l<strong>on</strong>ger useful. <str<strong>on</strong>g>The</str<strong>on</strong>g> unificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity and quantum physics<br />

forces the adopti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>-local descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature at Planck scales. This is the first<br />

hint.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a minimum length implies that there is no way to physically distinguish<br />

between locati<strong>on</strong>s that are even closer together. We are tempted to c<strong>on</strong>clude that<br />

no pair <str<strong>on</strong>g>of</str<strong>on</strong>g> locati<strong>on</strong>s can be distinguished, even if they are <strong>on</strong>e metre apart, since <strong>on</strong> any<br />

path joining two points, no two locati<strong>on</strong>s that are close together can be distinguished.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> problem is similar to the questi<strong>on</strong> about the size <str<strong>on</strong>g>of</str<strong>on</strong>g> a cloud or <str<strong>on</strong>g>of</str<strong>on</strong>g> an atom. If we<br />

measure water density or electr<strong>on</strong> density, we find n<strong>on</strong>-vanishing values at any distance<br />

from the centre <str<strong>on</strong>g>of</str<strong>on</strong>g> the cloud or the atom; however, an effective size can still be defined,<br />

because it is very unlikely that the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a cloud or <str<strong>on</strong>g>of</str<strong>on</strong>g> an atom can<br />

be seen at distances much larger than this effective size. Similarly, we can guess that two<br />

points in space-time at a macroscopic distance from each other can be distinguished because<br />

the probability that they will be c<strong>on</strong>fused drops rapidly with increasing distance.<br />

In short, we are thus led to a probabilistic descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time. This is the sec<strong>on</strong>d<br />

hint. Space-time becomes a macroscopic observable, a statistical or thermodynamic limit<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> some microscopic entities. This is our sec<strong>on</strong>d hint.<br />

We note that a fluctuating structure for space-time also avoids the problems <str<strong>on</strong>g>of</str<strong>on</strong>g> fixed<br />

structures with Lorentz invariance. In summary, the experimental observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> special<br />

relativity – Lorentz invariance, isotropy and homogeneity – together with the noti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a minimum distance, point towards a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time as fluctuating. This is<br />

the third hint.<br />

Several research approaches in quantum gravity have independently c<strong>on</strong>firmed that<br />

a n<strong>on</strong>-local and fluctuating descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time at Planck scales resolves the c<strong>on</strong>tradicti<strong>on</strong>s<br />

between general relativity and quantum theory. <str<strong>on</strong>g>The</str<strong>on</strong>g>se are our first results <strong>on</strong><br />

quantum geometry. To clarify the issue, we turn to the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle.<br />

Farewell to point particles<br />

In every example <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>, some object is involved. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the important discoveries<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the natural sciences was that all objects are composed <str<strong>on</strong>g>of</str<strong>on</strong>g> small c<strong>on</strong>stituents, called<br />

elementary particles. Quantum theory shows that all composite, n<strong>on</strong>-elementaryobjects<br />

have a finite, n<strong>on</strong>-vanishing size. <str<strong>on</strong>g>The</str<strong>on</strong>g> naive statement is: a particle is elementary if it behaves<br />

like a point particle. At present, <strong>on</strong>ly the lept<strong>on</strong>s (electr<strong>on</strong>, mu<strong>on</strong>, tau and the neutrinos),<br />

the quarks, the radiati<strong>on</strong> quanta <str<strong>on</strong>g>of</str<strong>on</strong>g> the electromagnetic, weak and str<strong>on</strong>g nuclear<br />

interacti<strong>on</strong>s (the phot<strong>on</strong>, the W and Z bos<strong>on</strong>s, and the glu<strong>on</strong>s) and the Higgs bos<strong>on</strong> have<br />

been found to be elementary. Prot<strong>on</strong>s, atoms, molecules, cheese, people, galaxies and so<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


does matter differ from vacuum? 77<br />

Page 61 <strong>on</strong> are all composite, as shown in Table 2.<br />

Although the naive definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘elementary particle’ as point particle is all we need in<br />

the following argument, the definiti<strong>on</strong> is not precise. It seems to leave open the possibility<br />

that future experiments could show that electr<strong>on</strong>s or quarks are not elementary. This is<br />

not so! In fact, the precise definiti<strong>on</strong> is the following:<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. IV, page 107<br />

Ref. 79<br />

⊳ Any particle is elementary if it is smaller than its own Compt<strong>on</strong> wavelength.<br />

If such a small particle were composite, there would be a lighter particle inside it, which<br />

would have a larger Compt<strong>on</strong> wavelength than the composite particle. This is impossible,<br />

since the size <str<strong>on</strong>g>of</str<strong>on</strong>g> a composite particle must be larger than the Compt<strong>on</strong> wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> its<br />

comp<strong>on</strong>ents. (<str<strong>on</strong>g>The</str<strong>on</strong>g> alternative possibility that all comp<strong>on</strong>ents are heavier than the composite<br />

does not lead to satisfying physical properties: for example, it leads to intrinsically<br />

unstable comp<strong>on</strong>ents.)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> an object, such as those given in Table 2,isdefinedasthelengthatwhich<br />

differences from point-like behaviour are observed. <str<strong>on</strong>g>The</str<strong>on</strong>g> size d <str<strong>on</strong>g>of</str<strong>on</strong>g> an object is determined<br />

by measuring how it scatters a beam <str<strong>on</strong>g>of</str<strong>on</strong>g> probe particles. For example, the radius <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

atomic nucleus was determined for the first time in Rutherford’s experiment using alpha<br />

particle scattering. In daily life as well, when we look at objects, we make use <str<strong>on</strong>g>of</str<strong>on</strong>g> scattered<br />

phot<strong>on</strong>s. In general, in order for scattering to be useful, the effective wavelength λ=<br />

ħ/mv <str<strong>on</strong>g>of</str<strong>on</strong>g> the probe must be smaller than the object size d to be determined. We thus<br />

need d>λ=ħ/mv⩾ħ/mc. In additi<strong>on</strong>, in order for a scattering experiment to be<br />

possible, the object must not be a black hole, since, if it were, it would simply swallow<br />

the approaching particle. This means that its mass m must be smaller than that <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

black hole <str<strong>on</strong>g>of</str<strong>on</strong>g> the same size; in other words, from equati<strong>on</strong> (72)wemusthavem√ ħG<br />

c 3 =l Pl . (84)<br />

In other words, there is no way to observe that an object is smaller than the Planck length.<br />

Thus,<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g>re is no way to deduce from observati<strong>on</strong>s that a particle is point-like.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> term ‘point particle’ makes no sense at all.<br />

Of course, there is a relati<strong>on</strong> between the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a minimum length for empty<br />

space and the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a minimum length for objects. If the term ‘point <str<strong>on</strong>g>of</str<strong>on</strong>g> space’<br />

is meaningless, then the term ‘point particle’ is also meaningless. And again, the lower<br />

limit <strong>on</strong> particle size results from the combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory and general relativity.*<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> minimum size for particles can be tested. A property c<strong>on</strong>nected with the size is<br />

the electric dipole moment. This describes the deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> its charge distributi<strong>on</strong> from<br />

* We note that the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a minimum size for a particle has nothing to do with the impossibility, in<br />

quantum theory, <str<strong>on</strong>g>of</str<strong>on</strong>g> localizing a particle to within less than its Compt<strong>on</strong> wavelength.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


78 4doesmatterdifferfromvacuum?<br />

Ref. 80<br />

spherical. Some predicti<strong>on</strong>s from the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles give as an<br />

upper limit for the electr<strong>on</strong> dipole moment d e avalue<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

|d e |<br />

e<br />


does matter differ from vacuum? 79<br />

FIGURE 3 Andrei Sakharov (1921–1989).<br />

Challenge 37 e<br />

Ref. 28<br />

⊳ At Planck scales, spin cannot be defined or measured, and neither fermi<strong>on</strong><br />

nor bos<strong>on</strong> behaviour can be defined or measured.<br />

In particular, this implies that supersymmetry cannot be valid at Planck scales.<br />

And we can c<strong>on</strong>tinue. Due to measurement limitati<strong>on</strong>s, also spatial parity cannot be<br />

defined or measured at Planck scales.<br />

We have thus shown that at Planck scales, particles do not interact locally, are not<br />

point-like, cannot be distinguished from antiparticles, cannot be distinguished from virtual<br />

particles, have no definite spin and have no definite spatial parity. We deduce that<br />

particles do not exist at Planck scales. Let us explore the remaining c<strong>on</strong>cept: particle mass.<br />

A mass limit for elementary particles<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> size d <str<strong>on</strong>g>of</str<strong>on</strong>g> any elementary particle must by definiti<strong>on</strong> be smaller than its own (reduced)<br />

Compt<strong>on</strong> wavelength ħ/mc. Moreover, the size <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle is always larger than the<br />

Planck length: d>l Pl . Combining these two requirements and eliminating the size d,<br />

we get a c<strong>on</strong>straint <strong>on</strong> the mass m <str<strong>on</strong>g>of</str<strong>on</strong>g> any elementary particle, namely<br />

m<<br />

ħ = √ ħc<br />

cl Pl G =m Pl =2.2⋅10 −8 kg =1.2⋅10 19 GeV/c 2 . (88)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> limit m Pl , the so-called Planck mass, corresp<strong>on</strong>ds roughly to the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> a human<br />

embryo that is ten days old, or equivalently, to that <str<strong>on</strong>g>of</str<strong>on</strong>g> a small flea. In short, the mass<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> any elementary particle must be smaller than the Planck mass. This fact was already<br />

noted as ‘well known’ by Andrei Sakharov* in 1968; he explains that these hypothetical<br />

particles are sometimes called ‘maxim<strong>on</strong>s’. And indeed, the known elementary particles<br />

all have masses well below the Planck mass. (In fact, the questi<strong>on</strong> why their masses are<br />

so very much smaller than the Planck mass is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most important questi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

high-energy physics. We will come back to it.)<br />

* Andrei Dmitrievich Sakharov, Soviet nuclear physicist (b. 1921 Moscow, d. 1989 Moscow). One <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

keenest thinkers in physics, Sakharov, am<strong>on</strong>g others, invented the Tokamak, directed the c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nuclear bombs, and explained the matter–antimatter asymmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. Like many others, he later campaigned<br />

against nuclear weap<strong>on</strong>s, a cause for which he was put into jail and exile, together with his wife,<br />

Yelena B<strong>on</strong>ner. He received the Nobel Peace Prize in 1975.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


80 4doesmatterdifferfromvacuum?<br />

Ref. 83<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re are many other ways to arrive at the mass limit for particles. For example, in<br />

order to measure mass by scattering – and that is the <strong>on</strong>ly way for very small objects –<br />

the Compt<strong>on</strong> wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> the scatterer must be larger than the Schwarzschild radius;<br />

otherwise the probe will be swallowed. Inserting the definiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the two quantities and<br />

neglecting the factor 2, we again get the limit m


does matter differ from vacuum? 81<br />

M<br />

R<br />

R<br />

FIGURE 4 A thought experiment<br />

showing that matter and vacuum<br />

cannot be distinguished when the<br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> the enclosing box is <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> a Planck length.<br />

From equati<strong>on</strong> (91) we deduce that for a box <str<strong>on</strong>g>of</str<strong>on</strong>g> Planck dimensi<strong>on</strong>s, the mass measurement<br />

error is given by the Planck mass. But from above we also know that the mass<br />

that can be put inside such a box must not be larger than the Planck mass. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore,<br />

for a box <str<strong>on</strong>g>of</str<strong>on</strong>g> Planck dimensi<strong>on</strong>s, the mass measurement error is larger than (or at best<br />

equal to) the mass c<strong>on</strong>tained in it: ΔM ⩾ M Pl . In other words, if we build a balance<br />

with two boxes <str<strong>on</strong>g>of</str<strong>on</strong>g> Planck size, <strong>on</strong>e empty and the other full, as shown in Figure 4,nature<br />

cannot decide which way the balance should hang! Note that even a repeated or a c<strong>on</strong>tinuous<br />

measurement will not resolve the situati<strong>on</strong>: the balance will change inclinati<strong>on</strong><br />

at random, staying horiz<strong>on</strong>tal <strong>on</strong> average.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> argument can be rephrased as follows. <str<strong>on</strong>g>The</str<strong>on</strong>g> largest mass that we can put in a box<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> size R is a black hole with a Schwarzschild radius <str<strong>on</strong>g>of</str<strong>on</strong>g> the same value; the smallest mass<br />

present in such a box – corresp<strong>on</strong>ding to what we call a vacuum – is due to the indeterminacy<br />

relati<strong>on</strong> and is given by the mass with a Compt<strong>on</strong> wavelength that matches<br />

the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the box. In other words, inside any box <str<strong>on</strong>g>of</str<strong>on</strong>g> size R we have a mass m,thelimits<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> which are given by:<br />

c 2 R<br />

G<br />

(full box)<br />

⩾ m ⩾<br />

ħ<br />

cR . (92)<br />

(empty box)<br />

We see directly that for sizes R <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> the Planck scales, the two limits coincide;<br />

in other words, we cannot distinguish a full box from an empty box in that case.<br />

To be sure <str<strong>on</strong>g>of</str<strong>on</strong>g> this strange result, we check whether it also occurs if, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> measuring<br />

the gravitati<strong>on</strong>al mass, as we have just d<strong>on</strong>e, we measure the inertial mass. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

inertial mass for a small object is determined by touching it: physically speaking, by<br />

performing a scattering experiment. To determine the inertial mass inside a regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

size R, a probe must have a wavelength smaller than R, and a corresp<strong>on</strong>dingly high energy.<br />

A high energy means that the probe also attracts the particle through gravity. (We<br />

thus find the intermediate result that at Planck scales, inertial and gravitati<strong>on</strong>al mass can-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


82 4doesmatterdifferfromvacuum?<br />

Ref. 84<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. V, page 129<br />

not be distinguished. Even the balance experiment shown in Figure 4 illustrates this: at<br />

Planck scales, the two types <str<strong>on</strong>g>of</str<strong>on</strong>g> mass are always inextricably linked.) Now, in any scattering<br />

experiment, for example in a Compt<strong>on</strong>-type experiment, the mass measurement<br />

is performed by measuring the wavelength change δλ <str<strong>on</strong>g>of</str<strong>on</strong>g> the probe before and after the<br />

scattering. <str<strong>on</strong>g>The</str<strong>on</strong>g> mass indeterminacy is given by<br />

ΔM<br />

M = Δδλ<br />

δλ . (93)<br />

In order to determine the mass in a Planck volume, the probe has to have a wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Planck length. But we know from above that there is always a minimum wavelength<br />

indeterminacy, given by the Planck length l Pl . In other words, for a Planck volume the<br />

wavelength error – and thus the mass error – is always as large as the Planck mass itself:<br />

ΔM ⩾ M Pl . Again, this limit is a direct c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the limit <strong>on</strong> length and space<br />

measurements.<br />

This result has an ast<strong>on</strong>ishing c<strong>on</strong>sequence. In these examples, the measurement error<br />

is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the scatterer: it is the same whether or not we start with a<br />

situati<strong>on</strong> in which there is a particle in the original volume. We thus find that in a volume<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Planck size, it is impossible to say whether or not there is something there when we<br />

probe it with a beam!<br />

Matterand vacuum are indistinguishable<br />

We can put these results in another way. On the <strong>on</strong>e hand, if we measure the mass <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a piece <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum <str<strong>on</strong>g>of</str<strong>on</strong>g> size R, the result is always at least ħ/cR: there is no possible way<br />

to find a perfect vacuum in an experiment. On the other hand, if we measure the mass<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a particle, we find that the result is size-dependent: at Planck scales it approaches the<br />

Planck mass for every type <str<strong>on</strong>g>of</str<strong>on</strong>g> particle, be it matter or radiati<strong>on</strong>.<br />

To use another image, when two particles approach each other to a separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> the Planck length, the indeterminacy in the length measurements makes it impossible<br />

to say whether there is something or nothing between the two objects. In short,<br />

matter and vacuum are interchangeable at Planck scales. This is an important result: since<br />

mass and empty space cannot be differentiated, we have c<strong>on</strong>firmed that they are made<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the same ‘fabric’, <str<strong>on</strong>g>of</str<strong>on</strong>g> the same c<strong>on</strong>stituents. This idea, already suggested above, is now<br />

comm<strong>on</strong> to all attempts to find a unified descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

This approach is corroborated by attempts to apply quantum mechanics in highly<br />

curved space-time, where a clear distincti<strong>on</strong> between vacuum and particles is impossible,<br />

as shown by the Fulling–Davies–Unruh effect. Any accelerated observer, and any observer<br />

in a gravitati<strong>on</strong>al field, detects particles hitting him, even if he is in a vacuum. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

effect shows that for curved space-time the idea <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum as particle-free space does<br />

not work. Since at Planck scales it is impossible to say whether or not space is flat, it is<br />

impossible to say whether it c<strong>on</strong>tains particles or not.<br />

In short, all arguments lead to the same c<strong>on</strong>clusi<strong>on</strong>: vacuum, i.e., empty space-time,<br />

cannot be distinguished from matter at Planck scales. Another comm<strong>on</strong> way to express<br />

this state <str<strong>on</strong>g>of</str<strong>on</strong>g> affairs is to say that when a particle <str<strong>on</strong>g>of</str<strong>on</strong>g> Planck energy travels through space<br />

it will be scattered by the fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time itself, as well as by matter, and the<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


does matter differ from vacuum? 83<br />

Nature's energy scale<br />

E everyday<br />

E Planck<br />

FIGURE 5 Planck effects make the<br />

energy axis an approximati<strong>on</strong>.<br />

Challenge 39 s<br />

two cases are indistinguishable. <str<strong>on</strong>g>The</str<strong>on</strong>g>se surprising results rely <strong>on</strong> a simple fact: whatever<br />

definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mass we use, it is always measured via combined length and time measurements.<br />

(This is even the case for normal weighing scales: mass is measured by the<br />

displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> some part <str<strong>on</strong>g>of</str<strong>on</strong>g> the machine.) Mass measurement is impossible at Planck<br />

scales. <str<strong>on</strong>g>The</str<strong>on</strong>g> error in such mass measurements makes it impossible to distinguish vacuum<br />

from matter. In particular, the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> particle is not applicable at Planck scale.<br />

Curiosities and fun challenges <strong>on</strong> Planck scales<br />

“<str<strong>on</strong>g>The</str<strong>on</strong>g>re is nothing in the world but matter in<br />

moti<strong>on</strong>, and matter in moti<strong>on</strong> cannot move<br />

otherwise than in space and time.<br />

Lenin, Materialism and empirio-criticism.”<br />

Lenin’s statement is wr<strong>on</strong>g. And this is not so much because the world c<strong>on</strong>tains moving<br />

matter, moving radiati<strong>on</strong>, moving vacuum and moving horiz<strong>on</strong>s, which is not exactly<br />

what Lenin claimed. Above all, his statement is wr<strong>on</strong>g because at Planck scales, there is<br />

no matter, no radiati<strong>on</strong>, no horiz<strong>on</strong>, no space and no time. <str<strong>on</strong>g>The</str<strong>on</strong>g>se c<strong>on</strong>cepts <strong>on</strong>ly appear<br />

at low energy. <str<strong>on</strong>g>The</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> our adventure clarifies how.<br />

∗∗<br />

Observers are made <str<strong>on</strong>g>of</str<strong>on</strong>g> matter. Observers are not made <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong>. Observers are not<br />

made <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum. Observers are thus biased, because they take a specific standpoint.<br />

But at Planck scales, vacuum, radiati<strong>on</strong> and matter cannot be distinguished. Two c<strong>on</strong>sequences<br />

follow: first, <strong>on</strong>ly at Planck scales would a descripti<strong>on</strong> be free <str<strong>on</strong>g>of</str<strong>on</strong>g> any bias in<br />

favour <str<strong>on</strong>g>of</str<strong>on</strong>g> matter. Sec<strong>on</strong>dly, <strong>on</strong> the other hand, observers do not exist at all at Planck<br />

energy. <str<strong>on</strong>g>Physics</str<strong>on</strong>g> is thus <strong>on</strong>ly possible below Planck energy.<br />

∗∗<br />

If measurements become impossible near Planck energy, we cannot even draw a diagram<br />

with an energy axis reaching that value. A way out is shown Figure 5. <str<strong>on</strong>g>The</str<strong>on</strong>g>energy<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

elementary particles cannot reach the Planck energy.<br />

∗∗<br />

By the standards <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics, the Planck energy is rather large. Suppose we wanted<br />

to impart this amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy to prot<strong>on</strong>s using a particle accelerator. How large would<br />

a Planck accelerator have to be?<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


84 4doesmatterdifferfromvacuum?<br />

Challenge 40 s<br />

Challenge 41 s<br />

Challenge 42 r<br />

Ref. 85<br />

Page 281<br />

Ref. 86<br />

Ref. 67<br />

Challenge 43 s<br />

∗∗<br />

By the standards <str<strong>on</strong>g>of</str<strong>on</strong>g> everyday life, the Planck energy is rather small. Measured in litres <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gasoline, how much fuel does it corresp<strong>on</strong>d to?<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> usual c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> matter and <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong> are not applicable at Planck scales. Usually,<br />

it is assumed that matter and radiati<strong>on</strong> are made up <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting elementary particles.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> an elementary particle implies an entity that is discrete, point-like, real<br />

and not virtual, has a definite mass and a definite spin, is distinct from its antiparticle,<br />

and, most <str<strong>on</strong>g>of</str<strong>on</strong>g> all, is distinct from vacuum, which is assumed to have zero mass. All these<br />

properties are lost at Planck scales. At Planck scales, the c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘mass’, ‘vacuum’,<br />

‘elementary particle’, ‘radiati<strong>on</strong>’ and ‘matter’ do not make sense.<br />

∗∗<br />

Do the large errors in mass measurements imply that mass can be negative at Planck<br />

energy?<br />

∗∗<br />

We now have a new answer to the old questi<strong>on</strong>: why is there something rather than<br />

nothing? At Planck scales, there is no difference between something and nothing. We<br />

can now h<strong>on</strong>estly say about ourselves that we are made <str<strong>on</strong>g>of</str<strong>on</strong>g> nothing.<br />

∗∗<br />

Special relativity implies that no length or energy can be invariant. Since we have come<br />

to the c<strong>on</strong>clusi<strong>on</strong> that the Planck energy and the Planck length are invariant, it appears<br />

that there must be deviati<strong>on</strong>s from Lorentz invariance at high energy. What effects would<br />

follow? What kind <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment could measure them? If you have a suggesti<strong>on</strong>, publish<br />

it! Several attempts are being explored. We will settle the issue later <strong>on</strong>, with some<br />

interesting insights.<br />

∗∗<br />

Quantum mechanics al<strong>on</strong>e gives, via the Heisenberg indeterminacy relati<strong>on</strong>, a lower<br />

limit to the spread <str<strong>on</strong>g>of</str<strong>on</strong>g> measurements, but, strangely enough, not <strong>on</strong> their precisi<strong>on</strong>, i.e.,<br />

not <strong>on</strong> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> significant digits. Wolfgang Jauch gives an example: atomic lattice<br />

c<strong>on</strong>stants are known to a much higher precisi<strong>on</strong> than the positi<strong>on</strong>al indeterminacy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

single atoms inside the crystal.<br />

It is sometimes claimed that measurement indeterminacies smaller than the Planck<br />

values are possible for large enough numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> particles. Can you show why this is<br />

incorrect, at least for space and time?<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> idea that vacuum is not empty is not new. More than two thousand years ago,<br />

Aristotle argued for a filled vacuum, although his arguments were incorrect as seen<br />

from today’s perspective. Also in the fourteenth century there was much discussi<strong>on</strong><br />

<strong>on</strong> whether empty space was composed <str<strong>on</strong>g>of</str<strong>on</strong>g> indivisible entities, but the debate died down<br />

again.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


does matter differ from vacuum? 85<br />

Challenge 44 s<br />

Ref. 59<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 274<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. V, page 146<br />

Ref. 87<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. I, page 26<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. III, page 323<br />

Challenge 45 d<br />

∗∗<br />

A Planck-energy particle falling in a gravitati<strong>on</strong>al field would gain energy. But the Planck<br />

energy is the highest energy in nature. What does this apparent c<strong>on</strong>tradicti<strong>on</strong> imply?<br />

∗∗<br />

One way to generalize the results presented here is to assume that, at Planck energy,<br />

nature is event-symmetric, i.e., symmetric under exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> any two events. This idea,<br />

developed by Phil Gibbs, provides an additi<strong>on</strong>al formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strange behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nature at extreme scales.<br />

∗∗<br />

Because there is a minimum length in nature, so-called singularities do not exist. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

issue, hotly debated for decades in the twentieth century, thus becomes uninteresting.<br />

∗∗<br />

Because mass and energy density are limited, any object <str<strong>on</strong>g>of</str<strong>on</strong>g> finite volume has <strong>on</strong>ly a finite<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom. <str<strong>on</strong>g>The</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes has<br />

c<strong>on</strong>firmed that entropy values are always finite. This implies that perfect baths do not<br />

exist. Baths play an important role in thermodynamics (which must therefore be viewed<br />

as <strong>on</strong>ly an approximati<strong>on</strong>), and also in recording and measuring devices: when a device<br />

measures, it switches from a neutral state to a state in which it shows the result <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

measurement. In order not to return to the neutral state, the device must be coupled to<br />

abath. Without a bath, a reliable measuring device cannot exist. In short, perfect clocks<br />

and length-measuring devices do not exist, because nature puts a limit <strong>on</strong> their storage<br />

ability.<br />

∗∗<br />

If vacuum and matter cannot be distinguished, we cannot distinguish between objects<br />

and their envir<strong>on</strong>ment. However, this was <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the starting points <str<strong>on</strong>g>of</str<strong>on</strong>g> our journey. Some<br />

interesting adventures still await us!<br />

∗∗<br />

We have seen earlier that characterizing nature as made up <str<strong>on</strong>g>of</str<strong>on</strong>g> particles and vacuum creates<br />

problems when interacti<strong>on</strong>s are included. On the <strong>on</strong>e hand interacti<strong>on</strong>s are the<br />

difference between the parts and the whole, while <strong>on</strong> the other hand interacti<strong>on</strong>s are<br />

exchanges <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum particles. This apparent c<strong>on</strong>tradicti<strong>on</strong> can be used to show that<br />

something is counted twice in the usual characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. Noting that matter<br />

and space-time are both made <str<strong>on</strong>g>of</str<strong>on</strong>g> the same c<strong>on</strong>stituents resolves the issue.<br />

∗∗<br />

Is there a smallest possible momentum? And a smallest momentum error?<br />

∗∗<br />

Given that time becomes an approximati<strong>on</strong> at Planck scales, can we still ask whether<br />

nature is deterministic?<br />

Letusgobacktothebasics.Wecandefinetime,becauseinnaturechangeisnotran-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


86 4doesmatterdifferfromvacuum?<br />

Challenge 46 s<br />

Page 427<br />

Page 117<br />

Page 289<br />

Challenge 47 s<br />

Challenge 48 e<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. I, page 27<br />

dom, but gradual. What is the situati<strong>on</strong> now that we know that time is <strong>on</strong>ly approximate?<br />

Is n<strong>on</strong>-gradual change possible? Is energy c<strong>on</strong>served? In other words, are surprises possible<br />

in nature?<br />

It is correct to say that time is not defined at Planck scales, and that therefore that<br />

determinism is an undefinable c<strong>on</strong>cept, but it is not a satisfying answer. What happens at<br />

‘everyday’ scales? One answer is that at our everyday scales, the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> surprises<br />

is so small that the world indeed is effectively deterministic. In other words, nature is not<br />

really deterministic, but the departure from determinism is not measurable, since every<br />

measurement and observati<strong>on</strong>, by definiti<strong>on</strong>, implies a deterministic world. <str<strong>on</strong>g>The</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

surprises would be due to the limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> our human nature – more precisely, <str<strong>on</strong>g>of</str<strong>on</strong>g> our<br />

senses and brain.<br />

Can you imagine any other possibility? In truth, it is not possible to prove these answers<br />

at this point, even though the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> our adventure will do so. We need to keep<br />

any possible alternative in mind, so that we remain able to check the answers.<br />

∗∗<br />

If matter and vacuum cannot be distinguished, then each has the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the other.<br />

For example, since space-time is an extended entity, matter and radiati<strong>on</strong> are also extended<br />

entities. Furthermore, as space-time is an entity that reaches the borders <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

systemunderscrutiny,particlesmustalsodoso.Thisisourfirsthintattheextensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

matter; we will examine this argument in more detail shortly.<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> impossibility <str<strong>on</strong>g>of</str<strong>on</strong>g> distinguishing matter and vacuum implies a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> at<br />

Planck scales. In turn, this implies an intrinsic basic entropy associated with any part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the universe at Planck scales. We will come back to this topic shortly, when we discuss<br />

the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes.<br />

∗∗<br />

When can matter and vacuum be distinguished? At what energy? This issue might be<br />

compared to the following questi<strong>on</strong>: Can we distinguish between a liquid and a gas by<br />

looking at a single atom? No, <strong>on</strong>ly by looking at many. Similarly, we cannot distinguish<br />

between matter and vacuum by looking at <strong>on</strong>e point, but <strong>on</strong>ly by looking at many. We<br />

must always average. However, even averaging is not completely successful. Distinguishing<br />

matter from vacuum is like distinguishing clouds from the clear sky: like clouds,<br />

matter has no precise boundary.<br />

∗∗<br />

If the dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> space is undefined at Planck scales, what does this mean for<br />

superstrings?<br />

∗∗<br />

Since vacuum, particles and fields are indistinguishable at Planck scales, we also lose<br />

the distincti<strong>on</strong> between states and permanent, intrinsic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> physical systems<br />

at those scales. This is a str<strong>on</strong>g statement: the distincti<strong>on</strong> was the starting point <str<strong>on</strong>g>of</str<strong>on</strong>g> our<br />

explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>; the distincti<strong>on</strong> allowed us to distinguish systems from their en-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


does matter differ from vacuum? 87<br />

Page 70<br />

Page 70<br />

vir<strong>on</strong>ment. In other words, at Planck scales we cannot talk about moti<strong>on</strong>! This is a str<strong>on</strong>g<br />

statement – but it is not unexpected. We are searching for the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>, and we<br />

are prepared to encounter such difficulties.<br />

Comm<strong>on</strong> c<strong>on</strong>stituents<br />

“Es ist allerdings darauf hingewiesen worden, dass bereits die Einführung eines<br />

raum-zeitlichen K<strong>on</strong>tinuums angesischts der molekularen Struktur allen<br />

Geschehens im Kleinen möglicherweise als naturwidrig anzusehen sei.<br />

Vielleicht weise der Erfolg v<strong>on</strong> Heisenbergs Methode auf eine rein algebraische<br />

Methode der Naturbeschreibung, auf die Ausschaltung k<strong>on</strong>tinuierlicher<br />

Funkti<strong>on</strong>en aus der Physik hin. Dann aber muss auch auf die Verwendung des<br />

Raum-Zeit-K<strong>on</strong>tinuums prinzipiell verzichtet werden. Es ist nicht undenkbar,<br />

dass der menschliche Scharfsinn einst Methoden finden wird, welche die<br />

Beschreitung dieses Weges möglich machen. Einstweilen aber erscheint dieses<br />

Projekt ähnlich dem Versuch, in einem luftleeren Raum zu atmen.*<br />

Albert Einstein, 1936, in Physik und Realität.”<br />

“One can give good reas<strong>on</strong>s why reality cannot at all be represented by a<br />

c<strong>on</strong>tinuous field. From the quantum phenomena it appears to follow with<br />

certainty that a finite system <str<strong>on</strong>g>of</str<strong>on</strong>g> finite energy can be completely described by a<br />

finite set <str<strong>on</strong>g>of</str<strong>on</strong>g> numbers (quantum numbers). This does not seem to be in<br />

accordance with a c<strong>on</strong>tinuum theory, and must lead to an attempt to find a<br />

purely algebraic theory for the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reality. But nobody knows how to<br />

obtain the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> such a theory.<br />

Albert Einstein, 1955, the last sentences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>The</str<strong>on</strong>g> Meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> Relativity – Including”<br />

the Relativistic <str<strong>on</strong>g>The</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> the N<strong>on</strong>-Symmetric Field, fifth editi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>se were also<br />

his last published words.<br />

In this rapid journey, we have destroyed all the experimental pillars <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory:<br />

the superpositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wave functi<strong>on</strong>s, space-time symmetry, gauge symmetry, renormalizati<strong>on</strong><br />

symmetry and permutati<strong>on</strong> symmetry. We also have destroyed the foundati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> special and general relativity, namely the c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> the space-time manifold, fields,<br />

particles and mass. We have even seen that matter and vacuum cannot be distinguished.<br />

It seems that we have lost every c<strong>on</strong>cept used for the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>, and thus<br />

made its descripti<strong>on</strong> impossible. It seems that we have completely destroyed our two<br />

‘castles in the air’, general relativity and quantum theory. And it seems that we are trying<br />

to breathe in airless space. Is this pessimistic view correct, or can we save the situati<strong>on</strong>?<br />

First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, since matter and radiati<strong>on</strong> are not distinguishable from vacuum, the quest<br />

for unificati<strong>on</strong> in the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles is correct and necessary. <str<strong>on</strong>g>The</str<strong>on</strong>g>re<br />

is no alternative to tearing down the castles and to c<strong>on</strong>tinuing to breathe.<br />

* ‘Yet it has been suggested that the introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a space-time c<strong>on</strong>tinuum, in view <str<strong>on</strong>g>of</str<strong>on</strong>g> the molecular<br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> all events in the small, may possibly be c<strong>on</strong>sidered as c<strong>on</strong>trary to nature. Perhaps the success <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Heisenberg’s method may point to a purely algebraic method <str<strong>on</strong>g>of</str<strong>on</strong>g> descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature, to the eliminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>tinuous functi<strong>on</strong>s from physics. <str<strong>on</strong>g>The</str<strong>on</strong>g>n, however, <strong>on</strong>e must also give up, in principle, the use <str<strong>on</strong>g>of</str<strong>on</strong>g> the spacetime<br />

c<strong>on</strong>tinuum. It is not inc<strong>on</strong>ceivable that human ingenuity will some day find methods that will make it<br />

possible to proceed al<strong>on</strong>g this path. Meanwhile, however, this project resembles the attempt to breathe in<br />

an airless space.’<br />

See also what Einstein thought twenty years before. <str<strong>on</strong>g>The</str<strong>on</strong>g> new point is that he believes that an algebraic<br />

descripti<strong>on</strong> is necessary. He repeats the point in the next quote.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


88 4doesmatterdifferfromvacuum?<br />

Challenge 49 r<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. V, page 147<br />

Ref. 88<br />

Ref. 92, Ref. 91<br />

Ref. 89, Ref. 90<br />

Ref. 90<br />

Ref. 92, Ref. 93<br />

Ref. 94<br />

Sec<strong>on</strong>dly, after tearing down the castles, the invariant Planck limits c, ħ and c 4 /4G still<br />

remain as a foundati<strong>on</strong>.<br />

Thirdly, after tearing down the castles, <strong>on</strong>e important result appears. Since the c<strong>on</strong>cepts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ‘mass’, ‘time’ and ‘space’ cannot be distinguished from each other, a new, single<br />

entity or c<strong>on</strong>cept is necessary to define both particles and space-time. In short, vacuum<br />

and particles must be made <str<strong>on</strong>g>of</str<strong>on</strong>g> comm<strong>on</strong> c<strong>on</strong>stituents. In other words, we are not in airless<br />

space, and we uncovered the foundati<strong>on</strong> that remains after we tore down the castles.<br />

Before we go <strong>on</strong> exploring these comm<strong>on</strong> c<strong>on</strong>stituents, we check what we have deduced<br />

so far against experiment.<br />

Experimental predicti<strong>on</strong>s<br />

A race is going <strong>on</strong> both in experimental and in theoretical physics: to be the first to<br />

suggest and to be the first to perform an experiment that detects a quantum gravity effect<br />

– apart possibly from (a part <str<strong>on</strong>g>of</str<strong>on</strong>g>) the Sokolov–Ternov effect. Herearesomeproposals.<br />

At Planck scales, space fluctuates. We might think that the fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> space could<br />

blur the images <str<strong>on</strong>g>of</str<strong>on</strong>g> faraway galaxies, or destroy the phase relati<strong>on</strong> between the phot<strong>on</strong>s.<br />

However, no blurring is observed, and the first tests show that light from extremely distant<br />

galaxies still interferes. <str<strong>on</strong>g>The</str<strong>on</strong>g> precise predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the phase washing effect is still<br />

being worked out; whatever the exact outcome, the effect is too small to be measured.<br />

Another idea is to measure the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light at different frequencies from faraway<br />

light flashes. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are natural flashes, called gamma-ray bursts, which have an extremely<br />

broad spectrum, from 100 GeV down to visible light at about 1 eV. <str<strong>on</strong>g>The</str<strong>on</strong>g>se flashes <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

originate at cosmological distances d. Usingshort gamma-raybursts,itisthuspossible<br />

to test precisely whether the quantum nature <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time influences the dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

light signals when they travel across the universe. Planck-scale quantum gravity effects<br />

might produce a dispersi<strong>on</strong>. Detecting a dispersi<strong>on</strong> would c<strong>on</strong>firm that Lorentz symmetry<br />

breaks down at Planck scales.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> difference in arrival time Δt between two phot<strong>on</strong> energies E 1 and E 2 defines a<br />

characteristic energy by<br />

E char = (E 1 −E 2 )d<br />

. (94)<br />

cΔt<br />

This energy value is between 1.4 ⋅ 10 19 GeV and over 10 22 GeV for the best measurement<br />

to date. This is between just above the Planck energy and over <strong>on</strong>e thousand times the<br />

Planck energy. However, despite this high characteristic energy, no dispersi<strong>on</strong> has been<br />

found: even after a trip <str<strong>on</strong>g>of</str<strong>on</strong>g> ten thousand milli<strong>on</strong> years, all light arrives within <strong>on</strong>e or two<br />

sec<strong>on</strong>ds.<br />

Another candidate experiment is the direct detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> distance fluctuati<strong>on</strong>s between<br />

bodies. Gravitati<strong>on</strong>al wave detectors are sensitive to extremely small noise signals in<br />

length measurements. <str<strong>on</strong>g>The</str<strong>on</strong>g>re should be a noise signal due to the distance fluctuati<strong>on</strong>s<br />

induced near Planck energy. <str<strong>on</strong>g>The</str<strong>on</strong>g> indeterminacy in measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> a length l is predicted<br />

to be<br />

δl<br />

⩾( l 2/3<br />

Pl<br />

l l ) . (95)<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


summary <strong>on</strong> particles and vacuum 89<br />

Page 67<br />

Ref. 95<br />

Ref. 92<br />

Ref. 96<br />

Ref. 95<br />

Ref. 97<br />

Ref. 98<br />

This expressi<strong>on</strong> is deduced simply by combining the measurement limit <str<strong>on</strong>g>of</str<strong>on</strong>g> a ruler, from<br />

quantum theory, with the requirement that the ruler not be a black hole. <str<strong>on</strong>g>The</str<strong>on</strong>g> sensitivity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the detectors to noise might reach the required level in the twenty-first century. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

noise induced by quantum gravity effects has also been predicted to lead to detectable<br />

quantum decoherence and vacuum fluctuati<strong>on</strong>s. So far, no such effect has been found.<br />

A further candidate experiment for measuring quantum gravity effects is the detecti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> CPT symmetry at high energies. Especially in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the decay <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

certain elementary particles, such as neutral ka<strong>on</strong>s, the precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental measurement<br />

is approaching the detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Planck-scale effects. However, no such effect<br />

has been found yet.<br />

Another possibility is that quantum gravity effects may change the threshold energy at<br />

which certain particle reacti<strong>on</strong>s become possible. It may be that extremely high-energy<br />

phot<strong>on</strong>s or cosmic rays will make it possible to prove that Lorentz invariance is indeed<br />

broken at Planck scales. However, no such effect has been found yet.<br />

In the domain <str<strong>on</strong>g>of</str<strong>on</strong>g> atomic physics, it has also been predicted that quantum gravity<br />

effects will induce a gravitati<strong>on</strong>al Stark effect and a gravitati<strong>on</strong>al Lamb shift in atomic<br />

transiti<strong>on</strong>s. However, no such effect has been found yet.<br />

Other proposals start from the recogniti<strong>on</strong> that the bound <strong>on</strong> the measurability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

observables also puts a bound <strong>on</strong> the measurement precisi<strong>on</strong> for each observable. This<br />

bound is <str<strong>on</strong>g>of</str<strong>on</strong>g> no importance in everyday life, but it is important at Planck energy. One<br />

proposal is to search for a minimal noise in length measurements, e.g., in gravitati<strong>on</strong>al<br />

wave detectors. But no such noise has been found yet.<br />

In summary, the experimental detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum gravity effects might be possible,<br />

despite their weakness, at some time during the twenty-first century. <str<strong>on</strong>g>The</str<strong>on</strong>g> successful predicti<strong>on</strong><br />

and detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such an effect would be <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the highlights <str<strong>on</strong>g>of</str<strong>on</strong>g> physics, as it<br />

would challenge the usual descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> space and time even more than general relativity<br />

did. On the other hand, most unified models <str<strong>on</strong>g>of</str<strong>on</strong>g> physics predict the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> any<br />

measurable quantum gravity effect.<br />

summary <strong>on</strong> particles and vacuum<br />

Combining quantum theory and general relativity leads us to several important results<br />

<strong>on</strong> the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature:<br />

— Vacuum and particles and horiz<strong>on</strong>s mix at Planck scales, because there is no c<strong>on</strong>ceivable<br />

way to distinguish whether a Planck-sized regi<strong>on</strong> is part <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle or <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

empty space or <str<strong>on</strong>g>of</str<strong>on</strong>g> a horiz<strong>on</strong>. Matter, radiati<strong>on</strong> and vacuum cannot be distinguished<br />

at Planck scales. Equivalently, empty space and particles and horiz<strong>on</strong>s are made <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fluctuating comm<strong>on</strong> c<strong>on</strong>stituents.<br />

— We note that all arguments <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter equally imply that vacuum and particles<br />

and horiz<strong>on</strong>s mix near Planck scales. For example, matter, radiati<strong>on</strong> and vacuum<br />

cannot be distinguished near Planck scales.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum and particles cannot be points. <str<strong>on</strong>g>The</str<strong>on</strong>g>reisnoc<strong>on</strong>ceivable<br />

way to prove that points exist, because the smallest measurable distance in nature is<br />

the Planck length.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


90 4doesmatterdifferfromvacuum?<br />

— Particles, vacuum and c<strong>on</strong>tinuous space do not exist at Planck scales. <str<strong>on</strong>g>The</str<strong>on</strong>g>y disappear<br />

in a yet unclear Planck scale mixture.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> three independent Planck limits c, ħ and c 4 /4G remain valid also in domains<br />

where quantum theory and general relativity are combined.<br />

Page 55<br />

All these results must be part <str<strong>on</strong>g>of</str<strong>on</strong>g> the complete theory that we are looking for. Generally<br />

speaking, we found the same c<strong>on</strong>clusi<strong>on</strong>s that we found already in the chapter <strong>on</strong> limit<br />

statements. We thus c<strong>on</strong>tinue al<strong>on</strong>g the same path that we took back then: we explore<br />

the universe as a whole.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


Chapter5<br />

WHAT IS THE DIFFERENCE BETWEEN<br />

THE UNIVERSE AND NOTHING?<br />

Challenge 50 s<br />

“Die Grenze ist der eigentlich fruchtbare Ort der<br />

Erkenntnis.**<br />

Paul Tillich, Auf der Grenze.”<br />

This strange questi<strong>on</strong> is the topic <str<strong>on</strong>g>of</str<strong>on</strong>g> the current leg <str<strong>on</strong>g>of</str<strong>on</strong>g> our mountain ascent. In<br />

he last secti<strong>on</strong> we explored nature in the vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> Planck scales. In fact,<br />

he other limit, namely the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> at large, cosmological scales, is<br />

equally fascinating. As we proceed, many incredible results will appear, and at the end<br />

we will discover the answer to the questi<strong>on</strong> in the title.<br />

Cosmological scales<br />

“Hic sunt le<strong>on</strong>es.***<br />

Antiquity”<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> requires the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity whenever the<br />

scale d <str<strong>on</strong>g>of</str<strong>on</strong>g> the situati<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> the Schwarzschild radius, i.e., whenever<br />

d≈r S =2Gm/c 2 . (96)<br />

It is straightforward to c<strong>on</strong>firm that, with the usually quoted mass m and size d <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

everything visible in the universe, this c<strong>on</strong>diti<strong>on</strong> is indeed fulfilled. We do need general<br />

relativity, and thus curved space-time, when talking about the whole <str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

Similarly, quantum theory is required for the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an object<br />

whenever we approach it within a distance d <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> the (reduced) Compt<strong>on</strong><br />

wavelength λ C , i.e., whenever<br />

d≈λ C = ħ mc . (97)<br />

Obviously, for the total mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe this c<strong>on</strong>diti<strong>on</strong> is not fulfilled. However, we<br />

are not interested in the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe itself; we are interested in the moti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its comp<strong>on</strong>ents. In the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these comp<strong>on</strong>ents, quantum theory is required<br />

whenever pair producti<strong>on</strong> and annihilati<strong>on</strong> play a role. This is the case in the early history<br />

** ‘<str<strong>on</strong>g>The</str<strong>on</strong>g> fr<strong>on</strong>tier is the really productive place <str<strong>on</strong>g>of</str<strong>on</strong>g> understanding.’ Paul Tillich (b. 1886 Starzeddel,<br />

d. 1965 Chicago), theologian, socialist and philosopher.<br />

*** ‘Here are li<strong>on</strong>s.’ This was written across unknown and dangerous regi<strong>on</strong>s <strong>on</strong> ancient maps.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


92 5 what is the difference between the universe and nothing?<br />

Challenge 51 s<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 307<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the universe and near the cosmological horiz<strong>on</strong>, i.e., for the most distant events that<br />

we can observe in space and time. We are thus obliged to include quantum theory in any<br />

precise descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe.<br />

Since at cosmological scales we need both quantum theory and general relativity, we<br />

start our investigati<strong>on</strong> with the study <str<strong>on</strong>g>of</str<strong>on</strong>g> time, space and mass, by asking at large scales<br />

the same questi<strong>on</strong>s that we asked above at Planck scales.<br />

Maximum time<br />

Is it possible to measure time intervals <str<strong>on</strong>g>of</str<strong>on</strong>g> any imaginable size? Observati<strong>on</strong>s show that<br />

in nature there is a maximum time interval t 0 ,withavalue<str<strong>on</strong>g>of</str<strong>on</strong>g>about<br />

t 0 = 435 Ps or 13 800 milli<strong>on</strong> years,<br />

and providing an upper limit to the measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> time. It is called the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

universe, and has been deduced from two sets <str<strong>on</strong>g>of</str<strong>on</strong>g> measurements: the expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> spacetime<br />

and the age <str<strong>on</strong>g>of</str<strong>on</strong>g> matter.<br />

We are all familiar with clocks comp<strong>on</strong>ents that have been ticking for a l<strong>on</strong>g time: the<br />

hydrogen atoms in our body. All hydrogen atoms were formed just after the big bang.<br />

We can almost say that the electr<strong>on</strong>s in these atoms have been orbiting their nuclei since<br />

the dawn <str<strong>on</strong>g>of</str<strong>on</strong>g> time. In fact, the quarks inside the prot<strong>on</strong>s in these atoms have been moving<br />

a few hundred thousand years l<strong>on</strong>ger than the electr<strong>on</strong>s.<br />

We thus have an upper time limit for any clock made <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms. Even ‘clocks’ made <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

radiati<strong>on</strong> (can you describe <strong>on</strong>e?) yield a similar maximum time. Now, the study <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

spatial expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe leads to the same maximum age. No clock or measurement<br />

device was ticking l<strong>on</strong>ger ago than this maximum time, and no clock could provide<br />

a record <str<strong>on</strong>g>of</str<strong>on</strong>g> having d<strong>on</strong>e so.<br />

In summary, it is not possible to measure time intervals greater than the maximum<br />

time, either by using the history <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time or by using the history <str<strong>on</strong>g>of</str<strong>on</strong>g> matter or radiati<strong>on</strong>.*<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> maximum time is thus rightly called the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe. Of course, this<br />

is not new. But exploring the age issue in more detail does reveal some surprises.<br />

Does the universe have a definite age?<br />

“One should never trust a woman who tells <strong>on</strong>e<br />

her real age. A woman who would tell <strong>on</strong>e that,<br />

would tell <strong>on</strong>e anything.<br />

Oscar<br />

In light <str<strong>on</strong>g>of</str<strong>on</strong>g> all measurements, it may seem silly to questi<strong>on</strong> the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe.<br />

Wilde**”<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g><br />

age value is found in many books and tables and its precise determinati<strong>on</strong> is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

most important quests in modern astrophysics. But is this quest reas<strong>on</strong>able?<br />

In order to measure the durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a movement or the age <str<strong>on</strong>g>of</str<strong>on</strong>g> a system, we need a<br />

clock that is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> that movement or system, and thus outside the system. How-<br />

* This implies that so-called ‘oscillating universe’ models, in which it is claimed that ‘before’ the big bang<br />

there were other phenomena, cannot be justified <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> nature or observati<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are based <strong>on</strong><br />

beliefs.<br />

** Oscar Wilde, (b. 1854 Dublin, d. 1900 Paris), poet and playwright, equally famous for his wit.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


what is the difference between the universe and nothing? 93<br />

Challenge 52 s<br />

ever, there are no clocks outside the universe, and no clock inside it can be independent.<br />

In fact, we have just seen that no clock inside the universe can run throughout its full<br />

history. In particular, no clock can run through its earliest history.<br />

Time can be defined <strong>on</strong>ly if it is possible to distinguish between matter and space.<br />

Given this distincti<strong>on</strong>, we can talk either about the age <str<strong>on</strong>g>of</str<strong>on</strong>g> space, by assuming that matter<br />

provides suitable and independent clocks – as is d<strong>on</strong>e in general relativity – or about the<br />

age <str<strong>on</strong>g>of</str<strong>on</strong>g> matter, such as stars or galaxies, by assuming that the expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time,<br />

or possibly <str<strong>on</strong>g>of</str<strong>on</strong>g> other matter, provides a good clock. Both possibilities are being explored<br />

experimentally in modern astrophysics – and both give the same result, <str<strong>on</strong>g>of</str<strong>on</strong>g> about fourteen<br />

thousand milli<strong>on</strong> years, which was menti<strong>on</strong>ed above. Despite this corresp<strong>on</strong>dence, for<br />

the universe as a whole,anagecannot be defined, because there is no clock outside it!<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> issue <str<strong>on</strong>g>of</str<strong>on</strong>g> the starting point <str<strong>on</strong>g>of</str<strong>on</strong>g> time makes this difficulty even more apparent. We<br />

may imagine that going back in time leads to <strong>on</strong>ly two possibilities: either the starting<br />

instant t=0is part <str<strong>on</strong>g>of</str<strong>on</strong>g> time or it is not. (Mathematically, this means that the segment<br />

representing time is either closed or open.) Both these possibilities imply that it is possible<br />

to measure arbitrarily small times; but we know from the combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> general<br />

relativity and quantum theory that this is not the case. In other words, neither possibility<br />

is correct: the beginning cannot be part <str<strong>on</strong>g>of</str<strong>on</strong>g> time, nor can it not be part <str<strong>on</strong>g>of</str<strong>on</strong>g> it. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is <strong>on</strong>ly<br />

<strong>on</strong>e soluti<strong>on</strong> to this c<strong>on</strong>tradicti<strong>on</strong>: there was no beginning at all.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> a beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> time is c<strong>on</strong>sistent with a minimum length and a minimum<br />

acti<strong>on</strong>. Indeed, both limits imply that there is a maximum curvature for space-time.<br />

Curvature can be measured in several ways: for example, surface curvature is an inverse<br />

area. Within a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> order <strong>on</strong>e, we find<br />

K< c3<br />

Għ =0.39⋅1070 m −2 (98)<br />

as a limit for the surface curvature K in nature. In other words, the universe has never<br />

been as small as a point, never had zero age, never had infinite density, and never had<br />

infinite curvature. It is not difficult to get a similar limit for temperature or any other<br />

physical quantity near the big bang.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re is a more drastic formulati<strong>on</strong>. Since gravity and quantum effect imply that<br />

events do not exist in nature,<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> big bang cannot have been an event.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re never was an initial singularity or a beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe.<br />

In short, the situati<strong>on</strong> is c<strong>on</strong>sistently muddled. Neither the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe nor<br />

its origin makes sense. What is going wr<strong>on</strong>g? Or rather, how are things going wr<strong>on</strong>g?<br />

What happens if instead <str<strong>on</strong>g>of</str<strong>on</strong>g> jumping directly to the big bang, we approach it as closely as<br />

possible? To clarify the issue, we ask about the measurement error in our statement that<br />

the universe is fourteen thousand milli<strong>on</strong> years old. This turns out to be a fascinating<br />

topic.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


94 5 what is the difference between the universe and nothing?<br />

How precise can age measurements be?<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. V, page 46<br />

Ref. 55, Ref. 56<br />

Ref. 94<br />

Challenge 53 e<br />

Ref. 99<br />

“No woman should ever be quite accurate about<br />

her age. It looks so calculating.<br />

Oscar<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> first way to measure the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe* is to look at clocks in the usual<br />

Wilde”<br />

sense <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the word, namely at clocks made <str<strong>on</strong>g>of</str<strong>on</strong>g> matter. As explained in the part <strong>on</strong> quantum theory,<br />

Salecker and Wigner showed that a clock built to measure a total time T with a precisi<strong>on</strong><br />

Δt has a minimum mass m given by<br />

m> ħ c 2<br />

T<br />

(Δt) 2 . (99)<br />

A simple way to incorporate general relativity into this result was suggested by Ng and<br />

van Dam. Any clock <str<strong>on</strong>g>of</str<strong>on</strong>g> mass m has a minimum resoluti<strong>on</strong> Δt due to the curvature <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

space that it introduces, given by<br />

Δt > Gm<br />

c 3 . (100)<br />

If m is eliminated, these two results imply that a clock with a precisi<strong>on</strong> Δt can <strong>on</strong>ly measure<br />

times T up to a certain maximum value, namely<br />

T< (Δt)3<br />

t 2 Pl<br />

, (101)<br />

where t Pl = √ħG/c 5 =5.4⋅10 −44 s is the Planck time. (As usual, we have omitted factors<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> order <strong>on</strong>e in this and in all the following results <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter.) In other words, the<br />

higher the accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> a clock, the shorter the time during which it works dependably.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a clock is limited not <strong>on</strong>ly by the expense <str<strong>on</strong>g>of</str<strong>on</strong>g> building it, but also by<br />

nature itself. Nevertheless, it is easy to check that for clocks used in daily life, this limit<br />

is not even remotely approached. For example, you may wish to calculate how precisely<br />

your own age can be specified.<br />

As a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the inequality (101), a clock trying to achieve an accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e<br />

Planck time can do so for at most <strong>on</strong>e Planck time! A real clock cannot achieve Plancktime<br />

accuracy. If we try to go bey<strong>on</strong>d the limit (101), fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time hinder the<br />

working <str<strong>on</strong>g>of</str<strong>on</strong>g> the clock and prevent higher precisi<strong>on</strong>. With every Planck time that passes,<br />

the clock accumulates a measurement error <str<strong>on</strong>g>of</str<strong>on</strong>g> at least <strong>on</strong>e Planck time. Thus, the total<br />

measurement error is at least as large as the measurement itself. Thisc<strong>on</strong>clusi<strong>on</strong>isalso<br />

valid for clocks based <strong>on</strong> radiati<strong>on</strong>.<br />

In short, measuring age with a clock always involves errors. Whenever we try to reduce<br />

these errors to the smallest possible level, the Planck level, the clock becomes so<br />

imprecise over large times that age measurements become impossible.<br />

*<str<strong>on</strong>g>The</str<strong>on</strong>g>aget 0 is not the same as the Hubble time T=1/H 0 . <str<strong>on</strong>g>The</str<strong>on</strong>g> Hubble time is <strong>on</strong>ly a computed quantity and<br />

(almost) always larger than the age; the relati<strong>on</strong> between the two depends <strong>on</strong> the values <str<strong>on</strong>g>of</str<strong>on</strong>g> the cosmological<br />

c<strong>on</strong>stant, the density and other properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe. For example, for the standard ‘hot big bang’<br />

scenario, i.e., for the matter-dominated Einstein–de Sitter model, we have the simple relati<strong>on</strong> T = (3/2) t 0 .<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


what is the difference between the universe and nothing? 95<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. I, page 40<br />

Challenge 54 e<br />

Page 59<br />

Page 69<br />

Challenge 55 e<br />

Challenge 56 e<br />

Does time exist?<br />

“Time is waste <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ey.<br />

Oscar Wilde”<br />

Ever since people began to study physics, the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘time’ has designated what is<br />

measured by a clock. But the inequality (101) for a maximum clock time implies that<br />

perfect clocks do not exist, and thus that time is <strong>on</strong>ly an approximate c<strong>on</strong>cept: perfect<br />

time does not exist. Thus, in nature there is no ‘idea’ <str<strong>on</strong>g>of</str<strong>on</strong>g> time, in the Plat<strong>on</strong>ic sense.<br />

In fact, the discussi<strong>on</strong> so far can be seen as pro<str<strong>on</strong>g>of</str<strong>on</strong>g> that combining quantum theory and<br />

general relativity, because <str<strong>on</strong>g>of</str<strong>on</strong>g> the resulting measurement errors, prevents the existence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

perfect or ‘ideal’ examples <str<strong>on</strong>g>of</str<strong>on</strong>g> any classical observable or any everyday c<strong>on</strong>cept.<br />

Time does not exist. Yet it is obviously a useful c<strong>on</strong>cept in everyday life. <str<strong>on</strong>g>The</str<strong>on</strong>g> key to<br />

understanding this is measurement energy. Any clock – in fact, any system <str<strong>on</strong>g>of</str<strong>on</strong>g> nature –<br />

is characterized by a simple number, namely the highest ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> its kinetic energy to the<br />

rest energy <str<strong>on</strong>g>of</str<strong>on</strong>g> its comp<strong>on</strong>ents. In daily life, this ratio is about 1 eV/10 GeV =10 −10 . Such<br />

low-energy systems are well suited for building clocks. <str<strong>on</strong>g>The</str<strong>on</strong>g> more precisely the moti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the main moving part – the pointer <str<strong>on</strong>g>of</str<strong>on</strong>g> the clock – can be kept c<strong>on</strong>stant and m<strong>on</strong>itored,<br />

the higher the precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the clock. To achieve very high precisi<strong>on</strong>, the pointer<br />

must have very high mass. Indeed, in any clock, both the positi<strong>on</strong> and the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

pointer must be measured, and the two measurement errors are related by the quantummechanical<br />

indeterminacy relati<strong>on</strong> Δv Δx > ħ/m. High mass implies low intrinsic fluctuati<strong>on</strong>.<br />

Furthermore, in order to screen the pointer from outside influences, even more<br />

mass is needed. This c<strong>on</strong>necti<strong>on</strong> between mass and accuracy explains why more accurate<br />

clocks are usually more expensive.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> standard indeterminacy relati<strong>on</strong> mΔv Δx > ħ is valid <strong>on</strong>ly at everyday energies.<br />

However, we cannot achieve ever higher precisi<strong>on</strong> simply by increasing the mass without<br />

limit, because general relativity changes the indeterminacy relati<strong>on</strong> to Δv Δx > ħ/m +<br />

G(Δv) 2 m/c 3 . <str<strong>on</strong>g>The</str<strong>on</strong>g> additi<strong>on</strong>al term <strong>on</strong> the right-hand side, negligible at everyday scales, is<br />

proporti<strong>on</strong>al to energy. Increasing it by a large amount limits the achievable precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the clock. <str<strong>on</strong>g>The</str<strong>on</strong>g> smallest measurable time interval turns out to be the Planck time.<br />

In summary,<br />

⊳ Time exists, as a good approximati<strong>on</strong>, <strong>on</strong>ly for low-energy systems.<br />

Any increase in precisi<strong>on</strong> bey<strong>on</strong>d a certain limit requires an increase in the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

comp<strong>on</strong>ents; at Planck energy, this increase will prevent an increase in precisi<strong>on</strong>.<br />

What is the error in the measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe?<br />

It is now straightforward to apply our discussi<strong>on</strong> about the measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> time to the<br />

age<str<strong>on</strong>g>of</str<strong>on</strong>g>theuniverse.<str<strong>on</strong>g>The</str<strong>on</strong>g>inequality(101) implies that the highest precisi<strong>on</strong> possible for a<br />

clock is about 10 −23 s, or about the time light takes to move across a prot<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> finite<br />

age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe also yields a maximum relative measurement precisi<strong>on</strong>. Inequality<br />

(101) can be written as<br />

2/3<br />

Δt<br />

T >(t Pl<br />

T ) . (102)<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


96 5 what is the difference between the universe and nothing?<br />

1<br />

Relative<br />

measurement error<br />

quantum<br />

error<br />

total<br />

error<br />

ΔE min<br />

E<br />

Energy<br />

E opt<br />

quantum<br />

gravity<br />

error<br />

E Pl<br />

FIGURE 6<br />

Measurement<br />

errors as a<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

measurement<br />

energy.<br />

Inserting the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe for T, we find that no time interval can be measured<br />

with a precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more than about 40 decimals.<br />

To clarify the issue, we can calculate the error in measurement as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

observati<strong>on</strong> energy E meas , the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the measurement probe. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are two limit<br />

cases. For low energies, the error is due to quantum effects and is given by<br />

Δt<br />

T ∼ 1<br />

E meas<br />

(103)<br />

which decreases with increasing measurement energy. For high energies, however, the<br />

error is due to gravitati<strong>on</strong>al effects and is given by<br />

Δt<br />

T ∼ E meas<br />

E Pl<br />

(104)<br />

so that the total error varies as shown in Figure 6. In particular, very high energies do not<br />

reduce measurement errors: any attempt to reduce the measurement error for the age <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the universe below 10 −23 s would require energies so high that the limits <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time<br />

would be reached, making the measurement itself impossible. We reached this c<strong>on</strong>clusi<strong>on</strong><br />

through an argument based <strong>on</strong> clocks made <str<strong>on</strong>g>of</str<strong>on</strong>g> particles. We will see below that<br />

trying to determine the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe from its expansi<strong>on</strong> leads to the same limitati<strong>on</strong>.<br />

Imagine observing a tree which, as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> some storm or str<strong>on</strong>g wind, has fallen<br />

towards sec<strong>on</strong>d tree, touching it at the very top, as shown in Figure 7. It is possible to<br />

determine the heights <str<strong>on</strong>g>of</str<strong>on</strong>g> both trees by measuring their separati<strong>on</strong> and the angles at the<br />

base. <str<strong>on</strong>g>The</str<strong>on</strong>g> error in the heights will depend <strong>on</strong> the errors in measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the separati<strong>on</strong><br />

and angles.<br />

Similarly, the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe can be calculated from the present distance and<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


what is the difference between the universe and nothing? 97<br />

v<br />

T<br />

d<br />

FIGURE 7 Trees and galaxies.<br />

speed <str<strong>on</strong>g>of</str<strong>on</strong>g> objects – such as galaxies – observed in the night sky. <str<strong>on</strong>g>The</str<strong>on</strong>g> present distance<br />

d corresp<strong>on</strong>ds to separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the trees at ground level, and the speed v to the angle<br />

between the two trees. <str<strong>on</strong>g>The</str<strong>on</strong>g> Hubble time T <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe (which is usually assumed to<br />

be larger than the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe) then corresp<strong>on</strong>ds to the height at which the two<br />

trees meet. This age – in a naive sense, the time since the galaxies ‘separated’ – is given,<br />

within a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> order <strong>on</strong>e, by<br />

T= d v . (105)<br />

In simple terms, this is the method used to determine the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe from the<br />

expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time, for galaxies with red-shifts below unity.* <str<strong>on</strong>g>The</str<strong>on</strong>g> (positive) measurement<br />

error ΔT becomes<br />

ΔT<br />

T = Δd<br />

d + Δv<br />

v . (106)<br />

Let us explore this in more detail. For any measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> T, wehavetochoosethe<br />

object, i.e., a distance d, as well as an observati<strong>on</strong> time Δt, or, equivalently, an observati<strong>on</strong><br />

energy ΔE = 2πħ/Δt. We will now investigate the c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> these choices for<br />

equati<strong>on</strong> (106), always taking into account both quantum theory and general relativity.<br />

At everyday energies, the result <str<strong>on</strong>g>of</str<strong>on</strong>g> the determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe t 0 is<br />

about (13.8 ± 0.1) ⋅ 10 9 Ga. This value is deduced by measuring red-shifts, i.e., velocities,<br />

and distances, using stars and galaxies in distance ranges, from some hundred thousand<br />

light years up to a red-shift <str<strong>on</strong>g>of</str<strong>on</strong>g> about 1. Measuring red-shifts does not produce large velocity<br />

errors. <str<strong>on</strong>g>The</str<strong>on</strong>g> main source <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental error is the difficulty in determining the<br />

distances <str<strong>on</strong>g>of</str<strong>on</strong>g> galaxies.<br />

* At higher red-shifts, the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light, as well as the details <str<strong>on</strong>g>of</str<strong>on</strong>g> the expansi<strong>on</strong>, come into play. To c<strong>on</strong>tinue<br />

with the analogy <str<strong>on</strong>g>of</str<strong>on</strong>g> the trees, we find that the trees are not straight all the way up to the top and that they<br />

grow <strong>on</strong> a slope, as suggested by Figure 8.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


98 5 what is the difference between the universe and nothing?<br />

big bang<br />

space<br />

time<br />

4ct 0 /9<br />

light c<strong>on</strong>e:<br />

what we<br />

can see<br />

Challenge 57 e<br />

Challenge 58 e<br />

Ref. 99<br />

t 0<br />

our galaxy<br />

other galaxies<br />

in the night sky<br />

FIGURE 8 <str<strong>on</strong>g>The</str<strong>on</strong>g> speed and distance <str<strong>on</strong>g>of</str<strong>on</strong>g> remote<br />

galaxies.<br />

What is the smallest possible error in distance? Obviously, inequality (102)implies<br />

Δd<br />

T >(l Pl<br />

d ) 2/3<br />

(107)<br />

thus giving the same indeterminacy in the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe as the <strong>on</strong>e we found above<br />

inthecase<str<strong>on</strong>g>of</str<strong>on</strong>g>materialclocks.<br />

We can try to reduce the age error in two ways: by choosing objects at either small or<br />

large distances. Let us start with small distances. In order to get high precisi<strong>on</strong> at small<br />

distances, we need high observati<strong>on</strong> energies. It is fairly obvious that at observati<strong>on</strong><br />

energies near the Planck value, ΔT/T approaches unity. In fact, both terms <strong>on</strong> the righthand<br />

side <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong> (106) become <str<strong>on</strong>g>of</str<strong>on</strong>g> order <strong>on</strong>e. At these energies, Δv approaches c<br />

and the maximum value for d approaches the Planck length, for the same reas<strong>on</strong> that at<br />

Planck energy the maximum measurable time is the Planck time. In short,<br />

⊳ At Planck scales it is impossible to say whether the universe is old or young.<br />

Let us c<strong>on</strong>sider the other extreme, namely objects extremely far away, say with a redshift<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> z≫1. Relativistic cosmology requires the diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 7 to be replaced by<br />

the more realistic diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 8. <str<strong>on</strong>g>The</str<strong>on</strong>g> ‘light <strong>on</strong>i<strong>on</strong>’ replaces the familiar light c<strong>on</strong>e<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> special relativity: light c<strong>on</strong>verges near the big bang. In this case the measurement<br />

error for the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe also depends <strong>on</strong> the distance and velocity errors. At<br />

the largest possible distances, the signals an object sends out must be <str<strong>on</strong>g>of</str<strong>on</strong>g> high energy,<br />

because the emitted wavelength must be smaller than the universe itself. Thus, inevitably,<br />

we reach Planck energy. However, we have seen that in such high-energy situati<strong>on</strong>s,<br />

both the emitted radiati<strong>on</strong> and the object itself are indistinguishable from the space-time<br />

background. In other words, the red-shifted signal we would observe today would have<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


what is the difference between the universe and nothing? 99<br />

Challenge 59 ny<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 243<br />

Ref. 99<br />

Ref. 99<br />

Ref. 99<br />

a wavelength as large as the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe, with a corresp<strong>on</strong>dingly small frequency.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re is another way to describe the situati<strong>on</strong>. At Planck energy or near the horiz<strong>on</strong>,<br />

the original signal has an error <str<strong>on</strong>g>of</str<strong>on</strong>g> the same size as the signal itself. When measured at<br />

the present time, the red-shifted signal still has an error <str<strong>on</strong>g>of</str<strong>on</strong>g> the same size as the signal. As<br />

a result, the error in the horiz<strong>on</strong> distance becomes as large as the value to be measured.<br />

In short, even if space-time expansi<strong>on</strong> and large scales are used, the instant <str<strong>on</strong>g>of</str<strong>on</strong>g> the socalled<br />

beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe cannot be determined with an error smaller than the<br />

age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe itself: a result we also found at Planck distances. If we aim for perfect<br />

precisi<strong>on</strong>, we just find that the universe is 13.8 ± 13.8 thousand milli<strong>on</strong> years old! In<br />

other words, in both extremal situati<strong>on</strong>s, it is impossible to say whether the universe has a<br />

n<strong>on</strong>-vanishing age.<br />

We have to c<strong>on</strong>clude that the anthropocentric c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘age’ does not make any<br />

sense for the universe as a whole. <str<strong>on</strong>g>The</str<strong>on</strong>g> usual textbook value is useful <strong>on</strong>ly for ranges <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

time, space and energy in which matter and space-time are clearly distinguished, namely<br />

at everyday, human-scale energies; the value has no more general meaning.<br />

You may like to examine the issue <str<strong>on</strong>g>of</str<strong>on</strong>g> the fate <str<strong>on</strong>g>of</str<strong>on</strong>g>theuniverseusingthesamearguments.<br />

But we will now c<strong>on</strong>tinue <strong>on</strong> the path outlined at the start <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter; the next topic<br />

<strong>on</strong> this path is the measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> length.<br />

Maximum length<br />

General relativity shows that the horiz<strong>on</strong> distance, i.e., the distance <str<strong>on</strong>g>of</str<strong>on</strong>g> objects with infinite<br />

red-shift, is finite. In the usual cosmological model, for hyperbolic (open) and parabolic<br />

(marginal) evoluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe, the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe is assumed infinite.* For<br />

elliptical evoluti<strong>on</strong>, the total size is finite and depends <strong>on</strong> the curvature. However, in this<br />

case also the present measurement limit yields a minimum size for the universe many<br />

times larger than the horiz<strong>on</strong> distance.<br />

Quantum field theory, <strong>on</strong> the other hand, is based <strong>on</strong> flat and infinite space-time. Let<br />

us see what happens when the two theories are combined. What can we say about measurements<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> length in this case? For example, would it be possible to c<strong>on</strong>struct and use<br />

a metre rule to measure lengths larger than the distance to the horiz<strong>on</strong>?<br />

Admittedly,wewouldhavenotimetopushthemetreruleoutuptothehoriz<strong>on</strong>,<br />

because in the standard big bang model the horiz<strong>on</strong> moves away from us faster than the<br />

speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light. (We should have started using the metre rule right at the big bang.) But<br />

just for fun, let us assume that we have actually managed to do this. How far away can<br />

we read <str<strong>on</strong>g>of</str<strong>on</strong>g>f distances? In fact, since the universe was smaller in the past, and since every<br />

observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sky is an observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the past, Figure 8 shows that the maximum<br />

spatial distance away from us at which an object can be seen is <strong>on</strong>ly 4ct 0 /9. Obviously,<br />

for space-time intervals, the maximum remains ct 0 .<br />

Thus, in all cases it turns out to be impossible to measure lengths larger than the horiz<strong>on</strong><br />

distance, even though general relativity sometimes predicts such larger distances.<br />

* In cosmology, we need to distinguish between the scale factor R, the Hubble radius c/H = cR/ R, ̇ the<br />

horiz<strong>on</strong> distance h and the size d <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe. <str<strong>on</strong>g>The</str<strong>on</strong>g> Hubble radius is a computed quantity giving the<br />

distance at which objects move away with the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light. <str<strong>on</strong>g>The</str<strong>on</strong>g> Hubble radius is always smaller than the<br />

horiz<strong>on</strong> distance, at which in the standard Einstein–de Sitter model, for example, objects move away with<br />

twice the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light. However, the horiz<strong>on</strong> itself moves away with three times the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


100 5 what is the difference between the universe and nothing?<br />

This result is unsurprising, and in obvious agreement with the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a limit for<br />

measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> time intervals. <str<strong>on</strong>g>The</str<strong>on</strong>g> real surprises come next.<br />

Ref. 100<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 307<br />

Challenge 60 e<br />

Is the universe really a big place?<br />

Astr<strong>on</strong>omers and Hollywood films answer this questi<strong>on</strong> in the affirmative. Indeed, the<br />

distance to the horiz<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten included in tables. Cosmological models<br />

specify that the scale factor R, which fixes the distance to the horiz<strong>on</strong>, grows with<br />

time t; for the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard mass-dominated Einstein–de Sitter model, i.e., for a<br />

vanishing cosmological c<strong>on</strong>stant and flat space, we have<br />

R(t) = C t 2/3 , (108)<br />

where the numerical c<strong>on</strong>stant C relates the comm<strong>on</strong>ly accepted horiz<strong>on</strong> distance to the<br />

comm<strong>on</strong>ly accepted age. Indeed, observati<strong>on</strong> shows that the universe is large, and is<br />

getting larger. But let us investigate what happens if we add some quantum theory to this<br />

result from general relativity. Is it really possible to measure the distance to the horiz<strong>on</strong>?<br />

We look first at the situati<strong>on</strong> at high (probe) energies. We saw above that space-time<br />

and matter are not distinguishable at Planck scales. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, at Planck energy we cannot<br />

state whether or not objects are localized. At Planck scales, the distincti<strong>on</strong> between<br />

matter and vacuum – so basic to our thinking – disappears.<br />

Another way to say this is that we cannot claim that space-time is extended at Planck<br />

scales. Our c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong> derives from the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> measuring distances and<br />

time intervals, and from observati<strong>on</strong>s such as the ability to align several objects behind<br />

<strong>on</strong>e another. Such observati<strong>on</strong>s are not possible at Planck scales and energies, because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the inability <str<strong>on</strong>g>of</str<strong>on</strong>g> probes to yield useful results. In fact, all <str<strong>on</strong>g>of</str<strong>on</strong>g> the everyday observati<strong>on</strong>s<br />

from which we deduce that space is extended are impossible at Planck scales, where the<br />

basic distincti<strong>on</strong> between vacuum and matter, namely between extensi<strong>on</strong> and localizati<strong>on</strong>,<br />

disappears. As a c<strong>on</strong>sequence, at Planck energy the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe cannot be measured.Itcannotevenbecalledlargerthanamatchbox.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> problems encountered with probes <str<strong>on</strong>g>of</str<strong>on</strong>g> high probe energies have drastic c<strong>on</strong>sequencesforthesizemeasurement<str<strong>on</strong>g>of</str<strong>on</strong>g>theuniverse.Alltheargumentsgivenabovefor<br />

the errors in measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the age can be repeated for the distance to the horiz<strong>on</strong>. To<br />

reduce size measurement errors, a measurement probe needs to have high energy. But<br />

at high energy, measurement errors approach the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the measurement results. At<br />

the largest distances and at Planck energy, the measurement errors are <str<strong>on</strong>g>of</str<strong>on</strong>g> the same magnitude<br />

as the measured values. If we try to determine the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe with high<br />

precisi<strong>on</strong>, we get no precisi<strong>on</strong> at all.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> inability to get precise values for the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe should not come unexpected.<br />

For a reliable measurement, the standard must be different, independent, and<br />

outside the system to be measured. For the universe this is impossible.<br />

Studying the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the big bang also produces strange results. <str<strong>on</strong>g>The</str<strong>on</strong>g> universe is said to<br />

have been much smaller near the big bang because, <strong>on</strong> average, all matter is moving away<br />

from all other matter. But if we try to follow the path <str<strong>on</strong>g>of</str<strong>on</strong>g> matter into the past with high<br />

precisi<strong>on</strong>, using Planck energy probes, we get into trouble: since measurement errors are<br />

as large as measurement data, we cannot claim that the universe was smaller near the big<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


what is the difference between the universe and nothing? 101<br />

Challenge 61 e<br />

Challenge 63 s<br />

Challenge 62 ny<br />

Page 86<br />

bang than it is today: there is no way to reliably distinguish size values.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re are other c<strong>on</strong>firmati<strong>on</strong>s too. If we had a metre rule spanning the whole universe,<br />

even bey<strong>on</strong>d the horiz<strong>on</strong>, with zero at the place where we live, what measurement error<br />

would it produce for the horiz<strong>on</strong>? It does not take l<strong>on</strong>g to work out that the expansi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> space-time, from Planck scales to the present size, implies an expansi<strong>on</strong> in the error<br />

from Planck size to a length <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> the present distance to the horiz<strong>on</strong>. Again,<br />

the error is as large as the measurement result. And again, the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe turns<br />

out not to be a meaningful property.<br />

Since this reas<strong>on</strong>ing also applies if we try to measure the diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe<br />

instead <str<strong>on</strong>g>of</str<strong>on</strong>g> its radius, it is impossible to say whether the antipodes in the sky really are<br />

distant from each other!<br />

We can summarize the situati<strong>on</strong> by noting that anything said about the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

universe is as limited as anything said about its age. <str<strong>on</strong>g>The</str<strong>on</strong>g> height <str<strong>on</strong>g>of</str<strong>on</strong>g> the sky depends <strong>on</strong><br />

the observati<strong>on</strong> energy. If we start measuring the sky at standard observati<strong>on</strong> energies,<br />

and try to increase the precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the distance to the horiz<strong>on</strong>, the<br />

measurement error increases bey<strong>on</strong>d all bounds. At Planck energy, the volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

universe is indistinguishable from the Planck volume – and vice versa.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> space – is the sky a surface?<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> horiz<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe – essentially, the black part <str<strong>on</strong>g>of</str<strong>on</strong>g> the night sky – is a fascinating<br />

entity. Everybody interested in cosmology wants to know what happens there. In<br />

newspapers the horiz<strong>on</strong> is sometimes called the boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> space. Some surprising insights<br />

– which have not yet made it to the newspapers – appear when we combine general<br />

relativity and quantum mechanics.<br />

We have seen that the errors in measuring the distance <str<strong>on</strong>g>of</str<strong>on</strong>g> the horiz<strong>on</strong> are substantial.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>y imply that we cannot pretend that all points <str<strong>on</strong>g>of</str<strong>on</strong>g> the sky are equally far away from us.<br />

Thus we cannot say that the sky is a surface; it could be a volume. In fact, there is no way<br />

to determine the dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> the horiz<strong>on</strong>, nor the dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time<br />

near the horiz<strong>on</strong>.*<br />

Thus measurements do not allow us to determine whether the boundary is a point, a<br />

surface, or a line. It may be a very complex shape, even knotted. In fact, quantum theory<br />

tells us that it must be all <str<strong>on</strong>g>of</str<strong>on</strong>g> these from time to time: that the sky fluctuates in height and<br />

shape.<br />

In short, measurement errors prevent the determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the topology <str<strong>on</strong>g>of</str<strong>on</strong>g> the sky.<br />

In fact, this is not a new result. As is well known, general relativity is unable to describe<br />

particle–antiparticle pair creati<strong>on</strong> particles with spin 1/2. <str<strong>on</strong>g>The</str<strong>on</strong>g> reas<strong>on</strong> for this inability is<br />

the change in space-time topology required by such processes. <str<strong>on</strong>g>The</str<strong>on</strong>g> universe is full <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

these and many other quantum processes; they imply that it is impossible to determine<br />

or define the microscopic topology for the universe and, in particular, for the horiz<strong>on</strong>.<br />

Can you find at least two other arguments to c<strong>on</strong>firm this c<strong>on</strong>clusi<strong>on</strong>?<br />

* <str<strong>on</strong>g>The</str<strong>on</strong>g> measurement errors also imply that we cannot say anything about translati<strong>on</strong>al symmetry at cosmological<br />

scales. Can you c<strong>on</strong>firm this? In additi<strong>on</strong>, at the horiz<strong>on</strong> it is impossible to distinguish between<br />

space-like and time-like distances. Even worse, c<strong>on</strong>cepts such as ‘mass’ or ‘momentum’ become muddled<br />

at the horiz<strong>on</strong>. This means that, as at Planck energy, we are unable to distinguish between object and background,<br />

and between state and intrinsic properties. We thus c<strong>on</strong>firm the point made above.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


102 5 what is the difference between the universe and nothing?<br />

Page 59<br />

Ref. 101<br />

Page 59<br />

Page 308<br />

Page 19<br />

Worse still, quantum theory shows that space-time is not c<strong>on</strong>tinuous at a horiz<strong>on</strong>:<br />

this can easily be deduced using the Planck-scale arguments from the previous secti<strong>on</strong>.<br />

Time and space are not defined at horiz<strong>on</strong>s.<br />

Finally, there is no way to decide by measurement whether the various points <strong>on</strong> the<br />

horiz<strong>on</strong> are different from each other. On the horiz<strong>on</strong>, measurement errors are <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

same order as the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the horiz<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> distance between two points in the night sky<br />

is thus undefined. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore it is unclear what the diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> the horiz<strong>on</strong> is.<br />

In summary, the horiz<strong>on</strong> has no specific distance or shape. <str<strong>on</strong>g>The</str<strong>on</strong>g> horiz<strong>on</strong>, and thus the<br />

universe, cannot be shown to be manifolds. This unexpected result leads us to a further<br />

questi<strong>on</strong>.<br />

Does the universe have initial c<strong>on</strong>diti<strong>on</strong>s?<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g>ten reads about the quest for the initial c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe. But before<br />

joining this search, we should ask whether and when such initial c<strong>on</strong>diti<strong>on</strong>s make any<br />

sense.<br />

Obviously, our everyday descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> requires knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> initial c<strong>on</strong>diti<strong>on</strong>s,<br />

which describe the state <str<strong>on</strong>g>of</str<strong>on</strong>g> a system, i.e., all those aspects that differentiate it from<br />

a system with the same intrinsic properties. Initial c<strong>on</strong>diti<strong>on</strong>s – like the state – are attributed<br />

to a system by an outside observer.<br />

Quantum theory tells us that initial c<strong>on</strong>diti<strong>on</strong>s, or the state <str<strong>on</strong>g>of</str<strong>on</strong>g> a system, can <strong>on</strong>ly be<br />

defined by an outside observer with respect to an envir<strong>on</strong>ment. It is already difficult<br />

to be outside the universe – but even inside the universe, a state can <strong>on</strong>ly be defined if<br />

matter can be distinguished from vacuum. This is impossible at Planck energy, near the<br />

big bang, or at the horiz<strong>on</strong>. Thus<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> universe has no state. And thus no wave functi<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> limits imposed by the Planck values c<strong>on</strong>firm this c<strong>on</strong>clusi<strong>on</strong> in other ways. First <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

all, they show that the big bang was not a singularity with infinite curvature, density<br />

or temperature, because infinitely large values do not exist in nature. Sec<strong>on</strong>dly, since<br />

instants <str<strong>on</strong>g>of</str<strong>on</strong>g> time do not exist, it is impossible to define the state <str<strong>on</strong>g>of</str<strong>on</strong>g> any system at a given<br />

time. Thirdly, as instants <str<strong>on</strong>g>of</str<strong>on</strong>g> time do not exist, neither do events, and so the big bang was<br />

not an event, and neither an initial state nor an initial wave functi<strong>on</strong> can be ascribed to<br />

the universe. (Note that this also means that the universe cannot have been created.)<br />

In short, there are no initial c<strong>on</strong>diti<strong>on</strong>s for the universe. Initial c<strong>on</strong>diti<strong>on</strong>s make sense<br />

<strong>on</strong>ly for subsystems, and <strong>on</strong>ly far from Planck scales. Thus, for initial c<strong>on</strong>diti<strong>on</strong>s to exist,<br />

thesystemmustbefarfromthehoriz<strong>on</strong>anditmusthaveevolvedforsometime‘after’<br />

the big bang. Only when these two requirements are fulfilled can objects move in space.<br />

Of course, this is always the case in everyday life. <str<strong>on</strong>g>The</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> initial c<strong>on</strong>diti<strong>on</strong>s means<br />

that we have (partly) solved <strong>on</strong>e issue from the millennium list.<br />

At this point in our mountain ascent, where neither time nor length is clearly defined<br />

at cosmological scales, it should come as no surprise that there are similar difficulties<br />

c<strong>on</strong>cerning the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> mass.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


what is the difference between the universe and nothing? 103<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 307<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. IV, page 115<br />

Challenge 64 e<br />

Challenge 65 s<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 307<br />

Does the universe c<strong>on</strong>tain particles and stars?<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> total number <str<strong>on</strong>g>of</str<strong>on</strong>g> stars in the universe, about 10 23±1 , is included in every book <strong>on</strong><br />

cosmology. A smaller number can be counted <strong>on</strong> clear nights. But how dependable is the<br />

statement? We can ask the same questi<strong>on</strong> about particles instead <str<strong>on</strong>g>of</str<strong>on</strong>g> stars. <str<strong>on</strong>g>The</str<strong>on</strong>g> comm<strong>on</strong>ly<br />

quoted numbers are 10 80±1 bary<strong>on</strong>s and 10 89±1 phot<strong>on</strong>s. However, the issue is not simple.<br />

Neither quantum theory nor general relativity al<strong>on</strong>e make predicti<strong>on</strong>s about the number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> particles. What happens if we combine the two theories?<br />

In order to define the number <str<strong>on</strong>g>of</str<strong>on</strong>g> particles in a regi<strong>on</strong>, quantum theory first <str<strong>on</strong>g>of</str<strong>on</strong>g> all requires<br />

a vacuum state to be defined. <str<strong>on</strong>g>The</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> particles is defined by comparing<br />

the system with the vacuum. If we neglect or omit general relativity by assuming flat<br />

space-time, this procedure poses no problem. However, if we include general relativity,<br />

and thus a curved space-time, especially <strong>on</strong>e with a strangely behaved horiz<strong>on</strong>, the answer<br />

is simple: there is no vacuum state with which we can compare the universe, for two<br />

reas<strong>on</strong>s. First, nobody can explain what an empty universe would look like. Sec<strong>on</strong>dly,<br />

and more importantly, there is no way to define a state <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe. <str<strong>on</strong>g>The</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particles in the universe thus becomes undefinable. Only at everyday energies and for<br />

finite dimensi<strong>on</strong>s are we able to speak <str<strong>on</strong>g>of</str<strong>on</strong>g> an approximate number <str<strong>on</strong>g>of</str<strong>on</strong>g> particles.<br />

Inthecase<str<strong>on</strong>g>of</str<strong>on</strong>g>theuniverse,acomparis<strong>on</strong>withthevacuumisalsoimpossibleforpurely<br />

practicalreas<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>particlecounterwouldhavetobeoutsidethesystem.(Canyou<br />

c<strong>on</strong>firm this?) In additi<strong>on</strong>, it is impossible to remove particles from the universe.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> impossibility <str<strong>on</strong>g>of</str<strong>on</strong>g> defining a vacuum state, and thus the number <str<strong>on</strong>g>of</str<strong>on</strong>g> particles in the<br />

universe, is not surprising. It is an interesting exercise to investigate the measurement<br />

errors that appear when we try to determine the number <str<strong>on</strong>g>of</str<strong>on</strong>g> particles despite this fundamental<br />

impossibility.<br />

Can we count the stars? In principle, the same c<strong>on</strong>clusi<strong>on</strong> applies as for particles.<br />

However, at everyday energies the stars can be counted classically, i.e., without taking<br />

them out <str<strong>on</strong>g>of</str<strong>on</strong>g> the volume in which they are enclosed. For example, this is possible if<br />

the stars are differentiated by mass, colour or any other individual property. Only near<br />

Planck energy or near the horiz<strong>on</strong> are these methods inapplicable. In short, the number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>starsis<strong>on</strong>lydefinedasl<strong>on</strong>gastheobservati<strong>on</strong>energyislow,i.e.,asl<strong>on</strong>gaswestay<br />

away from Planck energy and from the horiz<strong>on</strong>.<br />

So, despite appearances <strong>on</strong> human scales,<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g>re is no definite number <str<strong>on</strong>g>of</str<strong>on</strong>g> particles in the universe.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe cannot be distinguished from vacuum by counting particles. Even though<br />

particles are necessary for our own existence and functi<strong>on</strong>ing, a complete count <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

them cannot be made.<br />

This c<strong>on</strong>clusi<strong>on</strong> is so strange that we should try to resist it. Let us try another method<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> determining the c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> matter in the universe: instead <str<strong>on</strong>g>of</str<strong>on</strong>g> counting particles in the<br />

universe, let us weigh the universe.<br />

Does the universe have mass?<br />

Mass distinguishes objects from the vacuum. <str<strong>on</strong>g>The</str<strong>on</strong>g> average mass density <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe,<br />

about 10 −26 kg/m 3 ,is<str<strong>on</strong>g>of</str<strong>on</strong>g>tencitedintexts. Is it different from a vacuum? Quantum theory<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


104 5 what is the difference between the universe and nothing?<br />

shows that, as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the indeterminacy relati<strong>on</strong>, even an empty volume <str<strong>on</strong>g>of</str<strong>on</strong>g> size R has<br />

a mass. For a zero-energy phot<strong>on</strong> inside such a vacuum, we have E/c = Δp > ħ/Δx,so<br />

that in a volume <str<strong>on</strong>g>of</str<strong>on</strong>g> size R, wehaveaminimummass<str<strong>on</strong>g>of</str<strong>on</strong>g>atleastm min (R) = h/cR. Fora<br />

spherical volume <str<strong>on</strong>g>of</str<strong>on</strong>g> radius R there is thus a minimal mass density given approximately<br />

by<br />

ρ min ≈ m min(R)<br />

R 3 = ħ<br />

cR 4 . (109)<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. I, page 100<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 65<br />

Challenge 67 e<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 189<br />

For the universe, if the standard horiz<strong>on</strong> distance R 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> 13 800 milli<strong>on</strong> light years is inserted,<br />

the value becomes about 10 −142 kg/m 3 . This describes the density <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum.<br />

In other words, the universe, with a textbook density <str<strong>on</strong>g>of</str<strong>on</strong>g> about 10 −26 kg/m 3 , seems to be<br />

clearly different from vacuum. But are we sure?<br />

We have just deduced that the radius <str<strong>on</strong>g>of</str<strong>on</strong>g> the horiz<strong>on</strong> is undefined: depending <strong>on</strong> the<br />

observati<strong>on</strong> energy, it can be as small as the Planck length. This implies that the density<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the universe lies somewhere between the lowest possible value, given by the density <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vacuum ρ min just menti<strong>on</strong>ed, and the highest possible <strong>on</strong>e, namely the Planck density.*<br />

In short, the total mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe depends <strong>on</strong> the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the observer.<br />

Another way to measure the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe would be to apply the original definiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mass, as given in classical physics and as modified by special relativity. Thus, let<br />

us try to collide a standard kilogram with the universe. It is not hard to see that whatever<br />

we do, using either low or high energies for the standard kilogram, the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the universecannotbec<strong>on</strong>strainedbythismethod.<br />

We would need to produce or to measure a<br />

velocity change Δv for the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe after the collisi<strong>on</strong>. To hit all the mass in<br />

the universe at the same time, we need high energy; but then we are hindered by Planck<br />

energy effects. In additi<strong>on</strong>, a properly performed collisi<strong>on</strong> measurement would require<br />

a mass outside the universe, which is rather difficult to achieve.<br />

Yet another way to measure the mass would be to determine the gravitati<strong>on</strong>al mass<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the universe through straightforward weighing. But the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> balances outside the<br />

universe makes this an impractical soluti<strong>on</strong>, to say the least.<br />

Another way out might be to use the most precise definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mass provided by general<br />

relativity, the so-called ADM mass. However, the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this requires a specified<br />

behaviour at infinity, i.e., a background, which the universe lacks.<br />

We are then left with the other general-relativistic method: determining the mass <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the universe by measuring its average curvature. Let us take the defining expressi<strong>on</strong>s for<br />

average curvature κ for a regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> size R, namely<br />

κ=<br />

1<br />

r 2 curvature<br />

= 3<br />

4π<br />

4πR 2 −S<br />

R 4 = 15<br />

4π<br />

4πR 3 /3 − V<br />

R 5 . (111)<br />

We have to insert the horiz<strong>on</strong> radius R 0 and either its surface area S 0 or its volume V 0 .<br />

* In fact, at everyday energies the density <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe lies midway between the two values, yielding the<br />

Challenge 66 e strange relati<strong>on</strong><br />

m 2 0 /R2 0 ≈m2 Pl /R2 Pl<br />

=c 4 /G 2 . (110)<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. V, page 145 But this fascinating relati<strong>on</strong> is not new. <str<strong>on</strong>g>The</str<strong>on</strong>g> approximate equality can be deduced from equati<strong>on</strong> 16.4.3<br />

(p. 620) <str<strong>on</strong>g>of</str<strong>on</strong>g> Steven Weinberg, Gravitati<strong>on</strong> and Cosmology, Wiley, 1972, namely Gn b m p = 1/t 2 0 . <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

relati<strong>on</strong> is required by several cosmological models.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


what is the difference between the universe and nothing? 105<br />

Challenge 68 e<br />

Ref. 102<br />

However, given the error margins <strong>on</strong> the radius and the volume, especially at Planck<br />

energy, we again find no reliable result for the radius <str<strong>on</strong>g>of</str<strong>on</strong>g> curvature.<br />

An equivalent method starts with the usual expressi<strong>on</strong> provided by Rosenfeld for the<br />

indeterminacy Δκ in the scalar curvature for a regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> size R,namely<br />

Challenge 69 s<br />

Challenge 70 e<br />

Δκ > 16πl2 Pl<br />

R 4 . (112)<br />

However, this expressi<strong>on</strong> also shows that the error in the radius <str<strong>on</strong>g>of</str<strong>on</strong>g> curvature behaves like<br />

the error in the distance to the horiz<strong>on</strong>.<br />

We find that at Planck energy, the average radius <str<strong>on</strong>g>of</str<strong>on</strong>g> curvature <str<strong>on</strong>g>of</str<strong>on</strong>g> nature lies between<br />

infinity and the Planck length. This implies that the mass density <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe lies<br />

between the minimum value and the Planck value. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is thus no method to determine<br />

the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe at Planck energy. (Can you find <strong>on</strong>e?)<br />

In summary, mass measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe vary with the energy scale. Both at<br />

the lowest and at the highest energies, a precise mass value cannot be determined. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> mass cannot be applied to the universe as a whole: the universe has no mass.<br />

Do symmetries exist in nature?<br />

We have already seen that at the cosmological horiz<strong>on</strong>, space-time translati<strong>on</strong> symmetry<br />

breaks down. Let us have a quick look at the other symmetries.<br />

What happens to permutati<strong>on</strong> symmetry? Permutati<strong>on</strong> is an operati<strong>on</strong> <strong>on</strong> objects in<br />

space-time. It thus necessarily requires a distincti<strong>on</strong> between matter, space and time. If<br />

we cannot distinguish positi<strong>on</strong>s, we cannot talk about exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> particles. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, at<br />

the horiz<strong>on</strong>, general relativity and quantum theory together make it impossible to define<br />

permutati<strong>on</strong> symmetry.<br />

Let us explore CPT symmetry. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement errors or <str<strong>on</strong>g>of</str<strong>on</strong>g> limiting maximum<br />

or minimum values, it is impossible to distinguish between the original and the<br />

transformed situati<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore we cannot claim that CPT is a symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> nature at<br />

horiz<strong>on</strong> scales. In other words, matter and antimatter cannot be distinguished at the<br />

horiz<strong>on</strong>.<br />

Also gauge symmetry is not valid at horiz<strong>on</strong> scale, as you may wish to check in detail<br />

yourself. For its definiti<strong>on</strong>, the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> gauge field requires a distincti<strong>on</strong> between time,<br />

space and mass; at the horiz<strong>on</strong> this is impossible. We therefore also deduce that at the<br />

horiz<strong>on</strong>, c<strong>on</strong>cepts such as algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> observables cannot be used to describe nature.<br />

Renormalizati<strong>on</strong> breaks down too.<br />

All symmetries <str<strong>on</strong>g>of</str<strong>on</strong>g> nature break down at the cosmological horiz<strong>on</strong>. N<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the vocabulary<br />

we use to talk about observati<strong>on</strong>s – including terms such as such as ‘magnetic field’,<br />

‘electric field’, ‘potential’, ‘spin’, ‘charge’, or ‘speed’ – can be used at the horiz<strong>on</strong>.<br />

Does the universe have a boundary?<br />

It is comm<strong>on</strong> to take ‘boundary’ and ‘horiz<strong>on</strong>’ as syn<strong>on</strong>yms in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe,<br />

because they are the same for all practical purposes. Knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematics does<br />

not help us here: the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematical boundaries – for example, that they<br />

themselves have no boundary – are not applicable to the universe, since space-time is<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


106 5 what is the difference between the universe and nothing?<br />

Challenge 71 s<br />

Ref. 103<br />

not c<strong>on</strong>tinuous. We need other, physical arguments.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe is supposed to represent the boundary between something<br />

and nothing. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are three possible interpretati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘nothing’:<br />

— ‘Nothing’ could mean ‘no matter’. But we have just seen that this distincti<strong>on</strong> cannot<br />

be made at Planck scales. So either the boundary will not exist at all or it will<br />

encompass the horiz<strong>on</strong> as well as the whole universe.<br />

— ‘Nothing’ could mean ‘no space-time’. We then have to look for those domains<br />

where space and time cease to exist. <str<strong>on</strong>g>The</str<strong>on</strong>g>se occur at Planck scales and at the horiz<strong>on</strong>.<br />

Again, either the boundary will not exist or it will encompass the whole universe.<br />

— ‘Nothing’ could mean ‘neither space-time nor matter’. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>on</strong>ly possibility is a<br />

boundary that encloses domains bey<strong>on</strong>d the Planck scales and bey<strong>on</strong>d the horiz<strong>on</strong>;<br />

but again, such a boundary would also encompass all <str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

This is puzzling. When combining quantum theory and relativity, we do not seem to<br />

be able to find a c<strong>on</strong>ceptual definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the horiz<strong>on</strong> that distinguishes it from what<br />

it includes. A distincti<strong>on</strong> is possible in general relativity al<strong>on</strong>e, and in quantum theory<br />

al<strong>on</strong>e; but as so<strong>on</strong> as we combine the two, the boundary becomes indistinguishable from<br />

its c<strong>on</strong>tent. <str<strong>on</strong>g>The</str<strong>on</strong>g> interior <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe cannot be distinguished from its horiz<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>reis<br />

no boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> difficulty in distinguishing the horiz<strong>on</strong> from its c<strong>on</strong>tents suggests that nature may<br />

be symmetric under transformati<strong>on</strong>s that exchange interiors and boundaries. This idea<br />

is called holography, because it vaguely recalls the working <str<strong>on</strong>g>of</str<strong>on</strong>g> credit-card holograms. It<br />

is a busy research field in high-energy physics.<br />

We note that if the interior and the boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe cannot be distinguished,<br />

the c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> nature can neither be points nor tiny objects <str<strong>on</strong>g>of</str<strong>on</strong>g> any kind. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>stituents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nature must be extended. But before we explore this topic, we c<strong>on</strong>tinue with<br />

our search for differences between the universe and nothing. <str<strong>on</strong>g>The</str<strong>on</strong>g> search leads us to our<br />

next questi<strong>on</strong>.<br />

Is the universe a set?<br />

“Domina omnium et regina ratio.*<br />

Cicero”<br />

We are used to thinking <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe the sum <str<strong>on</strong>g>of</str<strong>on</strong>g> all matter and all space-time. In doing<br />

so, we imply that the universe is a set <str<strong>on</strong>g>of</str<strong>on</strong>g> mutually distinct comp<strong>on</strong>ents. This idea<br />

has been assumed in three situati<strong>on</strong>s: in claiming that matter c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> particles; that<br />

space-time c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> events (or points); and that different states c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> different initial<br />

c<strong>on</strong>diti<strong>on</strong>s. However, our discussi<strong>on</strong> shows that the universe is not aset<str<strong>on</strong>g>of</str<strong>on</strong>g>such<br />

distinguishable elements. We have encountered several pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s: at the horiz<strong>on</strong>, at the big<br />

bang and at Planck scales, it becomes impossible to distinguish between events, between<br />

particles, between observables, and between space-time and matter. In those domains,<br />

distincti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> any kind become impossible. We have found that distinguishing between<br />

* ‘<str<strong>on</strong>g>The</str<strong>on</strong>g> mistress and queen <str<strong>on</strong>g>of</str<strong>on</strong>g> all things is reas<strong>on</strong>.’ Tusculanae Disputati<strong>on</strong>es, 2.21.47. Marcus Tullius Cicero<br />

(106–43 bce), was an influential lawyer, orator, writer and politician at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the Roman republic.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


what is the difference between the universe and nothing? 107<br />

two entities – for example, between a toothpick and a mountain – is <strong>on</strong>ly approximately<br />

possible. It is approximately possible because we live at energies well below the<br />

Planck energy. <str<strong>on</strong>g>The</str<strong>on</strong>g> approximati<strong>on</strong> is so good that we do not notice the error when we<br />

distinguish cars from people and from toothpicks. Nevertheless, our discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

situati<strong>on</strong> at Planck energy shows that a perfect distincti<strong>on</strong> is impossible in principle. It<br />

is impossible to split the universe into separate parts.<br />

Another way to reach this result is the following. Distinguishing between two entities<br />

requires different measurement results: for example, different positi<strong>on</strong>s, masses<br />

or sizes. Whatever quantity we choose, at Planck energy the distincti<strong>on</strong> becomes impossible.<br />

Only at everyday energies is it approximately possible.<br />

In short, since the universe c<strong>on</strong>tains no distinguishable parts, there are no (mathematical)<br />

elements in nature. Simply put:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> universe is not a set.<br />

We envisaged this possibility earlier <strong>on</strong>; now it is c<strong>on</strong>firmed. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘element’<br />

and ‘set’ are already too specialized to describe the universe. <str<strong>on</strong>g>The</str<strong>on</strong>g> universe must be described<br />

by a mathematical c<strong>on</strong>cept that does not c<strong>on</strong>tain any set. <str<strong>on</strong>g>The</str<strong>on</strong>g> new c<strong>on</strong>cept must<br />

be more general than that <str<strong>on</strong>g>of</str<strong>on</strong>g> a set.<br />

This is a powerful result: a precise descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe cannot use any c<strong>on</strong>cept<br />

that presupposes the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> sets. But all the c<strong>on</strong>cepts we have used so far to describe<br />

nature, such as space-time, metric, phase space, Hilbert space and its generalizati<strong>on</strong>s, are<br />

based <strong>on</strong> elements and sets. <str<strong>on</strong>g>The</str<strong>on</strong>g>y must all be aband<strong>on</strong>ed at Planck energies, and in any<br />

precise descripti<strong>on</strong>.<br />

Elements and sets must be aband<strong>on</strong>ed. Note that this radical c<strong>on</strong>clusi<strong>on</strong> is deduced<br />

from <strong>on</strong>ly two statements: the necessity <str<strong>on</strong>g>of</str<strong>on</strong>g> using quantum theory whenever the dimensi<strong>on</strong>s<br />

are <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> the Compt<strong>on</strong> wavelength, and <str<strong>on</strong>g>of</str<strong>on</strong>g> using general relativity<br />

whenever the dimensi<strong>on</strong>s are <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> the Schwarzschild radius. Together, they<br />

mean that no precise descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature can c<strong>on</strong>tain elements and sets. <str<strong>on</strong>g>The</str<strong>on</strong>g> difficulties<br />

in complying with this result explain why the unificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the two theories has<br />

not so far been successful. Not <strong>on</strong>ly does unificati<strong>on</strong> require that we stop using space,<br />

time and mass for the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature; it also requires that all distincti<strong>on</strong>s, <str<strong>on</strong>g>of</str<strong>on</strong>g> any<br />

kind, should be <strong>on</strong>ly approximate. But all physicists have been educated <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

exactly the opposite creed!<br />

Many past speculati<strong>on</strong>s about the unified descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature depend <strong>on</strong> sets. In<br />

particular, all studies <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum fluctuati<strong>on</strong>s, mathematical categories, posets, involved<br />

mathematical spaces, computer programs, Turing machines, Gödel’s incompleteness<br />

theorem, creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> any sort, space-time lattices, quantum lattices and Bohm’s unbroken<br />

wholeness presuppose sets. In additi<strong>on</strong>, all speculati<strong>on</strong>s by cosmologists about<br />

Ref. 104<br />

the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe presuppose sets. But since these speculati<strong>on</strong>s presuppose sets,<br />

they are wr<strong>on</strong>g. You may also wish to check the religious explanati<strong>on</strong>s you know against<br />

Challenge 72 e this criteri<strong>on</strong>. In fact, no approach used by theoretical physicists up to the year 2000<br />

satisfied the requirement that elements and sets must be aband<strong>on</strong>ed.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> task <str<strong>on</strong>g>of</str<strong>on</strong>g> aband<strong>on</strong>ing sets is not easy. This is shown with a simple test: do you know<br />

Challenge 73 s <str<strong>on</strong>g>of</str<strong>on</strong>g> a single c<strong>on</strong>cept not based <strong>on</strong> elements or sets?<br />

In summary, the universe is not a set. In particular,<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. III, page 328<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


108 5 what is the difference between the universe and nothing?<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> universe is not a physical system.<br />

Specifically, the universe has no state, no intrinsic properties, no wave functi<strong>on</strong>, no initial<br />

c<strong>on</strong>diti<strong>on</strong>s, no energy, no mass, no entropy and no cosmological c<strong>on</strong>stant. <str<strong>on</strong>g>The</str<strong>on</strong>g> universe<br />

is thus neither thermodynamically closed nor open; and it c<strong>on</strong>tains no informati<strong>on</strong>. All<br />

thermodynamic quantities, such as entropy, temperature and free energy, are defined<br />

using ensembles. Ensembles are limits <str<strong>on</strong>g>of</str<strong>on</strong>g> systems which are thermodynamically either<br />

open or closed. As the universe is neither open nor closed, no thermodynamic quantity<br />

can be defined for it.* All physical properties are defined <strong>on</strong>ly for parts <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. Only<br />

parts <str<strong>on</strong>g>of</str<strong>on</strong>g> nature are approximated or idealized as sets, and thus <strong>on</strong>ly parts <str<strong>on</strong>g>of</str<strong>on</strong>g> nature are<br />

physical systems.<br />

Curiosities and fun challenges about the universe<br />

“Ins<str<strong>on</strong>g>of</str<strong>on</strong>g>ern sich die Sätze der Mathematik auf die<br />

Wirklichkeit beziehen, sind sie nicht sicher, und<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>ern sie sicher sind, beziehen sie sich nicht auf<br />

die Wirklichkeit.**<br />

Albert Einstein” “Die ganzen Zahlen hat der liebe Gott gemacht,<br />

alles andere ist Menschenwerk.***<br />

Leopold Kr<strong>on</strong>ecker”<br />

In mathematics, 2+2=4. This statement is an idealizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> statements such as ‘two<br />

apples plus two apples makes four apples.’ However, we now know that at Planck energy,<br />

the statement about apples is not a correct statement about nature. At Planck energy,<br />

objects cannot be counted or even defined, because separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> objects is not possible<br />

at that scale. We can count objects <strong>on</strong>ly because we live at energies much lower than the<br />

Planck energy.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> statement by Kr<strong>on</strong>ecker must thus be amended. Since all integers are low-energy<br />

approximati<strong>on</strong>s, and since we always use low-energy approximati<strong>on</strong>s when talking or<br />

thinking, we provokingly c<strong>on</strong>clude: man also makes the integers.<br />

∗∗<br />

If vacuum cannot be distinguished from matter or radiati<strong>on</strong>, and if the universe cannot<br />

be distinguished from nothing, then it is incorrect to claim that “the universe appeared<br />

from nothing.” <str<strong>on</strong>g>The</str<strong>on</strong>g> naive idea <str<strong>on</strong>g>of</str<strong>on</strong>g> creati<strong>on</strong> is a logical impossibility. “Creati<strong>on</strong>” results<br />

from a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> imaginati<strong>on</strong>.<br />

∗∗<br />

* Some people knew this l<strong>on</strong>g before physicists did. For example, the belief that the universe is or c<strong>on</strong>tains<br />

informati<strong>on</strong> was ridiculed most thoroughly in the popular science-ficti<strong>on</strong> parody by Douglas Adams,<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Hitchhiker’s Guide to the Galaxy, 1979, and its sequels.<br />

** ‘In so far as mathematical statements describe reality, they are not certain, and as far as they are certain,<br />

they are not a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reality.’<br />

*** ‘Gracious god made the integers, all else is the work <str<strong>on</strong>g>of</str<strong>on</strong>g> man.’ Leopold Kr<strong>on</strong>ecker (b. 1823 Liegnitz,<br />

d. 1891 Berlin) was a well-known mathematician. Am<strong>on</strong>g others, the Kr<strong>on</strong>ecker delta and the Kr<strong>on</strong>ecker<br />

product are named for him.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


what is the difference between the universe and nothing? 109<br />

Ref. 105<br />

Challenge 74 s<br />

Ref. 106<br />

Challenge 75 s<br />

Challenge 76 s<br />

Challenge 77 e<br />

Challenge 78 e<br />

Challenge 79 s<br />

Challenge 80 e<br />

Challenge 81 s<br />

In 2002, Seth Lloyd estimated how much informati<strong>on</strong> the universe can c<strong>on</strong>tain, and how<br />

many calculati<strong>on</strong>s it has performed since the big bang. Thisestimateisbased<strong>on</strong>two<br />

ideas: that the number <str<strong>on</strong>g>of</str<strong>on</strong>g> particles in the universe is a well-defined quantity, and that the<br />

universe is a computer, i.e., a physical system. We now know that neither assumpti<strong>on</strong><br />

is correct. <str<strong>on</strong>g>The</str<strong>on</strong>g> universe c<strong>on</strong>tains no informati<strong>on</strong>. C<strong>on</strong>clusi<strong>on</strong>s such as this <strong>on</strong>e show the<br />

power <str<strong>on</strong>g>of</str<strong>on</strong>g> the criteria that we have deduced for any precise or complete descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

moti<strong>on</strong>.<br />

∗∗<br />

Astr<strong>on</strong>omers regularly take pictures <str<strong>on</strong>g>of</str<strong>on</strong>g> the cosmic background radiati<strong>on</strong> and its variati<strong>on</strong>s.<br />

Is it possible that these photographs will show that the spots in <strong>on</strong>e directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the sky are exactly the same as those in the diametrically opposite directi<strong>on</strong>?<br />

∗∗<br />

In 1714, the famous scientist and thinker Leibniz (b. 1646 Leipzig, d. 1716 Hannover)<br />

published his M<strong>on</strong>adologie. In it he explores what he calls a ‘simple substance’, which<br />

he defined to be a substance that has no parts. He called it a m<strong>on</strong>ad and describes some<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its properties. However, mainly thanks to his incorrect deducti<strong>on</strong>s, the term has not<br />

been generally adopted. What is the physical c<strong>on</strong>cept most closely related to that <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

m<strong>on</strong>ad?<br />

∗∗<br />

We usually speak <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe, implying that there is <strong>on</strong>ly <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> them. Yet there is<br />

a simple case to be made that ‘universe’ is an observer-dependent c<strong>on</strong>cept, since the<br />

idea <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘all’ is observer-dependent. Does this mean that there are many universes, or a<br />

‘multiverse’?<br />

∗∗<br />

Is the ‘radius’ <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe observer-invariant?<br />

∗∗<br />

Is the cosmological c<strong>on</strong>stant Λ observer-invariant?<br />

∗∗<br />

If all particles were removed (assuming <strong>on</strong>e knew where to put them), there wouldn’t be<br />

much <str<strong>on</strong>g>of</str<strong>on</strong>g> a universe left. True?<br />

∗∗<br />

Can you show that the distincti<strong>on</strong> between matter and antimatter is not possible at the<br />

cosmic horiz<strong>on</strong>? And the distincti<strong>on</strong> between real and virtual particles?<br />

∗∗<br />

At Planck energy, interacti<strong>on</strong>s cannot be defined. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, ‘existence’ cannot be<br />

defined. In short, at Planck energy we cannot say whether particles exist. True?<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


110 5 what is the difference between the universe and nothing?<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. III, page 282<br />

Ref. 107<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. I, page 437<br />

Hilbert’s sixth problem settled<br />

In the year 1900, David Hilbert* gave a famous lecture in which he listed 23 <str<strong>on</strong>g>of</str<strong>on</strong>g> the great<br />

challenges facing mathematics in the twentieth century. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> these provided challenges<br />

to many mathematicians for decades afterwards. A few are still unsolved, am<strong>on</strong>g<br />

them the sixth, which challenged mathematicians and physicists to find an axiomatic<br />

treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> physics. <str<strong>on</strong>g>The</str<strong>on</strong>g> problem has remained in the minds <str<strong>on</strong>g>of</str<strong>on</strong>g> many physicists since<br />

that time. Scholars have developed axiomatic treatments if classical mechanics, electrodynamics<br />

and special relativity. <str<strong>on</strong>g>The</str<strong>on</strong>g>n they did this for quantum theory, quantum field<br />

theory and general relativity.<br />

Whenever we combine quantum theory and general relativity, we must aband<strong>on</strong> the<br />

c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> point particle, <str<strong>on</strong>g>of</str<strong>on</strong>g> space point and <str<strong>on</strong>g>of</str<strong>on</strong>g> event. Mathematically speaking, when<br />

we combine quantum theory and general relativity, we find that nature does not c<strong>on</strong>tain<br />

sets, and that the universe is not a set. However, all mathematical systems – be they<br />

algebraic systems, order systems, topological systems or a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> these – are based<br />

<strong>on</strong> elements and sets. Mathematics does not have axiomatic systems without elements<br />

or sets. <str<strong>on</strong>g>The</str<strong>on</strong>g> reas<strong>on</strong> for this is simple: every (mathematical) c<strong>on</strong>cept c<strong>on</strong>tains at least <strong>on</strong>e<br />

element and <strong>on</strong>e set. However, nature is different. And since nature does not c<strong>on</strong>tain<br />

sets, an axiomatic descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature is impossible.<br />

All c<strong>on</strong>cepts used in physics before the year 2000 depend <strong>on</strong> elements and sets. For<br />

humans, it is difficult even to think without first defining a set <str<strong>on</strong>g>of</str<strong>on</strong>g> possibilities. Yet nature<br />

does not c<strong>on</strong>tain sets.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g>re is no axiomatic descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

And since an axiomatic formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> physics is impossible, we c<strong>on</strong>clude that the complete,<br />

unified theory cannot be based <strong>on</strong> axioms. This is surprising at first, because separate<br />

axiomatic treatments <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory and general relativity are possible. However,<br />

axiomatic systems in physics are always approximate. <str<strong>on</strong>g>The</str<strong>on</strong>g> need to aband<strong>on</strong> axioms is <strong>on</strong>e<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the reas<strong>on</strong>s why reaching a unified descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature is a challenge.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> impossibility <str<strong>on</strong>g>of</str<strong>on</strong>g> an axiomatic system for physics is also c<strong>on</strong>firmed in another way.<br />

<str<strong>on</strong>g>Physics</str<strong>on</strong>g>startswithacircular definiti<strong>on</strong>: space-time and vacuum are defined with the help<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> objects and objects are defined with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time and vacuum. In fact, physics<br />

has never been axiomatic! Physicists have always had to live with circular definiti<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> situati<strong>on</strong> is similar to a child’s descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sky as ‘made <str<strong>on</strong>g>of</str<strong>on</strong>g> air and clouds’.<br />

Looking closely, we discover that clouds are made up <str<strong>on</strong>g>of</str<strong>on</strong>g> water droplets. We find that<br />

there is air inside clouds, and that there is also water vapour away from clouds. When<br />

clouds and air are viewed through a microscope, there is no clear boundary between the<br />

two. We cannot define either <str<strong>on</strong>g>of</str<strong>on</strong>g> the terms ‘cloud’ and ‘air’ without the other.<br />

Like clouds and air, also objects and vacuum are indistinguishable. Virtual particles<br />

are found in vacuum, and vacuum is found inside objects. At Planck scales there is no<br />

clear boundary between the two; we cannot define either <str<strong>on</strong>g>of</str<strong>on</strong>g> the terms ‘particle’ and<br />

‘vacuum’ without the other. But despite the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> a clean definiti<strong>on</strong>, and despite the<br />

* David Hilbert (b. 1862 Königsberg, d. 1943 Göttingen) was the greatest mathematician <str<strong>on</strong>g>of</str<strong>on</strong>g> his time. His<br />

textbooks are still in print.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


what is the difference between the universe and nothing? 111<br />

Page 221<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. I, page 436<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. III, page 253<br />

Challenge 82 r<br />

Challenge 83 s<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. III, page 284<br />

logical problems that can ensue, in both cases the descripti<strong>on</strong> works well at large, everyday<br />

scales.<br />

In summary, an axiomatic descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature is impossible. In particular, the complete,<br />

unified theory must c<strong>on</strong>tain circular definiti<strong>on</strong>s. We will find out how to realize<br />

the requirement later <strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> perfect physics book<br />

A perfect physics book describes all <str<strong>on</strong>g>of</str<strong>on</strong>g> nature with full precisi<strong>on</strong>. In particular, a perfect<br />

physics book describes itself, its own producti<strong>on</strong>, its own author, its own readers and its<br />

own c<strong>on</strong>tents. Can such a book exist?<br />

Since the universe is not a set, a perfect physics book can exist, as it does not c<strong>on</strong>tradict<br />

any property <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe. Since the universe is not a set and since it c<strong>on</strong>tains no<br />

informati<strong>on</strong>, the paradox <str<strong>on</strong>g>of</str<strong>on</strong>g> the perfect physics book disappears. Indeed, any existing<br />

physics book attempts to be perfect. But now a further questi<strong>on</strong> arises.<br />

Does the universe make sense?“Drum hab ich mich der Magie ergeben,<br />

[ ... ]<br />

Daß ich erkenne, was die Welt<br />

Im Innersten zusammenhält.*<br />

Goethe, Faust.”<br />

Is the universe really the sum <str<strong>on</strong>g>of</str<strong>on</strong>g> matter–energy and space-time? Or <str<strong>on</strong>g>of</str<strong>on</strong>g> particles and<br />

vacuum? We have heard these statements so <str<strong>on</strong>g>of</str<strong>on</strong>g>ten that we may forget to check them.<br />

We do not need magic, as Faust thought: we <strong>on</strong>ly need to list what we have found so far,<br />

especially in this secti<strong>on</strong>, in the secti<strong>on</strong> <strong>on</strong> Planck scales, and in the chapter <strong>on</strong> brain and<br />

language. Table 3 shows the result.<br />

Not <strong>on</strong>ly are we unable to state that the universe is made <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time and matter;<br />

we are unable to say anything about the universe at all! It is not even possible to say that<br />

it exists, since it is impossible to interact with it. <str<strong>on</strong>g>The</str<strong>on</strong>g> term ‘universe’ does not allow us to<br />

make a single sensible statement. (Can you find <strong>on</strong>e?) We are <strong>on</strong>ly able to list properties<br />

it does not have. We are unable to find any property that the universe does have. Thus,<br />

the universe has no properties! We cannot even say whether the universe is something<br />

or nothing. <str<strong>on</strong>g>The</str<strong>on</strong>g> universe isn’t anything in particular. <str<strong>on</strong>g>The</str<strong>on</strong>g> term universe has no c<strong>on</strong>tent.<br />

By the way, there is another well-known, n<strong>on</strong>-physical c<strong>on</strong>cept about which nothing<br />

can be said. Many scholars have explored it in detail. What is it?<br />

In short, the term ‘universe’ is not at all useful for the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>. We<br />

can obtain a c<strong>on</strong>firmati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this strange c<strong>on</strong>clusi<strong>on</strong> from an earlier chapter. <str<strong>on</strong>g>The</str<strong>on</strong>g>re we<br />

found that any c<strong>on</strong>cept needs defined c<strong>on</strong>tent, defined limits and a defined domain <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

applicati<strong>on</strong>. In this secti<strong>on</strong>, we have found that the term ‘universe’ has n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> these;<br />

there is thus no such c<strong>on</strong>cept. If somebody asks why the universe exists, the answer is:<br />

not <strong>on</strong>ly does the use <str<strong>on</strong>g>of</str<strong>on</strong>g> the word ‘why’ wr<strong>on</strong>gly suggest that something may exist outside<br />

the universe, providing a reas<strong>on</strong> for it and thus c<strong>on</strong>tradicting the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the term<br />

* ‘Thus I have devoted myself to magic, [ ... ] that I understand how the innermost world is held together.’<br />

Goethe was a German poet.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


112 5 what is the difference between the universe and nothing?<br />

TABLE 3 Statements about the universe when explored at highest precisi<strong>on</strong>, i.e., at Planck scales<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe has no age.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe has no size.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe has no shape.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe has no mass.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe has no density.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe has no cosmological c<strong>on</strong>stant.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe has no state.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe is not a physical system.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe is not isolated.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe has no boundaries.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe cannot be measured.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe cannot be distinguished from<br />

nothing.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe c<strong>on</strong>tains no moments.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe is not a set.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe cannot be described.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe cannot be distinguished from<br />

vacuum.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe has no beginning.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe has no volume.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe’s particle number is undefined.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe has no energy.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe c<strong>on</strong>tains no matter.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe has no initial c<strong>on</strong>diti<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe has no wave functi<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe c<strong>on</strong>tains no informati<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe is not open.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe does not interact.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe cannot be said to exist.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe cannot be distinguished from a<br />

single event.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe is not composite.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe is not a c<strong>on</strong>cept.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re is no plural for ‘universe’.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe was not created.<br />

‘universe’ itself; but more importantly, the universe does not exist, because there is no<br />

such c<strong>on</strong>cept as a ‘universe’.<br />

In summary, any sentence c<strong>on</strong>taining the word ‘universe’ is meaningless. <str<strong>on</strong>g>The</str<strong>on</strong>g> word <strong>on</strong>ly<br />

seems to express something, but it doesn’t.* This c<strong>on</strong>clusi<strong>on</strong> may be interesting, even<br />

strangely beautiful, but does it help us to understand moti<strong>on</strong> more precisely? Yes, it<br />

does.<br />

Aband<strong>on</strong>ing sets and discreteness eliminates c<strong>on</strong>tradicti<strong>on</strong>s<br />

Our discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the term ‘universe’ shows that the term cannot include any element or<br />

set. And the same applies to the term ‘nature’. Nature cannot be made <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms. Nature<br />

cannot be made <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time points. Nature cannot be made <str<strong>on</strong>g>of</str<strong>on</strong>g> separate, distinct and<br />

discrete entities.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> difficulties in giving a sharp definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘universe’ also show that the fashi<strong>on</strong>able<br />

term ‘multiverse’ makes no sense. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is no way to define such a term, since there is<br />

no empirical way and also no logical way to distinguish ‘<strong>on</strong>e’ universe from ‘another’:<br />

the universe has no boundary. In short, since the term ‘universe’ has no c<strong>on</strong>tent, the<br />

term ‘multiverse’ has even less. <str<strong>on</strong>g>The</str<strong>on</strong>g> latter term has been created <strong>on</strong>ly to trick the media<br />

and various funding agencies. In fact, the same might even be said <str<strong>on</strong>g>of</str<strong>on</strong>g> the former term...<br />

* Of course, the term ‘universe’ still makes sense if it is defined more restrictively: for example,as everything<br />

interacting with a particular human or animal observer in everyday life. But such a definiti<strong>on</strong>, equating<br />

‘universe’ and ‘envir<strong>on</strong>ment’, is not useful for our quest, as it lacks the precisi<strong>on</strong> required for a descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


what is the difference between the universe and nothing? 113<br />

Challenge 84 e<br />

Page 19<br />

TABLE 4 Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> nature at maximal, everyday and minimal scales<br />

Physical property <str<strong>on</strong>g>of</str<strong>on</strong>g> nature<br />

At horiz<strong>on</strong><br />

scale<br />

At<br />

everyday<br />

scale<br />

At Planck<br />

scales<br />

requires quantum theory and relativity true false true<br />

intervals can be measured precisely false true false<br />

length and time intervals appear limited unlimited limited<br />

space-time is not c<strong>on</strong>tinuous true false true<br />

points and events cannot be distinguished true false true<br />

space-time is not a manifold true false true<br />

space is 3-dimensi<strong>on</strong>al false true false<br />

space and time are indistinguishable true false true<br />

initial c<strong>on</strong>diti<strong>on</strong>s make sense false true false<br />

space-time fluctuates true false true<br />

Lorentz and Poincaré symmetry do not apply apply do not apply<br />

CPT symmetry does not apply applies does not apply<br />

renormalizati<strong>on</strong> does not apply applies does not apply<br />

permutati<strong>on</strong> symmetry does not apply applies does not apply<br />

interacti<strong>on</strong>s and gauge symmetries do not exist exist do not exist<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> particles undefined defined undefined<br />

algebras <str<strong>on</strong>g>of</str<strong>on</strong>g> observables undefined defined undefined<br />

matter indistinguishable from vacuum true false true<br />

boundaries exist false true false<br />

nature is a set false true false<br />

So far, by taking into account the limits <strong>on</strong> length, time, mass and all the other quantitieswehaveencountered,wehavereachedanumber<str<strong>on</strong>g>of</str<strong>on</strong>g>almostpainfulc<strong>on</strong>clusi<strong>on</strong>sabout<br />

nature. However, we have also received something in exchange: all the c<strong>on</strong>tradicti<strong>on</strong>s<br />

between general relativity and quantum theory that we menti<strong>on</strong>ed at the beginning <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this chapter are now resolved. We changed the c<strong>on</strong>tradicti<strong>on</strong>s to circular definiti<strong>on</strong>s. Although<br />

we have had to leave many cherished habits behind us, in exchange we have the<br />

promise <str<strong>on</strong>g>of</str<strong>on</strong>g> a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature without c<strong>on</strong>tradicti<strong>on</strong>s. But we get even more.<br />

Extremal scales and open questi<strong>on</strong>s in physics<br />

At the beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> this volume, we listed all the fundamental properties <str<strong>on</strong>g>of</str<strong>on</strong>g> nature that<br />

are unexplained either by general relativity or by quantum theory. We called it the millennium<br />

list. <str<strong>on</strong>g>The</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter provide us with surprising statements <strong>on</strong> many<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the items. In fact, many <str<strong>on</strong>g>of</str<strong>on</strong>g> the statements are not new at all, but are surprisingly familiar.<br />

Let us compare systematically the statements from this chapter, <strong>on</strong> the universe,<br />

with those <str<strong>on</strong>g>of</str<strong>on</strong>g> the previous chapter, <strong>on</strong> Planck scales. <str<strong>on</strong>g>The</str<strong>on</strong>g> comparis<strong>on</strong> is given in Table 4.<br />

First, Table 4 shows that each unexplained property listed there is unexplained at both<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


114 5 what is the difference between the universe and nothing?<br />

Challenge 85 r<br />

Challenge 86 e<br />

Ref. 108<br />

Challenge 87 s<br />

Ref. 103<br />

Challenge 88 e<br />

limits <str<strong>on</strong>g>of</str<strong>on</strong>g> nature, the small and the large limit. Worse, many <str<strong>on</strong>g>of</str<strong>on</strong>g> these unexplained general<br />

properties do not even make sense at the two limits <str<strong>on</strong>g>of</str<strong>on</strong>g> nature!<br />

Sec<strong>on</strong>dly, and more importantly, nature behaves in the same way at the cosmological<br />

horiz<strong>on</strong> scale and at the Planck scale. In fact, we have not found any difference between<br />

the two cases. (Can you discover <strong>on</strong>e?) We are thus led to the hypothesis that nature<br />

does not distinguish between the large and the small. Nature seems to be characterized<br />

by extremal identity.<br />

Is extremal identity a principle <str<strong>on</strong>g>of</str<strong>on</strong>g> nature?<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> idea <str<strong>on</strong>g>of</str<strong>on</strong>g> extremal identity incorporates some rather general points:<br />

— All open questi<strong>on</strong>s about nature appear at both size extremes.<br />

— Any descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature requires both general relativity and quantum theory.<br />

— Nature, or the universe, is not a set.<br />

— Initial c<strong>on</strong>diti<strong>on</strong>s and evoluti<strong>on</strong> equati<strong>on</strong>s make no sense at nature’s limits.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a relati<strong>on</strong> between local and global issues in nature.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘universe’ has no c<strong>on</strong>tent.<br />

Extremal identity thus looks like a useful hypothesis in the search for a unified descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nature. To be a bit more provocative, it seems that extremal identity may be the<br />

<strong>on</strong>ly hypothesis incorporating the idea that the universe is not a set. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, extremal<br />

identity seems to be essential in the quest for unificati<strong>on</strong>.<br />

Extremal identity is beautiful in its simplicity, in its unexpectedness and in the richness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its c<strong>on</strong>sequences. You might enjoy exploring it by yourself. In fact, the explorati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> extremal identity is currently the subject <str<strong>on</strong>g>of</str<strong>on</strong>g> much activity in theoretical physics,<br />

although <str<strong>on</strong>g>of</str<strong>on</strong>g>ten under different names.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> simplest approach to extremal identity – in fact, <strong>on</strong>e that is too simple to be correct<br />

– is inversi<strong>on</strong>. Indeed, extremal identity seems to imply a c<strong>on</strong>necti<strong>on</strong> such as<br />

r↔ l2 Pl<br />

r<br />

or<br />

x μ ↔ l2 Pl x μ<br />

x μ x μ (113)<br />

relating distances r or coordinates x μ with their inverse values using the Planck length<br />

l Pl . Can this mapping be a symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> nature? At every point <str<strong>on</strong>g>of</str<strong>on</strong>g> space? For example,<br />

if the horiz<strong>on</strong> distance is inserted, the relati<strong>on</strong> (113) implies that lengths smaller than<br />

l Pl /10 61 ≈10 −96 m never appear in physics. Is this the case? What would inversi<strong>on</strong> imply<br />

for the big bang?<br />

More involved approaches to extremal identity come under the name <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time<br />

duality and holography. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are subject <str<strong>on</strong>g>of</str<strong>on</strong>g> intense research. Numerous fascinating questi<strong>on</strong>s<br />

are c<strong>on</strong>tained in extremal identity; there is a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> fun ahead <str<strong>on</strong>g>of</str<strong>on</strong>g> us.<br />

Above all, we need to find the correct versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the inversi<strong>on</strong> relati<strong>on</strong> (113). Inversi<strong>on</strong><br />

is neither sufficient nor correct. It is not sufficient because it does not explain any <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

millennium issues left open by general relativity and quantum theory. It <strong>on</strong>ly relates some<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>them,butitdoesnotsolve any <str<strong>on</strong>g>of</str<strong>on</strong>g> them. (You may wish to check this for yourself.)<br />

In other words, we need to find the precise descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum geometry and <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

elementary particles.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


summary <strong>on</strong> the universe 115<br />

Page 86<br />

However, inversi<strong>on</strong> is also simply wr<strong>on</strong>g. Inversi<strong>on</strong> is not the correct descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

extremal identity because it does not realize a central result discovered above: it does<br />

not c<strong>on</strong>nect states and intrinsic properties, but keeps them distinct. In particular, inversi<strong>on</strong><br />

does not take interacti<strong>on</strong>s into account. And most open issues at this point <str<strong>on</strong>g>of</str<strong>on</strong>g> our<br />

mountain ascent c<strong>on</strong>cern the properties and the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s.<br />

Ref. 55, Ref. 56<br />

Challenge 89 s<br />

summary <strong>on</strong> the universe<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe allows us to formulate several additi<strong>on</strong>al requirements<br />

for the complete theory that we are looking for:<br />

— Whenever we combine general relativity and quantum theory, the universe teaches<br />

us that it is not a set <str<strong>on</strong>g>of</str<strong>on</strong>g> parts. For this reas<strong>on</strong>, any sentence or expressi<strong>on</strong> c<strong>on</strong>taining<br />

the term ‘universe’ is meaningless whenever full precisi<strong>on</strong> is required.<br />

— We learned that a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature without sets solves the c<strong>on</strong>tradicti<strong>on</strong>s between<br />

general relativity and quantum theory.<br />

— We found, again, that despite the c<strong>on</strong>tradicti<strong>on</strong>s between quantum theory and general<br />

relativity, the Planck limits c, ħ and c 4 /4G remain valid.<br />

— We then found an intriguing relati<strong>on</strong> between Planck scales and cosmological scales:<br />

they seem to pose the same challenges to their descripti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a close relati<strong>on</strong>ship<br />

between large and small scales in nature.<br />

We can now answer the questi<strong>on</strong> in the chapter title: there seems to be little difference<br />

– if any at all – between the universe and nothing. We can express this result in the<br />

following catchy statement:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> universe cannot be observed.<br />

In our journey, the c<strong>on</strong>fusi<strong>on</strong> and tensi<strong>on</strong> are increasing. But in fact we are getting close<br />

to our goal, and it is worth c<strong>on</strong>tinuing.<br />

Aphysicalaphorism<br />

Here is a humorous ‘pro<str<strong>on</strong>g>of</str<strong>on</strong>g>’ that we really are near the top <str<strong>on</strong>g>of</str<strong>on</strong>g> Moti<strong>on</strong> Mountain. Salecker<br />

and Wigner, and then Zimmerman, formulated the fundamental limit for the measurement<br />

precisi<strong>on</strong> τ attainable by a clock <str<strong>on</strong>g>of</str<strong>on</strong>g> mass M. Itisgivenbyτ=√ħT/c 2 M ,where<br />

T is the time to be measured. We can then ask what maximum time T can be measured<br />

with a precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Planck time t Pl ,givenaclock<str<strong>on</strong>g>of</str<strong>on</strong>g>themass<str<strong>on</strong>g>of</str<strong>on</strong>g>thewholeuniverse.We<br />

get a maximum time <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

T= t2 Pl c2<br />

M . (114)<br />

ħ<br />

Inserting numbers, we find rather precisely that the time T is the present age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe.<br />

With the right dose <str<strong>on</strong>g>of</str<strong>on</strong>g> humour we can see this result as a sign that time is now ripe,<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


116 5 what is the difference between the universe and nothing?<br />

after so much waiting, for us to understand the universe down to the Planck scales. We<br />

are thus getting nearer to the top <str<strong>on</strong>g>of</str<strong>on</strong>g> Moti<strong>on</strong> Mountain. Be prepared for a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> fun.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


Chapter6<br />

THE SHAPE OF POINTS – EXTENSION<br />

IN NATURE<br />

“Nil tam difficile est, quin quaerendo investigari<br />

possiet.**<br />

Terence”<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> usual expressi<strong>on</strong>s for the reduced Compt<strong>on</strong> wavelength λ = ħ/mc and for<br />

he Schwarzschild radius r s = 2Gm/c 2 , taken together, imply the c<strong>on</strong>clusi<strong>on</strong><br />

hat at Planck energies, what we call ‘space points’ and ‘point particles’ must actually<br />

be described by extended c<strong>on</strong>stituents that are infinite and fluctuating in size. We<br />

will show this result with the following arguments:<br />

1. Any experiment trying to measure the size or the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> an elementary particle<br />

with high precisi<strong>on</strong> inevitably leads to the result that at least <strong>on</strong>e dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

particle is <str<strong>on</strong>g>of</str<strong>on</strong>g> macroscopic size.<br />

2. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is no evidence that empty space c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> points, as they cannot be measured<br />

or detected. In additi<strong>on</strong>, in order to build up a measurable entity, such as the vacuum,<br />

that is extended in three dimensi<strong>on</strong>s, its c<strong>on</strong>stituents must also be extended.<br />

3. <str<strong>on</strong>g>The</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> minimum measurable distances and time intervals implies the existence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> space-time duality: a symmetry between very large and very small distances.<br />

Space-time duality in turn implies that the fundamental c<strong>on</strong>stituents that make up<br />

vacuum and matter are extended.<br />

4. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe, and thus <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum, matter and radiati<strong>on</strong>, cannot<br />

form a (mathematical) set. And any precise descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature without sets must<br />

use extended c<strong>on</strong>stituents.<br />

5. <str<strong>on</strong>g>The</str<strong>on</strong>g> Bekenstein–Hawking expressi<strong>on</strong> for the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes – in particular<br />

its surface dependence – c<strong>on</strong>firms that both vacuum and particles are composed <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

extended c<strong>on</strong>stituents.<br />

6. <str<strong>on</strong>g>The</str<strong>on</strong>g> attempt to extend statistical properties to Planck scales shows that both particles<br />

and space points behave as extended c<strong>on</strong>stituents at high energies, namely as braids<br />

or tangles.<br />

7. <str<strong>on</strong>g>The</str<strong>on</strong>g> belt trick provides a model for fermi<strong>on</strong>s that matches observati<strong>on</strong>s and again<br />

suggests extended c<strong>on</strong>stituents in matter.<br />

We c<strong>on</strong>clude the chapter with some experimental and theoretical checks <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong><br />

** ‘Nothing is so difficult that it could not be investigated.’ Terence is Publius Terentius Afer (b. c. 190<br />

Carthago, d. 159 bce Greece), important Roman poet. He writes this in his play Heaut<strong>on</strong> Timorumenos,<br />

verse 675.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


118 6 the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> p oints<br />

and an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> present research efforts.<br />

“Also, die Aufgabe ist nicht zu sehen, was noch<br />

nie jemand gesehen hat, s<strong>on</strong>dern über dasjenige<br />

was jeder sch<strong>on</strong> gesehen hat zu denken was<br />

noch nie jemand gedacht hat.*<br />

Erwin Schrödinger”<br />

Page 89<br />

the size and shape <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles<br />

Size is the length <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum taken by an object. This definiti<strong>on</strong> comes naturally in everyday<br />

life, quantum theory and relativity. To measure the size <str<strong>on</strong>g>of</str<strong>on</strong>g> an object as small as an<br />

elementary particle, we need high energy. <str<strong>on</strong>g>The</str<strong>on</strong>g> higher the energy, the higher the precisi<strong>on</strong><br />

with which we can measure the size.<br />

However, near the Planck energy, vacuum and matter cannot be distinguished: it is<br />

impossible to define the boundary between the two, and thus it is impossible to define<br />

the size <str<strong>on</strong>g>of</str<strong>on</strong>g> an object. As a c<strong>on</strong>sequence, every object, and in particular every elementary<br />

particle, becomes as extended as the vacuum! <str<strong>on</strong>g>The</str<strong>on</strong>g>re is no measurement precisi<strong>on</strong> at all<br />

at Planck scales. Can we save the situati<strong>on</strong>? Let us take a step back. Do measurements at<br />

least allow us to say whether particles can be c<strong>on</strong>tained inside small spheres?<br />

Do boxes exist?<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> first and simplest way to determine the size <str<strong>on</strong>g>of</str<strong>on</strong>g> a compact particle such as a sphere,<br />

or to find at least an upper limit, is to measure the size <str<strong>on</strong>g>of</str<strong>on</strong>g> a box it fits in. To be sure that<br />

the particle is inside, we must first be sure that the box is tight: that is, whether anything<br />

(such as matter or radiati<strong>on</strong>) can leave the box.<br />

But there is no way to ensure that a box has no holes! We know from quantum physics<br />

that any wall is a finite potential hill, and that tunnelling is always possible. In short, there<br />

is no way to make a completely tight box.<br />

Let us cross-check this result. In everyday life, we call particles ‘small’ when they<br />

can be enclosed. Enclosure is possible in daily life because walls are impenetrable. But<br />

walls are <strong>on</strong>ly impenetrable for matter particles up to about 10 MeV and for phot<strong>on</strong>s up<br />

to about 10 keV. In fact, boxes do not even exist at medium energies. So we certainly<br />

cannot extend the idea <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘box’ to Planck energy.<br />

Sincewecannotc<strong>on</strong>cludethatparticlesare<str<strong>on</strong>g>of</str<strong>on</strong>g>compactsizebyusingboxes,weneed<br />

to try other methods.<br />

Can the Greeks help? – <str<strong>on</strong>g>The</str<strong>on</strong>g> limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> knives<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Greeks deduced the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms by noting that matter cannot be divided indefinitely.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re must be uncuttable particles, which they called atoms. Twenty-fivecen-<br />

* ‘Our task is not to see what nobody has ever seen, but to think what nobody has ever thought about<br />

that which everybody has seen already.’ Erwin Schrödinger (b. 1887 Vienna, d. 1961 Vienna) discovered<br />

the equati<strong>on</strong> describing n<strong>on</strong>-relativistic quantum moti<strong>on</strong>; it brought him internati<strong>on</strong>al fame and the Nobel<br />

Prize in <str<strong>on</strong>g>Physics</str<strong>on</strong>g>.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


thesizeandshape<str<strong>on</strong>g>of</str<strong>on</strong>g>elementaryparticles 119<br />

Ref. 109<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. I, page 25<br />

turies later, experiments in the field <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum physics c<strong>on</strong>firmed the c<strong>on</strong>clusi<strong>on</strong>, but<br />

modified it: nowadays, the elementary particles are the ‘atoms’ <str<strong>on</strong>g>of</str<strong>on</strong>g> matter and radiati<strong>on</strong>.<br />

Despite the huge success <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particle, at Planck energy, we<br />

have a different situati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> a knife, like any other cutting process, is the inserti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a wall. Walls and knives are potential hills. All potential hills are <str<strong>on</strong>g>of</str<strong>on</strong>g> finite height,<br />

and allow tunnelling. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore a wall is never perfect, and thus neither is a knife. In<br />

short, any attempt to divide matter fails to work when we approach Planck scales. At<br />

Planck energy, any subdivisi<strong>on</strong> is impossible.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> knives and walls imply that at Planck energy, an attempted cut does<br />

not necessarily lead to two separate parts. At Planck energy, we can never state that the<br />

two parts have been really, completely separated: the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> a thin c<strong>on</strong>necti<strong>on</strong><br />

between the two parts to the right and left <str<strong>on</strong>g>of</str<strong>on</strong>g> the blade can never be excluded. In short,<br />

at Planck scales we cannot prove compactness by cutting objects.<br />

Are cross secti<strong>on</strong>s finite?<br />

To sum up: despite all attempts, we cannot show that elementary particles are point-like.<br />

Are they, at least, <str<strong>on</strong>g>of</str<strong>on</strong>g> finite size?<br />

To determine the size <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle, we can try to determine its departure from pointlikeness.<br />

Detecting this departure requires scattering. For example, we can suspend the<br />

particle in a trap and then shoot a probe at it. What happens in a scattering experiment at<br />

highest energies? This questi<strong>on</strong> has been studied by Le<strong>on</strong>ard Susskind and his colleagues.<br />

When shooting at the particle with a high-energy probe, the scattering process is characterized<br />

by an interacti<strong>on</strong> time. Extremely short interacti<strong>on</strong> times imply sensitivity to<br />

size and shape fluctuati<strong>on</strong>s, due to the quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong>. An extremely short interacti<strong>on</strong><br />

time also provides a cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f for high-energy shape and size fluctuati<strong>on</strong>s, and thus<br />

determines the measured size. As a result, the size measured for any microscopic, but<br />

extended, object increases when the probe energy is increased towards the Planck value.<br />

In summary, even though at experimentally achievable energies the size <str<strong>on</strong>g>of</str<strong>on</strong>g> an elementary<br />

particle is always smaller than the measurement limit, when we approach the<br />

Planck energy, the particle size increases bey<strong>on</strong>d all bounds. So at high energies we cannotgiveanupperlimittothesize<str<strong>on</strong>g>of</str<strong>on</strong>g>aparticle–excepttheuniverseitself.<br />

Inother<br />

words, since particles are not point-like at everyday energies, at Planck energy they are<br />

enormous:<br />

⊳ Quantum particles are extended.<br />

That is quite a statement. Are particles really not <str<strong>on</strong>g>of</str<strong>on</strong>g> finite, bounded size? Right at the<br />

start <str<strong>on</strong>g>of</str<strong>on</strong>g> our mountain ascent, we distinguished objects from their envir<strong>on</strong>ment. Objects<br />

are by definiti<strong>on</strong> localized, bounded and compact. All objects have a boundary, i.e., a<br />

surface which does not itself have a boundary. Objects are also bounded in abstract<br />

ways: also the set <str<strong>on</strong>g>of</str<strong>on</strong>g> symmetries <str<strong>on</strong>g>of</str<strong>on</strong>g> an object, such as its geometric symmetry group or<br />

its gauge group, is bounded. In c<strong>on</strong>trast, the envir<strong>on</strong>ment is not localized, but extended<br />

and unbounded. But all these basic assumpti<strong>on</strong>s fail us at Planck scales. At Planck energy,<br />

it is impossible to determine whether something is bounded or compact. Compactness<br />

and locality are <strong>on</strong>ly approximate properties; they are not applicable at high energies.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


120 6 the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> p oints<br />

TABLE 5 Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> various camera shutter times <strong>on</strong> photographs<br />

Durati<strong>on</strong> Blur<br />

Observati<strong>on</strong> possibilities and effects<br />

Ref. 110<br />

Ref. 47, Ref. 24<br />

1 h high Ability to see faint quasars at night if moti<strong>on</strong> is compensated<br />

1 s high Everyday moti<strong>on</strong> completely blurred<br />

20 ms lower Interrupti<strong>on</strong> by eyelids; small changes impossible to see<br />

10 ms lower Effective eye/brain shutter time; tennis ball impossible to see while<br />

hitting it<br />

0.25 ms lower Shortest commercial photographic camera shutter time; ability to<br />

photograph fast cars<br />

1 μs very low Ability to photograph flying bullets; str<strong>on</strong>g flashlight required<br />

c. 10 ps lowest Study <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular processes; ability to photograph flying light<br />

pulses; laser light required to get sufficient illuminati<strong>on</strong><br />

10 fs higher Light photography impossible because <str<strong>on</strong>g>of</str<strong>on</strong>g> wave effects<br />

100 zs high X-ray photography impossible; <strong>on</strong>ly γ-ray imaging left over<br />

shorter times very high Photographs get darker as illuminati<strong>on</strong> decreases; gravitati<strong>on</strong>al effects<br />

significant<br />

10 −43 s highest Imaging impossible<br />

In particular, the idea <str<strong>on</strong>g>of</str<strong>on</strong>g> a point particle is an approximate c<strong>on</strong>cept, valid <strong>on</strong>ly at low<br />

energies.<br />

We c<strong>on</strong>clude that particles at Planck scales are as extended as the vacuum. Let us<br />

perform another check.<br />

Can we take a photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> a point?<br />

“Καιρὸν γνῶθι.*<br />

Pittacus”<br />

Humans – or any other types <str<strong>on</strong>g>of</str<strong>on</strong>g> observers – can <strong>on</strong>ly observe the world with finite resoluti<strong>on</strong><br />

in time and in space. In this respect, humans resemble a film camera. Every<br />

camera has a resoluti<strong>on</strong> limit: it can <strong>on</strong>ly distinguish two events if they are a certain<br />

minimum distance apart and separated by a certain minimum time. What is the best<br />

resoluti<strong>on</strong> possible? <str<strong>on</strong>g>The</str<strong>on</strong>g> value was (almost) discovered in 1899: thePlancktimeandthe<br />

Planck length. No human, no film camera and no apparatus can measure space or time<br />

intervals smaller than the Planck values. But what would happen if we took photographs<br />

with shutter times that approach the Planck time?<br />

Imagine that you have the world’s best shutter and that you are taking photographs<br />

at shorter and shorter times. Table 5 gives a rough overview <str<strong>on</strong>g>of</str<strong>on</strong>g> the possibilities. When<br />

shutter times are shortened, photographs get darker and sharper. When the shutter time<br />

reaches the oscillati<strong>on</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> light, strange things happen: light has no chance to pass<br />

undisturbed; signal and noise become indistinguishable; and the moving shutter will<br />

* ‘Recognize the right moment.’ Also rendered as: ‘Recognize thy opportunity.’ Pittacus (Πιττακος) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Mytilene (c. 650–570 BCE), was a Lesbian tyrant and lawmaker; he was also <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the ‘Seven Sages’ <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ancient Greece.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


thesizeandshape<str<strong>on</strong>g>of</str<strong>on</strong>g>elementaryparticles 121<br />

produce colour shifts. In c<strong>on</strong>trast to our everyday experience, the photograph would get<br />

more blurred and incorrect at extremely short shutter times. Photography is impossible<br />

not <strong>on</strong>ly at l<strong>on</strong>g but also at short shutter times.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> difficulty <str<strong>on</strong>g>of</str<strong>on</strong>g> taking photographs is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the wavelength used. <str<strong>on</strong>g>The</str<strong>on</strong>g> limits<br />

move, but do not disappear. With a shutter time <str<strong>on</strong>g>of</str<strong>on</strong>g> τ, phot<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> energy lower than ħ/τ<br />

cannot pass the shutter undisturbed.<br />

In short, the blur decreases when shutter times usual in everyday life are shortened,<br />

but increases when shutter times are shortened further towards Planck times. As a result,<br />

there is no way to detect or c<strong>on</strong>firm the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> point objects by taking pictures.<br />

Points in space, as well as instants <str<strong>on</strong>g>of</str<strong>on</strong>g> time, are imagined c<strong>on</strong>cepts: they do not bel<strong>on</strong>g in<br />

a precise descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

At Planck shutter times, <strong>on</strong>ly signals with Planck energy can pass through the shutter.<br />

Since at these energies matter cannot be distinguished from radiati<strong>on</strong> or from empty<br />

space, all objects, light and vacuum look the same. It is impossible to say what nature<br />

looks like at very short times.<br />

But the situati<strong>on</strong> is worse than this: a Planck shutter cannot exist at all, as it would<br />

need to be as small as a Planck length. A camera using it could not be built, as lenses do<br />

not work at this energy. Not even a camera obscura – without any lens – would work,<br />

as diffracti<strong>on</strong> effects would make image producti<strong>on</strong> impossible. In other words, the idea<br />

that at short shutter times a photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> nature shows a frozen image <str<strong>on</strong>g>of</str<strong>on</strong>g> everyday life,<br />

like a stopped film, is completely wr<strong>on</strong>g. In fact, a shutter does not exist even at medium<br />

energy: shutters, like walls, stop existing at around 10 MeV. At a single instant <str<strong>on</strong>g>of</str<strong>on</strong>g> time,<br />

nature is not frozen at all. Zeno criticized this idea in his discussi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>, though<br />

not as clearly as we can do now. At short times, nature is blurred. In particular, point<br />

particles do not exist.<br />

In summary, whatever the intrinsic shape <str<strong>on</strong>g>of</str<strong>on</strong>g> what we call a ‘point’ might be, we know<br />

that, being always blurred, it is first <str<strong>on</strong>g>of</str<strong>on</strong>g> all a cloud. Whatever method is used to photograph<br />

an elementary particle, the picture is always extended. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore we need to study<br />

its shape in more detail.<br />

What is the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong>?<br />

Since particles are not point-like, they have a shape. How can we determine it? We determine<br />

the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> an everyday object by touching it from all sides. This works with<br />

plants, people or machines. It even works with molecules, such as water molecules. We<br />

can put them (almost) at rest, for example in ice, and then scatter small particles <str<strong>on</strong>g>of</str<strong>on</strong>g>f them.<br />

Scattering is just a higher-energy versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> touching. However, scattering cannot determine<br />

shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> objects smaller than the wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> the probes used. To determine<br />

the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> an object as small as an electr<strong>on</strong>, we need the highest energies available. But<br />

we already know what happens when approaching Planck scales: the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle<br />

becomes the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> all the space surrounding it. In short, the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong><br />

cannot be determined in this way.<br />

Another way to determine the shape is to build a tight box around the system under<br />

investigati<strong>on</strong> and fill it with molten wax. We then let the wax cool and observe the hollow<br />

part. However, near Planck energy, boxes do not exist. We are unable to determine the<br />

shape in this way.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


122 6 the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> p oints<br />

Ref. 47<br />

Ref. 47<br />

Challenge 90 e<br />

Page 86<br />

A third way to measure the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> an object is to cut it into pieces and then study<br />

the pieces. As is well known, the term ‘atom’ just means ‘uncuttable’ or ‘indivisible’.<br />

However, neither atoms nor indivisible particles can exist. Indeed, cutting is just a lowenergy<br />

versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a scattering process. And the process does not work at high energies.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>refore, there is no way to prove that an object is indivisible at Planck scales. Our<br />

everyday intuiti<strong>on</strong> leads us completely astray at Planck energy.<br />

We could try to distinguish transverse and l<strong>on</strong>gitudinal shape, with respect to the directi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>. However, for transverse shape we get the same issues as for scattering;<br />

transverse shape diverges for high energy. And to determine l<strong>on</strong>gitudinal shape, we need<br />

at least two infinitely high potential walls. We already know that this is impossible.<br />

A further, indirect way <str<strong>on</strong>g>of</str<strong>on</strong>g> measuring shapes is to measure the moment <str<strong>on</strong>g>of</str<strong>on</strong>g> inertia.<br />

A finite moment <str<strong>on</strong>g>of</str<strong>on</strong>g> inertia means a compact, finite shape. But when the measurement<br />

energy is increased towards Planck scales, rotati<strong>on</strong>, linear moti<strong>on</strong> and exchange become<br />

mixed up. We do not get meaningful results.<br />

Yet another way to determine shapes is to measure the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> a collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particles we want to study. This allows us to determine the dimensi<strong>on</strong>ality and the number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> internal degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom. But at high energies, a collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s would<br />

become a black hole. We will study this issue separately below, but again we find no new<br />

informati<strong>on</strong>.<br />

Are these arguments watertight? We assumed three dimensi<strong>on</strong>s at all scales, and that<br />

the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle itself is fixed. Maybe these assumpti<strong>on</strong>s are not valid at Planck<br />

scales? Let us check the alternatives. We have already shown that because <str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental<br />

measurement limits, the dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time cannot be determined at<br />

Planck scales. Even if we could build perfect three-dimensi<strong>on</strong>al boxes, holes could remain<br />

in other dimensi<strong>on</strong>s. It does not take l<strong>on</strong>g to see that all the arguments against<br />

compactness work even if space-time has additi<strong>on</strong>al dimensi<strong>on</strong>s.<br />

Is the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong> fixed?<br />

Only an object composed <str<strong>on</strong>g>of</str<strong>on</strong>g> localized c<strong>on</strong>stituents, such as a house or a molecule, can<br />

have a fixed shape. <str<strong>on</strong>g>The</str<strong>on</strong>g> smaller the system, the more quantum fluctuati<strong>on</strong>s play a role.<br />

No small entity <str<strong>on</strong>g>of</str<strong>on</strong>g> finite size – in particular, no elementary particle – can have a fixed<br />

shape. In every thought experiment involving a finite shape, the shape itself fluctuates.<br />

But we can say more.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> distincti<strong>on</strong> between particles and envir<strong>on</strong>ment rests <strong>on</strong> the idea that particles<br />

have intrinsic properties. In fact, all intrinsic properties, such as spin, mass, charge, and<br />

parity, are localized. But we have seen that no intrinsic property is measurable or definable<br />

at Planck scales. Thus it is impossible to distinguish particles from the envir<strong>on</strong>ment.<br />

In additi<strong>on</strong>, at Planck energy particles have all the properties that the envir<strong>on</strong>ment has.<br />

In particular, particles are extended.<br />

In short, we cannot prove by experiments that at Planck energy elementary particles<br />

are finite in size in all directi<strong>on</strong>s. In fact, all experiments we can think <str<strong>on</strong>g>of</str<strong>on</strong>g> are compatible<br />

with extended particles, with ‘infinite’ size. More precisely, a particle always reaches the<br />

borders <str<strong>on</strong>g>of</str<strong>on</strong>g> the regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time under explorati<strong>on</strong>. In simple words, we can also say<br />

that particles have tails or tethers.<br />

Not <strong>on</strong>ly are particles extended, but their shape cannot be determined by the methods<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> points in vacuum 123<br />

just explored. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>on</strong>ly remaining possibility is that suggested by quantum theory:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle fluctuates.<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. IV, page 108<br />

Ref. 28<br />

Ref. 47<br />

Challenge 91 e<br />

We reach the same c<strong>on</strong>clusi<strong>on</strong> for quanta <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong>: the box argument shows that also<br />

radiati<strong>on</strong> particles are extended and fluctuating.<br />

Incidentally, we have also settled an important questi<strong>on</strong> about elementary particles.<br />

We have already seen that any particle that is smaller than its own Compt<strong>on</strong> wavelength<br />

must be elementary. If it were composite, there would be a lighter comp<strong>on</strong>ent inside<br />

it; this lighter particle would have a larger Compt<strong>on</strong> wavelength than the composite<br />

particle. This is impossible, since the size <str<strong>on</strong>g>of</str<strong>on</strong>g> a composite particle must be larger than<br />

the Compt<strong>on</strong> wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> its comp<strong>on</strong>ents.*<br />

However, an elementary particle can have c<strong>on</strong>stituents, provided that they are not<br />

compact. <str<strong>on</strong>g>The</str<strong>on</strong>g> difficulties <str<strong>on</strong>g>of</str<strong>on</strong>g> compact c<strong>on</strong>stituents were described by Andrei Sakharov<br />

in the 1960s. If the c<strong>on</strong>stituents are extended, the previous argument does not apply, as<br />

extended c<strong>on</strong>stituents have no localized mass. As a result, if a flying arrow – Zeno’s<br />

famous example – is made <str<strong>on</strong>g>of</str<strong>on</strong>g> extended c<strong>on</strong>stituents, it cannot be said to be at a given<br />

positi<strong>on</strong> at a given time. Shortening the observati<strong>on</strong> time towards the Planck time makes<br />

an arrow disappear in the cloud that makes up space-time.**<br />

Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the first argument for extensi<strong>on</strong><br />

Point particles do not exist at Planck scales. At Planck scales, all thought experiments<br />

with particles suggest that matter and radiati<strong>on</strong> are made <str<strong>on</strong>g>of</str<strong>on</strong>g> extended and fluctuating<br />

c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> infinite size.<br />

For extended c<strong>on</strong>stituents, the requirement <str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>-local descripti<strong>on</strong> is satisfied. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

argument forbidding compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles is circumvented, as extended<br />

c<strong>on</strong>stituents have no mass. Thus the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> Compt<strong>on</strong> wavelength cannot be defined<br />

or applied to extended c<strong>on</strong>stituents, and elementary particles can have c<strong>on</strong>stituents if<br />

these c<strong>on</strong>stituents are extended and massless. However, if the c<strong>on</strong>stituents are infinitely<br />

extended, how can compact, point-like particles be formed from them? We will look at<br />

a few opti<strong>on</strong>s shortly.<br />

the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> points in vacuum<br />

“Thus, since there is an impossibility that [finite]<br />

quantities are built from c<strong>on</strong>tacts and points, it<br />

is necessary that there be indivisible material<br />

elements and [finite] quantities.<br />

Ref. 112<br />

Aristotle,*** Of Generati<strong>on</strong> and Corrupti<strong>on</strong>.”<br />

* Examples are the neutr<strong>on</strong>, positr<strong>on</strong>ium, or the atoms. Note that the argument does not change when the<br />

elementary particle itself is unstable, like the mu<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> possibility that all comp<strong>on</strong>ents are heavier than<br />

the composite, which would avoid this argument, does not seem to lead to satisfying physical properties:<br />

for example, it leads to intrinsically unstable composites.<br />

Ref. 111 ** Thus at Planck scales there is no quantum Zeno effect.<br />

*** Aristotle (b. 384/3 Stageira, d. 322 bce Chalkis), Greek philosopher and scientist.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


124 6 the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> p oints<br />

Ref. 47<br />

Ref. 113<br />

Challenge 92 s<br />

We are used to the idea that empty space is made <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial points. However, at Planck<br />

scales, no measurement can give zero length, zero mass, zero area or zero volume. <str<strong>on</strong>g>The</str<strong>on</strong>g>re<br />

is no way to state that something in nature is a point without c<strong>on</strong>tradicting experimental<br />

results.<br />

Furthermore, the idea <str<strong>on</strong>g>of</str<strong>on</strong>g> a point is an extrapolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> what is found in small empty<br />

boxes getting smaller and smaller. But we have just seen that at high energies small boxes<br />

cannot be said to be empty. In fact, boxes do not exist at all, as they can never have<br />

impenetrable walls at high energies.<br />

Also, the idea <str<strong>on</strong>g>of</str<strong>on</strong>g> a point as a limiting subdivisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> empty space is untenable. At<br />

small distances, space cannot be subdivided, as divisi<strong>on</strong> requires some sort <str<strong>on</strong>g>of</str<strong>on</strong>g> dividing<br />

wall, which is impossible.<br />

Even the idea <str<strong>on</strong>g>of</str<strong>on</strong>g> repeatedly putting a point between two others cannot be applied. At<br />

high energy, it is impossible to say whether a point is exactly <strong>on</strong> the line c<strong>on</strong>necting the<br />

outer two points; and near Planck energy, there is no way to find a point between them<br />

at all. In fact, the term ‘in between’ makes no sense at Planck scales.<br />

We thus find that space points do not exist, just as point particles do not exist. But<br />

there are other reas<strong>on</strong>s why space cannot be made <str<strong>on</strong>g>of</str<strong>on</strong>g> points. In order to form space.<br />

points need to be kept apart somehow. Indeed, mathematicians have a str<strong>on</strong>g argument<br />

for why physical space cannot be made <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematical points: the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematical<br />

spaces described by the Banach–Tarski paradox are quite different from those<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the physical vacuum. <str<strong>on</strong>g>The</str<strong>on</strong>g> Banach–Tarski paradox states that a sphere made <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematical<br />

points can be cut into five pieces which can be reassembled into two spheres<br />

each <str<strong>on</strong>g>of</str<strong>on</strong>g> the same volume as the original sphere. Mathematically, there are sets <str<strong>on</strong>g>of</str<strong>on</strong>g> points<br />

for which the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> volume makes no sense. Physically speaking, we c<strong>on</strong>clude that<br />

the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> volume does not exist for c<strong>on</strong>tinuous space; it is <strong>on</strong>ly definable if an intrinsic<br />

length exists. And in nature, an intrinsic length exists for matter and for vacuum:<br />

the Planck length. And any c<strong>on</strong>cept with an intrinsic length must be described by <strong>on</strong>e<br />

or several extended c<strong>on</strong>stituents.* In summary, in order to build up space, we need extended<br />

c<strong>on</strong>stituents.<br />

Also the number <str<strong>on</strong>g>of</str<strong>on</strong>g> space dimensi<strong>on</strong>s is problematic. Mathematically, it is impossible<br />

to define the dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a set <str<strong>on</strong>g>of</str<strong>on</strong>g> points <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the set structure al<strong>on</strong>e. Any<br />

compact <strong>on</strong>e-dimensi<strong>on</strong>al set has as many points as any compact three-dimensi<strong>on</strong>al set<br />

– indeed, as any compact set <str<strong>on</strong>g>of</str<strong>on</strong>g> any dimensi<strong>on</strong>ality greater than zero. To build up the<br />

physical three-dimensi<strong>on</strong>al vacuum, we need c<strong>on</strong>stituents that organize their neighbourhood.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental c<strong>on</strong>stituents must possess some sort <str<strong>on</strong>g>of</str<strong>on</strong>g> ability to form b<strong>on</strong>ds,<br />

which will c<strong>on</strong>struct or fill precisely three dimensi<strong>on</strong>s. B<strong>on</strong>ds require extended c<strong>on</strong>stituents.<br />

A collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tangled c<strong>on</strong>stituents extending to the maximum scale <str<strong>on</strong>g>of</str<strong>on</strong>g> the regi<strong>on</strong><br />

under c<strong>on</strong>siderati<strong>on</strong> would work perfectly. Of course, the precise shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental<br />

c<strong>on</strong>stituents is not yet known. In any case, we again find that any c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

physical three-dimensi<strong>on</strong>al space must be extended.<br />

* Imagining the vacuum as a collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> compact c<strong>on</strong>stituents, such as spheres, with Planck size in all<br />

directi<strong>on</strong>s would avoid the Banach–Tarski paradox, but would not allow us to deduce the number <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> space and time. It would also c<strong>on</strong>tradict all the other results <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore we do<br />

not explore it further.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> points in vacuum 125<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. I, page 339<br />

Ref. 114<br />

In summary, we need extensi<strong>on</strong> to define dimensi<strong>on</strong>ality and to define volume. This<br />

result is not surprising. We deduced above that the c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> particles are extended.<br />

Since vacuum is not distinguishable from matter, we would expect the c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vacuum to be extended as well. Stated simply, if elementary particles are not point-like,<br />

then points in the vacuum cannot be either.<br />

Measuring the void<br />

To check whether the c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum are extended, let us perform a few<br />

additi<strong>on</strong>al thought experiments. First, let us measure the size <str<strong>on</strong>g>of</str<strong>on</strong>g> a point in space. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

clearest definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> size is in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the cross secti<strong>on</strong>. How can we determine the cross<br />

secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a point? We can determine the cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a piece <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum and then<br />

determine the number <str<strong>on</strong>g>of</str<strong>on</strong>g> points inside it. However, at Planck energy, we get a simple<br />

result: the cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a volume <str<strong>on</strong>g>of</str<strong>on</strong>g> empty space is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> depth. At Planck<br />

energy, vacuum has a surface, but no depth. In other words, at Planck energy we can <strong>on</strong>ly<br />

state that a Planck layer covers the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> a regi<strong>on</strong>. We cannot say anything about its<br />

interior. One way to picture this result is to say that what we call ‘space points’ are in<br />

fact l<strong>on</strong>g tubes.<br />

Another way to determine the size <str<strong>on</strong>g>of</str<strong>on</strong>g> a point is to count the points found in a given<br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time. One approach is to count the possible positi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a point particle<br />

in a volume. However, at Planck energy point particles are extended and indistinguishable<br />

from vacuum. At Planck energy, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> points is given by the surface area<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the volume divided by the Planck area. Again, the surface dependence suggests that<br />

particles and the c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> space are l<strong>on</strong>g tubes.<br />

What is the maximum number<str<strong>on</strong>g>of</str<strong>on</strong>g> particles that fit inside a piece<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum?<br />

Another approach to counting the number <str<strong>on</strong>g>of</str<strong>on</strong>g> points in a volume is to fill a piece <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum<br />

with point particles.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> maximum mass that fits into a piece <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum is a black hole. But in this case<br />

too, the maximum mass depends <strong>on</strong>ly <strong>on</strong> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the given regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

maximum mass increases less rapidly than the volume. In other words, the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

physical points inside a regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> space is <strong>on</strong>ly proporti<strong>on</strong>al to the surface area <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

regi<strong>on</strong>. We are forced to c<strong>on</strong>clude that vacuum must be made <str<strong>on</strong>g>of</str<strong>on</strong>g> extended c<strong>on</strong>stituents<br />

crossing the whole regi<strong>on</strong>, independently <str<strong>on</strong>g>of</str<strong>on</strong>g> its shape.<br />

Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the sec<strong>on</strong>d argument for extensi<strong>on</strong><br />

Planck scales imply that space is made <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuating extended c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> huge size.<br />

Like particles, also space and vacuum are not made <str<strong>on</strong>g>of</str<strong>on</strong>g> points, but <str<strong>on</strong>g>of</str<strong>on</strong>g> a web. Vacuum<br />

requires a statistical descripti<strong>on</strong>.<br />

More than two thousand years ago, theGreeksarguedthatmattermustbemade<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particles because salt can be dissolved in water and because fish can swim through water.<br />

Now that we know more about Planck scales, we have to rec<strong>on</strong>sider this argument. Like<br />

fish swimming through water, particles can move through vacuum; but since vacuum<br />

has no bounds and cannot be distinguished from matter, vacuum cannot be made <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


126 6 the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> p oints<br />

localised particles. However, another possibility allows for moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particles through<br />

avacuum:both vacuum and particles might be made <str<strong>on</strong>g>of</str<strong>on</strong>g> a web <str<strong>on</strong>g>of</str<strong>on</strong>g> extended c<strong>on</strong>stituents.<br />

Let us study this possibility in more detail.<br />

Ref. 115<br />

the large, the small and their c<strong>on</strong>necti<strong>on</strong><br />

“I could be bounded in a nutshell and count<br />

myself a king <str<strong>on</strong>g>of</str<strong>on</strong>g> infinite space, were it not that I<br />

have bad dreams.<br />

William Shakespeare,* Hamlet.”<br />

If two observables cannot be distinguished, there is a symmetry transformati<strong>on</strong> c<strong>on</strong>necting<br />

them. For example, by a change <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong> frame, an electric field may (partially)<br />

change into a magnetic <strong>on</strong>e. A symmetry transformati<strong>on</strong> means that we can change the<br />

viewpoint (i.e., the frame <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>) in such a way that the same observati<strong>on</strong> is described<br />

by <strong>on</strong>e quantity from <strong>on</strong>e viewpoint and by the corresp<strong>on</strong>ding quantity from the<br />

other viewpoint.<br />

When measuring a length at Planck scales it is impossible to say whether we are<br />

measuring the length <str<strong>on</strong>g>of</str<strong>on</strong>g> a piece <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum, the Compt<strong>on</strong> wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> a body, or the<br />

Schwarzschild diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> a body. For example, the maximum size for an elementary<br />

object is its Compt<strong>on</strong> wavelength. <str<strong>on</strong>g>The</str<strong>on</strong>g> minimum size for an elementary object is its<br />

Schwarzschild radius. <str<strong>on</strong>g>The</str<strong>on</strong>g> actual size <str<strong>on</strong>g>of</str<strong>on</strong>g> an elementary object is somewhere in between.<br />

If we want to measure the size precisely, we have to go to Planck energy; but then all these<br />

quantities are the same. In other words, at Planck scales, there is a symmetry transformati<strong>on</strong><br />

between Compt<strong>on</strong> wavelength and Schwarzschild radius. In short, at Planck scales<br />

there is a symmetry between mass and inverse mass.<br />

As a further c<strong>on</strong>sequence, at Planck scales there is a symmetry between size and inverse<br />

size. Matter–vacuum indistinguishability means that there is a symmetry between<br />

length and inverse length at Planck energy. This symmetry is called space-time duality<br />

or T-duality in the research literature <str<strong>on</strong>g>of</str<strong>on</strong>g> superstrings.** Space-time duality is a symmetry<br />

between situati<strong>on</strong>s at scale nl Pl and at scale fl Pl /n, or, in other words, between<br />

R and (fl Pl ) 2 /R,wherethenumberf is usually c<strong>on</strong>jectured to have a value somewhere<br />

between 1 and 1000.<br />

Duality is a genuine n<strong>on</strong>-perturbative effect. It does not exist at low energy, since<br />

duality automatically also relates energies E and E 2 Pl /E = ħc3 /GE, i.e., it relates energies<br />

below and above Planck scale. Duality is not evident in everyday life. It is a quantum<br />

symmetry, as it includes Planck’s c<strong>on</strong>stant in its definiti<strong>on</strong>. It is also a general-relativistic<br />

effect, as it includes the gravitati<strong>on</strong>al c<strong>on</strong>stant and the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light. Let us study duality<br />

in more detail.<br />

* William Shakespeare (1564 Stratford up<strong>on</strong> Av<strong>on</strong>–1616 Stratford up<strong>on</strong> Av<strong>on</strong>) wrote theatre plays that are<br />

treasures <str<strong>on</strong>g>of</str<strong>on</strong>g> world literature.<br />

** <str<strong>on</strong>g>The</str<strong>on</strong>g>re is also an S-duality, which c<strong>on</strong>nects large and small coupling c<strong>on</strong>stants, and a U-duality,whichis<br />

the combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S- and T-duality.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the large, the small and their c<strong>on</strong>necti<strong>on</strong> 127<br />

Is small large?<br />

Ref. 116<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. III, page 91<br />

“[Zeno <str<strong>on</strong>g>of</str<strong>on</strong>g> Elea maintained:] If the existing are<br />

many, it is necessary that they are at the same<br />

time small and large, so small to have no size,<br />

and so large to be without limits.<br />

Simplicius*”<br />

To explore the c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> duality, we can compare it to rotati<strong>on</strong>al symmetry in<br />

everyday life. Every object in daily life is symmetrical under a full rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 2π. Forthe<br />

rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an observer, angles make sense <strong>on</strong>ly as l<strong>on</strong>g as they are smaller than 2π. Ifa<br />

rotating observer were to insist <strong>on</strong> distinguishing angles <str<strong>on</strong>g>of</str<strong>on</strong>g> 0, 2π, 4π etc., he would get a<br />

new copy <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe at each full turn.<br />

Similarly, in nature, scales R and l 2 Pl<br />

/R cannot be distinguished. Lengths make no<br />

sense when they are smaller than l Pl . If, however, we insist <strong>on</strong> using even smaller values<br />

and <strong>on</strong> distinguishing them from large <strong>on</strong>es, we get a new copy <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe at those<br />

small scales. Such an insistence is part <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard c<strong>on</strong>tinuum descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>,<br />

where it is assumed that space and time are described by the real numbers, which<br />

are defined over arbitrarily small intervals. Whenever the (approximate) c<strong>on</strong>tinuum descripti<strong>on</strong><br />

with infinite extensi<strong>on</strong> is used, the R↔l 2 Pl<br />

/R symmetry pops up.<br />

Duality implies that diffeomorphism invariance is <strong>on</strong>ly valid at medium scales, not at<br />

extremal <strong>on</strong>es. At extremal scales, quantum theory has to be taken into account in the<br />

proper manner. We do not yet know how to do this.<br />

Space-time duality means that introducing lengths smaller than the Planck length (as<br />

when <strong>on</strong>e defines space points, which have size zero) means at the same time introducing<br />

things with very large (‘infinite’) value. Space-time duality means that for every small<br />

enough sphere the inside equals the outside.<br />

Duality means that if a system has a small dimensi<strong>on</strong>, it also has a large <strong>on</strong>e, and vice<br />

versa. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are thus no small objects in nature. So space-time duality is c<strong>on</strong>sistent with<br />

the idea that the basic c<strong>on</strong>stituents are extended.<br />

Unificati<strong>on</strong> and total symmetry<br />

So far, we have shown that at Planck energy, time and length cannot be distinguished,<br />

and that vacuum and matter cannot be distinguished. Duality shows that mass and inverse<br />

mass cannot be distinguished. As a c<strong>on</strong>sequence, we deduce that length, time, and<br />

mass cannot be distinguished from each other at all energies and scales! And since every<br />

observable is a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> length, mass and time, space-time duality means that there<br />

is a symmetry between all observables. Wecallitthetotal symmetry.**<br />

Total symmetry implies that there are many specific types <str<strong>on</strong>g>of</str<strong>on</strong>g> duality, <strong>on</strong>e for each<br />

pair <str<strong>on</strong>g>of</str<strong>on</strong>g> quantities under investigati<strong>on</strong>. Indeed, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> duality types discovered is<br />

increasing every year. It includes, am<strong>on</strong>g others, the famous electric–magnetic duality we<br />

* Simplicius <str<strong>on</strong>g>of</str<strong>on</strong>g> Cilicia (c. 499 – 560), neoplat<strong>on</strong>ist philosopher.<br />

** A symmetry between size and Schwarzschild radius, i.e., a symmetry between length and mass, leads<br />

to general relativity. Additi<strong>on</strong>ally, at Planck energy there is a symmetry between size and Compt<strong>on</strong><br />

wavelength. In other words, there is a symmetry between length and inverse mass. This implies a symmetry<br />

between coordinates and wave functi<strong>on</strong>s, i.e., a symmetry between states and observables. It leads to<br />

quantum theory.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


128 6 the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> p oints<br />

Ref. 117<br />

Ref. 115<br />

Challenge 93 d<br />

Challenge 94 e<br />

first encountered in electrodynamics, coupling c<strong>on</strong>stant duality, surface–volume duality,<br />

space-time duality, and many more. All this c<strong>on</strong>firms that there is an enormous amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> symmetry at Planck scales. In fact, similar symmetries have been known right from<br />

the beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> research in quantum gravity.<br />

Most importantly, total symmetry implies that gravity can be seen as equivalent to all<br />

other forces. Space-time duality thus shows that unificati<strong>on</strong> is possible. Physicists have<br />

always dreamt about unificati<strong>on</strong>. Duality tells us that this dream can indeed be realized.<br />

It may seem that total symmetry completely c<strong>on</strong>tradicts what was said in the previous<br />

secti<strong>on</strong>, where we argued that all symmetries are lost at Planck scales. Which result is<br />

correct? Obviously, both <str<strong>on</strong>g>of</str<strong>on</strong>g> them are.<br />

At Planck scales, all low-energy symmetries are indeed lost. In fact, all symmetries<br />

that imply a fixed energy are lost. However, duality and its generalizati<strong>on</strong>s combine both<br />

small and large dimensi<strong>on</strong>s, or large and small energies. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard symmetries<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> physics, such as gauge, permutati<strong>on</strong> and space-time symmetries, are valid at each<br />

fixed energy separately. But nature is not made this way. <str<strong>on</strong>g>The</str<strong>on</strong>g> precise descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature<br />

requires us to take into c<strong>on</strong>siderati<strong>on</strong> large and small energies at the same time. In everyday<br />

life, we do not do that. <str<strong>on</strong>g>The</str<strong>on</strong>g> physics <str<strong>on</strong>g>of</str<strong>on</strong>g> everyday life is an approximati<strong>on</strong> to nature<br />

valid at low and fixed energies. For most <str<strong>on</strong>g>of</str<strong>on</strong>g> the twentieth century, physicists tried to<br />

reach higher and higher energies. We believed that precisi<strong>on</strong> increases with increasing<br />

energy. But when we combine quantum theory and gravity we are forced to change this<br />

approach. To achieve high precisi<strong>on</strong>, we must take high and low energy into account at<br />

the same time.*<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> great differences between the phenomena that occur at low and high energies are<br />

the main reas<strong>on</strong> why unificati<strong>on</strong> is so difficult. We are used to dividing nature al<strong>on</strong>g<br />

a scale <str<strong>on</strong>g>of</str<strong>on</strong>g> energies: high-energy physics, atomic physics, chemistry, biology, and so <strong>on</strong>.<br />

Butwearenotallowedtothinkinthiswayanymore.Wehavetotakeallenergiesinto<br />

account at the same time. That is not easy, but we do not have to despair. Important<br />

c<strong>on</strong>ceptual progress was made in the last decade <str<strong>on</strong>g>of</str<strong>on</strong>g> the twentieth century. In particular,<br />

we now know that we need <strong>on</strong>ly <strong>on</strong>e c<strong>on</strong>stituent for all things that can be measured.<br />

Since there is <strong>on</strong>ly <strong>on</strong>e c<strong>on</strong>stituent, total symmetry is automatically satisfied. And<br />

since there is <strong>on</strong>ly <strong>on</strong>e c<strong>on</strong>stituent, there are many ways to study it. We can start from any<br />

(low-energy) c<strong>on</strong>cept in physics and explore how it looks and behaves when we approach<br />

Planck scales. In the present secti<strong>on</strong>, we are looking at the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘point’. Obviously,<br />

the c<strong>on</strong>clusi<strong>on</strong>s must be the same whatever c<strong>on</strong>cept we start with, be it electric field, spin,<br />

or any other. Such studies thus provide a check for the results in this secti<strong>on</strong>.<br />

Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the third argument for extensi<strong>on</strong><br />

Unificati<strong>on</strong> implies thinking in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> duality and the c<strong>on</strong>cepts that follow from it.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> large and the small are c<strong>on</strong>nected. Duality points to <strong>on</strong>e single type <str<strong>on</strong>g>of</str<strong>on</strong>g> extended<br />

c<strong>on</strong>stituents that defines all physical observables.<br />

We still need to understand exactly what happens to duality when we restrict ourselves<br />

to low energies, as we do in everyday life. We explore this now.<br />

* Renormalizati<strong>on</strong> energy does c<strong>on</strong>nect different energies, but not in the correct way; in particular, it does<br />

not include duality.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


d oes nature have parts? 129<br />

does nature have parts?<br />

Ref. 118<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. III, page 328<br />

“Pluralitas n<strong>on</strong> est p<strong>on</strong>enda sine necessitate.*<br />

William <str<strong>on</strong>g>of</str<strong>on</strong>g> Occam”<br />

Another argument, independent <str<strong>on</strong>g>of</str<strong>on</strong>g> those given so far, points towards a model <str<strong>on</strong>g>of</str<strong>on</strong>g> nature<br />

based <strong>on</strong> extended c<strong>on</strong>stituents. We know that any c<strong>on</strong>cept for which we can distinguish<br />

parts is described by a set. We usually describe nature as a set <str<strong>on</strong>g>of</str<strong>on</strong>g> objects, positi<strong>on</strong>s,<br />

instants and so <strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> most famous set-theoretic descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature is the oldest<br />

known, given by Democritus:<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> world is made <str<strong>on</strong>g>of</str<strong>on</strong>g> indivisible particles and void.<br />

This descripti<strong>on</strong> was extremely successful in the past: there are no discrepancies with<br />

observati<strong>on</strong>s. However, after 2500 years, the c<strong>on</strong>ceptual difficulties <str<strong>on</strong>g>of</str<strong>on</strong>g> this approach are<br />

obvious.<br />

We know that Democritus was wr<strong>on</strong>g, first <str<strong>on</strong>g>of</str<strong>on</strong>g> all, because vacuum and matter cannot<br />

be distinguished at Planck scales. Thus the word ‘and’ in his sentence is already a<br />

mistake. Sec<strong>on</strong>dly, because <str<strong>on</strong>g>of</str<strong>on</strong>g> the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> minimal scales, the void cannot be made<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ‘points’, as we usually assume. Thirdly, the descripti<strong>on</strong> fails because particles are not<br />

compact objects. Finally, total symmetry implies that we cannot distinguish parts in<br />

nature. Nothing can be distinguished from anything else with complete precisi<strong>on</strong>, and<br />

thus the particles or points in space that make up the naive model <str<strong>on</strong>g>of</str<strong>on</strong>g> the world cannot<br />

exist.<br />

In summary, quantum theory and general relativity together show that in nature, all<br />

partiti<strong>on</strong>s and all differences are <strong>on</strong>ly approximate. Nothing can really be distinguished<br />

from anything else with complete precisi<strong>on</strong>. In other words, there is no way to define a<br />

‘part’ <str<strong>on</strong>g>of</str<strong>on</strong>g> nature, whether for matter, space, time, or radiati<strong>on</strong>.<br />

⊳ Nature cannot be a set.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>clusi<strong>on</strong> does not come as a surprise. We have already encountered another reas<strong>on</strong><br />

to doubt that nature is a set. Whatever definiti<strong>on</strong> we use for the term ‘particle’, Democritus<br />

cannot be correct for a purely logical reas<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> descripti<strong>on</strong> he provided is not<br />

complete. Every descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature that defines nature as a set <str<strong>on</strong>g>of</str<strong>on</strong>g> parts fails to explain<br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> these parts. In particular, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> particles and the number <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> space-time must be specified if we describe nature as made from particles<br />

and vacuum. For example, we saw that it is rather dangerous to make fun <str<strong>on</strong>g>of</str<strong>on</strong>g> the famous<br />

statement by Arthur Eddingt<strong>on</strong><br />

* ‘Multitude should not be introduced without necessity.’ This famous principle is comm<strong>on</strong>ly called Occam’s<br />

razor. William <str<strong>on</strong>g>of</str<strong>on</strong>g> Ockham (b. 1285/1295 Ockham, d. 1349/50 Munich), or Occam in the comm<strong>on</strong><br />

Latin spelling, was <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the great thinkers <str<strong>on</strong>g>of</str<strong>on</strong>g> his time. In his famous statement he expresses that <strong>on</strong>ly<br />

those c<strong>on</strong>cepts which are strictly necessary should be introduced to explain observati<strong>on</strong>s. It can be seen as<br />

the requirement to aband<strong>on</strong> beliefs when talking about nature. But at this stage <str<strong>on</strong>g>of</str<strong>on</strong>g> our mountain ascent it<br />

has an even more direct interpretati<strong>on</strong>: the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> any multitude in nature is questi<strong>on</strong>able.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


130 6 the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> p oints<br />

Ref. 119 Ibelievethere are 15,747,724,136,275,002,577,605,653,961,181,555,468,044,<br />

717,914,527,116,709,366,231,425,076,185,631,031,296 prot<strong>on</strong>s in the universe<br />

and the same number <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s.<br />

Page 103<br />

Ref. 121<br />

Ref. 120<br />

In fact, practically all physicists share this belief, although they usually either pretend to<br />

favour some other number, or worse, keep the number unspecified.<br />

In modern physics, many specialized sets are used to describe nature. We have used<br />

vector spaces, linear spaces, topological spaces and Hilbert spaces. But so far, we c<strong>on</strong>sistently<br />

refrained, like all physicists, from asking about the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> their sizes (mathematically<br />

speaking, <str<strong>on</strong>g>of</str<strong>on</strong>g> their dimensi<strong>on</strong>ality or cardinality). In fact, it is just as unsatisfying<br />

to say that the universe c<strong>on</strong>tains some specific number <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms as it is to say that spacetime<br />

is made <str<strong>on</strong>g>of</str<strong>on</strong>g> point-like events arranged in 3+1dimensi<strong>on</strong>s. Both are statements about<br />

set sizes, in the widest sense. In a complete, unified descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

smallest particles and the number <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time points must not be fixed beforehand,<br />

but must result from the descripti<strong>on</strong>.<br />

Any part <str<strong>on</strong>g>of</str<strong>on</strong>g> nature is by definiti<strong>on</strong> smaller than the whole <str<strong>on</strong>g>of</str<strong>on</strong>g> nature, and different from<br />

other parts. As a result, no descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature by a set can possibly yield the number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> particles or the dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time. As l<strong>on</strong>g as we insist <strong>on</strong> using spacetime<br />

or Hilbert spaces for the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature, we cannot understand the number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong>s or the number <str<strong>on</strong>g>of</str<strong>on</strong>g> particles.<br />

That is not too bad, as we know already that nature is not made <str<strong>on</strong>g>of</str<strong>on</strong>g> parts. We know<br />

that parts are <strong>on</strong>ly approximate c<strong>on</strong>cepts. In short, if nature were made <str<strong>on</strong>g>of</str<strong>on</strong>g> parts, it could<br />

not be a unity, or a ‘<strong>on</strong>e.’ On the other hand, if nature is a unity, it cannot have parts.*<br />

Nature cannot be separable exactly. It cannot be made <str<strong>on</strong>g>of</str<strong>on</strong>g> particles.<br />

To sum up, nature cannot be a set. Sets are lists <str<strong>on</strong>g>of</str<strong>on</strong>g> distinguishable elements. When<br />

general relativity and quantum theory are unified, nature shows no elements: nature<br />

stops being a set at Planck scales. This result clarifies a discussi<strong>on</strong> we started earlier in<br />

relati<strong>on</strong> to classical physics. <str<strong>on</strong>g>The</str<strong>on</strong>g>re we discovered that matter objects were defined using<br />

space and time, and that space and time were defined using objects. Al<strong>on</strong>g with the<br />

results <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory, this implies that in modern physics particles are defined in<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum and the vacuum in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> particles. Circularity is not a good<br />

idea, but we can live with it – at low energy. But at Planck energy, vacuum and particles<br />

are indistinguishable from each other. Particles and vacuum – thus everything – are<br />

the same. We have to aband<strong>on</strong> the circular definiti<strong>on</strong>. This is a satisfactory outcome;<br />

however, it also implies that nature is not a set.<br />

Also space-time duality implies that space is not a set. Space-time duality implies<br />

that events cannot be distinguished from each other, and thus do not form elements <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

some space. Phil Gibbs has given the name event symmetry to this property <str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

This thought-provoking term, although still c<strong>on</strong>taining the term ‘event’, emphasizes the<br />

impossibility to use a set to describe space-time.<br />

In short,<br />

* As a curiosity, practically the same discussi<strong>on</strong> can already be found in Plato’s Parmenides, written in the<br />

fourth century bce. <str<strong>on</strong>g>The</str<strong>on</strong>g>re, Plato musically p<strong>on</strong>ders different arguments <strong>on</strong> whether nature is or can be a<br />

unity or a multiplicity, i.e., a set. It seems that the text is based <strong>on</strong> the real visit to Athens by Parmenides<br />

and Zeno. (<str<strong>on</strong>g>The</str<strong>on</strong>g>ir home city, Elea, was near Naples.) Plato does not reach a c<strong>on</strong>clusi<strong>on</strong>. Modern physics,<br />

however, does.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


does nature have parts? 131<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. III, page 291<br />

⊳ Nature cannot be made <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum and particles.<br />

This is a bizarre result. Atomists, from Democritus to Galileo, have been persecuted<br />

throughout history. Were their battles all in vain? Let us c<strong>on</strong>tinue to clarify our thoughts.<br />

Does the universe c<strong>on</strong>tain anything?<br />

To state that the universe c<strong>on</strong>tains something implies that we are able to distinguish the<br />

universe from its c<strong>on</strong>tents. However, we now know that precise distincti<strong>on</strong>s are impossible.<br />

If nature is not made <str<strong>on</strong>g>of</str<strong>on</strong>g> parts, it is wr<strong>on</strong>g to say that the universe c<strong>on</strong>tains<br />

something.<br />

Let us go further. We need a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature that allows us to state that at Planck<br />

energy nothing can be distinguished from anything else. For example, it must be impossible<br />

to distinguish particles from each other or from the vacuum. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is <strong>on</strong>ly <strong>on</strong>e<br />

soluti<strong>on</strong>: everything – or at least, what we call ‘everything’ in everyday life – must be<br />

made <str<strong>on</strong>g>of</str<strong>on</strong>g> the same single c<strong>on</strong>stituent. All particles are made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e ‘piece’. Every point<br />

in space, every event, every particle and every instant <str<strong>on</strong>g>of</str<strong>on</strong>g> time must be made <str<strong>on</strong>g>of</str<strong>on</strong>g> the same<br />

single c<strong>on</strong>stituent.<br />

An amoeba<br />

“A theory <str<strong>on</strong>g>of</str<strong>on</strong>g> everything describing nothing is<br />

not better than a theory <str<strong>on</strong>g>of</str<strong>on</strong>g> nothing describing<br />

everything.<br />

An<strong>on</strong>ymous”<br />

We have found that parts are approximate c<strong>on</strong>cepts. <str<strong>on</strong>g>The</str<strong>on</strong>g> parts <str<strong>on</strong>g>of</str<strong>on</strong>g> nature are not strictly<br />

smaller than nature itself. As a result, any ‘part’ must be extended. Let us try to extract<br />

some more informati<strong>on</strong> about the c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

In any unified theory, all the c<strong>on</strong>cepts that appear must be <strong>on</strong>ly approximately parts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the whole. Thus we need an entity Ω, describing nature, which is not a set but which<br />

can be approximated by <strong>on</strong>e. This is strange. We are all c<strong>on</strong>vinced very early in our lives<br />

that we are a part <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. Our senses provide us with this informati<strong>on</strong>. We are not<br />

used to thinking otherwise. But now we have to.<br />

Let us straight away eliminate a few opti<strong>on</strong>s for Ω. One c<strong>on</strong>cept without parts is the<br />

empty set. Perhaps we need to c<strong>on</strong>struct a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature from the empty set? We<br />

could be inspired by the usual c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the natural numbers from the empty set.<br />

However, the empty set makes <strong>on</strong>ly sense as the opposite <str<strong>on</strong>g>of</str<strong>on</strong>g> some full set. So the empty<br />

set is not a candidate for Ω.<br />

Another possible way to define approximate parts is to c<strong>on</strong>struct them from multiple<br />

copies <str<strong>on</strong>g>of</str<strong>on</strong>g> Ω. But in this way we would introduce a new set through the back door. Furthermore,<br />

new c<strong>on</strong>cepts defined in this way would not be approximate.<br />

We need to be more imaginative. How can we describe a whole which has no parts,<br />

but which has parts approximately? Let us recapitulate. <str<strong>on</strong>g>The</str<strong>on</strong>g> world must be described by<br />

a single entity, sharing all properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the world, but which can be approximated as a set<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> parts. For example, the approximati<strong>on</strong> should yield a set <str<strong>on</strong>g>of</str<strong>on</strong>g> space points and a set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particles. But also, whenever we look at any ‘part’ <str<strong>on</strong>g>of</str<strong>on</strong>g> nature, without any approximati<strong>on</strong>,<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


132 6 the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> p oints<br />

Page 148<br />

Challenge 95 r<br />

we should not be able to distinguish it from the whole world. Composite objects are<br />

not always larger than their c<strong>on</strong>stituents. On the other hand, composed objects must<br />

usually appear to be larger than their c<strong>on</strong>stituents. For example, space ‘points’ or ‘point’<br />

particles are tiny, even though they are <strong>on</strong>ly approximati<strong>on</strong>s. Which c<strong>on</strong>cept without<br />

boundaries can be at their origin? Using usual c<strong>on</strong>cepts, the world is everywhere at<br />

the same time; if nature is to be described by a single c<strong>on</strong>stituent, this entity must be<br />

extended.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> entity has to be a single <strong>on</strong>e, but it must seem to be multiple: it has to be multiple<br />

approximately, as nature shows multiple aspects. <str<strong>on</strong>g>The</str<strong>on</strong>g> entity must be something folded.<br />

It must be possible to count the folds, but <strong>on</strong>ly approximately. (An analogy is the questi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> how many grooves there are <strong>on</strong> an LP or a CD: depending <strong>on</strong> the point <str<strong>on</strong>g>of</str<strong>on</strong>g> view,<br />

local or global, <strong>on</strong>e gets different answers.) Counting folds would corresp<strong>on</strong>d to a length<br />

measurement.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> simplest model would be a single entity which is extended and fluctuating,<br />

reaches spatial infinity, allows approximate localizati<strong>on</strong>, and thus allows approximate<br />

definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parts and points.* In more vivid imagery, nature could be described by<br />

some deformable, folded and tangled entity: a giant, knotted amoeba. An amoeba slides<br />

between the fingers whenever we try to grab a part <str<strong>on</strong>g>of</str<strong>on</strong>g> it. A perfect amoeba flows around<br />

any knife trying to cut it. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>on</strong>ly way to hold it would be to grab it in its entirety. However,<br />

for some<strong>on</strong>e himself made <str<strong>on</strong>g>of</str<strong>on</strong>g> amoeba strands, this is impossible. He can <strong>on</strong>ly grab<br />

it approximately, by catching part <str<strong>on</strong>g>of</str<strong>on</strong>g> it and approximately blocking it, for example using<br />

a small hole, so that the escape takes a l<strong>on</strong>g time.<br />

Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the fourth argument for extensi<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> particles and <str<strong>on</strong>g>of</str<strong>on</strong>g> sets in nature leads to describing nature by a single c<strong>on</strong>stituent.<br />

Nature is thus modelled by an entity which is <strong>on</strong>e single ‘object’ (to eliminate distinguishability),<br />

which is extended (to eliminate localizability) and which is fluctuating (to<br />

ensure approximate c<strong>on</strong>tinuity). Nature is a far-reaching, fluctuating fold. Nature is similar<br />

to an amoeba. <str<strong>on</strong>g>The</str<strong>on</strong>g> tangled branches <str<strong>on</strong>g>of</str<strong>on</strong>g> the amoeba allow a definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> length via<br />

counting <str<strong>on</strong>g>of</str<strong>on</strong>g> the folds. In this way, discreteness <str<strong>on</strong>g>of</str<strong>on</strong>g> space, time, and particles could also be<br />

realized; the quantizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time, matter and radiati<strong>on</strong> thus follows. Any flexible<br />

and deformable entity is also a perfect candidate for the realizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diffeomorphism<br />

invariance, as required by general relativity.<br />

A simple candidate for the extended fold is the image <str<strong>on</strong>g>of</str<strong>on</strong>g> a fluctuating, flexible tube<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Planck diameter. Counting tubes implies determining distances or areas. <str<strong>on</strong>g>The</str<strong>on</strong>g> minimum<br />

possible count (<strong>on</strong>e) gives the minimum distance, from which quantum theory<br />

is derived. In fact, at this point we can use as a model any flexible object with a small<br />

dimensi<strong>on</strong>, such as a tube, a thin sheet, a ball chain or a woven collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rings. We<br />

will explore these opti<strong>on</strong>s below.<br />

* This is the simplest model; but is it the <strong>on</strong>ly way to describe nature?<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes 133<br />

Ref. 57, Ref. 58<br />

Ref. 122<br />

Ref. 35<br />

Ref. 123<br />

Ref. 125<br />

Ref. 124<br />

the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes<br />

We are still collecting arguments to determining the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> fundamental c<strong>on</strong>stituents.<br />

Another approach is to study situati<strong>on</strong>s where particles appear in large numbers. Systems<br />

composed <str<strong>on</strong>g>of</str<strong>on</strong>g> many particles behave differently depending <strong>on</strong> whether the particles are<br />

point-like or extended. In particular, their entropy is different. Studying large-number<br />

entropy thus allows us to determine the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> comp<strong>on</strong>ents. <str<strong>on</strong>g>The</str<strong>on</strong>g> most revealing situati<strong>on</strong>s<br />

are those in which large numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> particles are crammed in a small volume.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>refore we are led to study the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes. Indeed, black holes tell us a lot<br />

about the fundamental c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

A black hole is a body whose gravity is so str<strong>on</strong>g that even light cannot escape. It is<br />

easily deduced from general relativity that any body whose mass m fits inside the socalled<br />

Schwarzschild radius<br />

r S =2Gm/c 2 (115)<br />

is a black hole. A black hole can be formed when a whole star collapses under its own<br />

weight. Such a black hole is a macroscopic body, with a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stituents.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>refore it has an entropy. <str<strong>on</strong>g>The</str<strong>on</strong>g> entropy S <str<strong>on</strong>g>of</str<strong>on</strong>g> a macroscopic black hole was determined<br />

by Bekenstein and Hawking,andisgivenby<br />

S=<br />

k<br />

4l 2 Pl<br />

A= kc3 A or S=k4πGm2<br />

4ħG ħc<br />

(116)<br />

where k is the Boltzmann c<strong>on</strong>stant and A=4πr 2 S<br />

is the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the black hole horiz<strong>on</strong>.<br />

This important result has been derived in many different ways. <str<strong>on</strong>g>The</str<strong>on</strong>g> various derivati<strong>on</strong>s<br />

c<strong>on</strong>firm that space-time and matter are equivalent: they show that the entropy value can<br />

be interpreted as an entropy either <str<strong>on</strong>g>of</str<strong>on</strong>g> matter or <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time. In the present c<strong>on</strong>text, the<br />

two main points <str<strong>on</strong>g>of</str<strong>on</strong>g> interest are that the entropy is finite, andthatitisproporti<strong>on</strong>al to the<br />

area <str<strong>on</strong>g>of</str<strong>on</strong>g> the black hole horiz<strong>on</strong>.<br />

In view <str<strong>on</strong>g>of</str<strong>on</strong>g> the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> minimum lengths and times, the finiteness <str<strong>on</strong>g>of</str<strong>on</strong>g> the entropy<br />

is not surprising: it c<strong>on</strong>firms the idea that matter is made <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> discrete<br />

c<strong>on</strong>stituents per given volume (or area). It also shows that these c<strong>on</strong>stituents behave statistically:<br />

they fluctuate. In fact, quantum gravity implies a finite entropy for any object,<br />

not <strong>on</strong>ly for black holes. Jacob Bekenstein has shown that the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> an object is<br />

always smaller than the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> a (certain type <str<strong>on</strong>g>of</str<strong>on</strong>g>) black hole <str<strong>on</strong>g>of</str<strong>on</strong>g> the same mass.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> a black hole is proporti<strong>on</strong>al to its horiz<strong>on</strong> area. Why? This questi<strong>on</strong><br />

has been the topic <str<strong>on</strong>g>of</str<strong>on</strong>g> a stream <str<strong>on</strong>g>of</str<strong>on</strong>g> publicati<strong>on</strong>s.* A simple way to understand the entropy–<br />

surface proporti<strong>on</strong>ality is to look for other systems in nature whose entropy is proporti<strong>on</strong>al<br />

to system surface instead <str<strong>on</strong>g>of</str<strong>on</strong>g> system volume. In general, the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> a collecti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> flexible <strong>on</strong>e-dimensi<strong>on</strong>al objects, such as polymer chains, shares this property. Indeed,<br />

the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> a polymer chain made <str<strong>on</strong>g>of</str<strong>on</strong>g> N m<strong>on</strong>omers, each <str<strong>on</strong>g>of</str<strong>on</strong>g> length a, whoseendsare<br />

* <str<strong>on</strong>g>The</str<strong>on</strong>g> result can be derived from quantum statistics al<strong>on</strong>e. However, this derivati<strong>on</strong> does not yield the<br />

proporti<strong>on</strong>ality coefficient.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


134 6 the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> p oints<br />

Ref. 126<br />

kept a distance r apart, is given by<br />

Ref. 109<br />

Page 289<br />

S(r) = k 3r2<br />

2Na 2 for Na≫ √Na ≫r. (117)<br />

This formula can be derived in a few lines from the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> a random walk <strong>on</strong> a lattice,<br />

using <strong>on</strong>ly two assumpti<strong>on</strong>s: the chains are extended; and they have a characteristic<br />

internal length a given by the smallest straight segment. Expressi<strong>on</strong> (117) is<strong>on</strong>lyvalid<br />

if the polymers are effectively infinite: in other words, if the length Na <str<strong>on</strong>g>of</str<strong>on</strong>g> the chain and<br />

the el<strong>on</strong>gati<strong>on</strong> a√N , are much larger than the radius r <str<strong>on</strong>g>of</str<strong>on</strong>g> the regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interest. If the<br />

chain length is comparable to or smaller than the regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interest, we get the usual extensive<br />

entropy, satisfying S∼r 3 .Thus<strong>on</strong>ly flexible extended c<strong>on</strong>stituents yield an S∼r 2<br />

dependence.<br />

However, there is a difficulty. From the expressi<strong>on</strong> for the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> a black hole we<br />

deduce that the el<strong>on</strong>gati<strong>on</strong> a√N is given by a√N ≈l Pl ; thus it is much smaller than<br />

the radius <str<strong>on</strong>g>of</str<strong>on</strong>g> a general macroscopic black hole, which can have a diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> several<br />

kilometres. On the other hand, the formula for l<strong>on</strong>g c<strong>on</strong>stituents is <strong>on</strong>ly valid when the<br />

chains are l<strong>on</strong>ger than the distance r between the end points.<br />

This difficulty disappears when we remember that space near a black hole is str<strong>on</strong>gly<br />

curved. All lengths have to be measured in the same coordinate system. It is well known<br />

that for an outside observer, any object <str<strong>on</strong>g>of</str<strong>on</strong>g> finite size falling into a black hole seems to<br />

cover the complete horiz<strong>on</strong> for l<strong>on</strong>g times (whereas for an observer attached to the object<br />

it falls into the hole in its original size) . Inshort,anextendedc<strong>on</strong>stituentcanhavea<br />

proper length <str<strong>on</strong>g>of</str<strong>on</strong>g> Planck size but still, when seen by an outside observer, be as l<strong>on</strong>g as the<br />

horiz<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the black hole. We thus find<br />

⊳ Black holes are made <str<strong>on</strong>g>of</str<strong>on</strong>g> extended c<strong>on</strong>stituents.<br />

Another viewpoint can c<strong>on</strong>firm this result. Entropy is (proporti<strong>on</strong>al to) the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

yes-or-no questi<strong>on</strong>s needed to know the exact state <str<strong>on</strong>g>of</str<strong>on</strong>g> the system. But if a system is<br />

defined by its surface, as a black hole is, its comp<strong>on</strong>ents must be extended.<br />

Finally, imagining black holes as made <str<strong>on</strong>g>of</str<strong>on</strong>g> extended c<strong>on</strong>stituents is also c<strong>on</strong>sistent with<br />

the so-called no-hair theorem: black holes’ properties do not depend <strong>on</strong> what falls into<br />

them – as l<strong>on</strong>g as all matter and radiati<strong>on</strong> particles are made <str<strong>on</strong>g>of</str<strong>on</strong>g> the same extended comp<strong>on</strong>ents.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> final state <str<strong>on</strong>g>of</str<strong>on</strong>g> a black hole <strong>on</strong>ly depends <strong>on</strong> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> extended c<strong>on</strong>stituents.<br />

Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the fifth argument for extensi<strong>on</strong><br />

Black hole entropy is best understood as resulting from extended c<strong>on</strong>stituents that tangle<br />

and fluctuate. And black hole entropy c<strong>on</strong>firms that vacuum and particles are made <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

comm<strong>on</strong> c<strong>on</strong>stituents.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


exchanging space points or particles at planck scales 135<br />

Ref. 47<br />

Ref. 127<br />

exchanging space points or particles at planck<br />

scales<br />

Let us now focus <strong>on</strong> the exchange behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> fundamental c<strong>on</strong>stituents in nature. We<br />

saw above that ‘points’ in space have to be aband<strong>on</strong>ed in favour <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous, fluctuating<br />

c<strong>on</strong>stituents comm<strong>on</strong> to space, time and matter. Is such a c<strong>on</strong>stituent a bos<strong>on</strong> or a<br />

fermi<strong>on</strong>? If we exchange two points <str<strong>on</strong>g>of</str<strong>on</strong>g> empty space, in everyday life, nothing happens.<br />

Indeed, at the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum field theory is the relati<strong>on</strong><br />

[x, y] = xy − yx = 0 (118)<br />

between any two points with coordinates x and y, makingthembos<strong>on</strong>s.ButatPlanck<br />

scales, because <str<strong>on</strong>g>of</str<strong>on</strong>g> the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> minimal distances and areas, this relati<strong>on</strong> must at least<br />

be changed to<br />

[x, y] = l 2 Pl<br />

+ ... . (119)<br />

This means that ‘points’ are neither bos<strong>on</strong>s nor fermi<strong>on</strong>s.* ‘Points’ have more complex<br />

exchange properties. In fact, the term <strong>on</strong> the right-hand side will be energy-dependent,<br />

to an increasing extent as we approach Planck scales. In particular, as we have seen,<br />

gravity implies that a double exchange does not lead back to the original situati<strong>on</strong> at<br />

Planck scales.<br />

C<strong>on</strong>stituents obeying this or similar relati<strong>on</strong>s have been studied in mathematics for<br />

many decades: they are called braids. Thusspaceisnotmade<str<strong>on</strong>g>of</str<strong>on</strong>g>pointsatPlanckscales,<br />

but <str<strong>on</strong>g>of</str<strong>on</strong>g> braids or their generalizati<strong>on</strong>s, namely tangles. We find again that quantum theory<br />

and general relativity taken together imply that the vacuum must be made <str<strong>on</strong>g>of</str<strong>on</strong>g> extended<br />

c<strong>on</strong>stituents.<br />

We now turn to particles. All particles in nature behave in a similar way: we know that<br />

at low, everyday energies, particles <str<strong>on</strong>g>of</str<strong>on</strong>g> the same type are identical. Experiments sensitive<br />

to quantum effects show that there is no way to distinguish them: any system <str<strong>on</strong>g>of</str<strong>on</strong>g> several<br />

identical particles has permutati<strong>on</strong> symmetry. On the other hand, we know that at<br />

Planck energy all low-energy symmetries disappear. We also know that at Planck energy<br />

permutati<strong>on</strong> cannot be carried out, as it implies exchanging positi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> two particles.<br />

At Planck energy, nothing can be distinguished from vacuum; thus no two entities can<br />

be shown to have identical properties. Indeed, no two particles can be shown to be indistinguishable,<br />

as they cannot even be shown to be separate.<br />

What happens when we slowly approach Planck energy? At everyday energies, permutati<strong>on</strong><br />

symmetry is defined by commutati<strong>on</strong> or anticommutati<strong>on</strong> relati<strong>on</strong>s between<br />

particle creati<strong>on</strong> operators<br />

a † b † ±b † a † =0. (120)<br />

At Planck energy this cannot be correct. Quantum gravity effects modify the right-hand<br />

side: they add an energy-dependent term that is negligible at experimentally accessible<br />

energies but becomes important at Planck energy. We know from our experience with<br />

* <str<strong>on</strong>g>The</str<strong>on</strong>g> same reas<strong>on</strong>ing applies to the so-called fermi<strong>on</strong>ic or Grassmann coordinates used in supersymmetry.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>y cannot exist at Planck energy.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


136 6 the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> p oints<br />

Ref. 47<br />

Ref. 127<br />

Planck scales that, in c<strong>on</strong>trast to everyday life, exchanging particles twice cannot lead<br />

back to the original situati<strong>on</strong>. A double exchange at Planck energy cannot have no effect,<br />

because at Planck energy such statements are impossible. <str<strong>on</strong>g>The</str<strong>on</strong>g> simplest extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the commutati<strong>on</strong> relati<strong>on</strong> (120) for which the right-hand side does not vanish is braid<br />

symmetry. This again suggests that particles are made <str<strong>on</strong>g>of</str<strong>on</strong>g> extended c<strong>on</strong>stituents.<br />

Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the sixth argument for extensi<strong>on</strong><br />

Extrapolating both point and particle indistinguishability to Planck scales suggests extended,<br />

braided or tangled c<strong>on</strong>stituents.<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. IV, page 112<br />

Page 174<br />

the meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> spin<br />

As last argument we will now show that the extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particles makes sense even<br />

at everyday energy. Any particle is a part <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe. A part is something that is<br />

different from anything else. Being ‘different’ means that exchange has some effect. Distincti<strong>on</strong><br />

means detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exchange. In other words, any part <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe is also<br />

described by its exchange behaviour.<br />

In nature, particle exchange is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> rotati<strong>on</strong>s. In other words, parts <str<strong>on</strong>g>of</str<strong>on</strong>g> nature<br />

are described by their rotati<strong>on</strong> behaviour. This is why, for microscopic particles, exchange<br />

behaviour is specified by spin. Spin distinguishes particles from vacuum.*<br />

We note that volume does not distinguish vacuum from particles; neither does rest<br />

mass or charge: nature provides particles without measurable volume, rest mass or<br />

charge, such as phot<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>on</strong>ly observables that distinguish particles from vacuum<br />

are spin and momentum. In fact, linear momentum is <strong>on</strong>ly a limiting case <str<strong>on</strong>g>of</str<strong>on</strong>g> angular<br />

momentum. We thus find again that rotati<strong>on</strong> behaviour is the basic aspect distinguishing<br />

particles from vacuum.<br />

If spin is the central property that distinguishes particles from vacuum, finding a<br />

model for spin is <str<strong>on</strong>g>of</str<strong>on</strong>g> central importance. But we do not have to search for l<strong>on</strong>g. A model<br />

for spin 1/2 is part <str<strong>on</strong>g>of</str<strong>on</strong>g> physics folklore since almost a century. Any belt provides an example,<br />

as we discussed in detail when exploring permutati<strong>on</strong> symmetry. Any localized<br />

structure with any number <str<strong>on</strong>g>of</str<strong>on</strong>g> tails or tethers attached to it – tails or tethers that reach the<br />

border <str<strong>on</strong>g>of</str<strong>on</strong>g> the regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> space under c<strong>on</strong>siderati<strong>on</strong> – has the same properties as a spin 1/2<br />

particle. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>on</strong>ly c<strong>on</strong>diti<strong>on</strong> is that the tails or tethers themselves are unobservable. Itis<br />

a famous exercise to show that such a model, like <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> those shown in Figure 9, isindeed<br />

invariant under 4π rotati<strong>on</strong>s but not under 2π rotati<strong>on</strong>s, and that two such particles<br />

get entangled when exchanged, but get untangled when exchanged twice. Such a tether<br />

model has all the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> spin 1/2 particles, independently <str<strong>on</strong>g>of</str<strong>on</strong>g> the precise structure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the central regi<strong>on</strong>, which is not important at this point. <str<strong>on</strong>g>The</str<strong>on</strong>g> tether model even has the<br />

same problems with highly curved space as real spin 1/2 particles have. We will explore<br />

the issues in more detail shortly.<br />

* With a flat (or other) background, it is possible to define a local energy–momentum tensor. Thus particles<br />

can be defined. Without a background, this is not possible, and <strong>on</strong>ly global quantities can be defined.<br />

Without a background, even particles cannot be defined. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, in this secti<strong>on</strong> we assume that we have<br />

a slowly varying space-time background.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


curiosities and fun challenges about extensi<strong>on</strong> 137<br />

positi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> spin 1/2<br />

particle<br />

flexible bands<br />

in unspecified<br />

number<br />

reaching the<br />

border<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> space<br />

Ref. 128<br />

Challenge 96 e<br />

Challenge 97 s<br />

FIGURE 9 Possible models for a spin 1/2<br />

particle.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> tether model thus c<strong>on</strong>firms that rotati<strong>on</strong> is partial exchange. More interestingly,<br />

it shows that rotati<strong>on</strong> implies c<strong>on</strong>necti<strong>on</strong> with the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space. Extended particles<br />

can be rotating. Particles can have spin 1/2 provided that they have tethers going to the<br />

border <str<strong>on</strong>g>of</str<strong>on</strong>g> space. If the tethers do not reach the border, the model does not work. Spin<br />

1/2 thus even seems to require extensi<strong>on</strong>.<br />

Itisnothardtoextendthisideatoincludespin1particles. In short, both bos<strong>on</strong>s and<br />

fermi<strong>on</strong>s can be modelled with extended c<strong>on</strong>stituents.<br />

Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the seventh argument for extensi<strong>on</strong><br />

Exploring the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> particle spin suggests the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> extended, unobservable<br />

c<strong>on</strong>stituents in elementary fermi<strong>on</strong>s. We note that gravitati<strong>on</strong> is not used explicitly in the<br />

argument. It is used implicitly, however, in the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the locally flat space-time<br />

and <str<strong>on</strong>g>of</str<strong>on</strong>g> the asymptotic regi<strong>on</strong> to where the tethers are reaching.<br />

curiosities and fun challenges about extensi<strong>on</strong><br />

“No problem is so big or complicated that it<br />

can’t be run away from.<br />

Charles<br />

In case that this secti<strong>on</strong> has not provided enough food for thought, here is some<br />

Schulz”<br />

more.<br />

∗∗<br />

Quantum theory implies that even if tight walls exist, the lid <str<strong>on</strong>g>of</str<strong>on</strong>g> a box made <str<strong>on</strong>g>of</str<strong>on</strong>g> them could<br />

never be tightly shut. Can you provide the argument?<br />

∗∗<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


138 6 the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> p oints<br />

Challenge 98 e<br />

Challenge 99 s<br />

Challenge 100 s<br />

Can you provide an argument against the idea <str<strong>on</strong>g>of</str<strong>on</strong>g> extended c<strong>on</strong>stituents in nature? If so,<br />

publish it!<br />

∗∗<br />

Does duality imply that the cosmic background fluctuati<strong>on</strong>s (at the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> galaxies and<br />

clusters) are the same as vacuum fluctuati<strong>on</strong>s?<br />

∗∗<br />

Does duality imply that a system with two small masses colliding is equivalent to a system<br />

with two large masses gravitating?<br />

∗∗<br />

It seems that in all arguments so far we have assumed that time is c<strong>on</strong>tinuous, even<br />

Challenge 101 d though we know it is not. Does this change the c<strong>on</strong>clusi<strong>on</strong>s?<br />

Challenge 102 s<br />

Challenge 103 s<br />

Challenge 104 d<br />

Challenge 105 d<br />

Ref. 129<br />

Challenge 106 s<br />

∗∗<br />

Duality also implies that in some sense large and small masses are equivalent. A mass<br />

m in a radius r is equivalent to a mass m 2 Pl /m in a radius l2 Pl<br />

/r. Inotherwords,duality<br />

transforms mass density from ρ to ρ 2 Pl<br />

/ρ. Vacuum and maximum density are equivalent!<br />

Vacuum is thus dual to black holes.<br />

∗∗<br />

Total symmetry and space-time duality together imply that there is a symmetry between<br />

all values an observable can take. Do you agree?<br />

∗∗<br />

Any descripti<strong>on</strong> is a mapping from nature to mathematics, i.e., from observed differences<br />

(and relati<strong>on</strong>s) to thought differences (and relati<strong>on</strong>s). How can we do this accurately, if<br />

differences are <strong>on</strong>ly approximate? Is this the end <str<strong>on</strong>g>of</str<strong>on</strong>g> physics?<br />

∗∗<br />

Duality implies that the noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> initial c<strong>on</strong>diti<strong>on</strong>s for the big bang makes no sense,<br />

as we saw earlier by c<strong>on</strong>sidering the minimal distance. As duality implies a symmetry<br />

between large and small energies, the big bang itself becomes a vague c<strong>on</strong>cept. What else<br />

do extended c<strong>on</strong>stituents imply for the big bang?<br />

∗∗<br />

Can you show that going to high energies or selecting a Planck-size regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time<br />

is equivalent to visiting the big bang?<br />

∗∗<br />

In 2002, Andrea Gregori made a startling predicti<strong>on</strong> for any model using extended c<strong>on</strong>stituents<br />

that reach the border <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe: if particles are extended in this way, their<br />

mass should depend <strong>on</strong> the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe. Thusparticlemassesshouldchangewith<br />

time, especially around the big bang. Is this c<strong>on</strong>clusi<strong>on</strong> unavoidable?<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


checks <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong> 139<br />

Challenge 107 s<br />

Ref. 129, Ref. 130<br />

Challenge 108 s<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. I, page 339<br />

Challenge 109 e<br />

Page 113<br />

∗∗<br />

What is wr<strong>on</strong>g with the following argument? We need lines to determine areas, and we<br />

need areas to determine lines. This implies that at Planck scales, we cannot distinguish<br />

areas from lengths at Planck scales.<br />

∗∗<br />

We need a descripti<strong>on</strong> for the expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> extended c<strong>on</strong>stituents.<br />

Various approaches are being explored. Can you speculate about the soluti<strong>on</strong>?<br />

Gender preferences in physics<br />

Why has extensi<strong>on</strong> appeared so late in the history <str<strong>on</strong>g>of</str<strong>on</strong>g> physics? Here is a not too serious<br />

answer. When we discussed the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature as made <str<strong>on</strong>g>of</str<strong>on</strong>g> tiny balls moving in a<br />

void, we called this as a typically male idea. This implies that the female part is missing.<br />

Which part would that be?<br />

From a general point <str<strong>on</strong>g>of</str<strong>on</strong>g> view, the female part <str<strong>on</strong>g>of</str<strong>on</strong>g> physics might be the quantum descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum, the c<strong>on</strong>tainer <str<strong>on</strong>g>of</str<strong>on</strong>g> all things. We can speculate that if women<br />

had developed physics, the order <str<strong>on</strong>g>of</str<strong>on</strong>g> its discoveries might have been different. Instead<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> studying matter first, as men did, women might have studied the vacuum first. And<br />

women might not have needed 2500 years to understand that nature is not made <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

void and little balls, but that everything in nature is made <str<strong>on</strong>g>of</str<strong>on</strong>g> extended c<strong>on</strong>stituents. It is<br />

curious that (male) physics took so l<strong>on</strong>g for this discovery.<br />

checks <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> idea that nature is described by extended c<strong>on</strong>stituents is taken for granted in all<br />

current research approaches to unificati<strong>on</strong>. How can we be sure that extensi<strong>on</strong> is correct?<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> arguments presented so far provide several possible checks. We start with some<br />

opti<strong>on</strong>s for theoretical falsificati<strong>on</strong>.<br />

— Any explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> black hole entropy without extended c<strong>on</strong>stituents would invalidate<br />

the need for extended c<strong>on</strong>stituents.<br />

— A single thought experiment invalidating extended c<strong>on</strong>stituents would prove extensi<strong>on</strong><br />

wr<strong>on</strong>g.<br />

— Extended c<strong>on</strong>stituents must appear if we start from any physical (low-energy)<br />

c<strong>on</strong>cept – not <strong>on</strong>ly from length measurements – and study how the c<strong>on</strong>cept behaves<br />

at Planck scales.<br />

— Invalidating the requirement <str<strong>on</strong>g>of</str<strong>on</strong>g> extremal identity, or duality, would invalidate the<br />

need for extended c<strong>on</strong>stituents. As Edward Witten likes to say, any unified model <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nature must include duality.<br />

— If the measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> length could be shown to be unrelated to the counting <str<strong>on</strong>g>of</str<strong>on</strong>g> folds<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> extended c<strong>on</strong>stituents, extensi<strong>on</strong> would become unnecessary.<br />

— Findinganyproperty <str<strong>on</strong>g>of</str<strong>on</strong>g>naturethatc<strong>on</strong>tradicts extended c<strong>on</strong>stituents would spell the<br />

end <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong>.<br />

Any <str<strong>on</strong>g>of</str<strong>on</strong>g> these opti<strong>on</strong>s would signal the end for almost all current unificati<strong>on</strong> attempts.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


140 6 the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> p oints<br />

Ref. 131<br />

Ref. 132<br />

Page 19<br />

Ref. 114<br />

Ref. 133<br />

Ref. 134, Ref. 135<br />

Fortunately, theoretical falsificati<strong>on</strong> has not yet occurred. But physics is an experimental<br />

science. What kind <str<strong>on</strong>g>of</str<strong>on</strong>g> data could falsify the idea <str<strong>on</strong>g>of</str<strong>on</strong>g> extended c<strong>on</strong>stituents?<br />

— ObservingasingleparticleincosmicrayswithenergyabovethecorrectedPlanck<br />

energy would invalidate the invariant limits and thus also extensi<strong>on</strong>. However, the<br />

present particle energy record, about 0.35 ZeV, is a milli<strong>on</strong> times lower than the<br />

Planck energy.<br />

— Paul Mende has proposed a number <str<strong>on</strong>g>of</str<strong>on</strong>g> checks <strong>on</strong> the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> extended objects in<br />

space-time. He argues that an extended object and a mass point move differently; the<br />

differences could be noticeable in scattering or dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> light near masses.<br />

Experimental falsificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong> has not yet occurred. In fact, experimental falsificati<strong>on</strong><br />

is rather difficult. It seems easier and more productive to c<strong>on</strong>firm extensi<strong>on</strong>.<br />

C<strong>on</strong>firmati<strong>on</strong> is a well-defined project: it implies to deduce all those aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> nature<br />

that are given in the millennium list <str<strong>on</strong>g>of</str<strong>on</strong>g> unexplained properties. Am<strong>on</strong>g others, c<strong>on</strong>firmati<strong>on</strong><br />

requires to find a c<strong>on</strong>crete model, based <strong>on</strong> extended c<strong>on</strong>stituents, for the electr<strong>on</strong>,<br />

the mu<strong>on</strong>, the tau, the neutrinos, the quarks and all bos<strong>on</strong>s. C<strong>on</strong>firmati<strong>on</strong> also requires<br />

using extended c<strong>on</strong>stituents to realize an old dream <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics: to deduce the<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> the coupling c<strong>on</strong>stants and particle masses. Before we attempt this deducti<strong>on</strong>,<br />

we have a look at some other attempts.<br />

Current research based <strong>on</strong> extended c<strong>on</strong>stituents<br />

“To understand is to perceive patterns.<br />

Isaiah Berlin*”<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Greeks deduced the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms from the observati<strong>on</strong> that fish can swim<br />

through water. <str<strong>on</strong>g>The</str<strong>on</strong>g>y argued that <strong>on</strong>ly if water is made <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms could a fish make its<br />

way through it, by pushing the atoms aside. We can ask a similar questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle<br />

flying through a vacuum: why is it able to do so? A vacuum cannot be a fluid or a solid<br />

composed <str<strong>on</strong>g>of</str<strong>on</strong>g> small c<strong>on</strong>stituents, as its dimensi<strong>on</strong>ality would not then be fixed. Only <strong>on</strong>e<br />

possibility remains: both vacuum and particles are made <str<strong>on</strong>g>of</str<strong>on</strong>g> extended c<strong>on</strong>stituents.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> idea <str<strong>on</strong>g>of</str<strong>on</strong>g> describing matter as composed <str<strong>on</strong>g>of</str<strong>on</strong>g> extended c<strong>on</strong>stituents dates from the<br />

1960s. That <str<strong>on</strong>g>of</str<strong>on</strong>g> describing nature as composed <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘infinitely’ extended c<strong>on</strong>stituents dates<br />

from the 1980s. In additi<strong>on</strong> to the arguments presented so far, current research provides<br />

several other approaches that arrive at the same c<strong>on</strong>clusi<strong>on</strong>.<br />

∗∗<br />

Bos<strong>on</strong>izati<strong>on</strong>, the c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong>s using an infinite number <str<strong>on</strong>g>of</str<strong>on</strong>g> bos<strong>on</strong>s, is a central<br />

aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> modern unificati<strong>on</strong> attempts. It also implies coupling duality, and thus the<br />

extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fundamental c<strong>on</strong>stituents.<br />

∗∗<br />

Research into quantum gravity – in particular the study <str<strong>on</strong>g>of</str<strong>on</strong>g> spin networks, spin foams<br />

and loop quantum gravity – has shown that the vacuum can be thought <str<strong>on</strong>g>of</str<strong>on</strong>g> as a collecti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> extended c<strong>on</strong>stituents.<br />

* Isaiah Berlin (b. 1909 Riga, d. 1997 Oxford) was an influential political philosopher and historian <str<strong>on</strong>g>of</str<strong>on</strong>g> ideas.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


checks <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong> 141<br />

Ref. 136<br />

Ref. 137<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. IV, page 157<br />

Ref. 138, Ref. 139<br />

Ref. 140, Ref. 141<br />

Ref. 142, Ref. 143<br />

Page 347<br />

Ref. 144<br />

Ref. 145<br />

∗∗<br />

In the 1990s, Dirk Kreimer showed that high-order QED Feynman diagrams are related<br />

to knot theory. He thus proved that extensi<strong>on</strong> arrives by the back door even when electromagnetism<br />

is described in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> point particles.<br />

∗∗<br />

A popular topic in particle physics, ‘holography’, relates the surface and the volume <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

physical systems at high energy. It implies extended c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

∗∗<br />

It is l<strong>on</strong>g known that wave functi<strong>on</strong> collapse can be seen as the result <str<strong>on</strong>g>of</str<strong>on</strong>g> extended c<strong>on</strong>stituents.<br />

We will explore the details below.<br />

∗∗<br />

At the start <str<strong>on</strong>g>of</str<strong>on</strong>g> the twenty-first century, a number <str<strong>on</strong>g>of</str<strong>on</strong>g> new approaches to describe elementary<br />

particles appeared, such as models based <strong>on</strong> string nets, models based <strong>on</strong> bands,<br />

models based <strong>on</strong> ribb<strong>on</strong>s, and models based <strong>on</strong> knots. All these attempts make use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

extended c<strong>on</strong>stituents. Several <str<strong>on</strong>g>of</str<strong>on</strong>g> them are discussed in more detail below.<br />

Despite the use <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong>, n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> these attempts solved a single problem from the<br />

millennium list. One approach – especially popular between the years 1984 and 2010 –<br />

merits a closer look.<br />

Superstrings – extensi<strong>on</strong> plus a web <str<strong>on</strong>g>of</str<strong>on</strong>g> dualities<br />

“Throw physic to the dogs; I’ll n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> it.<br />

William Shakespeare, Macbeth.”<br />

Superstrings and supermembranes – <str<strong>on</strong>g>of</str<strong>on</strong>g>ten simply called strings and membranes –areextended<br />

c<strong>on</strong>stituents in the most investigated physics c<strong>on</strong>jecture ever. <str<strong>on</strong>g>The</str<strong>on</strong>g> approach c<strong>on</strong>tains<br />

a maximum speed, a minimum acti<strong>on</strong> and a maximum force (or tensi<strong>on</strong>). <str<strong>on</strong>g>The</str<strong>on</strong>g> approach<br />

thus incorporates special relativity, quantum theory and general relativity. This<br />

attempt to achieve the unified descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature uses four ideas that go bey<strong>on</strong>d standard<br />

general relativity and quantum theory:<br />

1. Particles are c<strong>on</strong>jectured to be extended. Originally, particles were c<strong>on</strong>jectured to be<br />

<strong>on</strong>e-dimensi<strong>on</strong>al oscillating superstrings. In a subsequent generalizati<strong>on</strong>, particles are<br />

c<strong>on</strong>jectured to be fluctuating higher-dimensi<strong>on</strong>al supermembranes.<br />

2. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>jecture uses higher dimensi<strong>on</strong>s to unify interacti<strong>on</strong>s. A number <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time<br />

dimensi<strong>on</strong>s much higher than 3+1, typically 10 or 11, is necessary for a mathematically<br />

c<strong>on</strong>sistent descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> superstrings and membranes.<br />

3. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>jecture is based <strong>on</strong> supersymmetry. Supersymmetry is a symmetry that relates<br />

matter to radiati<strong>on</strong>, or equivalently, fermi<strong>on</strong>s to bos<strong>on</strong>s. Supersymmetry is the most<br />

general local interacti<strong>on</strong> symmetry that can be c<strong>on</strong>structed mathematically. Supersymmetry<br />

is the reas<strong>on</strong> for the terms ‘superstring’ and ‘supermembrane’.<br />

4. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>jecture makes heavy use <str<strong>on</strong>g>of</str<strong>on</strong>g> dualities. In the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> high-energy physics,<br />

dualities are symmetries between large and small values <str<strong>on</strong>g>of</str<strong>on</strong>g> physical observables. Important<br />

examples are space-time duality and coupling c<strong>on</strong>stant duality. Dualities are<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


142 6 the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> p oints<br />

Ref. 146<br />

global interacti<strong>on</strong> and space-time symmetries. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are essential for the inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gauge interacti<strong>on</strong> and gravitati<strong>on</strong> in the quantum descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. Dualities also<br />

express a fundamental equivalence between space-time and matter–radiati<strong>on</strong>. Dualities<br />

also imply and c<strong>on</strong>tain holography, the idea that physical systems are completely<br />

fixed by the states <strong>on</strong> their bounding surface.<br />

By incorporating these four ideas, the superstring c<strong>on</strong>jecture – named so by Brian Greene,<br />

<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> its most important researchers – acquires a number <str<strong>on</strong>g>of</str<strong>on</strong>g> appealing characteristics.<br />

Why superstrings and supermembranes are so appealing<br />

First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, the superstring c<strong>on</strong>jecture is unique: the Lagrangian is claimed to be unique<br />

and to have no adjustable parameters. Furthermore, as we would expect from a descripti<strong>on</strong><br />

involving extended c<strong>on</strong>stituents, the c<strong>on</strong>jecture includes gravity. In additi<strong>on</strong>, the<br />

c<strong>on</strong>jecture describes interacti<strong>on</strong>s: it describes gauge fields. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>jecture thus expands<br />

quantum field theory, while retaining all its essential points. In this way, the c<strong>on</strong>jecture<br />

fulfils most <str<strong>on</strong>g>of</str<strong>on</strong>g> the requirements for a unified descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> that we have deduced<br />

so far. For example, particles are not point-like, there are minimal length and time intervals,<br />

and all other limit quantities appear. (However, sets are still used.)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> superstring c<strong>on</strong>jecture has many large symmetries, which arise from the many<br />

dualities it c<strong>on</strong>tains. <str<strong>on</strong>g>The</str<strong>on</strong>g>se symmetries c<strong>on</strong>nect many situati<strong>on</strong>s that seem intuitively to<br />

be radically different: this makes the c<strong>on</strong>jecture extremely fascinating, but also difficult<br />

to picture.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>jecture shows special cancellati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> anomalies and <str<strong>on</strong>g>of</str<strong>on</strong>g> other inc<strong>on</strong>sistencies.<br />

Historically, the first example was the Green–Schwarz anomaly cancellati<strong>on</strong>; superstrings<br />

also solve other anomalies and certain inc<strong>on</strong>sistencies <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum field theory.<br />

Edward Witten, the central figure <str<strong>on</strong>g>of</str<strong>on</strong>g> the field, liked to say that quantum theory cures<br />

the infinities that appear in e 2 /r when the distance r goes to zero; in the same way, superstrings<br />

cure the infinities that appear in m 2 /r when the distance r goes to zero.*<br />

Also following Witten, in the superstring c<strong>on</strong>jecture, the interacti<strong>on</strong>s follow from the<br />

particle definiti<strong>on</strong>s: interacti<strong>on</strong>s do not have to be added. That is why the superstring<br />

c<strong>on</strong>jecture predicts gravity, gauge theory, supersymmetry and supergravity.<br />

About gravity, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the pretty results <str<strong>on</strong>g>of</str<strong>on</strong>g> the superstring c<strong>on</strong>jecture is that superstrings<br />

and black holes are complementary to each other. This was argued by Polchinsky,<br />

Ref. 147<br />

Horowitz and Susskind. As expected, superstrings explain the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes.<br />

Ref. 122 Strominger and Vafa showed this in 1996.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> superstring c<strong>on</strong>jecture naturally includes holography, the idea that the degrees <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

freedom <str<strong>on</strong>g>of</str<strong>on</strong>g> a physical system are determined by its boundary. In particular, holography<br />

provides for a deep duality between gauge theory and gravity. More precisely, there is a<br />

corresp<strong>on</strong>dence between quantum field theory in flat space and the superstring c<strong>on</strong>jecture<br />

in certain higher-dimensi<strong>on</strong>al spaces that c<strong>on</strong>tain anti-de Sitter space.<br />

In short, the superstring c<strong>on</strong>jecture implies fascinating mathematics. C<strong>on</strong>formal invariance<br />

enters the Lagrangian. C<strong>on</strong>cepts such as the Virasoro algebra, c<strong>on</strong>formal field<br />

theory, topological field theory and many related ideas provide vast and fascinating generalizati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> quantum field theory.<br />

* This argument is questi<strong>on</strong>able, because general relativity already cures that divergence.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


checks <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong> 143<br />

Ref. 148<br />

Page 382<br />

Why the mathematics <str<strong>on</strong>g>of</str<strong>on</strong>g> superstrings is difficult<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> superstring c<strong>on</strong>jecture, like all modern descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> physics, is claimed to be described<br />

by a Lagrangian. <str<strong>on</strong>g>The</str<strong>on</strong>g> Lagrangian is c<strong>on</strong>structed starting from the Lagrangian for<br />

the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a classical superstring <str<strong>on</strong>g>of</str<strong>on</strong>g> matter. <str<strong>on</strong>g>The</str<strong>on</strong>g>n the Lagrangian for the corresp<strong>on</strong>ding<br />

quantum superstring fields is c<strong>on</strong>structed, and then higher dimensi<strong>on</strong>s, supersymmetry,<br />

dualities and membranes are incorporated. This formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the superstring<br />

c<strong>on</strong>jecture takes for granted the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a space-time background.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> the superstring c<strong>on</strong>jecture is extremely complex, much too complex<br />

to write it down here. It is not as simple as the Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard model<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics or the Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity. But the complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> the Lagrangian<br />

is not the <strong>on</strong>ly reas<strong>on</strong> why the studying the superstring c<strong>on</strong>jecture is difficult.<br />

It turns out that exploring how the known 4 dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time are embedded<br />

in the 10 or 11 dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the superstring c<strong>on</strong>jecture is extremely involved. <str<strong>on</strong>g>The</str<strong>on</strong>g> topology<br />

and the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the additi<strong>on</strong>al dimensi<strong>on</strong>s is unclear. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are <strong>on</strong>ly few people who<br />

are able to study these opti<strong>on</strong>s.<br />

Indeed, a few years ago a physicist and a mathematician listened to a talk <strong>on</strong> superstrings,<br />

describing nature in eleven dimensi<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> mathematician listened intensely<br />

and obviously enjoyed the talk. <str<strong>on</strong>g>The</str<strong>on</strong>g> physicist did not understand anything and got more<br />

and more annoyed. At the end, the physicist had a terrible headache, whereas the mathematician<br />

was full <str<strong>on</strong>g>of</str<strong>on</strong>g> praise. ‘But how can you even understand this stuff?’, asked the<br />

physicist. ‘I simply picture it in my head!’ ‘But how do you imagine things in eleven<br />

dimensi<strong>on</strong>s?’ ‘Easy! I first imagine them in N dimensi<strong>on</strong>s and then let N go to 11.’<br />

Testing superstrings: couplings and masses<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> the main results <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum chromodynamics or QCD, thetheory<str<strong>on</strong>g>of</str<strong>on</strong>g>str<strong>on</strong>ginteracti<strong>on</strong>s,<br />

is the explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mass relati<strong>on</strong>s such as<br />

m prot<strong>on</strong> ∼ e −k/α Pl<br />

m Pl and k = 11/2π , α Pl ≈1/25. (121)<br />

Here, the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g coupling c<strong>on</strong>stant α Pl is taken at the Planck energy. In<br />

other words, a general understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> masses <str<strong>on</strong>g>of</str<strong>on</strong>g> bound states <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g interacti<strong>on</strong>,<br />

such as the prot<strong>on</strong>, requires little more than a knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> the Planck energy and the<br />

coupling c<strong>on</strong>stant at that energy. <str<strong>on</strong>g>The</str<strong>on</strong>g> approximate value α Pl ≈1/25is an empirical value<br />

based <strong>on</strong> experimental data.<br />

Any unified theory must allow us to calculate the three gauge coupling c<strong>on</strong>stants as<br />

a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy, thus also α Pl . In the superstring c<strong>on</strong>jecture, this calculati<strong>on</strong> faces<br />

two issues. First, the coupling c<strong>on</strong>stants must be the same for all particles; equivalently,<br />

electric, weak and str<strong>on</strong>g charge must be quantized. It is not clear whether superstrings<br />

fullfil this c<strong>on</strong>diti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>re does not seem to be any paper addressing the issue.<br />

Sec<strong>on</strong>dly, in order to calculate coupling c<strong>on</strong>stants and particle masses, the vacuum<br />

state must be known. However, it is not. <str<strong>on</strong>g>The</str<strong>on</strong>g> search for the vacuum state – the precise<br />

embedding <str<strong>on</strong>g>of</str<strong>on</strong>g> four dimensi<strong>on</strong>s in the total ten – is the main difficulty facing the superstring<br />

c<strong>on</strong>jecture.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> vacuum state <str<strong>on</strong>g>of</str<strong>on</strong>g> the superstring c<strong>on</strong>jecture is expected to be <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> an rather<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


144 6 the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> p oints<br />

Ref. 149<br />

Page 19<br />

Ref. 150<br />

Ref. 151<br />

involved set <str<strong>on</strong>g>of</str<strong>on</strong>g> topologically distinct manifolds. It was first estimated that there are <strong>on</strong>ly<br />

10 500 possible vacuum states; recent estimates raised the number to 10 272 000 candidate<br />

vacuum states. Since the universe c<strong>on</strong>tains 10 80 atoms, it seems easier to find a particular<br />

atom somewhere in the universe than to find the correct vacuum state. <str<strong>on</strong>g>The</str<strong>on</strong>g> advantages<br />

due to a unique Lagrangian are thus lost.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particle masses faces a further issue. <str<strong>on</strong>g>The</str<strong>on</strong>g> superstring c<strong>on</strong>jecture<br />

predicts states with Planck mass and with zero mass. <str<strong>on</strong>g>The</str<strong>on</strong>g> zero-mass particles are then<br />

thought to get their actual mass, which is tiny compared with the Planck mass, from the<br />

Higgs mechanism. However, the Higgs mechanism and its measured properties – or any<br />

other parameter <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard model – have not yet been deduced from superstrings.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> status <str<strong>on</strong>g>of</str<strong>on</strong>g> the superstring c<strong>on</strong>jecture<br />

“Es ist nichts Großes ohne Leidenschaft vollbracht worden, noch kann es ohne<br />

solche vollbracht werden.*<br />

Friedrich Hegel, Enzyklopädie.”<br />

After several decades <str<strong>on</strong>g>of</str<strong>on</strong>g> research, superstring researchers are stuck. Despite the huge collective<br />

effort by extremely smart researchers, not a single calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an experimentally<br />

measurable value has been performed. For example, the superstring c<strong>on</strong>jecture has not<br />

predicted the masses <str<strong>on</strong>g>of</str<strong>on</strong>g> any elementary particle, nor the value <str<strong>on</strong>g>of</str<strong>on</strong>g> any coupling c<strong>on</strong>stant,<br />

nor the number <str<strong>on</strong>g>of</str<strong>on</strong>g> gauge interacti<strong>on</strong>s, nor the number <str<strong>on</strong>g>of</str<strong>on</strong>g> particle generati<strong>on</strong>s. So far,<br />

n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the open issues in physics that are listed the millennium list has been solved by<br />

the superstring c<strong>on</strong>jecture. This disappointing situati<strong>on</strong> is the reas<strong>on</strong> that many scholars,<br />

including several Nobel Prize winners, dismiss the superstring c<strong>on</strong>jecture altogether.<br />

What are the reas<strong>on</strong>s that the superstring c<strong>on</strong>jecture, like several other approaches<br />

based <strong>on</strong> extended c<strong>on</strong>stituents, was unsuccessful? First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, superstrings and supermembranes<br />

are complex: superstrings and supermembranes move in many dimensi<strong>on</strong>s,<br />

carry mass, have tensi<strong>on</strong> and carry (supersymmetric) fields. In fact, the precise mathematical<br />

definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a superstring or a supermembrane and their features is so complex<br />

that already understanding the definiti<strong>on</strong> is bey<strong>on</strong>d the capabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> most physicists.<br />

But a high complexity always nourishes the doubt that some <str<strong>on</strong>g>of</str<strong>on</strong>g> the underlying assumpti<strong>on</strong>s<br />

do not apply to nature. For example, it is difficult to imagine that a macroscopic<br />

c<strong>on</strong>cept like ‘tensi<strong>on</strong>’ applies at the fundamental level: in nature, tensi<strong>on</strong> <strong>on</strong>ly applies<br />

to systems that have parts, i.e., to composed systems; tensi<strong>on</strong> cannot be a property <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fundamental entities.<br />

Superstrings are complex entities. And no researcher tried to make them simple. Put<br />

in different terms, the superstring c<strong>on</strong>jecture was not successful because its basic principles<br />

have never been clarified. It is estimated that, from 1984 to 2010, over 10 000 manyears<br />

have been invested in the explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the superstring c<strong>on</strong>jecture. Compare this<br />

with about a dozen man-years for the foundati<strong>on</strong>s and principles <str<strong>on</strong>g>of</str<strong>on</strong>g> electrodynamics,<br />

a dozen man-years for the foundati<strong>on</strong>s and principles <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity, and a dozen<br />

man-years for the foundati<strong>on</strong> and principles <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory. <str<strong>on</strong>g>The</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> clear foundati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the superstring c<strong>on</strong>jecture is regularly underlined even by its supporters, such<br />

* ‘Nothing great has been achieved without passi<strong>on</strong>, nor can it be achieved without it.’ Hegel, an influential<br />

philospher, writes this towards the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the third and last part <str<strong>on</strong>g>of</str<strong>on</strong>g> his Enzyklopädie der philosophischen<br />

Wissenschaften im Grundrisse, §474, 296.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


summary <strong>on</strong> extensi<strong>on</strong> in nature 145<br />

Ref. 152<br />

as Murray Gell-Mann. And despite this gap, no research papers <strong>on</strong> the basic principles<br />

exist – to this day.<br />

Apart from the complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>jecture, a further aspect about superstrings and<br />

supermembranes has been getting growing attenti<strong>on</strong>: the original claim that there is a<br />

unique well-defined Lagrangian has been retracted; it not even made by the most outgoing<br />

prop<strong>on</strong>ents any more. In other words, it is not clear which specific supermembrane<br />

c<strong>on</strong>jecture should be tested against experiment in the first place.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se developments effectively dried out the research field. At the latest since 2014<br />

Strings c<strong>on</strong>ference, it became clear that the string research community has quietly given<br />

up its quest to achieve a unified theory with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> superstrings or supermembranes.<br />

Several prominent researchers are now looking for other microscopic models <str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

summary <strong>on</strong> extensi<strong>on</strong> in nature<br />

“Wir müssen wissen, wir werden wissen.*<br />

David Hilbert”<br />

We have explored nature at her limits: we have studied the Planck limits, explored threedimensi<strong>on</strong>ality,<br />

curvature, particle shape, renormalizati<strong>on</strong>, spin and bos<strong>on</strong>izati<strong>on</strong>; we<br />

have investigated the cosmological c<strong>on</strong>stant problem and searched for a ‘backgroundfree’<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. As a result, we have found that at Planck scales, all these<br />

explorati<strong>on</strong>s lead to the same c<strong>on</strong>clusi<strong>on</strong>s:<br />

— Matter and vacuum are two sides <str<strong>on</strong>g>of</str<strong>on</strong>g> the same medal.<br />

— Points and sets do not describe nature correctly.<br />

— What we usually call space-time points and point particles are in fact made up <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

comm<strong>on</strong> and, above all, extended c<strong>on</strong>stituents.<br />

We can reach the c<strong>on</strong>clusi<strong>on</strong>s in an even simpler way. What do quantum theory and<br />

black holes have in comm<strong>on</strong>? <str<strong>on</strong>g>The</str<strong>on</strong>g>y both suggest that nature is made <str<strong>on</strong>g>of</str<strong>on</strong>g> extended entities.<br />

We will c<strong>on</strong>firm shortly that both the Dirac equati<strong>on</strong> and black hole entropy imply that<br />

particles, space and horiz<strong>on</strong>s are built from extended c<strong>on</strong>stituents.<br />

Despite using extensi<strong>on</strong> as fundamental aspect, and despite many interesting results,<br />

all the attempts from the twentieth century – including the superstring c<strong>on</strong>jecture, most<br />

quantum gravity models, supersymmetry and supergravity – have not been successful in<br />

understanding or in describing nature at the Planck scale. <str<strong>on</strong>g>The</str<strong>on</strong>g> reas<strong>on</strong>s for this lack <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

success were the unclear relati<strong>on</strong> to the Planck scale, the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> clear principles, the<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> incorrect assumpti<strong>on</strong>s, the use <str<strong>on</strong>g>of</str<strong>on</strong>g> sets and, above all, the unclear c<strong>on</strong>necti<strong>on</strong> to<br />

experiment.<br />

To be successful, we need a different approach to calculati<strong>on</strong>s with extended c<strong>on</strong>stituents.<br />

We need an approach that is built <strong>on</strong> Planck units, is based <strong>on</strong> clear principles, has<br />

few but correct assumpti<strong>on</strong>s, and provides predicti<strong>on</strong>s that stand up against experimental<br />

tests.<br />

In our quest for a complete, unified theory <str<strong>on</strong>g>of</str<strong>on</strong>g> physics, <strong>on</strong>e way to advance is by raising<br />

the following issue. <str<strong>on</strong>g>The</str<strong>on</strong>g> basis for the superstring c<strong>on</strong>jecture is formed by four assump-<br />

* ‘We must know, we will know.’ This was Hilbert’s famous pers<strong>on</strong>al credo.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


146 6 the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> p oints<br />

Page 72, page 78<br />

Page 75, page 78<br />

Challenge 110 e<br />

ti<strong>on</strong>s: extensi<strong>on</strong>, duality, higher dimensi<strong>on</strong>s and supersymmetry. Can we dispense with<br />

any <str<strong>on</strong>g>of</str<strong>on</strong>g> them? Now, duality is closely related to extensi<strong>on</strong>, for which enough theoretical<br />

and experimental evidence exists, as we have argued above. On the other hand, the expressi<strong>on</strong>s<br />

for the Schwarzschild radius and for the Compt<strong>on</strong> wavelength imply, as we<br />

found out earlier <strong>on</strong>, that the dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> space and the statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> particles are<br />

undefined at Planck scales. In other words, nature does not have higher dimensi<strong>on</strong>s nor<br />

supersymmetry at Planck scales. Indeed, all experiments so far c<strong>on</strong>firm this c<strong>on</strong>clusi<strong>on</strong>.<br />

In our quest for a complete theory <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>, we therefore drop the two incorrect assumpti<strong>on</strong>s<br />

and c<strong>on</strong>tinue our adventure.<br />

In summary, extensi<strong>on</strong> is the central property <str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental entities <str<strong>on</strong>g>of</str<strong>on</strong>g> nature<br />

that make up space, horiz<strong>on</strong>s, particles and interacti<strong>on</strong>s at Planck scales. We can thus<br />

phrase our remaining quest in the following specific way:<br />

⊳ How do extended entities relate the Planck c<strong>on</strong>stants c, ħ, k and G to the<br />

electromagnetic, the weak and the str<strong>on</strong>g interacti<strong>on</strong>s?<br />

This questi<strong>on</strong> is rarely asked so specifically. Attempts to answer it are even rarer. (Can<br />

you find <strong>on</strong>e?) Up to this point, we discovered: Finding the Planck origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the gauge<br />

interacti<strong>on</strong>s using extensi<strong>on</strong> means finding the complete, unified theory. To be successful<br />

in this quest, we need three resources: simplicity, playfulness and intrepidity.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


Chapter7<br />

THE BASIS OF THE STRAND<br />

CONJECTURE<br />

Page 164<br />

Page 166<br />

“We haven’t got the m<strong>on</strong>ey, so we have to<br />

Ernest Rutherford**<br />

think.”<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> two extremely precise descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> that were discovered in<br />

he twentieth century – quantum field theory and general relativity – are<br />

he low-energy approximati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> how nature behaves at Planck scales. In order to<br />

understand nature at Planck scales, and thus to find the unified and complete descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>, we follow the method that has been the most effective during the history <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

physics: we search for the simplest possible descripti<strong>on</strong>. Simplicity was used successfully,<br />

for example, in the discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> special relativity, in the discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory,<br />

and in the discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity. We therefore use the guidance provided by<br />

simplicity to deduce a promising speculati<strong>on</strong> for the unified and final theory <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>.<br />

Requirements for a unified theory<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> central requirement for any unified descripti<strong>on</strong>isthatitleadsfromPlanckscales,<br />

and thus from Planck units, to quantum field theory, to the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary<br />

particles and to general relativity. In simple terms, as detailed below, the unified<br />

descripti<strong>on</strong> must be valid for all observati<strong>on</strong>s and provide complete precisi<strong>on</strong>.<br />

From the preceding chapters, we know already quite a bit about the unified descripti<strong>on</strong>.<br />

In particular, any unified descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity and quantum theory must<br />

use extended c<strong>on</strong>stituents. We discovered a number <str<strong>on</strong>g>of</str<strong>on</strong>g> reas<strong>on</strong>s that are central for this<br />

c<strong>on</strong>clusi<strong>on</strong>. All these reas<strong>on</strong>s appear <strong>on</strong>ly when quantum theory and general relativity<br />

are combined. First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, <strong>on</strong>ly c<strong>on</strong>stituents that are extended allow us to deduce black<br />

hole entropy. Sec<strong>on</strong>dly, <strong>on</strong>ly extended c<strong>on</strong>stituents allow us to model that elementary<br />

particles are not point-like or that physical space is not made <str<strong>on</strong>g>of</str<strong>on</strong>g> points. Thirdly, <strong>on</strong>ly<br />

extended c<strong>on</strong>stituents allow us to model a smallest measurable space and time interval.<br />

Fourthly, <strong>on</strong>ly extended c<strong>on</strong>stituents allow us to model spin 1/2 in locally flat space-time.<br />

But we are not <strong>on</strong>ly looking for a unified theory; we are also looking for the complete<br />

theory. This implies a sec<strong>on</strong>d requirement: the theory must be unmodifiable. As we<br />

will show below, if a candidate for a unified theory can be modified, or generalized, or<br />

reduced to special cases, or varied in any other way, it is not complete.<br />

** Ernest Rutherford (b. 1871 Brightwater, d. 1937 Cambridge) was an important physicist and researcher<br />

who w<strong>on</strong> the Nobel Prize in Chemistry for his work <strong>on</strong> atoms and radioactivity.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture 149<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental principle <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g> model : Observati<strong>on</strong> :<br />

W=ħ/2<br />

Some<br />

Δl = l Pl<br />

deformati<strong>on</strong>,<br />

Δt = t Pl<br />

but no<br />

t passing<br />

S=k/2<br />

1 through<br />

t 2<br />

Challenge 111 e<br />

FIGURE 10 <str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental principle <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture: the simplest observati<strong>on</strong> in nature, a<br />

‘‘point-like’’ fundamental event, is defined by a crossing switch in three spatial dimensi<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> crossing<br />

switch defines the acti<strong>on</strong> ħ/2, the Planck length, the Planck time and half the Boltzmann c<strong>on</strong>stant k/2.<br />

In the preceding chapters we have deduced many additi<strong>on</strong>al requirements that a complete<br />

theory must realize. <str<strong>on</strong>g>The</str<strong>on</strong>g> full list <str<strong>on</strong>g>of</str<strong>on</strong>g> requirements is given in Table 6. Certain requirements<br />

follow from the property that the descripti<strong>on</strong> must be complete, others from the<br />

property that it must be unified, and still others from the property that it must describe<br />

nature with quantum theory and general relativity. More specifically, every requirement<br />

appears when the expressi<strong>on</strong>s for the Compt<strong>on</strong> wavelength and for the Schwarzschild<br />

radius are combined. So far, the table is not found elsewhere in the research literature.<br />

TABLE 6 General requirements for a complete descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature and <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> – as deduced so far.<br />

Aspect<br />

Requirements for the complete and<br />

unified descripti<strong>on</strong><br />

Precisi<strong>on</strong><br />

must be complete; the unified descripti<strong>on</strong> must precisely describe<br />

all moti<strong>on</strong> – everyday, quantum and relativistic – and explain all<br />

open issues from the millennium list, given (again) in Table 8 <strong>on</strong><br />

page 164, including the fine structure c<strong>on</strong>stant.<br />

Modificati<strong>on</strong> must be impossible,asexplained<strong>on</strong>page 166.<br />

Fundamental principles must be clear. Otherwise the unified descripti<strong>on</strong> is not falsifiable.<br />

Vacuum and particles must not differ at Planck scales, because <str<strong>on</strong>g>of</str<strong>on</strong>g> limits <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement<br />

precisi<strong>on</strong>, as explained <strong>on</strong> page 65. Vacuum and particles<br />

therefore must be described by comm<strong>on</strong> fundamental<br />

c<strong>on</strong>stituents.<br />

Fundamental c<strong>on</strong>stituents must determine all observables.<br />

Fundamental c<strong>on</strong>stituents must be as simple as possible, to satisfy Occam’s razor.<br />

Fundamental c<strong>on</strong>stituents must be extended and fluctuating, to explain black hole entropy,<br />

spin, minimum measurement intervals, space-time homogeneity<br />

and isotropy <str<strong>on</strong>g>of</str<strong>on</strong>g> space. See page 75.<br />

Fundamental c<strong>on</strong>stituents must be the <strong>on</strong>ly unobservable entities. If they were observable,<br />

the theory would not be complete, because the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

entities would need explanati<strong>on</strong>. If additi<strong>on</strong>al unobservable<br />

entities would exist, the theory would be ficti<strong>on</strong>, not science.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


150 7 the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture<br />

Challenge 112 e<br />

TABLE 6 (C<strong>on</strong>tinued) General requirements for a complete descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature and <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>.<br />

Aspect<br />

Physical points and sets<br />

Evoluti<strong>on</strong> equati<strong>on</strong>s<br />

N<strong>on</strong>-locality<br />

Physical systems<br />

Universe<br />

Big bang<br />

Singularities<br />

Planck’s natural units<br />

Planck scale descripti<strong>on</strong><br />

Quantum field theory,<br />

including QED, QAD,<br />

QCD<br />

Requirements for the complete and<br />

unified descripti<strong>on</strong><br />

must not exist at Planck scales, as shown <strong>on</strong> page 67, page 106 and<br />

page 112 due to limits <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement precisi<strong>on</strong>. Points and sets<br />

must <strong>on</strong>ly exist approximately, at everyday scales.<br />

must not exist at Planck scales, due to the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> points and sets.<br />

must be part <str<strong>on</strong>g>of</str<strong>on</strong>g> the descripti<strong>on</strong>. N<strong>on</strong>-locality must be negligible<br />

at everyday scales, but important at Planck scales.<br />

must not exist at Planck scales, due to limits <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement<br />

precisi<strong>on</strong>. Systems must <strong>on</strong>ly exist approximately at everyday<br />

scales.<br />

must not be a system, due to limits <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement precisi<strong>on</strong>.<br />

must not be an event, and thus not be a beginning, as this would<br />

c<strong>on</strong>tradict the n<strong>on</strong>-existence <str<strong>on</strong>g>of</str<strong>on</strong>g> points and sets in nature.<br />

must not exist, due to the limits <str<strong>on</strong>g>of</str<strong>on</strong>g> measurements.<br />

must be limit values for each observable, within a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> order<br />

<strong>on</strong>e. Infinitely large or small measurement values must not exist.<br />

must imply quantum field theory, the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle<br />

physics, general relativity and cosmology.<br />

must follow from the complete unified theory by eliminating G.<br />

General relativity must follow from the complete unified theory by eliminating ħ.<br />

Planck’s natural units must define all observables, including coupling c<strong>on</strong>stants.<br />

Relati<strong>on</strong> to experiment must be as simple as possible, to satisfy Occam’s razor.<br />

Background dependence is required, as background independence is logically impossible.<br />

Background space-time must be equal to physical space-time at everyday scale, but must<br />

differ globally and at Planck scales.<br />

Circularity <str<strong>on</strong>g>of</str<strong>on</strong>g> definiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> physical c<strong>on</strong>cepts must be part <str<strong>on</strong>g>of</str<strong>on</strong>g> the complete, unified<br />

descripti<strong>on</strong>, as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> being ‘precise talk about nature’.<br />

Axiomatic descripti<strong>on</strong> must be impossible, as nature is not described by sets. Hilbert’s<br />

sixth problem must have no soluti<strong>on</strong>.<br />

Dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> space must be undefined at Planck scales, as space is undefined there.<br />

Symmetries<br />

must be undefined at Planck scales, due to the limits to<br />

measurement precisi<strong>on</strong>.<br />

Large and small scales must be similar, due to the limits to measurement precisi<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> detailed requirement list given in Table 6 can be c<strong>on</strong>siderably shortened. Shortening<br />

the list is possible because the various requirements are c<strong>on</strong>sistent with each other.<br />

In fact, shortening is possible because a detailed check c<strong>on</strong>firms a suspici<strong>on</strong> that arose<br />

during the last chapters: extensi<strong>on</strong> al<strong>on</strong>e is sufficient to explain all those requirements<br />

that seem particularly surprising or unusual, such as the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> points or the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> axioms.<br />

Such a shortened list also satisfies our drive for simplicity. After shortening, two<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture 151<br />

requirements for a unified theory remain:<br />

Challenge 113 s<br />

Ref. 153<br />

Page 167<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> complete theory must describe nature at and below the Planck scale* as<br />

made <str<strong>on</strong>g>of</str<strong>on</strong>g> extended c<strong>on</strong>stituents fluctuating in a background. Extended c<strong>on</strong>stituents<br />

must explain particles, space, interacti<strong>on</strong>s and horiz<strong>on</strong>s.<br />

⊳ In the complete theory, the fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the extended c<strong>on</strong>stituents must<br />

explain all moti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> Planck-scale fluctuati<strong>on</strong>s must describe all observed<br />

examples <str<strong>on</strong>g>of</str<strong>on</strong>g> everyday, quantum and relativistic moti<strong>on</strong> with complete precisi<strong>on</strong>,<br />

imply all interacti<strong>on</strong>s, all particles, all c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> physics and explain<br />

all fundamental c<strong>on</strong>stants.<br />

This requirement summary is the result <str<strong>on</strong>g>of</str<strong>on</strong>g> our journey up to this point. <str<strong>on</strong>g>The</str<strong>on</strong>g> summary<br />

forms the starting point for the final leg <str<strong>on</strong>g>of</str<strong>on</strong>g> our adventure. If you do not agree with these<br />

two requirements, take a rest and explore your disagreement in all its details.<br />

Looking at the table <str<strong>on</strong>g>of</str<strong>on</strong>g> requirements for the complete theory – both the full <strong>on</strong>e and<br />

the shortened <strong>on</strong>e – we note something ast<strong>on</strong>ishing. Even though all requirements appear<br />

when quantum physics and general relativity are combined, each <str<strong>on</strong>g>of</str<strong>on</strong>g> these requirements<br />

c<strong>on</strong>tradicts both quantum physics and general relativity. <str<strong>on</strong>g>The</str<strong>on</strong>g> final theory thus<br />

differs from both pillars <str<strong>on</strong>g>of</str<strong>on</strong>g> modern physics. A final theory cannot be found if we remain<br />

pris<strong>on</strong>ers <str<strong>on</strong>g>of</str<strong>on</strong>g> either quantum theory or general relativity. To put it bluntly, each<br />

requirement for the final theory c<strong>on</strong>tradicts every result <str<strong>on</strong>g>of</str<strong>on</strong>g> twentieth century physics!<br />

This unexpected c<strong>on</strong>clusi<strong>on</strong> is the main reas<strong>on</strong> that past attempts failed to discover the<br />

final theory. In fact, most past attempts do not fulfil the requirements because various<br />

scholars explicitly disagree with <strong>on</strong>e or several <str<strong>on</strong>g>of</str<strong>on</strong>g> them.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> requirement <str<strong>on</strong>g>of</str<strong>on</strong>g> the extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental c<strong>on</strong>stituents is the central result<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the quest so far. A complete theory must make a statement about these c<strong>on</strong>stituents.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental c<strong>on</strong>stituents, sometimes also called fundamental degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom,<br />

must explain everything we observe and know about nature. In particular, the c<strong>on</strong>stituents<br />

must explain the curvature <str<strong>on</strong>g>of</str<strong>on</strong>g> space, the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes, the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> gauge<br />

interacti<strong>on</strong>s and the spectrum, the masses and the other properties <str<strong>on</strong>g>of</str<strong>on</strong>g> all elementary<br />

particles. <str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental c<strong>on</strong>stituents must be extended. Extensi<strong>on</strong> is the reas<strong>on</strong> that<br />

the complete theory c<strong>on</strong>tradicts both general relativity and quantum theory; but extensi<strong>on</strong><br />

must also yield these theories as excellent approximati<strong>on</strong>s. In short, extensi<strong>on</strong> is the<br />

key to finding the complete theory.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> requirement <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuating extended c<strong>on</strong>stituents resulted from our drive for extreme<br />

simplicity. Using this requirement, the search for a candidate final theory does<br />

not take l<strong>on</strong>g. Of the few candidates that satisfy the requirement, it appears that the<br />

simplest is the <strong>on</strong>e based <strong>on</strong> fluctuating featureless strands. In this approach, strands,**<br />

* <str<strong>on</strong>g>The</str<strong>on</strong>g> complete theory must not describe nature bey<strong>on</strong>d the Planck scales, because that domain is not accessible<br />

by experiment. A more relaxed requirement is that the predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the theory must be independent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> any fantasies <str<strong>on</strong>g>of</str<strong>on</strong>g> what <strong>on</strong>e might imagine bey<strong>on</strong>d Planck scales.<br />

** In English: In the strand model, a particle is a tangle <str<strong>on</strong>g>of</str<strong>on</strong>g> strands c<strong>on</strong>nected by tethers to the outer world.<br />

In Dutch: In het draadmodel is een deeltje een wirwar, die met riemen naar de buitenwereld is verb<strong>on</strong>den.<br />

En Français: Dans le modèle des fils, les particules s<strong>on</strong>t des enchevêtrements c<strong>on</strong>nectés au m<strong>on</strong>de exterieur<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


152 7 the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture<br />

Page 149<br />

not points, are assumed to be the fundamental c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum, horiz<strong>on</strong>s, matter<br />

and radiati<strong>on</strong>.<br />

“Nur die ergangenen Gedanken haben Wert.*<br />

Friedrich Nietzsche”<br />

Introducing strands<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model starts with a simple idea:<br />

⊳ Nature is made <str<strong>on</strong>g>of</str<strong>on</strong>g> unobservable, fluctuating, featureless strands.<br />

We will discover that everything observed in nature – vacuum, fermi<strong>on</strong>s, bos<strong>on</strong>s and<br />

horiz<strong>on</strong>s – is made <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s are the comm<strong>on</strong> and extended c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

everything. Even though strands are unobservable and featureless, all observati<strong>on</strong>s are<br />

due to strands.<br />

⊳ All observati<strong>on</strong>s, all change and all events are composed <str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental<br />

event, the crossing switch.<br />

To describe all observati<strong>on</strong>s with precisi<strong>on</strong>, the strand model uses <strong>on</strong>ly <strong>on</strong>e fundamental<br />

principle:<br />

⊳ Planck units are defined through crossing switches <str<strong>on</strong>g>of</str<strong>on</strong>g> strands.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Planck units with the crossing switch is illustrated in Figure 10. All<br />

measurements are c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> this definiti<strong>on</strong>. All observati<strong>on</strong>s and everything that<br />

happens are composed <str<strong>on</strong>g>of</str<strong>on</strong>g> fundamental events. <str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental principle thus specifies<br />

why and how Planck units are the natural units <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. In particular, the four basic<br />

Planck units are associated in the following way:<br />

⊳ Planck’s quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> ħ/2 appears as the acti<strong>on</strong> value associated to a<br />

crossing switch. <str<strong>on</strong>g>The</str<strong>on</strong>g> acti<strong>on</strong> ħ corresp<strong>on</strong>ds to a double crossing switch, or<br />

full turn <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e strand segment around another.*<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> (corrected) Planck length l Pl = √4Għ/c 3 appears as the effective diameter<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> strands. Since the Planck length is a limit that cannot be achieved<br />

by measurements, strands with such a diameter remain unobservable.*<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> Planck entropy, i.e., the Boltzmann c<strong>on</strong>stant k, is the natural unit associated<br />

to the counting and statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings.*<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> (corrected) Planck time t Pl = √4Għ/c 5 appears as the shortest possible<br />

durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a crossing switch.*<br />

par des liens. Auf Deutsch: Im Fadenmodell sind Teilchen Gewirre aus Fäden, die durch Leinen mit der<br />

Außenwelt verbunden sind. In Italiano: Nel modello dei fili, le particelle s<strong>on</strong>o degli intrecci che dei nessi<br />

collegano al m<strong>on</strong>do esterno.<br />

* ‘Only thoughts c<strong>on</strong>ceived while walking have value.’ Friedrich Nietzsche (b. 1844 Röcken,<br />

d. 1900 Weimar) was philologist, philosopher and sick.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture 153<br />

A twist :<br />

t 1<br />

t 2<br />

A twirl :<br />

Challenge 115 s<br />

Challenge 116 e<br />

Page 37<br />

Challenge 114 r<br />

t 1 t 2<br />

FIGURE 11 An example <str<strong>on</strong>g>of</str<strong>on</strong>g> strand deformati<strong>on</strong> leading to a crossing switch (above) and <strong>on</strong>e that does<br />

not lead to a crossing switch (below).<br />

Crossing switches that are faster than the Planck time do not play a role, as they are<br />

unobservable and unmeasurable. Let us see why.<br />

How can we imagine a minimum time interval in nature? A crossing switch could be<br />

arbitrarily fast, couldn’t it? So how does the Planck time arise? To answer, we must recall<br />

the role <str<strong>on</strong>g>of</str<strong>on</strong>g> the observer. <str<strong>on</strong>g>The</str<strong>on</strong>g> observer is a physical system, also made <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

observer cannot define a really c<strong>on</strong>tinuous background space-time; careful c<strong>on</strong>siderati<strong>on</strong><br />

tells us that the space-time defined by the observer is somewhat fuzzy: it is effectively<br />

shivering. <str<strong>on</strong>g>The</str<strong>on</strong>g> average shivering amplitude is, in the best possible case, <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

Planck time and length. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, crossing switches faster than the Planck time are not<br />

observable by an observer made <str<strong>on</strong>g>of</str<strong>on</strong>g> strands.**<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s are impenetrable. <str<strong>on</strong>g>The</str<strong>on</strong>g> switch <str<strong>on</strong>g>of</str<strong>on</strong>g> a crossing thus always requires the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

strand segments around each other. <str<strong>on</strong>g>The</str<strong>on</strong>g> simplest example <str<strong>on</strong>g>of</str<strong>on</strong>g> a deformati<strong>on</strong> leading to a<br />

crossing switch is shown in Figure 11.<br />

Can you deduce the strand processes for the Planck momentum, the Planck force and<br />

the Planck energy?<br />

Exploring strand processes we find: the fundamental principle implies that every<br />

Planck unit is an observer-invariant limit value. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore we get an important result: the<br />

fundamental principle naturally c<strong>on</strong>tains special and general relativity, quantum theory<br />

* In other words, the strand model sets ħ=l Pl =t Pl =k=1. <str<strong>on</strong>g>The</str<strong>on</strong>g> strange numerical values that these<br />

c<strong>on</strong>stantshave in the SI, the internati<strong>on</strong>al system <str<strong>on</strong>g>of</str<strong>on</strong>g> units, follow from the strange, i.e., historical definiti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the metre, sec<strong>on</strong>d, kilogram and kelvin.<br />

** <str<strong>on</strong>g>The</str<strong>on</strong>g> issue <str<strong>on</strong>g>of</str<strong>on</strong>g> time remains subtle also in the strand c<strong>on</strong>jecture. <str<strong>on</strong>g>The</str<strong>on</strong>g> requirement <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sistency with<br />

macroscopic experience, realized with shivering space or space-time, allows us to side-step the issue. An<br />

alternative approach might be to picture a crossing switch and its fluctuati<strong>on</strong>s in 4 space-time dimensi<strong>on</strong>s,<br />

thus visualizing how the minimum time interval is related to minimum distance. This might be worth<br />

exploring. But also in this approach, the fuzziness due to shivering is at the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> minimum time.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


154 7 the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture<br />

A strand crossing<br />

shortest distance<br />

phase<br />

positi<strong>on</strong><br />

orientati<strong>on</strong><br />

FIGURE 12 <str<strong>on</strong>g>The</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a crossing, its positi<strong>on</strong>, its orientati<strong>on</strong> and its phase. <str<strong>on</strong>g>The</str<strong>on</strong>g> shortest distance<br />

defines a local density.<br />

and thermodynamics (though seemingly not elementary particle physics, which does<br />

not arise at first sight). In theory, this argument is sufficient to show that the fundamental<br />

principle c<strong>on</strong>tains all these parts <str<strong>on</strong>g>of</str<strong>on</strong>g> twentieth century physics. In practice, however,<br />

physicists do not change their thinking habits that quickly; thus we first need to<br />

show this result in more detail. <str<strong>on</strong>g>The</str<strong>on</strong>g>n we c<strong>on</strong>tinue with particle physics.<br />

Events, processes, interacti<strong>on</strong>s and colours<br />

In the strand model, every physical process is described as a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches. But every physical process is also a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> events. We thus deduce that<br />

events are processes:<br />

⊳ Any event, any observati<strong>on</strong>, any measurement and any interacti<strong>on</strong> is composed<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> switches <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings between two strand segments.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> crossing switch is the fundamental process in nature. We will show that describing<br />

events and interacti<strong>on</strong>s with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches leads, without alternative, to<br />

the complete standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics, with all its known gauge interacti<strong>on</strong>s,<br />

all its known particle spectrum, and all its fundamental c<strong>on</strong>stants.<br />

In particular, we will show:<br />

⊳ Particle masses, the elementary electric charge e and the fine structure c<strong>on</strong>stant<br />

α = 137.036(1) are due to crossing switches.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> the fine structure c<strong>on</strong>stant and the standard model are not evident c<strong>on</strong>sequences<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental principle. nevertheless, they are natural c<strong>on</strong>sequences –<br />

as we will find out.<br />

From strands to modern physics<br />

Every observati<strong>on</strong> and every process is a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches <str<strong>on</strong>g>of</str<strong>on</strong>g> unobservable<br />

strands. In turn, crossing switches are automatic c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> the shape fluctuati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> strands. We will show below that all the c<strong>on</strong>tinuous quantities we are used to – phys-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture 155<br />

Page 174<br />

Page 353<br />

Page 167<br />

ical space, physical time, gauge fields and wave functi<strong>on</strong>s – result from averaging crossing<br />

switches over the background space. <str<strong>on</strong>g>The</str<strong>on</strong>g> main c<strong>on</strong>ceptual tools necessary in the following<br />

are:<br />

⊳ A crossing <str<strong>on</strong>g>of</str<strong>on</strong>g> strands is a local minimum <str<strong>on</strong>g>of</str<strong>on</strong>g> strand distance. <str<strong>on</strong>g>The</str<strong>on</strong>g> positi<strong>on</strong>,<br />

orientati<strong>on</strong> and phase <str<strong>on</strong>g>of</str<strong>on</strong>g> a crossing are defined by the space vector corresp<strong>on</strong>ding<br />

to the local minimum <str<strong>on</strong>g>of</str<strong>on</strong>g> distance, as shown in Figure 12.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> positi<strong>on</strong>, orientati<strong>on</strong> and phase <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings will lead, as shown later <strong>on</strong>, to the positi<strong>on</strong>,<br />

orientati<strong>on</strong> and phase <str<strong>on</strong>g>of</str<strong>on</strong>g> wave functi<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> sign <str<strong>on</strong>g>of</str<strong>on</strong>g> the orientati<strong>on</strong> is defined by<br />

arbitrarily selecting <strong>on</strong>e strand as the starting strand. <str<strong>on</strong>g>The</str<strong>on</strong>g> even larger arbitrariness in the<br />

definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the phase will be <str<strong>on</strong>g>of</str<strong>on</strong>g> great importance later <strong>on</strong>: it implies the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

three known gauge groups.<br />

⊳ A crossing switch is the rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the crossing orientati<strong>on</strong> by an angle π at<br />

a specific positi<strong>on</strong>. More precisely, a crossing switch is the inversi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

orientati<strong>on</strong> at a specific positi<strong>on</strong>.<br />

We note that the definiti<strong>on</strong>s make use <str<strong>on</strong>g>of</str<strong>on</strong>g> all three dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> space; therefore the number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossings and <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>.<br />

This c<strong>on</strong>trasts with the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing used in two-dimensi<strong>on</strong>al knot diagrams; in<br />

such two-dimensi<strong>on</strong>al projecti<strong>on</strong>s, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings does depend <strong>on</strong> the directi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the projecti<strong>on</strong>.<br />

We note that strand fluctuati<strong>on</strong>s do not c<strong>on</strong>serve the number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings; due to<br />

fluctuati<strong>on</strong>s, crossings disappear and appear and disappear over time. This appearance<br />

and disappearance will turn out to be related to virtual particles.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental principle declares that events are not points <strong>on</strong> manifolds; instead,<br />

⊳ Events are (<strong>on</strong>e or several) observable crossing switches <str<strong>on</strong>g>of</str<strong>on</strong>g> unobservable<br />

strands.<br />

Since all observati<strong>on</strong>s are made <str<strong>on</strong>g>of</str<strong>on</strong>g> events, all experimental observati<strong>on</strong>s should follow<br />

from the strand definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an event. We will c<strong>on</strong>firm this in the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this text. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

strands are featureless: they have no mass, no tensi<strong>on</strong>, no stiffness, no branches, no fixed<br />

length, no ends, and they cannot be pulled, cut or pushed through each other. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s<br />

have no measurable property at all: strands are unobservable. Only crossing switches are<br />

observable. Featureless strands are thus am<strong>on</strong>g the simplest possible extended c<strong>on</strong>stituents.<br />

How simple are they? We will discuss this issue shortly.<br />

⊳ <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s are <strong>on</strong>e-dimensi<strong>on</strong>al curves in three-dimensi<strong>on</strong>al space that reach<br />

the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space.<br />

In practice, the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space has <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> two possible meanings. Whenever space is<br />

assumed to be flat, the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space is spatial infinity. Whenever we take into account<br />

the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe as a whole, the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space is the cosmological horiz<strong>on</strong>.<br />

Imagining the strands as having Planck diameter does not make them observable,<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


156 7 the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture<br />

Vacuum :<br />

Elementary<br />

spin 1/2<br />

fermi<strong>on</strong> :<br />

spin<br />

Page 172<br />

Page 169<br />

Horiz<strong>on</strong> :<br />

Elementary<br />

spin 1 bos<strong>on</strong> :<br />

FIGURE 13 A first illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the basic physical systems found in nature; they will be explored in<br />

detail below.<br />

as this measurement result cannot be realized. (We recall that the Planck length is the<br />

lower bound <strong>on</strong> any length measurement.) In low energy situati<strong>on</strong>s, a vanishing strand<br />

diameter is an excellent approximati<strong>on</strong>.<br />

⊳ In a purist definiti<strong>on</strong>, featureless strands have no diameter – neither the<br />

Planck length nor zero. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are better thought as l<strong>on</strong>g thin clouds.<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s are unobservable and featureless, and thus have no diameter. Due to shape fluctuati<strong>on</strong>s,<br />

or equivalently, due to the shivering <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time, the strands can be thought<br />

as having an effective diameter, akin to the diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> a l<strong>on</strong>g thin cloud; this effective<br />

diameter is just a guide to our thinking. Since it is due to the shivering <str<strong>on</strong>g>of</str<strong>on</strong>g> the background<br />

space-time, the strand diameter is invariant under boosts. Funnels, menti<strong>on</strong>ed<br />

below, might be a better visualizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the purist definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> strand. To keep this introducti<strong>on</strong><br />

as intuitive as possible, however, we stick with the idea <str<strong>on</strong>g>of</str<strong>on</strong>g> strands having an<br />

effective, invariant Planck diameter.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model distinguishes physical space from background space. Wewillshow<br />

shortly why both c<strong>on</strong>cepts are required. With this distincti<strong>on</strong>, the strand model asserts<br />

that matter and radiati<strong>on</strong>, vacuum and horiz<strong>on</strong>s, are all built from fluctuating strands in<br />

a c<strong>on</strong>tinuous background. We first clarify the two basic space c<strong>on</strong>cepts.<br />

⊳ Physical space, or vacuum, is a physical system made <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles that has size,<br />

curvature and other measurable properties.<br />

spin<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture 157<br />

Page 209<br />

TABLE 7 Corresp<strong>on</strong>dences between all known physical systems and mathematical tangles.<br />

Physical system <str<strong>on</strong>g>Strand</str<strong>on</strong>g> c<strong>on</strong>tent Tangle type<br />

Vacuum and dark energy many unknotted and untangled unlinked, trivial tangle<br />

infinite strands<br />

Gravit<strong>on</strong><br />

two infinite twisted strands, rati<strong>on</strong>al tangle<br />

asymptotically parallel<br />

Gravity wave many infinite twisted strands many rati<strong>on</strong>al tangles<br />

Horiz<strong>on</strong> many woven infinite strands a weave: a woven, web-like<br />

tangle<br />

Phot<strong>on</strong> (radiati<strong>on</strong>) <strong>on</strong>e unknotted helical strand trivial 1-tangle<br />

Classical electromagnetic<br />

wave (radiati<strong>on</strong>)<br />

many unknotted and untangled<br />

helical strands<br />

many helically<br />

deformed/tangled curves<br />

Weak vector bos<strong>on</strong> before two locally curved,<br />

trivial rati<strong>on</strong>al 2-tangle<br />

symmetry breaking<br />

(radiati<strong>on</strong>)<br />

asymptotically parallel strands<br />

W and Z bos<strong>on</strong><br />

three infinite, slightly linked rati<strong>on</strong>al 3-tangle<br />

strands, asymptotically in a plane<br />

Glu<strong>on</strong> (radiati<strong>on</strong>)<br />

three infinite locally curved, trivial rati<strong>on</strong>al 3-tangle<br />

asymptotically parallel strands<br />

Elementary quark (matter) two infinite linked strands rati<strong>on</strong>al 2-tangle<br />

Elementary lept<strong>on</strong> (matter) three infinite linked strands rati<strong>on</strong>al 3-tangle<br />

Higgs bos<strong>on</strong> three infinite linked strands braided 3-tangle<br />

⊳ C<strong>on</strong>tinuous background space is introduced by the observer <strong>on</strong>ly to be able<br />

to describe observati<strong>on</strong>s. Every observer introduces his own background.<br />

It does not need to coincide with physical space, and it does not do so at<br />

the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> matter or black holes. But every observer’s background is<br />

c<strong>on</strong>tinuous and has three spatial and <strong>on</strong>e temporal dimensi<strong>on</strong>.<br />

At this point <str<strong>on</strong>g>of</str<strong>on</strong>g> the discussi<strong>on</strong>, we simply assume background space. Later <strong>on</strong> we will<br />

see why background space appears and why it needs to be three-dimensi<strong>on</strong>al. <str<strong>on</strong>g>The</str<strong>on</strong>g> size<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the background space is assumed to be large; larger than any physical scale under<br />

discussi<strong>on</strong>. In most situati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> everyday life, when space is flat, background space and<br />

physical space coincide. However, they differ in situati<strong>on</strong>s with curvature and at Planck<br />

energy.<br />

⊳ Fluctuati<strong>on</strong>s change the positi<strong>on</strong>, shape and length <str<strong>on</strong>g>of</str<strong>on</strong>g> strands; fluctuati<strong>on</strong>s<br />

thus change positi<strong>on</strong>, orientati<strong>on</strong> and phase <str<strong>on</strong>g>of</str<strong>on</strong>g> strand crossings. However,<br />

fluctuati<strong>on</strong>s never allow <strong>on</strong>e strand to pass through another.<br />

All strand fluctuati<strong>on</strong>s are possible, as l<strong>on</strong>g as strands do not interpenetrate. For example,<br />

there is no speed limit for strands. Whenever strand fluctuati<strong>on</strong>s lead to a crossing<br />

switch, they lead to an observable effect – be it a vacuum fluctuati<strong>on</strong>, a particle reacti<strong>on</strong><br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


158 7 the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture<br />

or a horiz<strong>on</strong> fluctuati<strong>on</strong>.<br />

Page 156<br />

Page 313<br />

Page 152<br />

Ref. 154<br />

⊳ Fluctuati<strong>on</strong>s are a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the embedding <str<strong>on</strong>g>of</str<strong>on</strong>g> strands in a c<strong>on</strong>tinuous<br />

background.<br />

In the strand model, even isolated physical systems are surrounded by a bath <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuating<br />

vacuum strands. <str<strong>on</strong>g>The</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong>s, such as their spectrum, their<br />

density etc., are fixed <strong>on</strong>ce and for all by the embedding. Fluctuati<strong>on</strong>s are necessary for<br />

the self-c<strong>on</strong>sistency <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model.<br />

Due to the impenetrability <str<strong>on</strong>g>of</str<strong>on</strong>g> strands – which itself is a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the embedding<br />

in a c<strong>on</strong>tinuous background – any disturbance <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum strands at <strong>on</strong>e locati<strong>on</strong><br />

propagates. We will see below what disturbances exist and how they differ from<br />

fluctuati<strong>on</strong>s.<br />

Fluctuating strands that lead to crossing switches explain everything that does happen,<br />

and explain everything that does not happen. Our main aim in the following is to classify<br />

all possible strand fluctuati<strong>on</strong>s and all possible strand c<strong>on</strong>figurati<strong>on</strong>s, in particular, all<br />

states that differ from flat vacuum states. By doing so, we will be able to classify every<br />

process and every system that we observe in nature.<br />

We will discover that allphysicalsystemscan be c<strong>on</strong>structed from strands. Table 7<br />

gives a first overview <str<strong>on</strong>g>of</str<strong>on</strong>g> how vacuum, particles and horiz<strong>on</strong>s result from tangles <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

strands.<br />

⊳ A tangle is a c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e or more strands that are linked or knotted.<br />

Tangles are characterized by their topology, i.e., by the precise way that they<br />

are linked or knotted.<br />

Some examples <str<strong>on</strong>g>of</str<strong>on</strong>g> important tangles are given in Figure 13. <str<strong>on</strong>g>The</str<strong>on</strong>g>y will be discussed in<br />

detail in the following. Am<strong>on</strong>g others, we will discover that knots and knotted tangles<br />

do not play a role in the strand c<strong>on</strong>jecture; <strong>on</strong>ly linked, but unknotted tangles do.<br />

We observe that vacuum, matter and radiati<strong>on</strong> are all made <str<strong>on</strong>g>of</str<strong>on</strong>g> the same fundamental<br />

c<strong>on</strong>stituents, as required for a complete theory. We will discover below that classifying<br />

localized tangles naturally leads to the elementary particles that make up the standard<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics – and to no other elementary particle.<br />

We will also discover that strand fluctuati<strong>on</strong>s and the induced crossing switches in<br />

every physical system lead to the evoluti<strong>on</strong> equati<strong>on</strong>s and the Lagrangians <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum<br />

field theory and <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity. In this way, strands describe every physical process<br />

observed in nature, including the four known interacti<strong>on</strong>s, and every type <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental principle relates crossing switches and observati<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental<br />

principle was discovered because it appears to be the <strong>on</strong>ly simple definiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Planck units that <strong>on</strong> the <strong>on</strong>e hand yields space-time, with its c<strong>on</strong>tinuity, local isotropy<br />

and curvature, and <strong>on</strong> the other hand realizes the known c<strong>on</strong>necti<strong>on</strong> between the<br />

quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong>, spin and rotati<strong>on</strong>.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture 159<br />

Vacuum<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model : Observati<strong>on</strong> :<br />

time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches<br />

Nothing<br />

(<strong>on</strong>ly for l<strong>on</strong>g<br />

observati<strong>on</strong><br />

times)<br />

Page 239<br />

Page 281<br />

FIGURE 14 An illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model for the vacuum.<br />

Vacuum<br />

We now c<strong>on</strong>struct, step by step, all important physical systems, c<strong>on</strong>cepts and processes<br />

from tangles. We start with the most important.<br />

⊳ Vacuum,orphysical space, is formed by the time average <str<strong>on</strong>g>of</str<strong>on</strong>g> many unknotted<br />

fluctuating strands.<br />

Figure 14 visualizes the definiti<strong>on</strong>. In the following, vacuum and physical space are always<br />

taken to be syn<strong>on</strong>yms; the explorati<strong>on</strong> will show that this is the most sensible use<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the two c<strong>on</strong>cepts.* However, as menti<strong>on</strong>ed, the strand model distinguishes physical<br />

space from background space. In particular, since matter and vacuum are made <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

same c<strong>on</strong>stituents, it is impossible to speak <str<strong>on</strong>g>of</str<strong>on</strong>g> physical space at the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> matter. At<br />

the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> matter, it is <strong>on</strong>ly possible to use the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> background space.<br />

When the strand fluctuati<strong>on</strong>s in flat vacuum are averaged over time, there are no<br />

crossing switches. Equivalently, if we use c<strong>on</strong>cepts to be introduced shortly, flat vacuum<br />

shows, averaged over time, notanglesandnocrossingswitches,sothatitisobservedto<br />

be empty <str<strong>on</strong>g>of</str<strong>on</strong>g> matter and radiati<strong>on</strong>. Temporary tangles that appear for a short time through<br />

vacuum fluctuati<strong>on</strong>s will be shown below to represent virtual particles.<br />

We note that the (flat) physical vacuum state, which appears after averaging the strand<br />

crossings, is c<strong>on</strong>tinuous, Lorentz invariant and unique. <str<strong>on</strong>g>The</str<strong>on</strong>g>se are important points for the<br />

c<strong>on</strong>sistency <str<strong>on</strong>g>of</str<strong>on</strong>g> the model. Later we will also discover that curvature and horiz<strong>on</strong>s have a<br />

natural descripti<strong>on</strong> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> strands; exploring them will yield the field equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

general relativity.<br />

We also note that Figure 14 implies, despite appearances, that vacuum is isotropic. To<br />

see this, we need to recall that the observables are the crossing switches, not the strands,<br />

and that the observed vacuum isotropy results from the isotropy <str<strong>on</strong>g>of</str<strong>on</strong>g> the time-averaged<br />

strand fluctuati<strong>on</strong>s.<br />

* We recall that since over a century, the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> aether is superfluous, because it is indistinguishable<br />

from the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


160 7 the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture<br />

⊳ We do not make any statement <strong>on</strong> the numerical density <str<strong>on</strong>g>of</str<strong>on</strong>g> strands in vacuum,<br />

or, equivalently, <strong>on</strong> their average spacing. Since strands are not observable,<br />

such a statement is not sensible. In particular, strands in vacuum<br />

are never tightly packed.<br />

With the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum as a time average, the strand c<strong>on</strong>jecture yields a minimum<br />

length and a c<strong>on</strong>tinuous vacuum at the same time. In this way, many issues about<br />

the alleged c<strong>on</strong>tradicti<strong>on</strong> between c<strong>on</strong>tinuity and minimum length are put to rest. In particular,<br />

physical space is not fundamentally discrete: a minimum length appears, though<br />

<strong>on</strong>ly in domains where physical space is undefined. On the other hand, the c<strong>on</strong>tinuity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> physical space results from an averaging process. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, physical space is not<br />

fundamentally c<strong>on</strong>tinuous: the strand model describes physical space as a homogeneous<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches. This is the strand versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Wheeler’s idea space-time<br />

foam.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus replaces what used to be called ‘space-time foam’ or ‘quantum<br />

foam’ with a web <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. <str<strong>on</strong>g>The</str<strong>on</strong>g> biggest difference between the two ideas is the lack <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

any topology change in the strand model. Space, and in particular background space, is<br />

always three-dimensi<strong>on</strong>al.<br />

Observable values and limits<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental principle implies the following definiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the basic observables:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> distance between two particles is the maximum number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches that can be measured between them. Length measurement is thus<br />

defined as counting Planck lengths.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> time interval between two events is the maximum number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches that can be measured between them. Time measurement is thus<br />

defined as counting Planck times.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> physical acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a physical system evolving from an initial to a final<br />

state is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches that can be measured. Acti<strong>on</strong> measurement<br />

is thus defined as counting crossing switches. Physical acti<strong>on</strong> is<br />

thus a measure for the change that a system undergoes.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> any physical system is related to the logarithm <str<strong>on</strong>g>of</str<strong>on</strong>g> the number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> possible measurable crossing switches. Entropy measurement is thus<br />

defined through the counting <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus<br />

states that any large physical system – be it made <str<strong>on</strong>g>of</str<strong>on</strong>g> matter, radiati<strong>on</strong>, empty<br />

space or horiz<strong>on</strong>s – has entropy.<br />

It is well-known that all other physical observables are defined using these four basic<br />

<strong>on</strong>es. In other words, all physical observables are defined with crossing switches. We<br />

also note that even though counting always yields an integer, the result <str<strong>on</strong>g>of</str<strong>on</strong>g> a physical<br />

measurement is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten an average <str<strong>on</strong>g>of</str<strong>on</strong>g> many counting processes. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> averaging and<br />

fluctuati<strong>on</strong>s, measured values can be n<strong>on</strong>-integer multiples <str<strong>on</strong>g>of</str<strong>on</strong>g> Planck units. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore,<br />

space, time, acti<strong>on</strong>, entropy and all other observables are effectively real numbers, and<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture 161<br />

A fermi<strong>on</strong><br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g> model :<br />

tails<br />

time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches<br />

Observed<br />

probability<br />

density :<br />

core<br />

crossing<br />

orientati<strong>on</strong>s<br />

positi<strong>on</strong>s<br />

phases<br />

spin<br />

orientati<strong>on</strong><br />

positi<strong>on</strong><br />

phase<br />

Page 174<br />

Page 149<br />

Page 176<br />

Page 225<br />

Page 215<br />

Page 314<br />

FIGURE 15 <str<strong>on</strong>g>The</str<strong>on</strong>g> tangle model <str<strong>on</strong>g>of</str<strong>on</strong>g> a spin 1/2 particle. More details will be given below.<br />

thus c<strong>on</strong>tinuous. C<strong>on</strong>tinuity is thus rec<strong>on</strong>ciled through averaging with the existence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a minimum measurable length and time interval.<br />

Finally, we note that defining observables with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches automatically<br />

makes the Planck units c, ħ, c 4 /4G, k and all their combinati<strong>on</strong>s both observerinvariant<br />

and limit values. All these c<strong>on</strong>clusi<strong>on</strong>s agree with the corresp<strong>on</strong>ding requirements<br />

for a final theory <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. Crossing switches thus explain the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

limits. This solves two issues in the millennium list <str<strong>on</strong>g>of</str<strong>on</strong>g> Table 1.19 An pretentious summary<br />

would be: strands explain the (new) SI system <str<strong>on</strong>g>of</str<strong>on</strong>g> units.<br />

Particles and fields<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s also define particles, as illustrated in Figure 15:<br />

⊳ A quantum particle is a tangle <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuating strands. <str<strong>on</strong>g>The</str<strong>on</strong>g> tangle core, the<br />

regi<strong>on</strong> where the strands are linked, defines positi<strong>on</strong>, speed, phase and spin<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the particle. <str<strong>on</strong>g>The</str<strong>on</strong>g> tangle tails reach up to the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space.<br />

Asshowninmoredetailso<strong>on</strong>, this definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum particles yields, depending <strong>on</strong><br />

the tangle details, either fermi<strong>on</strong> or bos<strong>on</strong> behaviour, and reproduces the spin–statistics<br />

theorem.<br />

Bos<strong>on</strong> tangles will allow us to model field intensities. In particular, bos<strong>on</strong> tangles<br />

allow us to deduce the electromagnetic and the two nuclear fields, as well as the corresp<strong>on</strong>ding<br />

gauge symmetries <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics.<br />

<str<strong>on</strong>g>Model</str<strong>on</strong>g>ling fermi<strong>on</strong>s as tangles will allow us to deduce Dirac’s equati<strong>on</strong> for relativistic<br />

quantum particles (and the Schrödinger equati<strong>on</strong> for n<strong>on</strong>-relativistic particles). Still<br />

later, by classifying all possible tangles, we will discover that <strong>on</strong>ly a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> possible<br />

elementary particles exist, and that the topological type <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle determines the<br />

mass, mixings, quantum numbers, charges and couplings <str<strong>on</strong>g>of</str<strong>on</strong>g> each elementary particle.<br />

We can also speak <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle model <str<strong>on</strong>g>of</str<strong>on</strong>g> particles.<br />

In the 1960s, John Wheeler stated that a unified descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature must explain<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


162 7 the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture<br />

Page 228<br />

Challenge 117 e<br />

Page 306<br />

‘mass without mass, charge without charge, field without field’. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand c<strong>on</strong>jecture<br />

realizes this aim, as we will find out.<br />

Before we deduce modern physics, we first take a break and explore some general<br />

issues <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture.<br />

Curiosities and fun challenges about strands<br />

Why do crossing switches have such a central role in the strand model? An intuitive explanati<strong>on</strong><br />

follows from their role in the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> observables. All measurements – be<br />

they measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> positi<strong>on</strong>, speed, mass or any other observable – are electromagnetic.<br />

In other words, all measurements in nature are, in the end, detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s.<br />

And the strand model shows that phot<strong>on</strong> absorpti<strong>on</strong> and detecti<strong>on</strong> are intimately related<br />

to the crossing switch, as we will find out below.<br />

∗∗<br />

Is there a limit to the fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> strands? Yes and no. On the <strong>on</strong>e hand, the ‘speed’<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong>s is unlimited. On the other hand, fluctuati<strong>on</strong>s with a ‘curvature radius’<br />

smaller than a Planck length do not lead to observable effects. Note that the terms ‘speed’<br />

and ‘radius’ are between quotati<strong>on</strong> marks because they are unobservable. Care is needed<br />

when talking about strands and their fluctuati<strong>on</strong>s.<br />

∗∗<br />

What are strands made <str<strong>on</strong>g>of</str<strong>on</strong>g>? This questi<strong>on</strong> tests whether we are really able to maintain<br />

the fundamental circularity <str<strong>on</strong>g>of</str<strong>on</strong>g> the unified descripti<strong>on</strong>. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s are featureless. <str<strong>on</strong>g>The</str<strong>on</strong>g>y have<br />

no measurable properties: they have no branches, carry no fields and, in particular, they<br />

cannot be divided into parts. <str<strong>on</strong>g>The</str<strong>on</strong>g> ‘substance’ that strands are made <str<strong>on</strong>g>of</str<strong>on</strong>g> has no properties.<br />

Thus strands are not made <str<strong>on</strong>g>of</str<strong>on</strong>g> anything. This may seem surprising at first. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s are<br />

extended, and we naturally imagine them as sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> points. But this is a fallacy.<br />

Given the way that observati<strong>on</strong>s and events are defined, there is no way to observe, to<br />

label or to distinguish points <strong>on</strong> strands. Crossing switches do not allow doing so, as is<br />

easily checked: the mathematical points we imagine <strong>on</strong> a strand are not physical points.<br />

‘Points’ <strong>on</strong> strands are unobservable: they simply do not exist.<br />

But strands must be made <str<strong>on</strong>g>of</str<strong>on</strong>g> something, we might insist. Later we will find out that in<br />

the strand model, the universe is made <str<strong>on</strong>g>of</str<strong>on</strong>g> a single strand tangled in a complicated way.<br />

Nature is <strong>on</strong>e strand. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, strands are not made <str<strong>on</strong>g>of</str<strong>on</strong>g> something, they are made <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

everything. <str<strong>on</strong>g>The</str<strong>on</strong>g> substance <str<strong>on</strong>g>of</str<strong>on</strong>g> strands is nature itself.<br />

∗∗<br />

Since there is <strong>on</strong>ly <strong>on</strong>e strand in nature, strands are not a reducti<strong>on</strong>ist approach. At<br />

Planck scale, nature is <strong>on</strong>e. And indivisible.<br />

∗∗<br />

What are elementary particles? In the strand model, elementary particles are not elementary.<br />

Elementary particles are (families <str<strong>on</strong>g>of</str<strong>on</strong>g>) tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. In other words, elementary<br />

particles are not the basic building blocks <str<strong>on</strong>g>of</str<strong>on</strong>g> matter – strands are. If particles<br />

could really be elementary, it would be impossible to understand their properties.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture 163<br />

Page 78<br />

Challenge 118 e<br />

Challenge 119 s<br />

Challenge 120 s<br />

Challenge 121 s<br />

Challenge 122 e<br />

Ref. 155<br />

Page 301<br />

Page 412<br />

In the strand c<strong>on</strong>jecture, elementary particles are not really elementary, but neither<br />

are they, in the usual sense, composed. Particles are tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> unobservable strands. In<br />

this way, the strand c<strong>on</strong>jecture retains the useful aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> the idea <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particle<br />

but gets rid <str<strong>on</strong>g>of</str<strong>on</strong>g> its limitati<strong>on</strong>s. In a sense, the strand model can be seen as eliminating<br />

the c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> elementariness and <str<strong>on</strong>g>of</str<strong>on</strong>g> particle. In the same way, strands get rid <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

idea <str<strong>on</strong>g>of</str<strong>on</strong>g> point in space. This c<strong>on</strong>firms and realizes another requirement for a complete<br />

descripti<strong>on</strong> that we had deduced earlier <strong>on</strong>.<br />

∗∗<br />

Can macroscopic determinism arise at all from randomly fluctuating strands?<br />

∗∗<br />

Do parallel strands form a crossing? Do two distant strands form a crossing?<br />

∗∗<br />

Is a crossing switch defined in more than three dimensi<strong>on</strong>s?<br />

∗∗<br />

Can you find a way to generalize or to modify the strand c<strong>on</strong>jecture?<br />

∗∗<br />

In hindsight, the fundamental principle resembles John Wheeler’s visi<strong>on</strong> ‘it from bit’.<br />

He formulated it, am<strong>on</strong>g others, in 1989 in his <str<strong>on</strong>g>of</str<strong>on</strong>g>ten-cited essay Informati<strong>on</strong>, physics,<br />

quantum: the search for links.<br />

∗∗<br />

Looking back, we might equally note a relati<strong>on</strong> between the strand c<strong>on</strong>jecture and the<br />

expressi<strong>on</strong> ‘it from qubit’ that is propagated by David Deutsch. A qubit is a quantummechanical<br />

two-level system. What is the difference between the fundamental principle<br />

and a qubit?<br />

∗∗<br />

Is the strand model c<strong>on</strong>firmed by other, independent research? Yes, a few years after the<br />

strand model appeared, this started to happen. For example, in a l<strong>on</strong>g article exploring<br />

the small scale structure <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time from various different research perspectives in<br />

general relativity, Steven Carlip comes to the c<strong>on</strong>clusi<strong>on</strong> that all these perspectives suggest<br />

the comm<strong>on</strong> result that ‘space at a fixed time is thus threaded by rapidly fluctuating<br />

lines’. This is exactly what the strand model states.<br />

Other theoretical approaches that c<strong>on</strong>firm the strand model are menti<strong>on</strong>ed in various<br />

places later in the text. Despite such developments, the essential point remains to check<br />

how the strand model compares with experiment. Given that the strand model turns out<br />

to be unmodifiable, there are no ways to amend predicti<strong>on</strong>s that turn out to be wr<strong>on</strong>g. If<br />

a single predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model turns out to be incorrect, the model is doomed.<br />

But so far, no experimental predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model c<strong>on</strong>tradicts experiments.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


164 7 the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture<br />

Page 65<br />

Page 74<br />

Page 91<br />

Page 129<br />

Challenge 123 e<br />

Do strands unify? – <str<strong>on</strong>g>The</str<strong>on</strong>g> millennium list <str<strong>on</strong>g>of</str<strong>on</strong>g> open issues<br />

Does the strand c<strong>on</strong>jecture reproduce all the paradoxical results we found in the first<br />

chapters? Yes, it does. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand c<strong>on</strong>jecture implies that vacuum cannot be distinguished<br />

from matter at Planck scales: both are made <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand c<strong>on</strong>jecture<br />

implies that observables are not real numbers at Planck scales. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand c<strong>on</strong>jecture<br />

implies that the universe and the vacuum are the same, when explored at high precisi<strong>on</strong>:<br />

both are made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e strand. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand c<strong>on</strong>jecture also implies that the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particles in the universe is not clearly defined and that nature is not a set. You can check<br />

by yourself that all other paradoxes appear automatically. Furthermore, almost all requirements<br />

for a final theory listed in Table 6 are fulfilled. Only two requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

table must be discussed in more detail: the requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> complete precisi<strong>on</strong> and <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

unmodifiability. We start with complete precisi<strong>on</strong>.<br />

If strands really describe all <str<strong>on</strong>g>of</str<strong>on</strong>g> nature, they must explain the inverse square dependence<br />

with distance <str<strong>on</strong>g>of</str<strong>on</strong>g> the electrostatic and <str<strong>on</strong>g>of</str<strong>on</strong>g> the gravitati<strong>on</strong>al interacti<strong>on</strong>. But that is not<br />

sufficient. If the strand c<strong>on</strong>jecture is a complete, unified descripti<strong>on</strong>, it must provide complete<br />

precisi<strong>on</strong>. This requires, first <str<strong>on</strong>g>of</str<strong>on</strong>g> all, that the c<strong>on</strong>jecture describes all experiments.<br />

As will be shown below, this is indeed the case, because the strand c<strong>on</strong>jecture c<strong>on</strong>tains<br />

both general relativity and the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics. But sec<strong>on</strong>dly and most<br />

importantly, the c<strong>on</strong>jecture must also settle all those questi<strong>on</strong>s that were left unanswered<br />

by twentieth-century fundamental physics. Because the questi<strong>on</strong>s, the millennium list <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

open issues, are so important, they are given, again, in Table 8.<br />

TABLE 8 <str<strong>on</strong>g>The</str<strong>on</strong>g> millennium list: everything the standard model and general relativity cannot explain; thus,<br />

also the list <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>on</strong>ly experimental data available to test the final, unified descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>.<br />

Observable Property unexplained since the year 2000<br />

Local quantities unexplained by the standard model: particle properties<br />

α = 1/137.036(1) the low energy value <str<strong>on</strong>g>of</str<strong>on</strong>g> the electromagnetic coupling or fine structure c<strong>on</strong>stant<br />

α w or θ w the low energy value <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak coupling c<strong>on</strong>stant or the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak<br />

mixing angle<br />

α s<br />

the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g coupling c<strong>on</strong>stant at <strong>on</strong>e specific energy value<br />

m q<br />

the values <str<strong>on</strong>g>of</str<strong>on</strong>g> the 6 quark masses<br />

m l<br />

the values <str<strong>on</strong>g>of</str<strong>on</strong>g> 6 lept<strong>on</strong> masses<br />

m W<br />

the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the W vector bos<strong>on</strong><br />

m H<br />

the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the scalar Higgs bos<strong>on</strong><br />

θ 12 ,θ 13 ,θ 23 the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the three quark mixing angles<br />

δ<br />

the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the CP violating phase for quarks<br />

θ ν 12 ,θν 13 ,θν 23<br />

the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the three neutrino mixing angles<br />

δ ν ,α 1 ,α 2 the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the three CP violating phases for neutrinos<br />

3⋅4<br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong> generati<strong>on</strong>s and <str<strong>on</strong>g>of</str<strong>on</strong>g> particles in each generati<strong>on</strong><br />

J, P, C, etc. the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> all quantum numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> each fermi<strong>on</strong> and each bos<strong>on</strong><br />

C<strong>on</strong>cepts unexplained by the standard model<br />

c, ħ, k<br />

the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the invariant Planck units <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum field theory<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture 165<br />

TABLE 8 (C<strong>on</strong>tinued) <str<strong>on</strong>g>The</str<strong>on</strong>g> millennium list: everything the standard model and general relativity cannot<br />

explain; also the <strong>on</strong>ly experimental data available to test the final, unified descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>.<br />

Observable Property unexplained since the year 2000<br />

3+1 the number <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> physical space and time<br />

SO(3,1) the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> Poincaré symmetry, i.e., <str<strong>on</strong>g>of</str<strong>on</strong>g> spin, positi<strong>on</strong>, energy, momentum<br />

Ψ<br />

the origin and nature <str<strong>on</strong>g>of</str<strong>on</strong>g> wave functi<strong>on</strong>s<br />

S(n)<br />

the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> particle identity, i.e., <str<strong>on</strong>g>of</str<strong>on</strong>g> permutati<strong>on</strong> symmetry<br />

Gauge symmetry the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the gauge groups, in particular:<br />

U(1)<br />

the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the electromagnetic gauge group, i.e., <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

electric charge, <str<strong>on</strong>g>of</str<strong>on</strong>g> the vanishing <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetic charge, and <str<strong>on</strong>g>of</str<strong>on</strong>g> minimal coupling<br />

SU(2)<br />

the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> weak interacti<strong>on</strong> gauge group, its breaking and P violati<strong>on</strong><br />

SU(3)<br />

the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g interacti<strong>on</strong> gauge group and its CP c<strong>on</strong>servati<strong>on</strong><br />

Renorm. group the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> renormalizati<strong>on</strong> properties<br />

δW = 0 the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the least acti<strong>on</strong> principle in quantum theory<br />

W=∫L SM dt the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics<br />

Global quantities unexplained by general relativity and cosmology<br />

0 the observed flatness, i.e., vanishing curvature, <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe<br />

1.2(1) ⋅ 10 26 m the distance <str<strong>on</strong>g>of</str<strong>on</strong>g> the horiz<strong>on</strong>, i.e., the ‘size’ <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe (if it makes sense)<br />

ρ de = Λc 4 /(8πG) the value and nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the observed vacuum energy density, dark energy or<br />

≈0.5nJ/m 3 cosmological c<strong>on</strong>stant<br />

(5 ± 4) ⋅ 10 79 the number <str<strong>on</strong>g>of</str<strong>on</strong>g> bary<strong>on</strong>s in the universe (if it makes sense), i.e., the average<br />

visible matter density in the universe<br />

ρ dm<br />

the density and nature <str<strong>on</strong>g>of</str<strong>on</strong>g> dark matter<br />

f 0 (1, ..., c. 10 90 ) the initial c<strong>on</strong>diti<strong>on</strong>s for c. 10 90 particle fields in the universe (if or as l<strong>on</strong>g as<br />

they make sense), including the homogeneity and isotropy <str<strong>on</strong>g>of</str<strong>on</strong>g> matter distributi<strong>on</strong>,<br />

and the density fluctuati<strong>on</strong>s at the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> galaxies<br />

C<strong>on</strong>cepts unexplained by general relativity and cosmology<br />

c, G<br />

the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the invariant Planck units <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity<br />

R × S 3<br />

the observed topology <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe<br />

G μν<br />

the origin and nature <str<strong>on</strong>g>of</str<strong>on</strong>g> curvature, the metric and horiz<strong>on</strong>s<br />

δW = 0 the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the least acti<strong>on</strong> principle in general relativity<br />

W=∫L GR dt the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> open issues in the millennium list must be resolved by any complete, unified<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature, and thus also by the strand model. All the open issues <str<strong>on</strong>g>of</str<strong>on</strong>g> the list<br />

can be summarized in two general requests:<br />

— Reproduce quantum theory, the standard model, general relativity and cosmology.<br />

— Explain masses, mixing angles and coupling c<strong>on</strong>stants.<br />

Of course, <strong>on</strong>ly the sec<strong>on</strong>d point is the definite test for a complete, unified descripti<strong>on</strong>.<br />

But we need the first point as well. <str<strong>on</strong>g>The</str<strong>on</strong>g> following chapters explore both points.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


166 7 the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture<br />

Are strands final? – On generalizati<strong>on</strong>s and modificati<strong>on</strong>s<br />

“<str<strong>on</strong>g>The</str<strong>on</strong>g> chief attracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the theory lies in its<br />

logical completeness. If a single <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

c<strong>on</strong>clusi<strong>on</strong>s drawn from it proves wr<strong>on</strong>g, it<br />

must be given up; to modify it without<br />

destroying the whole structure seems to be<br />

impossible.<br />

Albert Einstein, <str<strong>on</strong>g>The</str<strong>on</strong>g> Times, 28. 11. 1919.”<br />

If a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> claims to be complete, it must explain all aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>. To<br />

be a full explanati<strong>on</strong>, such a descripti<strong>on</strong> must not <strong>on</strong>ly be logically and experimentally<br />

complete, it must also be unmodifiable. Even though Einstein made the point for general<br />

relativity, this important aspect merits a few additi<strong>on</strong>al remarks. In particular, any<br />

unmodifiable explanati<strong>on</strong> has two main properties: first, it cannot be generalized, and<br />

sec<strong>on</strong>d, it is not itself a generalizati<strong>on</strong>.<br />

Generalizing models is a sport am<strong>on</strong>g theoretical and mathematical physicists. If you<br />

have a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a part <str<strong>on</strong>g>of</str<strong>on</strong>g> nature, they will try to find more general cases. For any<br />

candidate unified descripti<strong>on</strong>, they will try to explore the model in more than three dimensi<strong>on</strong>s,<br />

with more than three generati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks, with more complicated gauge<br />

symmetries, with different types <str<strong>on</strong>g>of</str<strong>on</strong>g> supersymmetry, with more Higgs bos<strong>on</strong>s, or with<br />

additi<strong>on</strong>al heavy neutrinos. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model, researchers will also explore<br />

models with more complicated entities than strands, such as bands or bifurcating<br />

entities, and any other generalizati<strong>on</strong> they can imagine.<br />

⊳ Can a final descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature have generalizati<strong>on</strong>s? No.<br />

Indeed, if it were possible to generalize the complete descripti<strong>on</strong>, it would lose the ability<br />

to explain any <str<strong>on</strong>g>of</str<strong>on</strong>g> the millennium issues! If a candidate unified theory could be generalized,<br />

it would not be final or complete. In short, if the strand model is a complete<br />

descripti<strong>on</strong>, the efforts <str<strong>on</strong>g>of</str<strong>on</strong>g> theoretical and mathematical physicists just described must<br />

all be impossible. So far, investigati<strong>on</strong>s c<strong>on</strong>firm this predicti<strong>on</strong>: no generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

strand model has been found yet.<br />

Where does this f<strong>on</strong>dness for generalizati<strong>on</strong> come from? In the history <str<strong>on</strong>g>of</str<strong>on</strong>g> physics,<br />

generalizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>ten led to advances and discoveries. In the past, generalizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

led to descripti<strong>on</strong>s that had a wider range <str<strong>on</strong>g>of</str<strong>on</strong>g> validity. As a result, generalizing became<br />

the way to search for new discoveries. Indeed, in the history <str<strong>on</strong>g>of</str<strong>on</strong>g> physics, the old theory<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten was a special case <str<strong>on</strong>g>of</str<strong>on</strong>g> the new theory. This relati<strong>on</strong> was so comm<strong>on</strong> that usually,<br />

approximati<strong>on</strong> and special case were taken to be syn<strong>on</strong>yms. This c<strong>on</strong>necti<strong>on</strong> leads to a<br />

sec<strong>on</strong>d point.<br />

General relativity and the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics must indeed be approximati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the final theory. But can either general relativity or the standard model be<br />

special cases <str<strong>on</strong>g>of</str<strong>on</strong>g> the complete, unified theory? Or, equivalently:<br />

⊳ Can the unified theory be a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> existing theories? No.<br />

Because neither general relativity nor the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics are able to<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture 167<br />

Challenge 124 e<br />

Challenge 125 e<br />

Ref. 156<br />

explain the millennium issues, any generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> them would also be unable to do so.<br />

Generalizati<strong>on</strong>s have no explanatory power. If the unified theory were a generalizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the two existing theories, it could not explain any <str<strong>on</strong>g>of</str<strong>on</strong>g> the millennium issues <str<strong>on</strong>g>of</str<strong>on</strong>g> Table 8!<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>refore, general relativity and the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics must be approximati<strong>on</strong>s,<br />

but not special cases, <str<strong>on</strong>g>of</str<strong>on</strong>g> the final theory.* In particular, if the strand model is<br />

a complete descripti<strong>on</strong>, approximati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model must exist, but special cases<br />

must not. This is indeed the case, as we will find out.<br />

To summarize, a unified theory must be an explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all observati<strong>on</strong>s. An explanati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> an observati<strong>on</strong> is the recogniti<strong>on</strong> that it follows unambiguously, without<br />

alternative, from a general property <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. We c<strong>on</strong>clude that the complete, unified<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> must neither allow generalizati<strong>on</strong> nor must it be a generalizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> either the standard model or general relativity. <str<strong>on</strong>g>The</str<strong>on</strong>g> unified theory cannot be generalized<br />

and cannot be ‘specialized’; the unified theory must be unmodifiable.** This<br />

requirement is extremely str<strong>on</strong>g; you may check that it eliminates most past attempts at<br />

unificati<strong>on</strong>. For example, this requirement eliminates grand unificati<strong>on</strong>, supersymmetry<br />

and higher dimensi<strong>on</strong>s as aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> the final theory: indeed, these ideas generalize the<br />

standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles and they are modifiable. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, all these ideas<br />

lack explanatory power.<br />

A complete and unified theory must be an unmodifiable explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity<br />

and the standard model. Because neither supersymmetry, nor the superstring c<strong>on</strong>jecture,<br />

nor loop quantum gravity explain the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics, they are<br />

not unified theories. Because these models are modifiable, they are not complete. In fact,<br />

at least <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> these two aspects is lacking in every candidate unified theory proposed in<br />

the twentieth century.<br />

We will discover below that the strand c<strong>on</strong>jecture is unmodifiable. Its fundamental<br />

principle cannot be varied in any way without destroying the whole descripti<strong>on</strong>. Indeed,<br />

no modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture or <str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental principle has been found<br />

so far. We will also discover that the strand c<strong>on</strong>jecture explains the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particle physics and explains general relativity. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand c<strong>on</strong>jecture is thus a candidate<br />

for the final theory.<br />

Why strands? – Simplicity<br />

“Simplex sigillum veri.***<br />

Antiquity”<br />

Let us assume that we do not know yet whether the strand c<strong>on</strong>jecture can be modified<br />

or not. Two other reas<strong>on</strong>s still induce us to explore featureless strands as basis for<br />

a unified descripti<strong>on</strong>. First, featureless strands are the simplest known model that unifies<br />

quantum field theory and general relativity. Sec<strong>on</strong>d, featureless strands are the <strong>on</strong>ly<br />

* Indeed, we already found out above151 that a complete theory must c<strong>on</strong>tradict both quantum theory and<br />

general relativity, in particular because <str<strong>on</strong>g>of</str<strong>on</strong>g> the use <str<strong>on</strong>g>of</str<strong>on</strong>g> extended c<strong>on</strong>stituents.<br />

** Independently, David Deutsch made a similar point with his criteri<strong>on</strong> that an explanati<strong>on</strong>is <strong>on</strong>ly correct<br />

if it is hard to vary. Used in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> a final theory, we can say that the final theory must be an explanati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity and <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard model. This implies that the final theory must be hard to vary. This<br />

matches the above c<strong>on</strong>clusi<strong>on</strong> that the final theory must be unmodifiable.<br />

*** ‘Simplicity is the seal <str<strong>on</strong>g>of</str<strong>on</strong>g> truth.’<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


168 7 the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture<br />

Page 106<br />

Page 117<br />

Ref. 140<br />

Ref. 157<br />

Ref. 158<br />

Ref. 159<br />

Ref. 150<br />

known model that realizes an important requirement: a unified descripti<strong>on</strong> must not be<br />

based <strong>on</strong> points, sets or any axiomatic system. Let us explore the issue <str<strong>on</strong>g>of</str<strong>on</strong>g> simplicity first.<br />

In order to reproduce three-dimensi<strong>on</strong>al space, Planck units, spin, and black-hole entropy,<br />

the fundamental c<strong>on</strong>stituents must be extended and fluctuating. We have deduced<br />

this result in detail in the previous chapter. <str<strong>on</strong>g>The</str<strong>on</strong>g> extensi<strong>on</strong> must be <strong>on</strong>e-dimensi<strong>on</strong>al, because<br />

this is the simplest opti<strong>on</strong>, and it is also the <strong>on</strong>ly opti<strong>on</strong> compatible with threedimensi<strong>on</strong>al<br />

space. In fact, <strong>on</strong>e-dimensi<strong>on</strong>al strands explain the three-dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

space, because tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e-dimensi<strong>on</strong>al strands exist <strong>on</strong>ly in three spatial dimensi<strong>on</strong>s.<br />

In four or more dimensi<strong>on</strong>s, any tangle or knot can be und<strong>on</strong>e; this is impossible in three<br />

spatial dimensi<strong>on</strong>s.<br />

No simpler model than featureless strands is possible. All other extended c<strong>on</strong>stituents<br />

that have been explored – ribb<strong>on</strong>s, bands, strings, membranes, posets, branched lines,<br />

networks, crystals and quantum knots – increase the complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> the model. In fact<br />

thesec<strong>on</strong>stituentsincreasethecomplexityintwo ways: they increase the number <str<strong>on</strong>g>of</str<strong>on</strong>g> features<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental c<strong>on</strong>stituents and they complicate the mapping from the model<br />

to observati<strong>on</strong>.<br />

First, no other model based <strong>on</strong> extensi<strong>on</strong> uses featureless c<strong>on</strong>stituents. In all other<br />

models, the fundamental c<strong>on</strong>stituents have properties such as tensi<strong>on</strong>, field values, coordinates,<br />

quantum numbers, shape, twists, orientati<strong>on</strong>, n<strong>on</strong>-trivial topological informati<strong>on</strong>,<br />

etc. In some models, space-time is n<strong>on</strong>-commutative or fermi<strong>on</strong>ic. All these features<br />

are assumed; they are added to the model by fiat. As such, they allow alternatives<br />

and are difficult if not impossible to justify. In additi<strong>on</strong>, these features increase the complexity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the possible processes. In c<strong>on</strong>trast, the strand model has no justificati<strong>on</strong> issue<br />

and no complexity issue.<br />

Sec<strong>on</strong>dly, the link between more complicated models and experiment is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten intricate<br />

and sometimes not unique. As an example, the difficulties to relate superstrings to<br />

experiments are well-known. In c<strong>on</strong>trast, the strand c<strong>on</strong>jecture argues that the experimentally<br />

accessible Dirac equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum field theory and the experimentally accessible<br />

field equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity arise directly, fromanaveragingprocedure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches. Indeed, the strand c<strong>on</strong>jecture proposes to unify these two halves<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> physics with <strong>on</strong>ly <strong>on</strong>e fundamental principle: strand crossing switches define Planck<br />

units. In fact, we will find out that the strand c<strong>on</strong>jecture describes not <strong>on</strong>ly vacuum and<br />

matter, but also gauge interacti<strong>on</strong>s and particle properties as natural c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> nature at Planck scales. <str<strong>on</strong>g>The</str<strong>on</strong>g> comparable ideas in other models are much<br />

more elaborate.<br />

We remark that building three-dimensi<strong>on</strong>al physical space from strands is even simpler<br />

than building it from points! In order to build three-dimensi<strong>on</strong>al space from points,<br />

we need c<strong>on</strong>cepts such as sets, neighbourhoods, topological structures and metric structures.<br />

And despite all these intricate c<strong>on</strong>cepts, the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> space defined in this way<br />

still has no defined physical length scale; in short, it is not thesameasphysicalspace.<br />

In c<strong>on</strong>trast, in order to build three-dimensi<strong>on</strong>al physical space from strands, we need<br />

no fundamental points, sets, or metric structures; we <strong>on</strong>ly need l<strong>on</strong>g-time averages <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

strands and their crossings. And the length scale is built in.<br />

All this suggests that the strand model, based <strong>on</strong> featureless, <strong>on</strong>e-dimensi<strong>on</strong>al and<br />

fluctuating c<strong>on</strong>stituents, might be the model for unificati<strong>on</strong> with the smallest number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cepts, thus satisfying Occam’s razor. In fact, we will discover that strands indeed<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture 169<br />

TABLE 9 <str<strong>on</strong>g>The</str<strong>on</strong>g> differences between nature and any descripti<strong>on</strong>.<br />

Nature<br />

Descripti<strong>on</strong><br />

Page 110<br />

Nature is not a set.<br />

Nature has no events, no points and no<br />

c<strong>on</strong>tinuity.<br />

Nature has no point particles.<br />

Nature is not local.<br />

Nature has no background.<br />

Nature shows something akin to R↔1/R<br />

duality.<br />

Nature is not axiomatic but c<strong>on</strong>tains circular<br />

definiti<strong>on</strong>s.<br />

Descripti<strong>on</strong>s need sets to allow talking and<br />

thinking.<br />

Descripti<strong>on</strong>s need events, points and<br />

c<strong>on</strong>tinuous 3+1-dimensi<strong>on</strong>al space-time to<br />

allow formulating them.<br />

Descripti<strong>on</strong>s need point particles to allow<br />

talking and thinking.<br />

Descripti<strong>on</strong>s need locality to allow talking and<br />

thinking.<br />

Descripti<strong>on</strong>s need a background to allow<br />

talking and thinking.<br />

Descripti<strong>on</strong>s need to break duality to allow<br />

talking and thinking.<br />

Axiomatic descripti<strong>on</strong>s are needed for precise<br />

talking and thinking.<br />

are the simplest way to model particles, interacti<strong>on</strong>s and the vacuum, while fulfilling the<br />

requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> a final theory.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> simplicity <str<strong>on</strong>g>of</str<strong>on</strong>g> a model helps in two ways. First, the simpler a model is, the freer it<br />

is <str<strong>on</strong>g>of</str<strong>on</strong>g> ideology, prec<strong>on</strong>cepti<strong>on</strong>s and beliefs. Sec<strong>on</strong>dly, the simpler a model is, the easier it<br />

can be checked against observati<strong>on</strong>. In particular, a simple model allows simple checking<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> paradoxes. Above all, we can resolve the most important paradox <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

physics.<br />

Why strands? – <str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental circularity <str<strong>on</strong>g>of</str<strong>on</strong>g> physics<br />

“Without the c<strong>on</strong>cepts place, void and time,<br />

change cannot be. [...] It is therefore clear [...]<br />

that their investigati<strong>on</strong> has to be carried out, by<br />

studying each <str<strong>on</strong>g>of</str<strong>on</strong>g> them separately.<br />

Aristotle <str<strong>on</strong>g>Physics</str<strong>on</strong>g>, Book III, part 1.”<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model describes strands as fluctuating in a background space-time <str<strong>on</strong>g>of</str<strong>on</strong>g> three<br />

plus <strong>on</strong>e space-time dimensi<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> background space-time is introduced by the observer.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> background is thus different for every observer; however, all such backgrounds<br />

have three dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> space and <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> time. <str<strong>on</strong>g>The</str<strong>on</strong>g> observer – be it a machine,<br />

an animal or a human – is itself made <str<strong>on</strong>g>of</str<strong>on</strong>g> strands, so that in fact, the background space is<br />

itself the product <str<strong>on</strong>g>of</str<strong>on</strong>g> strands.<br />

We therefore have a fundamental circular definiti<strong>on</strong>: we describe strands with a background,<br />

and the background with strands. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s thus do not provide an axiomatic<br />

system in the mathematical sense. Thisfulfils<strong>on</strong>e<str<strong>on</strong>g>of</str<strong>on</strong>g>therequirementsfortheunified<br />

descripti<strong>on</strong>.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


170 7 the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. III, page 309<br />

Ref. 160<br />

Page 110<br />

Why does the fundamental circular definiti<strong>on</strong> arise? <str<strong>on</strong>g>Physics</str<strong>on</strong>g> is talking (and thinking)<br />

about nature and moti<strong>on</strong>. A unified model <str<strong>on</strong>g>of</str<strong>on</strong>g> physics is talking about moti<strong>on</strong> with<br />

highest precisi<strong>on</strong>. This implies that <strong>on</strong> the <strong>on</strong>e hand, as talkers, we must use c<strong>on</strong>cepts that<br />

allow us to talk. Talking and thinking requires that we use c<strong>on</strong>tinuous space and time:<br />

<strong>on</strong> short, we must use a background. <str<strong>on</strong>g>The</str<strong>on</strong>g> background must be c<strong>on</strong>tinuous, without minimum<br />

length. On the other hand, to talk with precisi<strong>on</strong>,wemusthaveaminimumlength,<br />

and use strands. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is no way to get rid <str<strong>on</strong>g>of</str<strong>on</strong>g> this double and apparently c<strong>on</strong>tradictory<br />

requirement. More such c<strong>on</strong>tradictory requirements are listed in Table 9.Weknowthat<br />

nature is not a set, has no points, no point particles and no locality, but that it is dual.<br />

But in order to talk about nature, we need a background that lacks all these properties.<br />

Because there is no way to get rid <str<strong>on</strong>g>of</str<strong>on</strong>g> these apparently c<strong>on</strong>tradictory requirements, we<br />

d<strong>on</strong>’t:<br />

⊳ We use both c<strong>on</strong>tinuous background space-time and discrete strands to describe<br />

nature.<br />

In a few words: A unified model <str<strong>on</strong>g>of</str<strong>on</strong>g> physics allows talking about moti<strong>on</strong> with highest<br />

precisi<strong>on</strong>; this requirement forces us to use, at the same time, both c<strong>on</strong>tinuous spacetime<br />

and discrete strands. This double use is not a c<strong>on</strong>tradicti<strong>on</strong> but, as just explained,<br />

the result <str<strong>on</strong>g>of</str<strong>on</strong>g> a circular definiti<strong>on</strong>. Since we, the talkers, are part <str<strong>on</strong>g>of</str<strong>on</strong>g> nature, a unified model<br />

means that we, the talkers, talk about ourselves.<br />

We stress that despite the circularity <str<strong>on</strong>g>of</str<strong>on</strong>g> physics, Gödel’s incompleteness theorem does<br />

not apply to the situati<strong>on</strong>. In fact, the theorem does not apply to any unified theory<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> physics for two reas<strong>on</strong>s. First, the incompleteness theorem applies to self-referential<br />

statements, not to circular definiti<strong>on</strong>s. Self-referential statements do not appear in physics,<br />

not in sensible mathematics and not in the strand model. Sec<strong>on</strong>dly, Gödel’s theorem<br />

applies to mathematical structures based <strong>on</strong> sets, and the unified theory is not based <strong>on</strong><br />

sets.<br />

We do not state that background space and time exist apriori, as Immanuel Kant<br />

states, but <strong>on</strong>ly that background space and time are necessary for thinking and talking, as<br />

Aristotle states. In fact, physical space and time result from strands, and thus do not exist<br />

a priori; however, background space and time are required c<strong>on</strong>cepts for any descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>s, and thus necessary for thinking and talking. Figure 16 illustrates the<br />

soluti<strong>on</strong> proposed by the strand model.<br />

We have always to be careful to keep the fundamental circular definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> strands<br />

and backgrounds in our mind. Any temptati<strong>on</strong> to resolve it leads astray. For example, if<br />

we attempt to define sets or elements (or points) with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> measurements, we are<br />

hiding or forgetting the fundamental circularity. Indeed, many physicists c<strong>on</strong>structed<br />

and still c<strong>on</strong>struct axiomatic systems for their field. <str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental circularity implies<br />

that axiomatic systems are possible for parts <str<strong>on</strong>g>of</str<strong>on</strong>g> physics, but not for physics as a whole.<br />

Indeed, there are axiomatic descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> classical mechanics, <str<strong>on</strong>g>of</str<strong>on</strong>g> electrodynamics, <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

quantum theory, <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum field theory, and even <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity. But there is no<br />

axiomatic system for all <str<strong>on</strong>g>of</str<strong>on</strong>g> physics – i.e., for the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all moti<strong>on</strong> – and there<br />

cannot be <strong>on</strong>e.<br />

A further issue must be discussed in this c<strong>on</strong>text. As menti<strong>on</strong>ed, strands fluctuate<br />

in a background space, and <strong>on</strong>ly crossing switches can be observed. In particular, this<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture 171<br />

Universe’s<br />

horiz<strong>on</strong> or<br />

‘border<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> space’<br />

(pink)<br />

Background<br />

space<br />

(grey)<br />

Universe’s<br />

tangle<br />

(blue<br />

lines)<br />

Background<br />

space<br />

(grey)<br />

Particle<br />

tangle<br />

(tangled<br />

blue<br />

lines)<br />

Ref. 161<br />

Physical<br />

space or<br />

vacuum<br />

(white)<br />

Physical<br />

space or<br />

vacuum<br />

(white)<br />

FIGURE 16 In the strand c<strong>on</strong>jecture, physical space – or vacuum – and background space are distinct,<br />

both near the horiz<strong>on</strong> and near particles.<br />

implies that the mathematical points <str<strong>on</strong>g>of</str<strong>on</strong>g> the background space cannot be observed. In<br />

other words, despite using mathematical points to describe the background space (and<br />

strands themselves), n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> them have physical significance. Physical points do not exist<br />

in the strand model. Physical locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> events are due to crossing switches, and can<br />

at best be localized to within a Planck length. <str<strong>on</strong>g>The</str<strong>on</strong>g> same limitati<strong>on</strong> applies to physical<br />

events and to physical locati<strong>on</strong>s in time. A natural Planck-scale n<strong>on</strong>-locality is built into<br />

the model. This realizes a further requirement that any unified descripti<strong>on</strong> has to fulfil.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> situati<strong>on</strong> for physicists working <strong>on</strong> unificati<strong>on</strong> is thus harder – and more fascinating<br />

– than that for biologists, for example. Biology is talking about living systems.<br />

Biologists are themselves living systems. But in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> biologists, this does not lead<br />

to a circular definiti<strong>on</strong>. Biology does not use c<strong>on</strong>cepts that c<strong>on</strong>tain circular definiti<strong>on</strong>s: a<br />

living being has no problems describing other living beings. Even neurobiologists, who<br />

aim to explore the functi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> the brain, face no fundamental limit doing so, even<br />

though they explore the human brain using their own brain: a brain has no problem<br />

describing other brains. In c<strong>on</strong>trast, physicists working <strong>on</strong> unificati<strong>on</strong> need to live with<br />

circularity: a fundamental, precise descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> requires to be c<strong>on</strong>scious <str<strong>on</strong>g>of</str<strong>on</strong>g> our<br />

own limitati<strong>on</strong>s as describing beings. And our main limitati<strong>on</strong> is that we cannot think<br />

without c<strong>on</strong>tinuous space and time, even though these c<strong>on</strong>cepts do not apply to nature.<br />

We c<strong>on</strong>clude: A unified descripti<strong>on</strong> cannot be axiomatic, cannot be based <strong>on</strong> observable<br />

physical points, must distinguish physical space from background space, and cannot be<br />

background-independent. Many models based <strong>on</strong> extended c<strong>on</strong>stituents also use backgrounds.<br />

However, most models also allow the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sets and axiomatic descripti<strong>on</strong>s.<br />

Such models thus cannot be candidates for a unified descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. In c<strong>on</strong>trast,<br />

the strand c<strong>on</strong>jecture keeps the fundamental circularity <str<strong>on</strong>g>of</str<strong>on</strong>g> physics intact; it does<br />

not allow an axiomatic formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fundamental physics, and <strong>on</strong>ly allows points or<br />

sets as approximate c<strong>on</strong>cepts.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


172 7 the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture<br />

A strand : A funnel :<br />

Page 131<br />

Challenge 126 e<br />

FIGURE 17 Two equivalent depicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> nature: strands and funnels.<br />

Funnels – an equivalent alternative to strands<br />

Another type <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stituent also fulfils all the c<strong>on</strong>diti<strong>on</strong>s for a unified descripti<strong>on</strong>. As<br />

shown in Figure 17, as an alternative to fluctuating strands, we can use fluctuating funnels<br />

as fundamental c<strong>on</strong>stituents. In the descripti<strong>on</strong> with funnels, nature resembles a complicated<br />

tangle <str<strong>on</strong>g>of</str<strong>on</strong>g> a three-dimensi<strong>on</strong>al space that is projected back into three dimensi<strong>on</strong>s.<br />

Funnels show that the strand model <strong>on</strong>ly requires that the effective minimal effective<br />

diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> a strand is the Planck length; it could have other diameters as well. Funnels<br />

also show that due to varying diameters, strands can, through their fluctuati<strong>on</strong>s, literally<br />

be everywhere in space and thus effectively fill space, even if their actual density is low.<br />

Funnels resemble many other research topics. Funnels are similar to wormholes; however,<br />

both their ends lead, at the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space, ‘into’ usual three-dimensi<strong>on</strong>al space.<br />

Funnels are also similar to D-branes, except that they are embedded in three spatial dimensi<strong>on</strong>s,<br />

not ten. Funnels also resemble a part <str<strong>on</strong>g>of</str<strong>on</strong>g> an exotic manifold projected into<br />

three-dimensi<strong>on</strong>al space. Fluctuating funnels also remind us <str<strong>on</strong>g>of</str<strong>on</strong>g> the amoeba menti<strong>on</strong>ed<br />

above. However, the similarities with wormholes, D-branes or exotic manifolds are <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

little help: so far, n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> these approaches has led to viable models <str<strong>on</strong>g>of</str<strong>on</strong>g> unificati<strong>on</strong>.<br />

A first check shows that the funnel alternative seems completely equivalent to strands.*<br />

You might enjoy testing that all the c<strong>on</strong>clusi<strong>on</strong>s deduced in the following pages appear<br />

unchanged if strands are replaced by funnels. In particular, also funnels allow us to deduce<br />

quantum field theory, the standard model and general relativity. Due to the strict<br />

equivalence between strands and funnels, the choice between the two alternatives is a<br />

matter <str<strong>on</strong>g>of</str<strong>on</strong>g> taste or <str<strong>on</strong>g>of</str<strong>on</strong>g> visualizati<strong>on</strong>, but not a matter <str<strong>on</strong>g>of</str<strong>on</strong>g> physics. We use strands in the<br />

following, as they are simpler to draw.<br />

Knots and the ends <str<strong>on</strong>g>of</str<strong>on</strong>g> strands<br />

In the original strand model, developed in the year 2008, strands that c<strong>on</strong>tain knots were<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> the allowed c<strong>on</strong>figurati<strong>on</strong>s. This has the disadvantage that the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a knot<br />

requires at least <strong>on</strong>e loose end that is pulled through a strand c<strong>on</strong>figurati<strong>on</strong>. Such loose<br />

* Two issues that put this equivalence into questi<strong>on</strong> are ending funnels and diameter behaviour under<br />

boosts. <str<strong>on</strong>g>The</str<strong>on</strong>g> first issue is subject <str<strong>on</strong>g>of</str<strong>on</strong>g> research, but it is expected that it poses no problem. <str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d issue<br />

is mitigated by the shivering <str<strong>on</strong>g>of</str<strong>on</strong>g> the background space.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


summary <strong>on</strong> the fundamental principle – and <strong>on</strong> c<strong>on</strong>tinuity 173<br />

ends, however, produce a number <str<strong>on</strong>g>of</str<strong>on</strong>g> issues that are difficult to explain, especially during<br />

the emissi<strong>on</strong> and absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> knotted tangles.<br />

Later, in 2015, it became clear that strands without knots are sufficient to recover the<br />

standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics. This approach is shown in the following. Knots and<br />

the ends <str<strong>on</strong>g>of</str<strong>on</strong>g> strands play no role in the model any more; the aim <str<strong>on</strong>g>of</str<strong>on</strong>g> highest possible simplicity<br />

is now realized.<br />

Page 149<br />

Page 164<br />

summary <strong>on</strong> the fundamental principle – and <strong>on</strong><br />

c<strong>on</strong>tinuity<br />

We have introduced featureless, fluctuating strands as comm<strong>on</strong> c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> space,<br />

matter, radiati<strong>on</strong> and horiz<strong>on</strong>s. We defined fundamental events as crossing switches <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

strands. All physical processes are composed <str<strong>on</strong>g>of</str<strong>on</strong>g> fundamental events. Events and the<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> all physical observables are defined with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> Planck units, which in turn<br />

are due to crossing switches <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. <str<strong>on</strong>g>The</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all physical observables through<br />

Planck units with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches <str<strong>on</strong>g>of</str<strong>on</strong>g> strands is the fundamental principle.<br />

Using the fundamental principle, c<strong>on</strong>tinuity <str<strong>on</strong>g>of</str<strong>on</strong>g> any kind – <str<strong>on</strong>g>of</str<strong>on</strong>g> space, fields, wave functi<strong>on</strong>s<br />

or time – results from the time averaging <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches. This topic will be<br />

explored in detail below.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand c<strong>on</strong>jecture fulfils the general requirements for the complete and unified<br />

descripti<strong>on</strong> listed in Table 6, provided that it describes all moti<strong>on</strong> with full precisi<strong>on</strong> and<br />

that it is unmodifiable.<br />

At this point, therefore, we must start the comparis<strong>on</strong> with experiment. We need to<br />

check whether strands describe all moti<strong>on</strong> with complete precisi<strong>on</strong>. Fortunately, the task<br />

is limited: we <strong>on</strong>ly need to check whether strands solve each <str<strong>on</strong>g>of</str<strong>on</strong>g> the millennium issues<br />

listed in Table 8. If the strand c<strong>on</strong>jecture can solve those issues, then it reproduces all<br />

observati<strong>on</strong>s about moti<strong>on</strong> and provides a complete and unified descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. If<br />

the issues are not solved, the strand c<strong>on</strong>jecture is worthless.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


Chapter8<br />

QUANTUM THEORY OF MATTER<br />

DEDUCED FROM STRANDS<br />

Page 159<br />

Page 239<br />

We show in this chapter that featureless strands that fluctuate, together<br />

ith the fundamental principle – defining ħ/2 as a crossing switch – imply<br />

ithout alternative that matter is described by quantum theory. More precisely,<br />

we deduce that tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuating strands reproduce the spin 1/2 behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> matter<br />

particles, allow us to define wave functi<strong>on</strong>s, and imply the Dirac equati<strong>on</strong> for the moti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> matter. In particular, we first show that the comp<strong>on</strong>ents and phases <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave<br />

functi<strong>on</strong> at a point in space are due to the orientati<strong>on</strong> and phase <str<strong>on</strong>g>of</str<strong>on</strong>g> strand crossings at<br />

that point. <str<strong>on</strong>g>The</str<strong>on</strong>g>n we show that the Dirac equati<strong>on</strong> follows from the belt trick (or string<br />

trick).<br />

Furthermore, we show that strands imply the least acti<strong>on</strong> principle and therefore, that<br />

tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuating strands are described by the Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> relativistic quantum<br />

particles. So far, it seems that the strand model is the <strong>on</strong>ly microscopic model <str<strong>on</strong>g>of</str<strong>on</strong>g> relativistic<br />

quantum theory that is available in the research literature.<br />

In the present chapter, we derive the quantum theory <str<strong>on</strong>g>of</str<strong>on</strong>g> matter: we show that strands<br />

reproduce all observati<strong>on</strong>s about fermi<strong>on</strong>s and their moti<strong>on</strong>. We leave for later the derivati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the quantum theory <str<strong>on</strong>g>of</str<strong>on</strong>g> light and the nuclear interacti<strong>on</strong>s, the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

elementary particles, and the quantum descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gravitati<strong>on</strong>. As usual in quantum<br />

theory, we work in flat space-time.<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s, vacuum and particles<br />

In nature, particles move in the vacuum. <str<strong>on</strong>g>The</str<strong>on</strong>g> vacuum is free <str<strong>on</strong>g>of</str<strong>on</strong>g> matter and energy. In the<br />

strand model,<br />

⊳ Vacuum is a collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuating, unknotted and untangled strands.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> vacuum is illustrated in Figure 14. <str<strong>on</strong>g>The</str<strong>on</strong>g> time average <str<strong>on</strong>g>of</str<strong>on</strong>g> unknotted and untangled<br />

strands has no energy and no matter c<strong>on</strong>tent, because there are – averaged over time –<br />

no crossing switches and no tangles. <str<strong>on</strong>g>The</str<strong>on</strong>g> temporary crossing switches that can appear<br />

through fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum will turn out to be virtual particles; we will explore<br />

them below. We note that the physical vacuum, being a time average, is c<strong>on</strong>tinuous. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

flat physical vacuum is also unique: it is the same for all observers. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model<br />

thus c<strong>on</strong>tains both a minimum length and a c<strong>on</strong>tinuous vacuum. <str<strong>on</strong>g>The</str<strong>on</strong>g> two aspects do<br />

not c<strong>on</strong>tradict each other.<br />

In nature, quantum particles move: quantum particles change positi<strong>on</strong> and phase over<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


quantum theory deduced from strands 175<br />

A fermi<strong>on</strong><br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g> model :<br />

tails<br />

core<br />

belt trick<br />

orientati<strong>on</strong><br />

positi<strong>on</strong>s<br />

phases<br />

crossing<br />

orientati<strong>on</strong>s<br />

time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches<br />

Observed<br />

probability<br />

density :<br />

spin<br />

orientati<strong>on</strong><br />

positi<strong>on</strong><br />

phase<br />

Page 186<br />

FIGURE 18 A fermi<strong>on</strong> is described by a tangle <str<strong>on</strong>g>of</str<strong>on</strong>g> two or three strands. <str<strong>on</strong>g>The</str<strong>on</strong>g> crossings in the tangle core<br />

and their properties lead, after averaging, to the wave functi<strong>on</strong> and the probability density.<br />

time. We therefore must define these c<strong>on</strong>cepts. At this stage, as just explained, we c<strong>on</strong>centrate<br />

<strong>on</strong> quantum matter particles and leave radiati<strong>on</strong> particles for later <strong>on</strong>. As illustrated<br />

in Figure 18 and Figure 19, wedefine:<br />

⊳ An elementary matter particle,orfermi<strong>on</strong>, is a tangle <str<strong>on</strong>g>of</str<strong>on</strong>g> two or more strands<br />

that realizes the belt trick.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> details <str<strong>on</strong>g>of</str<strong>on</strong>g> this definiti<strong>on</strong> will become clear shortly, including the importance <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

related tangle family. In every tangle, the important structure is the tangle core: thecore<br />

is the that regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle that c<strong>on</strong>tains the crossings. <str<strong>on</strong>g>The</str<strong>on</strong>g> core is c<strong>on</strong>nected to the<br />

border <str<strong>on</strong>g>of</str<strong>on</strong>g> space by the tails or tethers <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle is given by the centre <str<strong>on</strong>g>of</str<strong>on</strong>g> the averaged tangle core.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> particle positi<strong>on</strong> is thus the average <str<strong>on</strong>g>of</str<strong>on</strong>g> all its crossing positi<strong>on</strong>s.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> phase <str<strong>on</strong>g>of</str<strong>on</strong>g> a matter particle is given by half the angle that describes the<br />

orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle core around the spin axis. <str<strong>on</strong>g>The</str<strong>on</strong>g> particle phase is thus<br />

the average <str<strong>on</strong>g>of</str<strong>on</strong>g> all its crossing phases.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> spin orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a matter particle is given by the rotati<strong>on</strong> axis <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

core. <str<strong>on</strong>g>The</str<strong>on</strong>g> spin orientati<strong>on</strong> is thus the average <str<strong>on</strong>g>of</str<strong>on</strong>g> all its crossing orientati<strong>on</strong>s.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> wave functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a matter particle is a blurred rendering <str<strong>on</strong>g>of</str<strong>on</strong>g> the crossings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its fluctuating strands.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se definiti<strong>on</strong>s are illustrated in Figure 18 and will be explored in detail below. We<br />

note that all these definiti<strong>on</strong>s imply a short-time average over tangle fluctuati<strong>on</strong>s. With<br />

the definiti<strong>on</strong>s, we get:<br />

⊳ Moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> any quantum particle is the change <str<strong>on</strong>g>of</str<strong>on</strong>g> the positi<strong>on</strong> and orientati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its tangle core.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


176 8 quantum theory deduced from strands<br />

In nature, quantum particle moti<strong>on</strong> is described by quantum theory. <str<strong>on</strong>g>The</str<strong>on</strong>g>mainproperty<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory is the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> the invariant quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> ħ. Inthestrand<br />

model, ħ/2 is described by a single crossing switch; the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong><br />

is thus invariant by definiti<strong>on</strong>.<br />

We now explore in detail how the quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> ħ determines the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

quantum particles. In particular, we will show that tangle fluctuati<strong>on</strong>s reproduce usual<br />

textbook quantum theory. As an advance summary, we clarify that<br />

Page 225<br />

⊳ Free quantum particle moti<strong>on</strong> is due to fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle tails. <str<strong>on</strong>g>The</str<strong>on</strong>g>deformati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle core are not important for free moti<strong>on</strong>, and we can<br />

neglect them in this case.<br />

In other words, when exploring quantum theory, we approximate tangle cores as being<br />

rigid. Wewillstudycore deformati<strong>on</strong>s in the next chapter, where we show that they<br />

are related to interacti<strong>on</strong>s. Core deformati<strong>on</strong>s will lead to quantum field theory. In this<br />

chapter we explore just the deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle tails; theyproducethemoti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>free<br />

(and stable) quantum particles. In short, tail deformati<strong>on</strong>s lead to quantum mechanics.<br />

To deduce quantum mechanics from strands, we first study the rotati<strong>on</strong> and then the<br />

translati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> free matter particles.<br />

Rotati<strong>on</strong>, spin 1/2 and the belt trick<br />

In nature, quantum particles are described by their behaviour under rotati<strong>on</strong> and by their<br />

behaviour under exchange. <str<strong>on</strong>g>The</str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle under rotati<strong>on</strong> is described by<br />

its spin value, its spin axis and its phase. <str<strong>on</strong>g>The</str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum particles under<br />

exchange can be <str<strong>on</strong>g>of</str<strong>on</strong>g> two types: a quantum particle can be a fermi<strong>on</strong> or a bos<strong>on</strong>. In nature,<br />

particles with integer spin are bos<strong>on</strong>s, and particles with half-integer spin are fermi<strong>on</strong>s. This<br />

is the spin–statistics theorem.<br />

We now show that all properties <str<strong>on</strong>g>of</str<strong>on</strong>g> particle rotati<strong>on</strong> and exchange follow from the<br />

strand model. We start with the case <str<strong>on</strong>g>of</str<strong>on</strong>g> spin 1/2 particles, and first clarify the nature <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particle rotati<strong>on</strong>. (We follow the usual c<strong>on</strong>venti<strong>on</strong> to use ‘spin 1/2’ as a shorthand for<br />

‘z-comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> spin with value ħ/2’.)<br />

It is sometimes claimed that spin is not due to rotati<strong>on</strong>. This misleading statement is<br />

due to two arguments that are repeated so <str<strong>on</strong>g>of</str<strong>on</strong>g>ten that they are rarely questi<strong>on</strong>ed. First,<br />

it is said, spin 1/2 particles cannot be modelled as small rotating st<strong>on</strong>es. Sec<strong>on</strong>dly, it is<br />

allegedly impossible to imagine rotating electric charge distributi<strong>on</strong>s with a speed <str<strong>on</strong>g>of</str<strong>on</strong>g> rotati<strong>on</strong><br />

below that <str<strong>on</strong>g>of</str<strong>on</strong>g> light and an electrostatic energy below the observed particle masses.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se statements are correct. Despite being correct, there is a way to get around them,<br />

namely by modelling particles with strands; at the present stage, we focus <strong>on</strong> the first<br />

argument: we will show that spin can be modelled as rotati<strong>on</strong>.<br />

In the strand model, for all quantum particles we have:<br />

⊳ Spin is core rotati<strong>on</strong>.<br />

Indeed, in the strand model, all quantum particles, including those with spin 1/2, differ<br />

from everyday objects such as st<strong>on</strong>es, and the essential difference is due to extensi<strong>on</strong>:<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


quantum theory deduced from strands 177<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> belt trick or string trick or plate trick or scissor trick explains the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous<br />

core rotati<strong>on</strong> for any number <str<strong>on</strong>g>of</str<strong>on</strong>g> tails. A rotati<strong>on</strong> by 4 is equivalent to n<strong>on</strong>e at all :<br />

moving<br />

tails<br />

aside<br />

moving<br />

upper<br />

tails<br />

moving<br />

lower<br />

tails<br />

moving<br />

all<br />

tails<br />

core<br />

(or<br />

belt<br />

buckle)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> same equivalence can be shown with the original versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt trick :<br />

rotating the buckle either by 4,<br />

or simply rearranging the belts,<br />

independently <str<strong>on</strong>g>of</str<strong>on</strong>g> their number,<br />

yields the other situati<strong>on</strong><br />

FIGURE 19 <str<strong>on</strong>g>The</str<strong>on</strong>g> belt trick –orstring trick or plate trick or scissor trick – shows that a rotati<strong>on</strong> by 4 π <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

central object with three or more tails (or with <strong>on</strong>e or more ribb<strong>on</strong>s) attached to spatial infinity is<br />

equivalent to no rotati<strong>on</strong> at all. This equivalence allows a suspended object, such as a belt buckle or a<br />

tangle core, to rotate for ever. <str<strong>on</strong>g>The</str<strong>on</strong>g> belt trick thus shows that tangle cores made from two or more<br />

strands behave as spin 1/2 particles.<br />

⊳ Quantum particles are particles whose tails cannot be neglected.<br />

For st<strong>on</strong>es and other everyday objects, tails do not play an important role, because everyday<br />

objects are mixed states, and not eigenstates <str<strong>on</strong>g>of</str<strong>on</strong>g> angular momentum. In short, in<br />

everyday objects, tails can be neglected. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, everyday objects are neither fermi<strong>on</strong>s<br />

nor bos<strong>on</strong>s. But for quantum particles, the tails are essential. Step by step we will see<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


178 8 quantum theory deduced from strands<br />

Ref. 162<br />

that<br />

FIGURE 20 <str<strong>on</strong>g>The</str<strong>on</strong>g> belt trick: a double<br />

rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt buckle is equivalent to<br />

no rotati<strong>on</strong>; te animati<strong>on</strong> shows <strong>on</strong>e way<br />

in which the belt trick can be performed.<br />

Not shown: the belt trick is also possible<br />

with any number <str<strong>on</strong>g>of</str<strong>on</strong>g> belts attached to the<br />

buckle. (QuickTime film © Greg Egan)<br />

FIGURE 21 <str<strong>on</strong>g>The</str<strong>on</strong>g> belt trick again: this<br />

animati<strong>on</strong> shows another way – another<br />

directi<strong>on</strong> – in which the trick can be<br />

performed, for the same belt orientati<strong>on</strong><br />

as in the previous figure. (QuickTime film<br />

©GregEgan)<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> tails <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum particles explain their spin behaviour, theirexchange<br />

behaviour and their wave behaviour.<br />

In particular, we will see that in the strand model, wave functi<strong>on</strong>s are blurred tangles; we<br />

can thus explore the general behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> wave functi<strong>on</strong>s by exploring the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tangles.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> spin behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum particles is a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> strand tails. Indeed, it<br />

has been known for about a century that the so-called belt trick –illustratedinFigure 19,<br />

Figure 20, Figure 21 and Figure 22 – can be used, together with its variati<strong>on</strong>s, to model<br />

the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> spin 1/2 particles under rotati<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> belt trick is the observati<strong>on</strong> that<br />

a belt buckle rotated by two full turns – in c<strong>on</strong>trast to a buckle rotated by <strong>on</strong>ly <strong>on</strong>e full<br />

turn – can be brought back into its original state without moving the buckle; <strong>on</strong>ly the<br />

moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt is necessary. <str<strong>on</strong>g>The</str<strong>on</strong>g> belt trick is also called the scissor trick,theplate trick,<br />

the string trick, thePhilippine wine dance or the Balinese candle dance. It is sometimes<br />

incorrectly attributed to Dirac.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> belt trick is <str<strong>on</strong>g>of</str<strong>on</strong>g> central importance in the strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> spin 1/2 particles. In<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


quantum theory deduced from strands 179<br />

Page 200<br />

Page 191<br />

Challenge 127 e<br />

FIGURE 22 Assume that the belt cannot be observed, but the square object can, and that it represents<br />

a particle. <str<strong>on</strong>g>The</str<strong>on</strong>g> animati<strong>on</strong> then shows that such a particle (the square object) can return to the starting<br />

positi<strong>on</strong> after rotati<strong>on</strong> by 4π (but not after 2π). Such a ‘belted’ or ‘tethered’ particle thus fulfils the<br />

defining property <str<strong>on</strong>g>of</str<strong>on</strong>g> a spin 1/2 particle: rotatingitby4π is equivalent to no rotati<strong>on</strong> at all. <str<strong>on</strong>g>The</str<strong>on</strong>g> belted<br />

square thus represents the spinor wave functi<strong>on</strong>; for example, a 2π rotati<strong>on</strong> leads to a twist; this means<br />

a change <str<strong>on</strong>g>of</str<strong>on</strong>g> the sign <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave functi<strong>on</strong>. A 4π rotati<strong>on</strong> has no influence <strong>on</strong> the wave functi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

equivalence is shown here with two attached belts, but the trick works with any positive number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

belts! You can easily repeat the trick at home, with a paper strip or <strong>on</strong>e or several real belts. (QuickTime<br />

film © Ant<strong>on</strong>io Martos)<br />

the strand model, all spin 1/2 particles are made <str<strong>on</strong>g>of</str<strong>on</strong>g> two (or more) tangled strands, and<br />

thus have four (or more) tails to the ‘border’, as shown in Figure 19. For such tangles, a<br />

rotati<strong>on</strong> by 4π <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle core – thus a rotati<strong>on</strong> by two full turns – can bring back the<br />

tangle to the original state, provided that the tails can fluctuate. Any system that returns<br />

to its original state after rotati<strong>on</strong> by 4π isdescribedbyspin1/2.Infact,thetailsmustbe<br />

unobservable for this equivalence to hold; in the strand model, tails are simple strands<br />

and thus indeed unobservable. We will show below that the intermediate twisting <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

tails that appears after rotati<strong>on</strong> by <strong>on</strong>ly 2π corresp<strong>on</strong>ds to a multiplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave<br />

functi<strong>on</strong> by −1, again as expected from a spin 1/2 particle.<br />

If we replace each belt by its two coloured edges, Figure 22 shows how tails behave<br />

when a spin 1/2 tangle is rotated. By the way, systems with tails – be they strands or<br />

bands – are the <strong>on</strong>ly possible systems that realize the spin 1/2 property. Only systems with<br />

tails to spatial infinity have the property that a rotati<strong>on</strong> by 4π is equivalent to no rotati<strong>on</strong><br />

at all. (Can you show this?) <str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental c<strong>on</strong>necti<strong>on</strong> between spin 1/2 and extensi<strong>on</strong><br />

is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the properties that led to the strand model.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> animati<strong>on</strong>s show that the belt trick works with <strong>on</strong>e and with two belts attached<br />

to the buckle. In fact, belt trick works with any number <str<strong>on</strong>g>of</str<strong>on</strong>g> belts attached to the buckle.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> belt trick even works with infinitely many belts, and also with a full two-dimensi<strong>on</strong>al<br />

sheet. <str<strong>on</strong>g>The</str<strong>on</strong>g> w<strong>on</strong>derful video www.youtube.com/watch?v=UtdljdoFAwg by Gareth Taylor<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


180 8 quantum theory deduced from strands<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. I, page 168<br />

Ref. 162<br />

FIGURE 23 <str<strong>on</strong>g>The</str<strong>on</strong>g> belt trick realized as<br />

a rotating ball attached to a sheet<br />

(QuickTime film © www.ariwatch.<br />

com/VS/Algorithms/DiracStringTrick.<br />

htm).<br />

and the slightly different animati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 23 both illustrate the situati<strong>on</strong>. A sphere<br />

glued to a flexible sheet can be rotated as <str<strong>on</strong>g>of</str<strong>on</strong>g>ten as you want: if you do this correctly, there<br />

is no tangling and you can go <strong>on</strong> for ever.<br />

In fact, the ‘belt’ trick also works if the central object to be rotated is glued into a<br />

flexible, three-dimensi<strong>on</strong>al jelly or mattress. This was shown early <strong>on</strong> in our adventure.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> animati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt trick lead us to a statement <strong>on</strong> strands and tangles that is<br />

central for the strand model:<br />

⊳ An object or a tangle core that is attached by (three or more) tails to the<br />

border <str<strong>on</strong>g>of</str<strong>on</strong>g> space can rotate c<strong>on</strong>tinuously.<br />

Here we made the step from belts to strands. In other terms, the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous<br />

rotati<strong>on</strong> allows us to describe spin 1/2 particles by rotating tangles. In other terms,<br />

⊳ Rotating tangles model spin.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> tail fluctuati<strong>on</strong>s required to rearrange the tails after two full turns <str<strong>on</strong>g>of</str<strong>on</strong>g> the core can<br />

be seen to model the average precessi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the spin axis. We thus c<strong>on</strong>firm that spin and<br />

rotati<strong>on</strong> are the same for spin 1/2 particles.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> belt trick is not unique<br />

One aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt trick seems unmenti<strong>on</strong>ed in the research literature: after a rotati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the belt buckle or tangle core by 4π, there are various opti<strong>on</strong>s to untangle the tails. Two<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


quantum theory deduced from strands 181<br />

welded seals<br />

fresh blood in<br />

platelet-poor<br />

blood out<br />

plastic bag<br />

rotates at over 100<br />

revoluti<strong>on</strong>s per sec<strong>on</strong>d<br />

Challenge 128 e<br />

FIGURE 24 In an apheresis machine, the central bag spins at high speed despite being c<strong>on</strong>nected with<br />

tubes to a patient; this happens with a mechanism that c<strong>on</strong>tinuously realizes the belt trick (photo<br />

© Wikimedia).<br />

different opti<strong>on</strong>s are shown in Figure 20 and Figure 21. You can test this yourself, using a<br />

real belt. In fact, there are two extreme ways to perform the belt trick, and a c<strong>on</strong>tinuum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> opti<strong>on</strong>s in between. <str<strong>on</strong>g>The</str<strong>on</strong>g>se opti<strong>on</strong>s will be <str<strong>on</strong>g>of</str<strong>on</strong>g> central importance later <strong>on</strong>: the opti<strong>on</strong>s<br />

require a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong>s with four complex functi<strong>on</strong>s. We will discover that<br />

the various opti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt trick are related to the difference between matter and<br />

antimatter and to the parity violati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong>.<br />

An aside: the belt trick saves lives<br />

Without the belt trick, the apheresis machines found in many hospitals would not work.<br />

When a pers<strong>on</strong> d<strong>on</strong>ates blood platelets, the blood is c<strong>on</strong>tinuously extracted from <strong>on</strong>e<br />

arm and fed into a bag in a centrifuge, where the platelets are retained. <str<strong>on</strong>g>The</str<strong>on</strong>g> platelet-free<br />

blood then flows back into the other arm <str<strong>on</strong>g>of</str<strong>on</strong>g> the d<strong>on</strong>or. This happens c<strong>on</strong>tinuously, for<br />

about an hour or two. In order to be sterile, tubes and bag are used <strong>on</strong>ly <strong>on</strong>ce and are<br />

effectively <strong>on</strong>e piece, as shown in Figure 24. Apheresis machines need tethered rotati<strong>on</strong><br />

to work. Topologically, this set-up is identical to a fermi<strong>on</strong> tangle: each tube corresp<strong>on</strong>ds<br />

to <strong>on</strong>e belt, or two strand tails, and the rotating bag corresp<strong>on</strong>ds to the rotating core.<br />

In such apheresis machines, the centrifugati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the central bag takes place at over<br />

100 revoluti<strong>on</strong>s per sec<strong>on</strong>d, in the way illustrated in Figure 25. To avoid tangling up the<br />

blood tubes, a bracket moves the tubes during each rotati<strong>on</strong>, alternatively up and down.<br />

This so-called anti-twister mechanism produces precisely the moti<strong>on</strong> al<strong>on</strong>g which the<br />

belt moves when it is untangled after the buckle is rotated by 4π. An apheresis machine<br />

thus performs the belt trick 50 times per sec<strong>on</strong>d, with each rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the centrifugati<strong>on</strong>.<br />

Due to the centrifugati<strong>on</strong>, the lighter platelets are retained in the bag, and the heavier<br />

comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the blood are pumped back to the d<strong>on</strong>or. <str<strong>on</strong>g>The</str<strong>on</strong>g> retained platelets are then<br />

used to treat patients with leukaemia or severe blood loss due to injury. A single platelet<br />

d<strong>on</strong>ati<strong>on</strong> can sustain several lives.<br />

In short, without the belt trick, platelet d<strong>on</strong>ati<strong>on</strong>s would not be sterile and would thus<br />

be impossible. Only the belt trick, or tethered rotati<strong>on</strong>, allows sterile platelet d<strong>on</strong>ati<strong>on</strong>s<br />

that save other people’s lives.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


182 8 quantum theory deduced from strands<br />

FIGURE 25 <str<strong>on</strong>g>The</str<strong>on</strong>g> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

apheresis machine – and yet<br />

another visualisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt<br />

trick, here with 6 belts<br />

(QuickTime film © Jas<strong>on</strong> Hise).<br />

FIGURE 26 A versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

antitwister mechanism, or belt<br />

trick, with 96 belts attached to a<br />

black and white ball that rotates<br />

c<strong>on</strong>tinuously (QuickTime film<br />

©Jas<strong>on</strong>Hise).<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


quantum theory deduced from strands 183<br />

Any two sufficiently complex tangles behave as fermi<strong>on</strong>s<br />

under (single or double) exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> their cores (try it) :<br />

FIGURE 27 When two spin 1/2 tangles each made <str<strong>on</strong>g>of</str<strong>on</strong>g> several strands or bands, are exchanged twice, it<br />

is possible to rearrange their tails to yield the original situati<strong>on</strong>. This is not possible when the tangles<br />

are <strong>on</strong>ly exchanged <strong>on</strong>ce. Spin 1/2 tangles are thus fermi<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> figure presents comm<strong>on</strong> systems that<br />

show this behaviour.<br />

Fermi<strong>on</strong>s and spin<br />

In nature, fermi<strong>on</strong>s are defined as those particles whose wave functi<strong>on</strong> changes sign when<br />

they are exchanged. Does the strand model reproduce this observati<strong>on</strong>?<br />

We will see below that in the strand model, wave functi<strong>on</strong>s are blurred tangles. We<br />

thus can explore exchange properties <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum particles and <str<strong>on</strong>g>of</str<strong>on</strong>g> their wave functi<strong>on</strong>s<br />

by exploring the exchange properties <str<strong>on</strong>g>of</str<strong>on</strong>g> their tangles. Now, if we exchange two tangle<br />

cores twice, while keeping all tails c<strong>on</strong>necti<strong>on</strong>s fixed, tail fluctuati<strong>on</strong>s al<strong>on</strong>e can return the<br />

situati<strong>on</strong> back to the original state! <str<strong>on</strong>g>The</str<strong>on</strong>g> exchange properties <str<strong>on</strong>g>of</str<strong>on</strong>g> spin 1/2 tangles are easily<br />

checked by playing around with some pieces <str<strong>on</strong>g>of</str<strong>on</strong>g> rope or bands, as shown in Figure 27, or<br />

by watching the animati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 28.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> simplest possible versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment is the following: take two c<str<strong>on</strong>g>of</str<strong>on</strong>g>fee cups,<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


184 8 quantum theory deduced from strands<br />

FIGURE 28 Assume that the belts cannot be observed, but the square objects can, and that they<br />

represent particles. We know from above that belted buckles behave as spin 1/2 particles. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

animati<strong>on</strong> shows that two such particles return to the original situati<strong>on</strong> if they are switched in positi<strong>on</strong><br />

twice (but not <strong>on</strong>ce). Such particles thus fulfil the defining property <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong>s. (For the opposite case,<br />

that <str<strong>on</strong>g>of</str<strong>on</strong>g> bos<strong>on</strong>s, a simple exchange would lead to the identical situati<strong>on</strong>.) You can repeat the trick at<br />

home using paper strips. <str<strong>on</strong>g>The</str<strong>on</strong>g> equivalence is shown here with two belts per particle, but the trick works<br />

with any positive number <str<strong>on</strong>g>of</str<strong>on</strong>g> belts attached to each buckle. This animati<strong>on</strong> is the essential part <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

pro<str<strong>on</strong>g>of</str<strong>on</strong>g> that spin 1/2 particles are fermi<strong>on</strong>s. This is called the spin–statistics theorem. (QuickTime film<br />

© Ant<strong>on</strong>io Martos)<br />

<strong>on</strong>e in each hand, and cross the two arms over each other (<strong>on</strong>ce). Keeping the orientati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the cups fixed in space, uncross the arms by walking around the cups. This is possible,<br />

but as a result, both arms are twisted. If you are intrepid, you can repeat this with two (or<br />

more) people holding the cups. And you can check the difference with what is possible<br />

after a double crossing <str<strong>on</strong>g>of</str<strong>on</strong>g> arms: in this case, all arms return to the starting situati<strong>on</strong>.<br />

All these experiments show:<br />

⊳ A simple exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> two spin 1/2 particles (tangles, cups <strong>on</strong> hands, belt<br />

buckles) is equivalent to a multiplicati<strong>on</strong> by −1, i.e., to twisted tangles, arms<br />

or belts.<br />

⊳ In c<strong>on</strong>trast, a double exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> two spin 1/2 particles can always be untwisted<br />

and is equivalent to no exchange at all.<br />

Spin 1/2 particles are thus fermi<strong>on</strong>s. In other words, the strand model reproduces the<br />

spin–statistics theorem for spin 1/2: all elementary matter particles are fermi<strong>on</strong>s. In summary,<br />

a tangle core made <str<strong>on</strong>g>of</str<strong>on</strong>g> two or more tangled strands behaves – both under rotati<strong>on</strong>s<br />

and under exchange – like a spin 1/2 particle.<br />

We note that it is sometimes claimed that the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> spin 1/2 can <strong>on</strong>ly be mod-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


quantum theory deduced from strands 185<br />

A bos<strong>on</strong><br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g> model :<br />

tail<br />

spin<br />

time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches<br />

Observed<br />

probability<br />

density :<br />

spin<br />

core<br />

Challenge 129 e<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. IV, page 117<br />

FIGURE 29 A massive spin 1 particle in the strand model (left) and the observed probability density<br />

when averaging its crossings over l<strong>on</strong>g time scales (right).<br />

Bos<strong>on</strong> exchange<br />

Starting situati<strong>on</strong>, before exchange<br />

Final situati<strong>on</strong>, after exchange<br />

FIGURE 30 In the strand model, unknotted bos<strong>on</strong> tangles can switch states without generating<br />

crossings, and thus without changing the sign <str<strong>on</strong>g>of</str<strong>on</strong>g> the phase.<br />

elled with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> a topology change <str<strong>on</strong>g>of</str<strong>on</strong>g> space or space-time. <str<strong>on</strong>g>The</str<strong>on</strong>g> various belt trick<br />

animati<strong>on</strong>s given above prove that this is not correct: spin 1/2 can be modelled in three<br />

dimensi<strong>on</strong>s in all its aspects. No topology change is needed. You might want to model<br />

the creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a spin 1/2 particle–antiparticle pair as afinalargument.<br />

Bos<strong>on</strong>s and spin<br />

For tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e strand – thus with two tails to the border – a rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

tangle core by 2π restores the original state. Such a tangle, shown in Figure 29, thus<br />

behaves like a spin 1 particle. <str<strong>on</strong>g>The</str<strong>on</strong>g> figure also shows the wave functi<strong>on</strong> that results from<br />

time averaging the crossings.<br />

Bos<strong>on</strong>s are particles whose combined state does not change phase when two particles<br />

are exchanged. We note directly that this is impossible with the tangle shown in Figure<br />

29; the feat is <strong>on</strong>ly possible if the bos<strong>on</strong> tangle is made <str<strong>on</strong>g>of</str<strong>on</strong>g> unknotted strands. Indeed,<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


186 8 quantum theory deduced from strands<br />

for unknotted strands, the exchange process can easily switch the two deformati<strong>on</strong>s, as<br />

illustrated in Figure 30.<br />

Page 314, page 330<br />

Page 281<br />

Challenge 130 e<br />

Page 164<br />

⊳ Massive elementary particles thus can <strong>on</strong>ly be bos<strong>on</strong>s if they also have an<br />

unknotted tangle in the tangle family that represents them.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> simplest strand model for each elementary bos<strong>on</strong> – the phot<strong>on</strong>, the W bos<strong>on</strong>, the Z<br />

bos<strong>on</strong>, the glu<strong>on</strong> and the Higgs bos<strong>on</strong> – must thus be made <str<strong>on</strong>g>of</str<strong>on</strong>g> unknotted strands. We<br />

will deduce the precise tangles below, in the chapter <strong>on</strong> the particle spectrum. <str<strong>on</strong>g>The</str<strong>on</strong>g> tangle<br />

for the hypothetical gravit<strong>on</strong> – also a bos<strong>on</strong>, but in this case with spin 2 and invariant<br />

under core rotati<strong>on</strong>s by π – will be introduced in the chapter <strong>on</strong> general relativity.<br />

In summary, unknotted tangles realize the spin–statistics theorem for particles with<br />

integer spin: radiati<strong>on</strong> particles, which have integer spin, are automatically bos<strong>on</strong>s.<br />

Spin and statistics<br />

We just saw that fluctuating strands reproduce the spin–statistics theorem for fermi<strong>on</strong>s<br />

and for bos<strong>on</strong>s, and thus for all elementary particles, if appropriate tangles are used.<br />

Apart from this fundamental result, the strand model also implies that no spins lower<br />

than ħ/2 are possible, and that spin values are always an integer multiple <str<strong>on</strong>g>of</str<strong>on</strong>g> ħ/2. All this<br />

matches observati<strong>on</strong>s.<br />

In the strand model, temporal evoluti<strong>on</strong> and particle reacti<strong>on</strong>s c<strong>on</strong>serve spin, because<br />

all interacti<strong>on</strong>s c<strong>on</strong>serve the number <str<strong>on</strong>g>of</str<strong>on</strong>g> strands and tails. <str<strong>on</strong>g>The</str<strong>on</strong>g> details <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>servati<strong>on</strong><br />

will become clear later <strong>on</strong>. Again, the result agrees with observati<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus explains the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> permutati<strong>on</strong> symmetry in nature: permutati<strong>on</strong><br />

symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> particles is due the possibility to exchange tangle cores <str<strong>on</strong>g>of</str<strong>on</strong>g> identical<br />

particles; and identical particles have tangle cores <str<strong>on</strong>g>of</str<strong>on</strong>g> identical topology. We have thus<br />

already ticked <str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>on</strong>e item from the millennium list <str<strong>on</strong>g>of</str<strong>on</strong>g> unexplained properties <str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

In summary, the strand model reproduces the rotati<strong>on</strong>, the spin and the exchange<br />

behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary quantum particles – both fermi<strong>on</strong>s and bos<strong>on</strong>s – in all its observed<br />

details. We now proceed to the next step: quantum mechanics <str<strong>on</strong>g>of</str<strong>on</strong>g> translati<strong>on</strong>al<br />

moti<strong>on</strong>.<br />

Tangle functi<strong>on</strong>s: blurred tangles<br />

In the strand model, particle moti<strong>on</strong> is due to the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle cores. But according<br />

to the fundamental principle, strands and tangles are not observable; <strong>on</strong>ly crossing<br />

switches are. To explore the relati<strong>on</strong> between crossing switches and moti<strong>on</strong>, we first recall<br />

what a crossing is.<br />

⊳ A crossing <str<strong>on</strong>g>of</str<strong>on</strong>g> strands is a local minimum <str<strong>on</strong>g>of</str<strong>on</strong>g> strand distance. <str<strong>on</strong>g>The</str<strong>on</strong>g> positi<strong>on</strong>,<br />

orientati<strong>on</strong> and the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> a crossing are defined by the space vector corresp<strong>on</strong>ding<br />

to the local distance minimum, as shown in Figure 31. <str<strong>on</strong>g>The</str<strong>on</strong>g>sign<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the orientati<strong>on</strong> is defined by arbitrarily selecting <strong>on</strong>e strand as the starting<br />

strand. <str<strong>on</strong>g>The</str<strong>on</strong>g> even larger arbitrariness in the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the phase will<br />

be <str<strong>on</strong>g>of</str<strong>on</strong>g> great importance later <strong>on</strong>, and lead to gauge invariance.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


quantum theory deduced from strands 187<br />

A strand crossing<br />

shortest distance<br />

phase<br />

positi<strong>on</strong><br />

orientati<strong>on</strong><br />

FIGURE 31 <str<strong>on</strong>g>The</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a crossing, its positi<strong>on</strong>, its orientati<strong>on</strong> and its phase.<br />

To describe the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles, we need c<strong>on</strong>cepts that allow us to take the step from<br />

general strand fluctuati<strong>on</strong>s to the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle cores. As a mathematical tool to describe<br />

crossing fluctuati<strong>on</strong>s, we define:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> tangle functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a system described by a tangle is the short-time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the positi<strong>on</strong>s and the orientati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> its crossings (and thus not <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

crossing switches and not <str<strong>on</strong>g>of</str<strong>on</strong>g> the strands themselves).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> tangle functi<strong>on</strong> can be called the ‘oriented crossing density’ or simply the ‘blurred<br />

tangle’. As such, the tangle functi<strong>on</strong> is a c<strong>on</strong>tinuous functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> space, similar to a cloud;<br />

we will see below what its precise mathematical descripti<strong>on</strong> looks like. <str<strong>on</strong>g>The</str<strong>on</strong>g> tangle functi<strong>on</strong><br />

captures the short-time average <str<strong>on</strong>g>of</str<strong>on</strong>g> all possible tangle fluctuati<strong>on</strong>s. For a tangle made<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> two strands, Figure 32 illustrates the idea. However, the right-hand side <str<strong>on</strong>g>of</str<strong>on</strong>g> the figure<br />

does not show the tangle functi<strong>on</strong> itself, but its probability density. We will see shortly<br />

that the probability density is the (square <str<strong>on</strong>g>of</str<strong>on</strong>g> the) crossing positi<strong>on</strong> density, whereas the<br />

tangle functi<strong>on</strong> is a density that describes both positi<strong>on</strong> and orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> tangle functi<strong>on</strong> at any given time is not observable, as its definiti<strong>on</strong> is not based<br />

<strong>on</strong> crossing switches, but <strong>on</strong>ly <strong>on</strong> crossings. However, since crossing switches <strong>on</strong>ly occur<br />

at places with crossings, the tangle functi<strong>on</strong> is a useful tool to calculate observables. In<br />

fact, we will show that the tangle functi<strong>on</strong> is just another name for what is usually called<br />

the wave functi<strong>on</strong>. In short, the tangle functi<strong>on</strong>, i.e., the oriented crossing density, will<br />

turn out to describe the quantum state <str<strong>on</strong>g>of</str<strong>on</strong>g> a system.<br />

In summary, the tangle functi<strong>on</strong> is a blurred image <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle – with the important<br />

detail that the crossings are blurred, not the strands.<br />

⊳ For the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle functi<strong>on</strong>, the short-time average <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings<br />

is taken over the typical time resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the observer. This is a time that<br />

is much l<strong>on</strong>ger than the Planck time, but also much shorter than the typical<br />

evoluti<strong>on</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> the system. <str<strong>on</strong>g>The</str<strong>on</strong>g> time resoluti<strong>on</strong> is thus what the observer<br />

calls an ‘instant’ <str<strong>on</strong>g>of</str<strong>on</strong>g> time. Typically – and in all known experiments – this<br />

will be 10 −25 s or more; the typical averaging will thus be over a time interval<br />

with a value between 10 −43 s, the Planck time, and around 10 −25 s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re are two ways to imagine tangle fluctuati<strong>on</strong>s and to deduce the short-time average<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


188 8 quantum theory deduced from strands<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g> model :<br />

A slowly moving strand :<br />

time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches<br />

Observed<br />

probability<br />

density, i.e.,<br />

crossing<br />

switch<br />

density :<br />

Challenge 131 e<br />

A rapidly moving strand :<br />

precessi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> spin axis<br />

FIGURE 32 Some strand c<strong>on</strong>figurati<strong>on</strong>s, some <str<strong>on</strong>g>of</str<strong>on</strong>g> their short time fluctuati<strong>on</strong>s, and the corresp<strong>on</strong>ding<br />

probability density that results when averaging crossing switches over time. (<str<strong>on</strong>g>The</str<strong>on</strong>g> black dots are not<br />

completely drawn correctly.)<br />

from a given tangle. <str<strong>on</strong>g>The</str<strong>on</strong>g> first, straightforward way is to average over all possible strand<br />

fluctuati<strong>on</strong>s during the short time. Each piece <str<strong>on</strong>g>of</str<strong>on</strong>g> strand canchangeinshape,andasa<br />

result, we get a cloud. This is the comm<strong>on</strong> Schrödinger picture <str<strong>on</strong>g>of</str<strong>on</strong>g>thewavefuncti<strong>on</strong>and<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

quantum mechanics. <str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d, alternative way to average is to imagine that the tangle<br />

core as a whole changes positi<strong>on</strong> and orientati<strong>on</strong> randomly. This is easiest if the core with<br />

all its crossings is imagined to be tightened to a small, almost ‘point-like’ regi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>n<br />

all observables are also localized in that regi<strong>on</strong>. It is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten simpler to imagine an average<br />

over all positi<strong>on</strong> and orientati<strong>on</strong> fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> such a tightened core, that to imagine an<br />

average over all possible strand fluctuati<strong>on</strong>s. This alternate view leads to what physicists<br />

call the path integral formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum mechanics. (Can you show the equivalence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the two averaging methods?) Of course, in both cases the final result is that the tangle<br />

functi<strong>on</strong> is a cloud, i.e., a probability amplitude.<br />

Details <strong>on</strong> fluctuati<strong>on</strong>s and averages<br />

In the strand model, the strand fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> particle strands are a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

embedding <str<strong>on</strong>g>of</str<strong>on</strong>g> all particles in a background which itself is made <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuating vacuum<br />

strands. Fluctuati<strong>on</strong>s randomly add detours to particle strands and randomly shift the<br />

core positi<strong>on</strong>. Fluctuati<strong>on</strong>s do not keep the strand length c<strong>on</strong>stant. Fluctuati<strong>on</strong>s do not<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


quantum theory deduced from strands 189<br />

Challenge 132 e<br />

Page 296<br />

Page 110, page 169<br />

Page 205<br />

c<strong>on</strong>serve strand shape nor any other property <str<strong>on</strong>g>of</str<strong>on</strong>g> strands, as there is no mechanism that<br />

enforces such rules. <str<strong>on</strong>g>Strand</str<strong>on</strong>g> fluctuati<strong>on</strong>s are thus quite wild. What then can be said about<br />

the details <str<strong>on</strong>g>of</str<strong>on</strong>g> the averaging procedure for strand fluctuati<strong>on</strong>s?<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum are those strand fluctuati<strong>on</strong>s that lead to the definiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the background space. This definiti<strong>on</strong> is possible in a c<strong>on</strong>sistent manner <strong>on</strong>ly if the<br />

fluctuati<strong>on</strong>s are homogeneous and isotropic. <str<strong>on</strong>g>The</str<strong>on</strong>g> vacuum state can thus be defined as that<br />

state for which the fluctuati<strong>on</strong>s are (locally) homogeneous and isotropic. In particular,<br />

the fluctuati<strong>on</strong>s imply<br />

⊳ Flat vacuum has a tangle functi<strong>on</strong> that vanishes everywhere.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is an interesting exercise. <str<strong>on</strong>g>The</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a homogeneous and isotropic background<br />

space then implies c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy, linear and angular momentum <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particles travelling through it.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> fluctuati<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g>atanglelead, after averaging, to the tangle functi<strong>on</strong>, i.e., as we will<br />

see, to the wave functi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy and momentum implies that the<br />

time average <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle fluctuati<strong>on</strong>s also c<strong>on</strong>serves these quantities.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>refore we can c<strong>on</strong>tinue our discussi<strong>on</strong> without yet knowing the precise details <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the tangle fluctuati<strong>on</strong>s themselves. (We will provide these details below, in the secti<strong>on</strong><br />

<strong>on</strong> general relativity.) Here we <strong>on</strong>ly require that the average <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluctuati<strong>on</strong>s behaves<br />

in such a way as to be c<strong>on</strong>sistent with the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the background used by the observer.<br />

We thus make explicit use <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>victi<strong>on</strong> that a background-free descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nature is impossible, and that a fundamental descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature must c<strong>on</strong>tain a circular<br />

definiti<strong>on</strong> that makes an axiomatic descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature impossible. Despite this<br />

limitati<strong>on</strong>, such a circular descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature must be self-c<strong>on</strong>sistent.<br />

We will also show below that the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle functi<strong>on</strong> does not introduce<br />

hidden variables, even though first impressi<strong>on</strong> might suggest the opposite. In fact, it is<br />

possible to define something akin to a strand evoluti<strong>on</strong> equati<strong>on</strong>. However, it does not<br />

deepen our understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> the evoluti<strong>on</strong> equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave functi<strong>on</strong>.<br />

Tangle functi<strong>on</strong>s are wave functi<strong>on</strong>s<br />

In the following, we show that the tangle functi<strong>on</strong>, the blurred image <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle crossings,<br />

is the same as what is usually called the wave functi<strong>on</strong>. We recall what we know from<br />

textbook quantum theory:<br />

⊳ A single-particle wave functi<strong>on</strong> is, generally speaking, a rotating and diffusing<br />

cloud.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> rotati<strong>on</strong> describes the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the phase, and the diffusi<strong>on</strong> describes the evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the density. We now show that tangle functi<strong>on</strong>s have these and all other known<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> wave functi<strong>on</strong>s. We proceed by deducing all the properties from the definiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tangle functi<strong>on</strong>s. We recall that, being a short-time average, a tangle functi<strong>on</strong> is<br />

a c<strong>on</strong>tinuous functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> space and time.<br />

⊳ Using the tangle functi<strong>on</strong>, we define the strand crossing positi<strong>on</strong> density,<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


190 8 quantum theory deduced from strands<br />

or crossing density, for each point in space, by discarding the orientati<strong>on</strong><br />

informati<strong>on</strong>, counting the crossings in a volume, and taking the square root.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> crossing density – more precisely, its square root – is a positive number,<br />

more precisely, a positive real functi<strong>on</strong> R(x, t) <str<strong>on</strong>g>of</str<strong>on</strong>g> space and time.<br />

We will see shortly that the crossing positi<strong>on</strong> density is the square root <str<strong>on</strong>g>of</str<strong>on</strong>g> what is usually<br />

called the probability density.<br />

Challenge 133 s<br />

Page 206<br />

⊳ Atanglefuncti<strong>on</strong>alsodefinesanaverage crossing orientati<strong>on</strong> and a average<br />

phase at each point in space. <str<strong>on</strong>g>The</str<strong>on</strong>g> average crossing orientati<strong>on</strong> and the average<br />

phase are related to the spin orientati<strong>on</strong> and phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave functi<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> mathematical descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> these quantities depend <strong>on</strong> the approximati<strong>on</strong><br />

used.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> simplest approximati<strong>on</strong> for a tangle functi<strong>on</strong> is to assume, in the physical situati<strong>on</strong><br />

under study, that the spin directi<strong>on</strong> is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial positi<strong>on</strong> and thus not taken<br />

into c<strong>on</strong>siderati<strong>on</strong>; this approximati<strong>on</strong> will lead to the Schrödinger equati<strong>on</strong>. In this<br />

simplest approximati<strong>on</strong>, at each point in space, the local average orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluctuati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle core will just be described by a single angle. This quantum phase is<br />

a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> time and space and describes how much the local average phase is rotated<br />

around the fixed spin orientati<strong>on</strong>.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> quantum phase <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong>s is <strong>on</strong>e half the core rotati<strong>on</strong> angle α.<br />

Without the neglect <str<strong>on</strong>g>of</str<strong>on</strong>g> spin, and especially when the spin axis can change over space, the<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> orientati<strong>on</strong> and phase averages require more details; we will study these<br />

cases separately below. <str<strong>on</strong>g>The</str<strong>on</strong>g>y will lead to the n<strong>on</strong>-relativistic Pauli equati<strong>on</strong> and to the<br />

relativistic Dirac equati<strong>on</strong>.<br />

In short, in the simple approximati<strong>on</strong> when spin effects can be neglected, the local<br />

tangle functi<strong>on</strong> value can be described by <strong>on</strong>e real number R and by <strong>on</strong>e quantum<br />

phase α.<str<strong>on</strong>g>The</str<strong>on</strong>g>tanglefuncti<strong>on</strong>canthusbedescribedbyacomplex number ψ at each point<br />

in space and time:<br />

ψ(x, t) = R(x, t) e iα(x,t)/2 . (122)<br />

If a system changes with time, the tangle functi<strong>on</strong> changes; this leads to crossing<br />

switches; therefore, temporal evoluti<strong>on</strong> is expected to be observable through these crossing<br />

switches. As we will see shortly, this leads to an evoluti<strong>on</strong> equati<strong>on</strong> for tangle functi<strong>on</strong>s.<br />

Here is a fun challenge: how is the shortest distance between the strands, for a crossing<br />

located at positi<strong>on</strong> x and t, related to the magnitude, i.e., the absolute value R(x, t), <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

thewavefuncti<strong>on</strong>?<br />

We note that if many particles need to be described, the many-particle tangle functi<strong>on</strong><br />

defines a separate crossing density for each particle tangle.<br />

Tangle functi<strong>on</strong>s form a vector space. To show this, we need to define the linear combinati<strong>on</strong><br />

or superpositi<strong>on</strong> χ=a 1 ψ 1 +a 2 ψ 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> two tangle functi<strong>on</strong>s. This requires the<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


quantum theory deduced from strands 191<br />

definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two operati<strong>on</strong>s: scalar multiplicati<strong>on</strong> and additi<strong>on</strong>. We can do this in two<br />

ways. <str<strong>on</strong>g>The</str<strong>on</strong>g> first way is to define the operati<strong>on</strong>s for tangle functi<strong>on</strong>s directly, as is d<strong>on</strong>e in<br />

quantum mechanics:<br />

⊳ First, boring definiti<strong>on</strong>: <str<strong>on</strong>g>The</str<strong>on</strong>g> scalar multiplicati<strong>on</strong> aψ and the additi<strong>on</strong><br />

ψ 1 +ψ 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum states are taken by applying the relative operati<strong>on</strong>s <strong>on</strong><br />

complex numbers at each point in space, i.e., <strong>on</strong> the local values <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle<br />

functi<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d way to deduce the vector space is more fun, because it will help us to visualize<br />

quantum mechanics: we can define additi<strong>on</strong> and multiplicati<strong>on</strong> for tangles, and take the<br />

time average after the tangle operati<strong>on</strong> is performed.<br />

⊳ Sec<strong>on</strong>d, fun definiti<strong>on</strong>: <str<strong>on</strong>g>The</str<strong>on</strong>g> scalar multiplicati<strong>on</strong> aψ <str<strong>on</strong>g>of</str<strong>on</strong>g> a state ψ by a complex<br />

number a=re iδ is formed by taking a tangle underlying the tangle<br />

functi<strong>on</strong> ψ, then rotating the tangle core by the angle 2δ, and finally pushing<br />

afracti<strong>on</strong>1−r<str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle to the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space, thus keeping the fracti<strong>on</strong><br />

r <str<strong>on</strong>g>of</str<strong>on</strong>g> the original tangle at finite distances. Time averaging then leads to the<br />

tangle functi<strong>on</strong> aψ.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> scalar multiplicati<strong>on</strong> for strands is illustrated in Figure 33. <str<strong>on</strong>g>The</str<strong>on</strong>g>abovedefiniti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g><br />

scalar multiplicati<strong>on</strong> is <strong>on</strong>ly defined for factors r ⩽ 1. Indeed, no other factors ever<br />

appear in physical problems (provided all wave functi<strong>on</strong>s are normalized), so that scalar<br />

multiplicati<strong>on</strong> is not required for other scalars.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scalar multiplicati<strong>on</strong> is unique; indeed, even though there is<br />

a choice about which fracti<strong>on</strong> r <str<strong>on</strong>g>of</str<strong>on</strong>g> a tangle is kept and which fracti<strong>on</strong> 1−ris sent to<br />

the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space, the resulting tangle functi<strong>on</strong>, which is defined as an average over<br />

fluctuati<strong>on</strong>s, is independent from this choice.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> scalar multiplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> strands behaves as expected for 1 and 0. By c<strong>on</strong>structi<strong>on</strong>,<br />

the strand versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scalar multiplicati<strong>on</strong> is associative: we have a(bψ) = (ab)ψ. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

strand multiplicati<strong>on</strong> by −1 is defined as the rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the full tangle core by 2π.<br />

We also need to define the additi<strong>on</strong> operati<strong>on</strong> that appears in the linear combinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> two tangle functi<strong>on</strong>s. This is a straightforward complex additi<strong>on</strong> at each point in space.<br />

Again, for fun, we also define the operati<strong>on</strong> <strong>on</strong> tangles themselves, and take the time<br />

average that leads to the tangle functi<strong>on</strong> afterwards.<br />

⊳ Sec<strong>on</strong>d, fun definiti<strong>on</strong>: <str<strong>on</strong>g>The</str<strong>on</strong>g> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two tangles a 1 ψ 1 and a 2 ψ 2 ,where<br />

ψ 1 and ψ 2 have the same topology and where a 2 1 +a2 2<br />

= 1,isdefinedby<br />

c<strong>on</strong>necting those tails that reach the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space, and discarding all parts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the tangles that were pushed to the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tangles must be performed in such a way as to maintain the topology <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the original tangles; in particular, the c<strong>on</strong>necti<strong>on</strong> must not introduce any<br />

crossings or linking. Time averaging then leads to the tangle functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

superpositi<strong>on</strong> χ=a 1 ψ 1 +a 2 ψ 2 .<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


192 8 quantum theory deduced from strands<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g> multiplicati<strong>on</strong> :<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g> model :<br />

ψ<br />

time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches<br />

Observed<br />

probability<br />

density :<br />

Page 193<br />

√0.8 ψ<br />

√0.2 ψ<br />

FIGURE 33 Scalar multiplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> localized tangles, visualizing the scalar multiplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wave<br />

functi<strong>on</strong>s.<br />

To visualize the result <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong> and superpositi<strong>on</strong>, it is easiest to imagine that the<br />

strands reaching the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space have fluctuated back to finite distances. This is<br />

possible because by definiti<strong>on</strong>, these c<strong>on</strong>necti<strong>on</strong>s are all unlinked. An example <str<strong>on</strong>g>of</str<strong>on</strong>g> superpositi<strong>on</strong>,<br />

for the case <str<strong>on</strong>g>of</str<strong>on</strong>g> two quantum states at different positi<strong>on</strong>s in space, is shown<br />

in Figure 34. We note that despite the wording <str<strong>on</strong>g>of</str<strong>on</strong>g> the definiti<strong>on</strong>, no strand is actually cut<br />

or re-glued in the operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> linear combinati<strong>on</strong> requires that the final strand χ has the same topology<br />

and the same norm as each <str<strong>on</strong>g>of</str<strong>on</strong>g> the two strands ψ 1 and ψ 2 to be combined. Physically,<br />

this means that <strong>on</strong>ly states for the same particle can be added and that particle number<br />

is preserved; this automatically implements the so-called superselecti<strong>on</strong> rules <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum<br />

theory. This result is pretty because in usual quantum mechanics the superselecti<strong>on</strong> rules<br />

need to be added by hand. This is not necessary in the strand model.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> two tangle functi<strong>on</strong>s is unique, for the same reas<strong>on</strong>s given in the case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


quantum theory deduced from strands 193<br />

Linear combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> strands :<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g> model :<br />

time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches<br />

Observed<br />

probability<br />

densities :<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> two quantum states localized at different positi<strong>on</strong>s :<br />

ψ 1 ψ 2<br />

Challenge 134 e<br />

x 1 x 2<br />

x 1 x 2<br />

A linear combinati<strong>on</strong> χ=√0.8 ψ 1 + √0.2 ψ 2 :<br />

untangled<br />

“additi<strong>on</strong><br />

regi<strong>on</strong>”<br />

x 1 x 2<br />

x 1 x 2<br />

FIGURE 34 A linear combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> strands, in this case for two states representing a particle at two<br />

different positi<strong>on</strong> in space, visualizing the linear combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wave functi<strong>on</strong>s.<br />

scalar multiplicati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong> can also be extended to more than two<br />

terms. Additi<strong>on</strong> is commutative and associative, and there is a zero state, or identity<br />

element, given by no strands at all. <str<strong>on</strong>g>The</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong> also implies distributivity<br />

with respect to additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> states and with respect to additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> scalars. It is also possible<br />

to extend the definiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> scalar multiplicati<strong>on</strong> and <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong> to all complex numbers<br />

and to unnormed states, but this leads us too far from our story.<br />

In short, tangle functi<strong>on</strong>s form a vector space. We now define the scalar product and<br />

the probability density in the same way as for wave functi<strong>on</strong>s.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> scalar product between two states φ and ψ is ⟨φ|ψ⟩ = ∫φ(x)ψ(x) dx.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> norm <str<strong>on</strong>g>of</str<strong>on</strong>g> a state is ‖ψ‖ = √⟨ψ|ψ⟩ .<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> probability density ρ is ρ(x, t) = ψ(x, t)ψ(x, t) = R 2 (x, t). Itthusignores<br />

the orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the crossings and is the crossing positi<strong>on</strong> density.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


194 8 quantum theory deduced from strands<br />

Challenge 135 e<br />

Challenge 136 e<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> scalar product and the probability density are observables, because their definiti<strong>on</strong>s<br />

can be interpreted in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches. Indeed, the scalar product ⟨φ|ψ⟩ can<br />

be seen as the (suitably normed) number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches required to transform the<br />

tangle φ into the tangle ψ,wherethetangleφ is formed from the tangle φ by exchanging<br />

the orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each crossing. A similar interpretati<strong>on</strong> is possible for the probability<br />

density, which therefore is at the same time the crossing density squared and the crossing<br />

switch density. We leave this c<strong>on</strong>firmati<strong>on</strong> as fun for the reader.<br />

It is also possible to define the scalar product, the norm and the probability density<br />

using tangles, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> using tangle functi<strong>on</strong>s. This is left as a puzzle to the reader.<br />

In summary, we have shown that tangle functi<strong>on</strong>s form a Hilbert space. <str<strong>on</strong>g>The</str<strong>on</strong>g> next<br />

stepsarenowobvious:Wemustfirstshowthattanglefuncti<strong>on</strong>sobeytheSchrödinger<br />

equati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>n we must extend the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum states by including spin and<br />

special relativity, and show that they obey the Dirac equati<strong>on</strong>.<br />

Deducing the Schrödinger equati<strong>on</strong> from tangles<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Schrödinger equati<strong>on</strong>, like all evoluti<strong>on</strong> equati<strong>on</strong>s in the quantum domain, results<br />

when the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave functi<strong>on</strong> is combined with the energy–momentum relati<strong>on</strong>.<br />

As already menti<strong>on</strong>ed, the Schrödinger equati<strong>on</strong> for a quantum particle also assumes<br />

that the orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particle spin is c<strong>on</strong>stant for all positi<strong>on</strong>s and all times. In<br />

this case, the spin can be neglected, and the tangle functi<strong>on</strong> is a single complex number<br />

at each point in space and in time, usually written ψ(x, t).Howdoesthetanglefuncti<strong>on</strong><br />

evolve in time? To answer this questi<strong>on</strong>, we will <strong>on</strong>ly need the fundamental principle<br />

that crossing switches define the quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> ħ.<br />

We start with a free particle. We assume a fixed, but unspecified rotati<strong>on</strong> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

its tangle. Now, in the strand model, a localized particle with c<strong>on</strong>stant speed is described<br />

by a localized tangle that rotates and advances. In other words, the strand fluctuati<strong>on</strong>s<br />

produce a peak <str<strong>on</strong>g>of</str<strong>on</strong>g> probability density that changes positi<strong>on</strong> with c<strong>on</strong>stant speed.<br />

Every tangle rotati<strong>on</strong> leads to crossing switches. A rapid tangle rotati<strong>on</strong> leads to many<br />

crossing switches per time, and slow rotati<strong>on</strong> to few crossing switches per time. Now, the<br />

fundamental principle tells us that crossing switches per time are naturally measured in<br />

acti<strong>on</strong> per time, or energy. In other words, tangle rotati<strong>on</strong> is related to tangle energy.<br />

⊳ Particles with high energy have rapidly rotating tangles.<br />

⊳ Particles with low energy have slowly rotating tangles.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> a rotating tangle is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches per time. Rotating a<br />

tangle core leads to crossing switches in its tails. In the strand model, the kinetic energy<br />

E <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle is thus due to the crossing switches formed in its tails. In other words, the<br />

kinetic energy E is related to the (effective) angular frequency ω <str<strong>on</strong>g>of</str<strong>on</strong>g> the core rotati<strong>on</strong> by<br />

E=ħω. (123)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> local phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle functi<strong>on</strong> ψ changes with the rotati<strong>on</strong>. This implies that<br />

ω=i∂ t ψ . (124)<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


quantum theory deduced from strands 195<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g> model :<br />

Localized particle at rest :<br />

time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches<br />

Observed<br />

probability<br />

density :<br />

t 1<br />

t 1<br />

t 2<br />

t 2<br />

t 1<br />

Slow moti<strong>on</strong> :<br />

t 1<br />

Rapid moti<strong>on</strong> :<br />

FIGURE 35 Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> moving tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> free particles.<br />

t 2 t 1<br />

rotati<strong>on</strong>,<br />

precessi<strong>on</strong> and<br />

displacement<br />

t 2<br />

t 2 t 1 t 2<br />

rotati<strong>on</strong>,<br />

precessi<strong>on</strong> and<br />

displacement<br />

We will need the relati<strong>on</strong> shortly.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> linear moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a tangle implies that it makes also sense to pay attenti<strong>on</strong> to the<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches per distance.<br />

⊳ Rapidly moving tangles show many crossing switches per distance.<br />

⊳ Slowly moving tangles show few crossing switches per distance.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental principle tells us that the natural observable to measure crossing<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


196 8 quantum theory deduced from strands<br />

switches per distance is acti<strong>on</strong> per distance, or momentum. Linear moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles<br />

is thus related to momentum: <str<strong>on</strong>g>The</str<strong>on</strong>g> momentum <str<strong>on</strong>g>of</str<strong>on</strong>g> a moving tangle is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches per distance. <str<strong>on</strong>g>The</str<strong>on</strong>g> momentum p is thus related to the (effective) wave number<br />

k=2π/λ<str<strong>on</strong>g>of</str<strong>on</strong>g> the core moti<strong>on</strong> by<br />

p=ħk. (125)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> local phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle functi<strong>on</strong> ψ changes with the moti<strong>on</strong>. This implies<br />

k=−i∂ x ψ . (126)<br />

This completes the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> matter wave functi<strong>on</strong>s without spin.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> belt trick for the fluctuating tails now has a fascinating c<strong>on</strong>sequence. To allow<br />

the belt trick also for high linear momentum, the more the momentum increases, the<br />

more the spin rotati<strong>on</strong> axis has to align with the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>. This is shown in<br />

Figure 35. This leads to a quadratic increase <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches with momentum p:<br />

<strong>on</strong>e factor p is due to the increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> rotati<strong>on</strong>, the other factor is due to the<br />

increase <str<strong>on</strong>g>of</str<strong>on</strong>g> the alignment. We thus get<br />

E= p2<br />

2m<br />

and ω=<br />

ħ<br />

2m k2 . (127)<br />

This is dispersi<strong>on</strong> relati<strong>on</strong> for masses moving at velocities much smaller than the speed<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> light. <str<strong>on</strong>g>The</str<strong>on</strong>g> relati<strong>on</strong> agrees with all experiments. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>stant m is a proporti<strong>on</strong>ality<br />

factor that depends <strong>on</strong> the tangle core. We can now use the same argument that was<br />

used already by Schrödinger. Substituting the tangle relati<strong>on</strong>s in the dispersi<strong>on</strong> relati<strong>on</strong>,<br />

we get the evoluti<strong>on</strong> equati<strong>on</strong> for the tangle functi<strong>on</strong> ψ given by<br />

iħ∂ t ψ=− ħ2<br />

2m ∂ xxψ . (128)<br />

This is the famous Schrödinger equati<strong>on</strong> for a free particle (written for just <strong>on</strong>e space<br />

dimensi<strong>on</strong> for simplicity). We thus have deduced the equati<strong>on</strong> from the strand model<br />

under the c<strong>on</strong>diti<strong>on</strong> that spin can be neglected and that velocities are small compared to<br />

the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light. In this way, we have also deduced, indirectly, Heisenberg’s indeterminacy<br />

relati<strong>on</strong>s.<br />

We have thus completed the pro<str<strong>on</strong>g>of</str<strong>on</strong>g> that tangle functi<strong>on</strong>s, in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> negligible spin<br />

effects and small velocities, are indeed wave functi<strong>on</strong>s. In fact, tangle functi<strong>on</strong>s are wave<br />

functi<strong>on</strong>s also in the more general case, but then their mathematical descripti<strong>on</strong> is more<br />

involved, as we will see shortly. We can sum up the situati<strong>on</strong> in a few simple terms: wave<br />

functi<strong>on</strong>s are blurred tangles.<br />

Mass from tangles<br />

In quantum theory, particles spin while moving: the quantum phase rotates while a<br />

particle advances. <str<strong>on</strong>g>The</str<strong>on</strong>g> coupling between rotati<strong>on</strong> and translati<strong>on</strong> has a name: it is called<br />

the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle. We saw that the rotati<strong>on</strong> is described by an average angular fre-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


quantum theory deduced from strands 197<br />

Ref. 163<br />

Page 358<br />

Challenge 137 e<br />

Page 360<br />

quency ω, and the translati<strong>on</strong>al moti<strong>on</strong> is described by a wave number k. <str<strong>on</strong>g>The</str<strong>on</strong>g> proporti<strong>on</strong>ality<br />

factor m=ħk 2 /2ω = p 2 /2E is thus a quantity that relates rotati<strong>on</strong> frequency<br />

and wave number. In quantum theory,<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> (inertial) mass m describes the coupling between translati<strong>on</strong> and rotati<strong>on</strong>.<br />

We note that a large mass value implies, for a given momentum value, both a slow translati<strong>on</strong><br />

and a slow rotati<strong>on</strong>.<br />

In the strand model, particle translati<strong>on</strong> and rotati<strong>on</strong> are modelled by the translati<strong>on</strong><br />

and rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle core. Now, the strand model makes a point that goes bey<strong>on</strong>d<br />

usual quantum theory. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model explains why core translati<strong>on</strong> and rotati<strong>on</strong> are<br />

coupled: When the core moves through the vacuum, the vacuum strands and the core<br />

effectively push against each other, due to their impenetrability. <str<strong>on</strong>g>The</str<strong>on</strong>g> result is a moti<strong>on</strong><br />

that resembles the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an asymmetrical body in a viscous fluid.<br />

When an asymmetrical body is moved through a viscous fluid, it starts rotating. For<br />

example, this happens when a st<strong>on</strong>e falls through water or h<strong>on</strong>ey. <str<strong>on</strong>g>The</str<strong>on</strong>g> rotati<strong>on</strong> results<br />

from the asymmetrical shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the body. All the tangle cores <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles are<br />

asymmetrical. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus predicts that tangle cores will rotate when they<br />

move through vacuum. In other terms, the strand model predicts<br />

⊳ Linked and localized tangles have mass.<br />

⊳ Unknotted or unlinked, unlocalized tangles, such as those <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s, are<br />

predicted to be massless.<br />

We also deduce that the more complicated a tangle is, the higher the mass value is.<br />

In additi<strong>on</strong> to the geometry effect due to the core, which is valid for massive bos<strong>on</strong>s<br />

and fermi<strong>on</strong>s, the rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong>s is also influenced by the tails. <str<strong>on</strong>g>The</str<strong>on</strong>g> effective volume<br />

required by the belt trick will influence the coupling between translati<strong>on</strong> and rotati<strong>on</strong>.<br />

This effective volume will depend <strong>on</strong> the topology <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle core, and <strong>on</strong> the number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its tails. We again deduce that, for a given number <str<strong>on</strong>g>of</str<strong>on</strong>g> tails, a complicated core topology<br />

implies a high mass value.<br />

In other words, the strand model links the mass m <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle to its tangle topology:<br />

largetanglecoreshavelargemass.<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus predicts<br />

⊳ Particle masses are calculable – if the tangle topology is known.<br />

This is an exciting prospect! To sum up, the strand model predicts that experiments in<br />

viscous fluids can lead to a deeper understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> the masses <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> tangle model also implies that the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles – thus <str<strong>on</strong>g>of</str<strong>on</strong>g> particles<br />

made <str<strong>on</strong>g>of</str<strong>on</strong>g> few strands – will be much smaller than the Planck mass. Thisisthefirsthint<br />

that the strand model solves the so-called mass hierarchy problem <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics.<br />

At this point, however, we are still in the dark about the precise origin <str<strong>on</strong>g>of</str<strong>on</strong>g> particle<br />

mass values. We do not know how to calculate them. Nevertheless, the missing steps<br />

are clear: first, we need to determine the tangle topology for each elementary particle;<br />

then we need to deduce their mass values, i.e., the relati<strong>on</strong> between their rotati<strong>on</strong> and<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


198 8 quantum theory deduced from strands<br />

Challenge 138 e<br />

Page 235<br />

Page 225<br />

Page 191<br />

Page 177<br />

translati<strong>on</strong>. This is a central aim in the following.<br />

An example <str<strong>on</strong>g>of</str<strong>on</strong>g> the issues that arise: How does the mass value depend <strong>on</strong> the number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> strands in a tangle? How does mass depend <strong>on</strong> the type <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle?<br />

Potentials<br />

In quantum mechanics, interacti<strong>on</strong>s are described by potentials. An electric potential<br />

V(x, t) changes the total energy <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle with charge q at positi<strong>on</strong> x, since in quantum<br />

mechanics, electric potentials influence the rotati<strong>on</strong> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave functi<strong>on</strong>. As a<br />

result, with an electric potential, the left-hand side <str<strong>on</strong>g>of</str<strong>on</strong>g> the Schrödinger equati<strong>on</strong> (128), the<br />

energy term, is changed from ħωψ(x, t) to (ħω − qV)ψ(x, t).<br />

Another possibility is a potential that does not change the rotati<strong>on</strong> velocity, but that<br />

changes the wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> a charged particle. Such a magnetic vector potential A(x, t)<br />

thus changes the momentum term ħk <strong>on</strong> the right-hand side <str<strong>on</strong>g>of</str<strong>on</strong>g> Schrödinger’s equati<strong>on</strong><br />

to (ħk−qA)ψ(x, t). This double substituti<strong>on</strong>, the so-called minimal coupling, isequivalent<br />

to the statement that quantum electrodynamics has a U(1) gauge symmetry. We will<br />

deduce it in detail in the next chapter.<br />

In the strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum mechanics, potentials are introduced in precisely<br />

the same way as in usual quantum mechanics, so that the full Schrödinger equati<strong>on</strong> for<br />

charged particles in external fields is recovered:<br />

(iħ∂ t −qV)ψ= 1<br />

2m (−iħ∇ −qA)2 ψ . (129)<br />

This equati<strong>on</strong> is the simplest formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory. We saw in the fourth<br />

volume that it describes and explains the size <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms and molecules, and thus <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

objects around us; and we saw that it also explains the (relative) colours <str<strong>on</strong>g>of</str<strong>on</strong>g> all things.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> equati<strong>on</strong> also explains interference, tunnelling and decay.<br />

In summary, a n<strong>on</strong>-relativistic fluctuating tangle reproduces the full Schrödinger<br />

equati<strong>on</strong>. An obvious questi<strong>on</strong> is: how does the strand model explain the influence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

interacti<strong>on</strong>s <strong>on</strong> the rotati<strong>on</strong> speed and <strong>on</strong> the wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles? In other words:<br />

why do strands imply minimal coupling? We will answer this questi<strong>on</strong> in the following<br />

chapter, <strong>on</strong> gauge interacti<strong>on</strong>s.<br />

Quantum interference from tangles<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interference <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum particles is due to the linear combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

states with different phases at the same positi<strong>on</strong> in space. Tangle functi<strong>on</strong>s, being wave<br />

functi<strong>on</strong>s, reproduce the effect. But again, it is both more fun and more instructive to<br />

explain and visualize interference with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles.<br />

As menti<strong>on</strong>ed above, a pure change <str<strong>on</strong>g>of</str<strong>on</strong>g> phase <str<strong>on</strong>g>of</str<strong>on</strong>g> a state ψ is defined by multiplicati<strong>on</strong><br />

by a complex number <str<strong>on</strong>g>of</str<strong>on</strong>g> unit norm, such as e iβ . This corresp<strong>on</strong>ds to a rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

tangle core by an angle 2β, where the factor 2 is due to the belt trick <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 19.<br />

To deduce interference, we simply use the above definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> linear combinati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tangles. This leads to the result shown in Figure 36. We find, for example, that a<br />

symmetric sum <str<strong>on</strong>g>of</str<strong>on</strong>g> a tangle and the same tangle with the phase rotated by π/2 (thus a<br />

core rotated by π) results in a tangle whose phase is rotated by the intermediate angle,<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


quantum theory deduced from strands 199<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g> model :<br />

time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

changes<br />

Observed<br />

probability<br />

density :<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> two quantum states with different phase at the same positi<strong>on</strong> :<br />

ψ 1<br />

ψ 2 =ψ 1 e iπ/2<br />

x x x<br />

A linear combinati<strong>on</strong> :<br />

Extincti<strong>on</strong> (requires situati<strong>on</strong>s with space-dependent phase) :<br />

no possible<br />

tangle<br />

topology<br />

x<br />

x<br />

φ=(ψ 1 +ψ 2 )/√2<br />

zero<br />

density<br />

FIGURE 36 Interference: the linear combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> strands with different phase, but located at the<br />

same positi<strong>on</strong>.<br />

thus π/4.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> most interesting case <str<strong>on</strong>g>of</str<strong>on</strong>g> interference is that <str<strong>on</strong>g>of</str<strong>on</strong>g> extincti<strong>on</strong>. Scalar multiplicati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a tangle functi<strong>on</strong> ψ by −1 gives the negative <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle functi<strong>on</strong>, the additive inverse<br />

−ψ. <str<strong>on</strong>g>The</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> a tangle functi<strong>on</strong> with its negative is zero. This gives extincti<strong>on</strong><br />

in usual quantum theory. Let us check the result in the strand model, using the tangle<br />

definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> linear combinati<strong>on</strong>s. We have seen above that the negative <str<strong>on</strong>g>of</str<strong>on</strong>g> a tangle is a<br />

tangle whose core is rotated by 2π. Using the tangle definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> linear combinati<strong>on</strong>,<br />

x<br />

x<br />

x<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


200 8 quantum theory deduced from strands<br />

Ref. 164<br />

we find that it is topologically impossible to draw or c<strong>on</strong>struct a localized tangle for the<br />

sum <str<strong>on</strong>g>of</str<strong>on</strong>g> a quantum state with its negative. <str<strong>on</strong>g>The</str<strong>on</strong>g> resulting particle tangle therefore must<br />

have vanishing crossing density in spatial regi<strong>on</strong>s where this operati<strong>on</strong> is attempted. In<br />

short, particle tangles do explain extincti<strong>on</strong>. And as expected from quantum particles,<br />

the explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> extincti<strong>on</strong> directly involves the tangle structure.<br />

Deducing the Pauli equati<strong>on</strong> from tangles<br />

As we have seen, the Schrödinger equati<strong>on</strong> describes the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum particles<br />

when their spin is neglected, by assuming that spin is c<strong>on</strong>stant over space and time. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

next step is thus to include the variati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> spin over space and time. This turns out to<br />

be quite straightforward.<br />

In the strand model, spin is modelled by the c<strong>on</strong>tinuous rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a tangle. We also<br />

saw that we get wave functi<strong>on</strong>s from tangles if we average over short time scales. At a<br />

given positi<strong>on</strong> in space, a tangle functi<strong>on</strong> will have a local average density <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings, a<br />

local average phase, and new, a local average orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the rotati<strong>on</strong> axis <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle.<br />

To describe the axis and orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle core, we use the Euler angles α, β<br />

and γ. This yields a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle functi<strong>on</strong> as<br />

Ψ(x, t) = √ρ e iα/2 ( cos(β/2)eiγ/2<br />

i sin(β/2)e −iγ/2 ), (130)<br />

which is the natural descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a tangle that includes the orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the axis. As<br />

before, the crossing density is the square root <str<strong>on</strong>g>of</str<strong>on</strong>g> the probability density ρ(x, t). <str<strong>on</strong>g>The</str<strong>on</strong>g>angle<br />

α(x, t), as before, describes the phase, i.e., (<strong>on</strong>e half <str<strong>on</strong>g>of</str<strong>on</strong>g>) the rotati<strong>on</strong> around the axis. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

local orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the axis is described by a two-comp<strong>on</strong>ent matrix and uses the two<br />

angles β(x, t) and γ(x, t). Due to the belt trick, the expressi<strong>on</strong> for the tangle functi<strong>on</strong> <strong>on</strong>ly<br />

c<strong>on</strong>tains half angles. And indeed, due to the half angles, the two-comp<strong>on</strong>ent matrix is<br />

not a vector, but a spinor. (<str<strong>on</strong>g>The</str<strong>on</strong>g> term ‘spinor’ was coined by well-known physicist Paul<br />

Ehrenfest in analogy to ‘vector’ and ‘tensor’; the English pr<strong>on</strong>unciati<strong>on</strong> is ‘spinnor’.)<br />

For β=γ=0,thepreviouswavefuncti<strong>on</strong>ψ is recovered.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> other ingredient we need is a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the spinning moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle.<br />

In c<strong>on</strong>trast to the Schrödinger case, the spinning moti<strong>on</strong> itself must be added in the<br />

descripti<strong>on</strong>. A spinning tangle implies that the propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave is described by<br />

thewavevectork multiplied with the spin operator σ. <str<strong>on</strong>g>The</str<strong>on</strong>g>spin operator σ,forthewave<br />

functi<strong>on</strong> just given, is defined as the vector <str<strong>on</strong>g>of</str<strong>on</strong>g> three matrices<br />

σ =(( 0 1 −i<br />

),(0<br />

1 0 i 0 ),(1 0 )) . (131)<br />

0 −1<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> three matrices are the well-known Pauli matrices.<br />

We now take the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the axis orientati<strong>on</strong> and the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the spinning<br />

and insert both, as we did for the Schrödinger equati<strong>on</strong>, into the n<strong>on</strong>-relativistic<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


quantum theory deduced from strands 201<br />

dispersi<strong>on</strong> relati<strong>on</strong> ħω = E = p 2 /2m = ħ 2 k 2 /2m.Wethengetthewaveequati<strong>on</strong><br />

iħ∂ t Ψ=− ħ2<br />

2m (σ∇)2 Ψ . (132)<br />

Challenge 139 s<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. IV, page 83<br />

Ref. 165<br />

This is Pauli’s equati<strong>on</strong> for the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a free quantum particle with spin 1/2.<br />

As final step, we include the electric and the magnetic potentials, as we did in the<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> the Schrödinger equati<strong>on</strong>. We again use minimal coupling, substitutingiħ∂ t by<br />

iħ∂ t −qVand −iħ∇ by −iħ∇ −qA, thus introducing electric charge q and the potentials<br />

V and A. A bit <str<strong>on</strong>g>of</str<strong>on</strong>g> algebra involving the spin operator then leads to the famous complete<br />

form <str<strong>on</strong>g>of</str<strong>on</strong>g> the Pauli equati<strong>on</strong><br />

(iħ∂ t −qV)Ψ= 1<br />

2m (−iħ∇ −qA)2 Ψ− qħ σBΨ , (133)<br />

2m<br />

where now the magnetic field B = ∇ × A appears explicitly. <str<strong>on</strong>g>The</str<strong>on</strong>g> equati<strong>on</strong> is famous for<br />

describing, am<strong>on</strong>g others, the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> silver atoms, which have spin 1/2, in the Stern–<br />

Gerlach experiment. This is due to the new, last term <strong>on</strong> the right-hand side, which does<br />

not appear in the Schrödinger equati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> new term is a pure spin effect and predicts<br />

a g-factor <str<strong>on</strong>g>of</str<strong>on</strong>g> 2. Depending <strong>on</strong> the spin orientati<strong>on</strong>, the sign <str<strong>on</strong>g>of</str<strong>on</strong>g> the last term is either<br />

positive or negative; the term thus acts as a spin-dependent potential. <str<strong>on</strong>g>The</str<strong>on</strong>g> two opti<strong>on</strong>s<br />

for the spin orientati<strong>on</strong> then produce the upper and the lower beams <str<strong>on</strong>g>of</str<strong>on</strong>g> silver atoms that<br />

are observed in the Stern–Gerlach experiment.<br />

In summary, a n<strong>on</strong>-relativistic tangle that rotates c<strong>on</strong>tinuously reproduces the Pauli<br />

equati<strong>on</strong>. In particular, such a tangle predicts that the g-factor <str<strong>on</strong>g>of</str<strong>on</strong>g> an elementary charged<br />

fermi<strong>on</strong> is 2.<br />

Rotating arrows and path integrals<br />

Another simple way to visualize the equivalence between the strand model and the Pauli<br />

equati<strong>on</strong> uses the formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory with path integrals. We recall that<br />

tangle tails are not observable, and that the tangle core defines the positi<strong>on</strong> and phase<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the quantum particle. If the core is approximated to be <str<strong>on</strong>g>of</str<strong>on</strong>g> vanishing size, thus ‘pointlike’,<br />

then the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the core describes the ‘path’ <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle. (This equivalence<br />

was already menti<strong>on</strong>ed188 above.)<br />

Feynman described the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum particles in his famous popular book <strong>on</strong><br />

QED as advancing rotating arrows. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>tinuous rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle core visualizes<br />

Feynman’s rotating little arrow. <str<strong>on</strong>g>The</str<strong>on</strong>g> different possible moti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the ‘point-like’<br />

tangle core corresp<strong>on</strong>ds to different paths. Quantum theory appears when the effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

all possible paths are superposed. In particular, the phase and amplitude for each path<br />

must added like small vectors. In the strand model the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> all possible paths are<br />

added automatically, through the fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangles moti<strong>on</strong>. And through the<br />

definiti<strong>on</strong>s given above, the additi<strong>on</strong> occurs in exactly the way that Feynman described.<br />

In this way, the tangle model reproduces the path integral formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum<br />

mechanics.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


202 8 quantum theory deduced from strands<br />

C<strong>on</strong>structive interference<br />

orientati<strong>on</strong><br />

positi<strong>on</strong><br />

phase<br />

phase<br />

positi<strong>on</strong><br />

sec<strong>on</strong>d<br />

crossing<br />

seen from<br />

side<br />

Destructive interference<br />

positi<strong>on</strong><br />

phase<br />

phase<br />

orientati<strong>on</strong><br />

phase<br />

no<br />

crossing<br />

FIGURE 37 Interference in the strand model: two c<strong>on</strong>nected crossings – in this case with the same<br />

distance, i.e., with the same ‘amplitude’ – superpose c<strong>on</strong>structively (top) and destructively (bottom).<br />

Interference and double slits<br />

Often, interference is seen as the essence <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory, or as the biggest difference<br />

between quantum theory and classical physics. Also interference can be visualized with<br />

strands.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


quantum theory deduced from strands 203<br />

c<strong>on</strong>structive<br />

interference<br />

destructive<br />

interference<br />

Page 187<br />

Challenge 140 e<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. IV, page 143<br />

FIGURE 38 A fermi<strong>on</strong> tangle passing a double slit: c<strong>on</strong>structive interference (left) and destructive<br />

interference (right).<br />

In nature, interference – whether c<strong>on</strong>structive or destructive or partial – results from<br />

the superpositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> states with different phase values at a point in space. For strands,<br />

superpositi<strong>on</strong> occurs for strands, when strand segments are c<strong>on</strong>nected. <str<strong>on</strong>g>The</str<strong>on</strong>g> phase value<br />

is defined by the crossing geometry, as explained in Figure 31. In the strand model, ‘at<br />

a point in space’ becomes ‘at two points within Planck scale distance’. Together, this<br />

yields the fundamental superpositi<strong>on</strong> mechanism shown in Figure 37. <str<strong>on</strong>g>The</str<strong>on</strong>g>phases<str<strong>on</strong>g>of</str<strong>on</strong>g>two<br />

crossings <strong>on</strong> two c<strong>on</strong>nected strands can add up or cancel. <str<strong>on</strong>g>The</str<strong>on</strong>g> general case, with different<br />

amplitudes, is easily deduced.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interference allows to describe the double slit experiment.<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> its tails, a fermi<strong>on</strong> tangle obeys spinor statistics and spinor rotati<strong>on</strong> behaviour.<br />

This leads to the observed interference behaviour for spin 1/2 particles, as visualized in<br />

Figure 38. <str<strong>on</strong>g>The</str<strong>on</strong>g> corresp<strong>on</strong>ding visualizati<strong>on</strong> for phot<strong>on</strong> interference is given in Figure 39.<br />

Interference is essential in all effects <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum physics. We explore a few additi<strong>on</strong>al<br />

<strong>on</strong>es.<br />

Measurements and wave functi<strong>on</strong> collapse<br />

In nature, a measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> a quantum system in a superpositi<strong>on</strong> is observed to yield <strong>on</strong>e<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the possible eigenvalues and to prepare the system in the corresp<strong>on</strong>ding eigenstate. In<br />

nature, the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> each measurement outcome depends <strong>on</strong> the coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> that<br />

eigenstate in the superpositi<strong>on</strong>.<br />

To put the issue into c<strong>on</strong>text, here is a short reminder from quantum mechanics. Every<br />

measurement apparatus shows measurement results. Thus, every measurement apparatus<br />

is a device with memory. (In short, it is classical.) All devices with memory c<strong>on</strong>tain<br />

<strong>on</strong>e or several baths. Thus, every measurement apparatus couples at least <strong>on</strong>e bath to the<br />

system it measures. <str<strong>on</strong>g>The</str<strong>on</strong>g> coupling depends <strong>on</strong> and defines the observable to be measured<br />

by the apparatus. Every coupling <str<strong>on</strong>g>of</str<strong>on</strong>g> a bath to a quantum systems leads to decoherence.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


204 8 quantum theory deduced from strands<br />

c<strong>on</strong>structive<br />

interference<br />

destructive<br />

interference<br />

FIGURE 39 <str<strong>on</strong>g>The</str<strong>on</strong>g> double-slit experiment with phot<strong>on</strong>s: c<strong>on</strong>structive interference (left) and destructive<br />

interference (right).<br />

Decoherence leads to probabilities and wave functi<strong>on</strong> collapse. In short, collapse and<br />

measurement probabilities are necessary and automatic in quantum theory.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model describes the measurement process in precisely the same way as<br />

standard quantum theory; in additi<strong>on</strong>, it visualizes the process.<br />

⊳ A measurement is modelled as a strand deformati<strong>on</strong> induced by the measurement<br />

apparatus that ‘pulls’ a tangle towards the resulting eigenstate.<br />

⊳ This pulling <str<strong>on</strong>g>of</str<strong>on</strong>g> strands models and visualizes the collapse <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave functi<strong>on</strong>.<br />

An example <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement is illustrated in Figure 40. When a measurement is performed<br />

<strong>on</strong> a superpositi<strong>on</strong>, the untangled ‘additi<strong>on</strong> regi<strong>on</strong>’ can be imagined to shrink into<br />

disappearance. For this to happen, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the underlying eigenstates has to ‘eat up’ the<br />

other: that is the collapse <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave functi<strong>on</strong>. In the example <str<strong>on</strong>g>of</str<strong>on</strong>g> the figure, the additi<strong>on</strong><br />

regi<strong>on</strong> can disappear either towards the outside or towards the inside. <str<strong>on</strong>g>The</str<strong>on</strong>g> choice is due<br />

to the bath that is coupled to the system during measurement; the bath thus determines<br />

the outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> the measurement. We also deduce that the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> measuring a<br />

particular eigenstate will depend <strong>on</strong> the (weighed) volume that the eigenstate took up in<br />

the superpositi<strong>on</strong>.<br />

This visualizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave functi<strong>on</strong> collapse also makes clear that the collapse is<br />

not limited by any speed limit, as no energy and no informati<strong>on</strong> is transported. Indeed,<br />

the collapse happens by displacing strands and at most crossings, but does not produce<br />

any crossing changes.<br />

In summary, the strand model describes measurements in precisely the same way as<br />

usual quantum theory. In additi<strong>on</strong>, strands visualize the collapse <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave functi<strong>on</strong> as<br />

a shape deformati<strong>on</strong> from a superposed tangle to an eigenstate tangle.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


quantum theory deduced from strands 205<br />

Spin<br />

measurement<br />

directi<strong>on</strong> :<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g> model : Observed spin :<br />

Basis states :<br />

always<br />

`up’<br />

Ref. 166<br />

untangled<br />

“additi<strong>on</strong><br />

regi<strong>on</strong>”<br />

Superpositi<strong>on</strong> (<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

two equivalent states) :<br />

either<br />

`up’<br />

always<br />

`down’<br />

or `down’<br />

FIGURE 40 Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> a spin superpositi<strong>on</strong>: the additi<strong>on</strong> regi<strong>on</strong> disappears either outwards or<br />

inwards.<br />

Hidden variables and the Kochen–Specker theorem<br />

At first sight, the strand model seems to fall into the trap <str<strong>on</strong>g>of</str<strong>on</strong>g> introducing hidden variables<br />

into quantum theory. One could indeed argue that the shapes (and fluctuati<strong>on</strong>s) <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

strands play the role <str<strong>on</strong>g>of</str<strong>on</strong>g> hidden variables. On the other hand, it is well known that n<strong>on</strong>c<strong>on</strong>textual<br />

hidden variables are impossible in quantum theory, as shown by the Kochen–<br />

Specker theorem (for sufficiently high Hilbert-space dimensi<strong>on</strong>s). Is the strand model<br />

flawed? No.<br />

We recall that strands are not observable. In particular, strand shapes are not physical<br />

observables and thus not physical (hidden) variables either. Even if we tried promoting<br />

strand shapes to physical variables, the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand shapes would <strong>on</strong>ly be<br />

observable through the ensuing crossing switches. And crossing switches evolve due to<br />

the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the envir<strong>on</strong>ment, which c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> all other strands in nature, including<br />

those <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time itself. Thus<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


206 8 quantum theory deduced from strands<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> strand shapes and crossing switches is c<strong>on</strong>textual.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>refore, the strand model does not c<strong>on</strong>tradict the Kochen–Specker theorem.<br />

In simple language, in quantum theory, hidden variables are not a problem if they are<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the envir<strong>on</strong>ment, and not <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantum system itself. This is precisely<br />

the case for the strand model. For a quantum system, the strand model provides no<br />

hidden variables. In fact, for a quantum system, the strand model provides no variables<br />

bey<strong>on</strong>d the usual <strong>on</strong>es from quantum theory. And as expected and required from any<br />

model that reproduces decoherence, the strand model leads to a c<strong>on</strong>textual, probabilistic<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

In summary, despite using fluctuating tangles as underlying structure, the strand<br />

model is equivalent to usual quantum theory. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model c<strong>on</strong>tains nothing more<br />

and nothing less than usual quantum theory.<br />

Many-particle states and entanglement<br />

In nature, the quantum states <str<strong>on</strong>g>of</str<strong>on</strong>g> two or more particles can be entangled. Entangled states<br />

are many-particle states that are not separable. Entangled states are <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most fascinating<br />

quantum phenomena; especially in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> macroscopic entanglement, they<br />

are still being explored in many experiments. We will discover that the strand model<br />

visualizes them simply and clearly.<br />

To describe entanglement, we first need to clarify the noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many-particle state.<br />

In the strand model,<br />

⊳ A many-particle state is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> several tangles.<br />

In this way, an N-particlewavefuncti<strong>on</strong>definesN values at every point in space, <strong>on</strong>e<br />

value for each particle. This is possible, because in the strand model, the strands <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e<br />

particle tangle are separate from the strands <str<strong>on</strong>g>of</str<strong>on</strong>g> other particles.<br />

Usually, a N-particle wave functi<strong>on</strong> is described by a single-valued functi<strong>on</strong> in 3N<br />

dimensi<strong>on</strong>s. It is less known that a single-valued N-particle wave functi<strong>on</strong> in 3N dimensi<strong>on</strong>s<br />

is mathematically equivalent to an N-valued wave functi<strong>on</strong> in three dimensi<strong>on</strong>s.<br />

Usually, N-valued functi<strong>on</strong>s are not discussed; we feel uneasy with the c<strong>on</strong>cept.<br />

But the strand model naturally defines N wave functi<strong>on</strong> values at each point in space:<br />

each particle has its own tangle, and each tangle yields, via short-term averaging, <strong>on</strong>e<br />

complex value, with magnitude and phase, at each point in space. In this way, the strand<br />

model is able to describe N particles in just 3 dimensi<strong>on</strong>s.<br />

In other words, the strand model does not describe N particles with 1 functi<strong>on</strong> in<br />

3N dimensi<strong>on</strong>s; it describes many-particle states with N functi<strong>on</strong>s in 3 dimensi<strong>on</strong>s. In<br />

this way, the strand model remains as close to everyday life as possible. Many incorrect<br />

statements <strong>on</strong> this issue are found in the research literature; many authors incorrectly<br />

claim the impossibility <str<strong>on</strong>g>of</str<strong>on</strong>g> many-particle quantum theory in 3 dimensi<strong>on</strong>s. Some authors<br />

even claim, in c<strong>on</strong>trast to experiment, that it is impossible to visualize many-particle<br />

states in 3 dimensi<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>se arguments all fail to c<strong>on</strong>sider the possibility to define<br />

completely separate wave functi<strong>on</strong>s for each particle in three dimensi<strong>on</strong>s. (It must be<br />

said that this unusual possibility is hard to imagine if wave functi<strong>on</strong>s are described as<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


quantum theory deduced from strands 207<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g> model : Observati<strong>on</strong> :<br />

First separable basis state :<br />

|↑↓⟩<br />

Ref. 165<br />

x 1 x 2<br />

x 1<br />

x 2<br />

Sec<strong>on</strong>d separable basis state :<br />

FIGURE 41 Two examples <str<strong>on</strong>g>of</str<strong>on</strong>g> two distant particles with spin in separable states: observati<strong>on</strong> and strand<br />

model.<br />

c<strong>on</strong>tinuous functi<strong>on</strong>s.) However, clear thinkers like Richard Feynman always pictured<br />

many-particle wave functi<strong>on</strong>s in 3 dimensi<strong>on</strong>s. Also in this domain, the strand model<br />

provides an underlying picture to Feynman’s approach. This is another situati<strong>on</strong> where<br />

the strand model eliminates incorrect thinking habits and supports the ‘naive’ view <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

quantum theory.<br />

Now that we have defined many-particle states, we can also define entangled states.<br />

|↓↑⟩<br />

⊳ An entangled state is a n<strong>on</strong>-separable superpositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> separable manyparticle<br />

states. State are separable when their tangles can be pulled away<br />

without their tails being entangled.<br />

We will now show that the above definiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> superpositi<strong>on</strong>s and <str<strong>on</strong>g>of</str<strong>on</strong>g> measurements<br />

using strands are sufficient to describe entanglement.<br />

As first example, we explore entangled states <str<strong>on</strong>g>of</str<strong>on</strong>g> the spin <str<strong>on</strong>g>of</str<strong>on</strong>g> two distant massive fermi<strong>on</strong>s.<br />

This is the famous thought experiment proposed by David Bohm. In the strand<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


208 8 quantum theory deduced from strands<br />

Entangled state<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g> model :<br />

√90 % |↑↓⟩ + √10 % |↓↑⟩<br />

untangled<br />

“additi<strong>on</strong><br />

regi<strong>on</strong>”<br />

Observati<strong>on</strong> yields<br />

either this eigenstate (90%) :<br />

Page 230<br />

or this eigenstate (10%) :<br />

x 1 x 2<br />

x 1<br />

x 2<br />

FIGURE 42 An entangled spin state <str<strong>on</strong>g>of</str<strong>on</strong>g> two distant particles.<br />

model, two distant particles with spin 1/2 in a separable state are modelled as two distant,<br />

separate tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> identical topology. Figure 41 shows two separable basis states, namely<br />

the two states with total spin 0 given by | ↑↓⟩ and by | ↓↑⟩. Such states can also be produced<br />

in experiments. We note that to ensure total spin 0, the tails must be imagined to<br />

crosssomewhere,asshowninthefigure.<br />

We can now draw a superpositi<strong>on</strong> √90 % |↑↓⟩ + √10 % |↓↑⟩ <str<strong>on</strong>g>of</str<strong>on</strong>g> the two spin-0 basis<br />

states. We simply use the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong> and find the state shown in Figure 42. We<br />

can now use the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement to check that the state is indeed entangled.<br />

If we measure the spin orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the particles, the untangled additi<strong>on</strong> regi<strong>on</strong><br />

disappears. <str<strong>on</strong>g>The</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> the measurement will be either the state <strong>on</strong> the inside <str<strong>on</strong>g>of</str<strong>on</strong>g> the additi<strong>on</strong><br />

regi<strong>on</strong> or the state <strong>on</strong> the outside. And since the tails <str<strong>on</strong>g>of</str<strong>on</strong>g> the two particles are linked,<br />

after the measurement, independently <str<strong>on</strong>g>of</str<strong>on</strong>g> the outcome, the spin <str<strong>on</strong>g>of</str<strong>on</strong>g> the two particles will<br />

always point in opposite directi<strong>on</strong>s. This happens for every particle distance. Despite<br />

this extremely rapid and apparently superluminal collapse, no energy travels faster than<br />

light. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus reproduces exactly the observed behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> entangled<br />

spin 1/2 states.<br />

A sec<strong>on</strong>d example is the entanglement <str<strong>on</strong>g>of</str<strong>on</strong>g> two phot<strong>on</strong>s, the well-known Aspect experiment.<br />

Also in this case, entangled spin 0 states, i.e., entangled states <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

opposite helicity (spin), are most interesting. Again, the strand model helps to visualize<br />

the situati<strong>on</strong>. Here we use the strand model for the phot<strong>on</strong> that we will deduce <strong>on</strong>ly later<br />

<strong>on</strong>. Figure 43 shows the strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> the two separable basis states and the strand<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> the entangled state. Again, the measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> the helicity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e phot<strong>on</strong> in<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


quantum theory deduced from strands 209<br />

First separable basis state :<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Aspect experiment<br />

Entangled state (50% + 50%) :<br />

source<br />

source<br />

Ref. 167<br />

Sec<strong>on</strong>d separable basis state :<br />

source<br />

the untangled<br />

additi<strong>on</strong> regi<strong>on</strong><br />

expands with time<br />

in this situati<strong>on</strong><br />

FIGURE 43 <str<strong>on</strong>g>The</str<strong>on</strong>g> basis states and an entangled state <str<strong>on</strong>g>of</str<strong>on</strong>g> two distant phot<strong>on</strong>s travelling in opposite<br />

directi<strong>on</strong>s, with total spin 0.<br />

the entangled state will lead to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the two basis states. And as so<strong>on</strong> as the helicity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e phot<strong>on</strong> is measured, the helicity <str<strong>on</strong>g>of</str<strong>on</strong>g> its compani<strong>on</strong> collapses to the opposite<br />

value, whatever the distance! Experimentally, the effect has been observed for distances<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> many kilometres. Again, despite the extremely rapid collapse, no energy travels faster<br />

than light. And again, the strand model completely reproduces the observati<strong>on</strong>s.<br />

Mixed states<br />

Mixed states are statistical ensembles <str<strong>on</strong>g>of</str<strong>on</strong>g> pure states. In the strand model,<br />

⊳ A mixed state is a (weighted) temporal alternati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pure states.<br />

Mixed states are important in discussi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> thermodynamic quantities. We menti<strong>on</strong><br />

them to complete the equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> the states that appear in quantum theory with those<br />

provided by the strand model. We do not pursue this topic any further.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time<br />

‘Nature c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> particles moving in empty space.’ Democritus stated this 2500 years<br />

ago. Today, we know that is a simplified descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e half <str<strong>on</strong>g>of</str<strong>on</strong>g> physics: it is a simplified<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory. In fact, Democritus’ statement, together with<br />

strands, allows us to argue that physical space must have three dimensi<strong>on</strong>s, as we will<br />

see now.<br />

Deducing the dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> physical space from first principles is an old and dif-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


210 8 quantum theory deduced from strands<br />

Page 169<br />

Challenge 141 e<br />

Page 164<br />

ficult problem. <str<strong>on</strong>g>The</str<strong>on</strong>g> difficulty is also due to the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> alternative descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

Our explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the foundati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model has shown that humans, animals<br />

and machines always use three spatial dimensi<strong>on</strong>s to describe their envir<strong>on</strong>ment. <str<strong>on</strong>g>The</str<strong>on</strong>g>y<br />

cannot do otherwise. Humans, animals and machines cannot talk and think without<br />

three dimensi<strong>on</strong>s as background space.<br />

But how can we show that physical space –notthebackground space we need for thinking<br />

– is three-dimensi<strong>on</strong>al and must be so? We need to show that (1) all experiments<br />

reproduce the result and that (2) no other number <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong>s yields a c<strong>on</strong>sistent descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

In nature, and also in the strand model, as l<strong>on</strong>g as particles can be defined, they<br />

can be rotated around each other and they can be exchanged. No experiment has ever<br />

been performed or has ever been proposed that changes this observati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> observed<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> rotati<strong>on</strong>s, <str<strong>on</strong>g>of</str<strong>on</strong>g> spin 1/2, <str<strong>on</strong>g>of</str<strong>on</strong>g> particle exchange and all other observati<strong>on</strong>s c<strong>on</strong>firm<br />

that space has three dimensi<strong>on</strong>s. Fermi<strong>on</strong>s <strong>on</strong>ly exist in three dimensi<strong>on</strong>s. In<br />

the strand model, the positi<strong>on</strong> and the orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle is intrinsically a threedimensi<strong>on</strong>al<br />

quantity; physical space is thus three-dimensi<strong>on</strong>al, in all situati<strong>on</strong>s where<br />

it can be defined. (<str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>on</strong>ly situati<strong>on</strong>s where this definiti<strong>on</strong> is impossible are horiz<strong>on</strong>s<br />

and the Planck scales.) In short, both nature and the strand model are found to be threedimensi<strong>on</strong>al<br />

at all experimentally accessible energy scales. C<strong>on</strong>versely, detecting an additi<strong>on</strong>al<br />

spatial dimensi<strong>on</strong> would directly invalidate the strand model.<br />

Nature has three dimensi<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>on</strong>ly way to predict this result is to show that no<br />

other number is possible. <str<strong>on</strong>g>The</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> nature can <strong>on</strong>ly result from a<br />

self-c<strong>on</strong>sistency argument. And interestingly, the strand model produces such an argument.<br />

In the strand model, knots and tangles are impossible to c<strong>on</strong>struct in physical spaces<br />

with dimensi<strong>on</strong>s other than three. Indeed, mathematicians can show that in four spatial<br />

dimensi<strong>on</strong>s, every knot and every tangle can be und<strong>on</strong>e. (In this argument, time is not<br />

and does not count as a fourth spatial dimensi<strong>on</strong>, and strands are assumed to remain <strong>on</strong>edimensi<strong>on</strong>al<br />

entities.) Worse, in the strand model, spin does not exist in spaces that have<br />

more or fewer than three dimensi<strong>on</strong>s. Also the vacuum and its quantum fluctuati<strong>on</strong>s do<br />

not exist in more than three dimensi<strong>on</strong>s. Moreover, in other dimensi<strong>on</strong>s it is impossible<br />

to formulate the fundamental principle. In short, the strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> matter and <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

observers, be they animals, people or machines, is possible in three spatial dimensi<strong>on</strong>s<br />

<strong>on</strong>ly. No descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature with a background or physical space <str<strong>on</strong>g>of</str<strong>on</strong>g> more or less than<br />

three dimensi<strong>on</strong>s is possible with strands. C<strong>on</strong>versely, c<strong>on</strong>structing such a descripti<strong>on</strong><br />

would invalidate the strand model.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> same type <str<strong>on</strong>g>of</str<strong>on</strong>g> arguments can be collected for the <strong>on</strong>e-dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> physical<br />

time. It can be fun exploring them – for a short while. In summary, the strand model <strong>on</strong>ly<br />

works in 3+1space-time dimensi<strong>on</strong>s; it does not allow any other number <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong>s.<br />

We have thus ticked <str<strong>on</strong>g>of</str<strong>on</strong>g>f another <str<strong>on</strong>g>of</str<strong>on</strong>g> the millennium issues. We can thus c<strong>on</strong>tinue with our<br />

adventure.<br />

Operators and the Heisenberg picture<br />

In quantum theory, Hermitean operators play an important role. In the strand model,<br />

Hermitean or self-adjoint operators are operators that leave the tangle topology invariant.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


quantum theory deduced from strands 211<br />

Ref. 168<br />

Also unitary operators play an important role in quantum theory. In the strand model,<br />

unitary operators are operators that deform tangles in a way that the corresp<strong>on</strong>ding wave<br />

functi<strong>on</strong> retains its norm, i.e., such that tangles retain their topology and their core shape.<br />

Physicists know two ways to describe quantum theory. One is to describe evoluti<strong>on</strong><br />

with time-dependent quantum states – the Schrödinger picture we are using here – and<br />

the other is to describe evoluti<strong>on</strong> with time-dependent operators. In this so-called Heisenberg<br />

picture, the temporal evoluti<strong>on</strong> is described by the operators.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> two pictures <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory are equivalent. In the Heisenberg picture, the<br />

fundamental principle, the equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> a crossing switch with ħ, becomes a statement<br />

<strong>on</strong> the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> operators. Already in 1987, Louis Kauffman had argued that the<br />

commutati<strong>on</strong> relati<strong>on</strong> for the momentum and positi<strong>on</strong> operators<br />

px − xp = ħi (134)<br />

is related to a crossing switch. <str<strong>on</strong>g>The</str<strong>on</strong>g> present secti<strong>on</strong> c<strong>on</strong>firms that speculati<strong>on</strong>.<br />

In quantum mechanics, the commutati<strong>on</strong> relati<strong>on</strong> follows from the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

momentum operator as p=ħk, k=−i∂ x being the wave vector operator. <str<strong>on</strong>g>The</str<strong>on</strong>g> factor<br />

ħ defines the unit <str<strong>on</strong>g>of</str<strong>on</strong>g> momentum. <str<strong>on</strong>g>The</str<strong>on</strong>g> wave vector counts the number <str<strong>on</strong>g>of</str<strong>on</strong>g> wave crests <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a wave. Now, in the strand model, a rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a state by an angle π is described by a<br />

multiplicati<strong>on</strong> by i. Counting wave crests <str<strong>on</strong>g>of</str<strong>on</strong>g> a propagating state is <strong>on</strong>ly possible by using<br />

the factor i, as this factor is the <strong>on</strong>ly property that distinguishes a crest from a trough.<br />

In short, the commutati<strong>on</strong> relati<strong>on</strong> follows from the fundamental principle <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand<br />

model.<br />

Lagrangians and the principle <str<strong>on</strong>g>of</str<strong>on</strong>g> least acti<strong>on</strong><br />

Before we derive the Dirac equati<strong>on</strong>, we show that the strand model naturally leads to<br />

describe moti<strong>on</strong> with Lagrangians.<br />

In nature, physical acti<strong>on</strong> is an observable measured in multiples <str<strong>on</strong>g>of</str<strong>on</strong>g> the natural unit,<br />

the quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> ħ. Acti<strong>on</strong> is the fundamental observable about nature, because<br />

acti<strong>on</strong> measures the total change occurring in a process.<br />

In the strand model,<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> physical acti<strong>on</strong> W <str<strong>on</strong>g>of</str<strong>on</strong>g> a physical process is the observed number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. Acti<strong>on</strong> values are multiples <str<strong>on</strong>g>of</str<strong>on</strong>g> ħ.<br />

We note that these multiples, if averaged, do not need to be integer multiples. We further<br />

note that through this definiti<strong>on</strong>, acti<strong>on</strong> is observer-invariant. This important property is<br />

thus automatic in the strand model.<br />

In nature, energy is acti<strong>on</strong> per time. Thus, in the strand model we have:<br />

⊳ Energy is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches per time in a system.<br />

In nature, when free quantum particles move, their phase changes linearly with time. In<br />

other words, the ‘little arrow’ representing the free particle phase rotates with c<strong>on</strong>stant<br />

angular frequency. We saw that in the strand model, the ‘little arrow’ is taken as (half)<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


212 8 quantum theory deduced from strands<br />

Challenge 142 e<br />

the orientati<strong>on</strong> angle <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle core, and the arrow rotati<strong>on</strong> is (half) the rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the tangle core.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> kinetic energy T <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches per time<br />

induced by shape fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>tinuously rotating tangle core.<br />

We call T the corresp<strong>on</strong>ding volume density: T =T/V.Innature,theLagrangianisa<br />

practical quantity to describe moti<strong>on</strong>. For a free particle, the Lagrangian density L = T<br />

is simply the kinetic energy density, and the acti<strong>on</strong> W=∫L dVdt =Ttis the product<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> kinetic energy and time. In the strand model, a free particle is a c<strong>on</strong>stantly rotating<br />

and advancing tangle. We see directly that this c<strong>on</strong>stant evoluti<strong>on</strong> minimizes the acti<strong>on</strong><br />

W for a particle, given the states at the start and at the end.<br />

This aspect is more interesting for particles that interact. Interacti<strong>on</strong>s can be described<br />

by a potential energy U, which is, more properly speaking, the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the field that<br />

produces the interacti<strong>on</strong>. In the strand model,<br />

⊳ Potential energy U is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches per time induced by<br />

an interacti<strong>on</strong> field.<br />

We call U the corresp<strong>on</strong>ding volume density: U =U/V. In short, in the strand model,<br />

an interacti<strong>on</strong> changes the rotati<strong>on</strong> rate and the linear moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle tangle.<br />

In the strand model, the difference between kinetic and potential energy is thus a<br />

quantity that describes how much a system c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> a tangle and a field changes<br />

at a given time. <str<strong>on</strong>g>The</str<strong>on</strong>g> total change is the integral over time <str<strong>on</strong>g>of</str<strong>on</strong>g> all instantaneous changes.<br />

In other words, in the strand model we have:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> Lagrangian density L = T − U is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches per<br />

volume and time, averaged over many Planck scales.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> physical acti<strong>on</strong> W=∫Ldt =∫∫L dVdt <str<strong>on</strong>g>of</str<strong>on</strong>g> a physical process is the observed<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. <str<strong>on</strong>g>The</str<strong>on</strong>g> acti<strong>on</strong> value W if between<br />

an initial state ψ i and a final state ψ f is given by<br />

W if =⟨ψ i |∫L dt|ψ f ⟩=⟨ψ i |∫(T − U) dt|ψ f ⟩ . (135)<br />

Since energy is related to crossing switches, it is natural that strand fluctuati<strong>on</strong>s that do<br />

not induce crossing switches are favoured. In short, the strand model states<br />

⊳ Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> strands minimizes crossing switch number. As a result, strands<br />

minimize the acti<strong>on</strong> W.<br />

In the strand model, the least acti<strong>on</strong> principle appears naturally. Inthestrandmodel,an<br />

evoluti<strong>on</strong> has least acti<strong>on</strong> when it occurs with the smallest number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing changes.<br />

With this c<strong>on</strong>necti<strong>on</strong>, <strong>on</strong>e can also show that the strand model implies Schwinger’s<br />

quantum acti<strong>on</strong> principle.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


quantum theory deduced from strands 213<br />

To calculate quantum moti<strong>on</strong> with the principle <str<strong>on</strong>g>of</str<strong>on</strong>g> least acti<strong>on</strong>, we need to define the<br />

kinetic and the potential energy in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are various possibilities for<br />

Lagrangian densities for a given evoluti<strong>on</strong> equati<strong>on</strong>; however, all are equivalent. In case<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the free Schrödinger equati<strong>on</strong>, <strong>on</strong>e possibility is:<br />

Page 230<br />

L = iħ 2 (ψ∂ tψ−∂ t ψψ)− ħ2<br />

∇ψ∇ψ . (136)<br />

2m<br />

In this way, the principle <str<strong>on</strong>g>of</str<strong>on</strong>g> least acti<strong>on</strong> can be used to describe the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Schrödinger equati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> same is possible for situati<strong>on</strong>s with potentials, for the Pauli<br />

equati<strong>on</strong>, and for all other evoluti<strong>on</strong> equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum particles.<br />

We thus retain that the strand model explains the least acti<strong>on</strong> principle. It explains it<br />

because strand evoluti<strong>on</strong> minimizes the number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches.<br />

Special relativity: the vacuum<br />

In nature, there is an invariant limit energy speed c, namely the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light and <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

other massless radiati<strong>on</strong>. Special relativity is the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>sequences from<br />

this observati<strong>on</strong>, in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> a flat space-time.<br />

We remark that special relativity also implies and requires that the flat vacuum looks<br />

exactly the same for all inertial observers. In the strand model, the idea <str<strong>on</strong>g>of</str<strong>on</strong>g> flat vacuum<br />

as a set <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuating featureless strands that are unknotted and unlinked automatically<br />

implies that for any inertial observer the flat vacuum has no matter c<strong>on</strong>tent, has no energy<br />

c<strong>on</strong>tent, is isotropic and is homogeneous. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus realizes this basic<br />

requirement <str<strong>on</strong>g>of</str<strong>on</strong>g> special relativity. In the strand model, vacuum is Lorentz-invariant.<br />

Many models <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum, even fluctuating <strong>on</strong>es, have difficulties reproducing<br />

Lorentz invariance. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model differs, because the strands are not the observable<br />

entities; <strong>on</strong>ly their crossing switches are. This topological definiti<strong>on</strong>, together with<br />

the averaging <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluctuati<strong>on</strong>s, makes the vacuum Lorentz-invariant.<br />

We note that in the strand model, the vacuum is unique, and the vacuum energy <str<strong>on</strong>g>of</str<strong>on</strong>g> flat<br />

infinite vacuum is exactly zero. In the strand model, there is no divergence <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum<br />

energy, and there is thus no c<strong>on</strong>tributi<strong>on</strong> to the cosmological c<strong>on</strong>stant from quantum<br />

field theory. In particular, in the strand model there is no need for supersymmetry to<br />

explain the small energy density <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum.<br />

Special relativity: the invariant limit speed<br />

In the strand model, massless particles are unknotted and untangled. Even though we<br />

will deduce the strand model for phot<strong>on</strong>s <strong>on</strong>ly later <strong>on</strong>, we use it here already, to speed<br />

up the discussi<strong>on</strong>. In the strand model, the phot<strong>on</strong> is described by a single, helically<br />

deformed unknotted strand, as shown in Figure 51. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, we can define:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> Planck speed c is the observed average speed <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches due<br />

to phot<strong>on</strong>s.<br />

Because the definiti<strong>on</strong> uses crossing switches and a massless particle, the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light<br />

c is an energy speed. Also speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light c is an average for l<strong>on</strong>g times. Indeed, as is well-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


214 8 quantum theory deduced from strands<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g> model :<br />

Localized particle at rest :<br />

time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches<br />

Observed<br />

probability<br />

density :<br />

t 1<br />

t 1<br />

t 2<br />

t 1<br />

t 2<br />

Ref. 169<br />

Page 351<br />

Slow moti<strong>on</strong> :<br />

t 1<br />

Relativistic moti<strong>on</strong> :<br />

t 2 t 1<br />

rotati<strong>on</strong>,<br />

precessi<strong>on</strong> and<br />

displacement<br />

t 2<br />

t 2 t 1 t 2<br />

rotati<strong>on</strong>,<br />

precessi<strong>on</strong> and<br />

displacement<br />

FIGURE 44 Tangles at rest, at low speed and at relativistic speed.<br />

knowninquantumfieldtheory, due to the indeterminacy relati<strong>on</strong>, single phot<strong>on</strong>s can<br />

travel faster or slower than light, but the probability for large deviati<strong>on</strong>s is extremely low.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> linear moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a helically deformed phot<strong>on</strong> strand through the vacuum strands<br />

is similar to the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a bottle opener through cork. It differs from the linear moti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a matter tangle through vacuum, which makes use <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt trick. <str<strong>on</strong>g>The</str<strong>on</strong>g> belt trick slows<br />

fermi<strong>on</strong>s down, though the details are not simple, as we will discover below. In short, we<br />

find that matter tangles always move more slowly than light. <str<strong>on</strong>g>The</str<strong>on</strong>g> speed c is a limit speed.<br />

In fact, we see that ultrarelativistic tangles move, as shown in Figure 44, almostlike<br />

light. We thus find that matter can almost reach the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light. <str<strong>on</strong>g>The</str<strong>on</strong>g> speed c is indeed<br />

a limit speed for matter.<br />

However, <strong>on</strong>e problem remains open: how exactly do tangles move through the web<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


quantum theory deduced from strands 215<br />

Page 351<br />

Page 358<br />

Page 152<br />

Page 209<br />

Page 164<br />

Page 196<br />

that describes the vacuum? We will clarify this issue later <strong>on</strong>. In a few words, the moti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a phot<strong>on</strong> requires that the strands <str<strong>on</strong>g>of</str<strong>on</strong>g> the surrounding space make room for it. This<br />

requires favourable fluctuati<strong>on</strong>s, thus a finite time. <str<strong>on</strong>g>The</str<strong>on</strong>g> moti<strong>on</strong> process <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s thus<br />

makes it clear that the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light is finite.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light c is defined as an average, because, as well-known in quantum<br />

field theory, there are small probabilities that light moves faster or slower that c. But<br />

the average result c will be the same for every observer. <str<strong>on</strong>g>The</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> the speed c is thus<br />

invariant.<br />

In 1905, Einstein showed that the menti<strong>on</strong>ed properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light – energy<br />

speed, limit speed, finite speed and invariant speed – imply the Lorentz transformati<strong>on</strong>s.<br />

In particular, the three properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light c imply that the energy E <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

particle <str<strong>on</strong>g>of</str<strong>on</strong>g> mass m is related to its momentum p as<br />

E 2 =m 2 c 4 +c 2 p 2 or ħ 2 ω 2 =m 2 c 4 +c 2 ħ 2 k 2 . (137)<br />

This dispersi<strong>on</strong> relati<strong>on</strong> is thus also valid for massive particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> tangled strands –<br />

even though we cannot yet calculate tangle masses. (We will do this later <strong>on</strong>.)<br />

Should we be surprised at this result? No. In the fundamental principle, the definiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the crossing switch, we inserted the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light as the ratio between the Planck<br />

length and the Planck time. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, by defining the crossing switch in the way we did,<br />

we have implicitly stated the invariance <str<strong>on</strong>g>of</str<strong>on</strong>g> the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light.<br />

Fluctuating strands imply that flat vacuum has no matter or energy c<strong>on</strong>tent, for every<br />

inertial observer. Due to the strand fluctuati<strong>on</strong>s, flat vacuum is also homogeneous and<br />

isotropic for every inertial observer. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, together with the 3+1-dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

space-time deduced above, we have now definitely shown that flat vacuum has Poincaré<br />

symmetry. This settles another issue from the millennium list.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> relativistic dispersi<strong>on</strong> relati<strong>on</strong> differs from the n<strong>on</strong>-relativistic case in two ways.<br />

First, the energy scale is shifted, and now includes the rest energy E 0 =c 2 m.Sec<strong>on</strong>dly,<br />

the spin precessi<strong>on</strong> is not independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle speed any more; for relativistic<br />

particles, the spin lies close to the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>. Both effects follow from the<br />

existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a limit speed.<br />

If we neglect spin, we can use the relativistic dispersi<strong>on</strong> relati<strong>on</strong> to deduce directly the<br />

well-known Klein–Gord<strong>on</strong> equati<strong>on</strong> for the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a wave functi<strong>on</strong>:<br />

−ħ 2 ∂ tt ψ=m 2 c 4 −c 2 ħ 2 ∇ 2 ψ . (138)<br />

In other words, the strand model implies that relativistic tangles follow the Klein–<br />

Gord<strong>on</strong> equati<strong>on</strong>. We now build <strong>on</strong> this result to deduce Dirac’s equati<strong>on</strong> for relativistic<br />

quantum moti<strong>on</strong>.<br />

Dirac’s equati<strong>on</strong> deduced from tangles<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> relativistic Klein–Gord<strong>on</strong> equati<strong>on</strong> assumes that spin effects are negligible. This approximati<strong>on</strong><br />

fails to describe most experiments. A precise descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> relativistic elementary<br />

particles must include spin.<br />

So far, we deduced the Schrödinger equati<strong>on</strong> using the relati<strong>on</strong> between phase and<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


216 8 quantum theory deduced from strands<br />

Ref. 170<br />

Ref. 171<br />

Ref. 171<br />

the quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong>, using the n<strong>on</strong>-relativistic energy–momentum relati<strong>on</strong>, and neglecting<br />

spin. In the next step we deduced the Pauli equati<strong>on</strong> by including the properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> spin 1/2. <str<strong>on</strong>g>The</str<strong>on</strong>g> following step was to deduce the Klein–Gord<strong>on</strong> equati<strong>on</strong> using again<br />

the relati<strong>on</strong> between phase and the quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong>, this time the relativistic energy–<br />

momentum relati<strong>on</strong>, but assuming zero spin. <str<strong>on</strong>g>The</str<strong>on</strong>g> final and correct descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary<br />

fermi<strong>on</strong>s, the Dirac equati<strong>on</strong>, results from combining all three ingredients: (1)<br />

the relati<strong>on</strong> between the quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> and the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave functi<strong>on</strong>, (2) the<br />

relativistic mass–energy relati<strong>on</strong>, and (3) the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> spin 1/2. Now we can reproduce<br />

this derivati<strong>on</strong> because all three ingredients are reproduced by the strand model.<br />

We first recall the derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac equati<strong>on</strong> found in textbooks. <str<strong>on</strong>g>The</str<strong>on</strong>g> main<br />

observati<strong>on</strong> about spin in the relativistic c<strong>on</strong>text is the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> states <str<strong>on</strong>g>of</str<strong>on</strong>g> right-handed<br />

and <str<strong>on</strong>g>of</str<strong>on</strong>g> left-handed chirality: spin can precess in two opposite senses around the directi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> momentum. In additi<strong>on</strong>, for massive particles, the two chiral states mix. <str<strong>on</strong>g>The</str<strong>on</strong>g> existence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> two chiralities requires a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> spinning particles with a wave functi<strong>on</strong> that<br />

has four complex comp<strong>on</strong>ents, thus twice the number <str<strong>on</strong>g>of</str<strong>on</strong>g> comp<strong>on</strong>ents that appear in the<br />

Pauli equati<strong>on</strong>. Indeed, the Pauli equati<strong>on</strong> implicitly assumes <strong>on</strong>ly <strong>on</strong>e, given sign for the<br />

chirality, even though it does not specify it. This simple descripti<strong>on</strong> is possible because<br />

in n<strong>on</strong>-relativistic situati<strong>on</strong>s, states <str<strong>on</strong>g>of</str<strong>on</strong>g> different chirality do not mix.<br />

C<strong>on</strong>sistency requires that each <str<strong>on</strong>g>of</str<strong>on</strong>g> the four comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a relativistic<br />

spinning particle must follow the relativistic energy–momentum relati<strong>on</strong>, and<br />

thus the Klein–Gord<strong>on</strong> equati<strong>on</strong>. This requirement is known to be sufficient to deduce<br />

the Dirac equati<strong>on</strong>. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the simplest derivati<strong>on</strong>s is due to Lerner; we summarize it<br />

here.<br />

When a spinning object moves relativistically, we must take both chiralities into account.<br />

We call u the negative chiral state and v the positive chiral state. Each state is<br />

described by two complex numbers that depend <strong>on</strong> space and time. <str<strong>on</strong>g>The</str<strong>on</strong>g> 4-vector for<br />

probability and current becomes<br />

J μ =u † σ μ u+v † σ μ v . (139)<br />

We now introduce the four-comp<strong>on</strong>ent spinor φ and the 4×4spin matrices a μ<br />

φ=( u v ) and α μ =( σ μ 0<br />

0 σ μ<br />

), (140)<br />

where σ μ =(I,σ) and σ μ =(I,−σ) and I is the 2×2identity matrix. <str<strong>on</strong>g>The</str<strong>on</strong>g> 4-current can<br />

then be written as<br />

J μ =φ † α μ φ . (141)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> three requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> current c<strong>on</strong>servati<strong>on</strong>, Lorentz invariance and linearity then<br />

yield the evoluti<strong>on</strong> equati<strong>on</strong><br />

iħ∂ μ (α μ φ) + mcγ 5 φ=0. (142)<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


quantum theory deduced from strands 217<br />

FIGURE 45 <str<strong>on</strong>g>The</str<strong>on</strong>g> belt trick for a rotating body with many tails, as used by Battey-Pratt and Racey to<br />

deduce the Dirac equati<strong>on</strong> (© Springer Verlag, from Ref. 172).<br />

This is the Dirac equati<strong>on</strong> in the (less usual) spinorial representati<strong>on</strong>.* <str<strong>on</strong>g>The</str<strong>on</strong>g> last term<br />

shows that mass mixes right and left chiralities. <str<strong>on</strong>g>The</str<strong>on</strong>g> equati<strong>on</strong> can be expanded to include<br />

potentials using minimal coupling, in the same way as d<strong>on</strong>e above for the Schrödinger<br />

*<str<strong>on</strong>g>The</str<strong>on</strong>g>matrixγ 5 is defined here as<br />

where I is the 2×2identity matrix.<br />

γ 5 =( 0 I ), (143)<br />

I 0<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


218 8 quantum theory deduced from strands<br />

Ref. 172<br />

and Pauli equati<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> above textbook derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac equati<strong>on</strong> from usual quantum theory can<br />

be repeated and visualized also with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is no difference in arguments<br />

or results. <str<strong>on</strong>g>The</str<strong>on</strong>g> derivati<strong>on</strong> with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> strands was performed for the first<br />

time by Battey-Pratt and Racey, in 1980. <str<strong>on</strong>g>The</str<strong>on</strong>g>y explored a central object c<strong>on</strong>nected by<br />

unobservable strands (or ‘tails’) to the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space, as shown in Figure 45. Intheir<br />

approach, the central object plus the tails corresp<strong>on</strong>d to a quantum particle. <str<strong>on</strong>g>The</str<strong>on</strong>g> central<br />

object is assumed to be c<strong>on</strong>tinuously rotating, thus reproducing spin 1/2. <str<strong>on</strong>g>The</str<strong>on</strong>g>y also assumed<br />

that <strong>on</strong>ly the central object is observable. (In the strand model, the central object<br />

becomes the tangle core.) Battey-Pratt and Racey then explored a relativistically moving<br />

object <str<strong>on</strong>g>of</str<strong>on</strong>g> either chirality. <str<strong>on</strong>g>The</str<strong>on</strong>g>y showed that a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such an object requires<br />

four complex fields. Studying the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the phases and axes for the chiral objects<br />

yields the Dirac equati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> derivati<strong>on</strong> by Battey-Pratt and Racey is mathematically<br />

equivalent to the textbook derivati<strong>on</strong> just given.<br />

We can thus say that the Dirac equati<strong>on</strong> follows from the belt trick. We will visualize<br />

this c<strong>on</strong>necti<strong>on</strong> in more detail in the next secti<strong>on</strong>. When the present author found<br />

this c<strong>on</strong>necti<strong>on</strong> in 2008, Lou Kauffman pointed out the much earlier paper by Battey-<br />

Pratt and Racey. In fact, Paul Dirac was still alive when they found this c<strong>on</strong>necti<strong>on</strong>, but<br />

unfortunately he did not answer their letter asking for comment.<br />

In summary, tangles completely reproduce both the rotati<strong>on</strong> and the linear moti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> elementary fermi<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, the strand model provides a simple view <strong>on</strong> the<br />

evoluti<strong>on</strong> equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory. In the terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model, when spin<br />

is neglected, the Schrödinger equati<strong>on</strong> describes the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing density. For<br />

relativistic fermi<strong>on</strong>s, when the belt trick is included, the Dirac equati<strong>on</strong> describes the<br />

evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing density. In fact, strands visualize these evoluti<strong>on</strong> equati<strong>on</strong>s in the<br />

most c<strong>on</strong>crete way known so far.<br />

Visualizing spinors and Dirac’s equati<strong>on</strong> using tangles<br />

Despite its apparent complexity, the Dirac equati<strong>on</strong> makes <strong>on</strong>ly a few statements: spin<br />

1/2 particles are fermi<strong>on</strong>s, obey the relativistic energy–momentum relati<strong>on</strong>, keep the<br />

quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> invariant, and thus behave like a wave. Each statement is visualized<br />

by the tangle model <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong>s: tangles behave as spinors, the relativistic energy–<br />

momentum relati<strong>on</strong> is built-in, the fundamental principle holds, and rotating tangle<br />

cores reproduce the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the phase. Let us look at the details.<br />

Given a particle tangle, the short-time fluctuati<strong>on</strong>s lead, after averaging <str<strong>on</strong>g>of</str<strong>on</strong>g> the crossings,<br />

to the wave functi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> tangle model <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong>s also provides a visualizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the spinor wave functi<strong>on</strong>. Indeed, at each point in space, the wave functi<strong>on</strong> has the<br />

following parameters:<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g>re is an average density ρ(x, t); physically, this is the probability density. In the<br />

strand model, this is the local crossing density.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a set <str<strong>on</strong>g>of</str<strong>on</strong>g> three Euler angles α, β and γ; physically, they describe the average<br />

local orientati<strong>on</strong> and phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the spin axis. In the strand model, this is the average<br />

local orientati<strong>on</strong> and phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle core.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a sec<strong>on</strong>d set <str<strong>on</strong>g>of</str<strong>on</strong>g> three parameters v =(v x ,v y ,v z );physically,theydescribe,at<br />

<strong>on</strong>e’s preference, either the average local Lorentz boost or a sec<strong>on</strong>d set <str<strong>on</strong>g>of</str<strong>on</strong>g> three Euler<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


quantum theory deduced from strands 219<br />

Ref. 173<br />

angles. In the strand model, these parameters describe the average local deformati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the core that is due to the Lorentz boost. It can also be seen as the axis around<br />

which the belt trick is performed.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a phase δ; physically, this represents the relative importance <str<strong>on</strong>g>of</str<strong>on</strong>g> particle and<br />

antiparticle density. In the strand model, this phase describes with what probability<br />

the average local belt trick is performed right-handedly or left-handedly.<br />

In total, these are eight real parameters; they corresp<strong>on</strong>d to <strong>on</strong>e positive real number and<br />

seven phases. <str<strong>on</strong>g>The</str<strong>on</strong>g>y lead to the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a spinor wave functi<strong>on</strong> as<br />

Ref. 173<br />

Ref. 165<br />

Ref. 173<br />

Ref. 174<br />

Ref. 175<br />

φ=√ρ e iδ L(v) R(α/2, β/2, γ/2) , (144)<br />

where the product LR is an abbreviati<strong>on</strong> for the boosted and rotated unit spinor and<br />

all parameters depend <strong>on</strong> space and time. This expressi<strong>on</strong> is equivalent to the descripti<strong>on</strong><br />

with four complex parameters used in most textbooks. In fact, this descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

spinor wave functi<strong>on</strong> and the related physical visualizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> its density and its first six<br />

phases dates already from the 1960s. <str<strong>on</strong>g>The</str<strong>on</strong>g> visualisati<strong>on</strong> can be deduced from the study <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

relativistic spinning tops or <str<strong>on</strong>g>of</str<strong>on</strong>g> relativistic fluids. Rotating tangles are more realistic, however.<br />

In c<strong>on</strong>trast to all previous visualizati<strong>on</strong>s, the rotating tangle model explains also the<br />

last, seventh phase. This is the phase that describes matter and anti-matter, that explains<br />

theappearance<str<strong>on</strong>g>of</str<strong>on</strong>g>thequantum<str<strong>on</strong>g>of</str<strong>on</strong>g>acti<strong>on</strong>ħ, and that explains the fermi<strong>on</strong> behaviour.<br />

In short, <strong>on</strong>ly rotating tangles together with the fundamental principle provide a<br />

simple, complete and precise visualisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> spinor wave functi<strong>on</strong>s and their evoluti<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> tangle model for spinning relativistic quantum particles remains a simple extensi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Feynman’s idea to describe a quantum particle as a rotating little arrow. <str<strong>on</strong>g>The</str<strong>on</strong>g> arrow<br />

can be imagined as being attached to the rotating tangle core. <str<strong>on</strong>g>The</str<strong>on</strong>g> tails are needed to<br />

reproduce fermi<strong>on</strong> behaviour. <str<strong>on</strong>g>The</str<strong>on</strong>g> specific type <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle core determines the type <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particle. <str<strong>on</strong>g>The</str<strong>on</strong>g> blurring <str<strong>on</strong>g>of</str<strong>on</strong>g> the crossings defines the wave functi<strong>on</strong>. Rotating arrows describe<br />

n<strong>on</strong>-relativistic quantum physics; rotating tangles describe relativistic quantum<br />

physics.<br />

Visualizing spinor wave functi<strong>on</strong>s with tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> strands helps the understanding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Dirac equati<strong>on</strong> in several ways.<br />

1. Tangles support the view that elementary particles are little rotating entities, also in<br />

the relativistic case. This fact has been pointed out by many scholars over the years.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model provides a c<strong>on</strong>sistent visualizati<strong>on</strong> for these discussi<strong>on</strong>s.<br />

2. <str<strong>on</strong>g>The</str<strong>on</strong>g> belt trick can be seen as the mechanism underlying the famous Zitterbewegung<br />

that is part <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac equati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> limitati<strong>on</strong>s in the observing the belt trick translate<br />

directly into the difficulties <str<strong>on</strong>g>of</str<strong>on</strong>g> observing the Zitterbewegung.<br />

3. <str<strong>on</strong>g>The</str<strong>on</strong>g> belt trick also visualizes why the velocity operator for a relativistic particle has<br />

eigenvalues ±c.<br />

4. <str<strong>on</strong>g>The</str<strong>on</strong>g> Compt<strong>on</strong> length is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten seen as the typical length at which quantum field effects<br />

take place. In the tangle model, it would corresp<strong>on</strong>d to the average size needed for<br />

the belt trick. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus suggests that the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle is related to<br />

the average size needed for the belt trick.<br />

5. Tangles support the – at first sight bizarre – picture <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles as little<br />

charges rotating around a centre <str<strong>on</strong>g>of</str<strong>on</strong>g> mass. Indeed, in the tangle model, particle rota-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


220 8 quantum theory deduced from strands<br />

Page 177<br />

Ref. 176<br />

Page 180<br />

ti<strong>on</strong> requires a regular applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt trick <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 19, and the belt trick can<br />

be interpreted as inducing the rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a charge, defined by the tangle core, around<br />

a centre <str<strong>on</strong>g>of</str<strong>on</strong>g> mass, defined by the average <str<strong>on</strong>g>of</str<strong>on</strong>g> the core positi<strong>on</strong>. It can thus be helpful to<br />

use the strand model to visualize this descripti<strong>on</strong>.<br />

6. <str<strong>on</strong>g>The</str<strong>on</strong>g> tangle model can be seen as a vindicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the stochastic quantizati<strong>on</strong> research<br />

programme; quantum moti<strong>on</strong> is the result <str<strong>on</strong>g>of</str<strong>on</strong>g> underlying fluctuati<strong>on</strong>s. For example,<br />

the similarity <str<strong>on</strong>g>of</str<strong>on</strong>g> the Schrödinger equati<strong>on</strong> and the diffusi<strong>on</strong> equati<strong>on</strong> is modelled and<br />

explained by the strand model: since crossings can be rotated, diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings<br />

leads to the imaginary unit that appears in the Schrödinger equati<strong>on</strong>.<br />

In short, rotating tangles are a correct underlying model for the propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong>s.<br />

And so far, tangles are also the <strong>on</strong>ly known correct model. Tangles model propagators.<br />

This modelling is possible because the Dirac equati<strong>on</strong> results from <strong>on</strong>ly three ingredients:<br />

— the relati<strong>on</strong> between the quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> and the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave functi<strong>on</strong> (the<br />

wave behaviour),<br />

— the relati<strong>on</strong> between the quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> and spinor behaviour (the exchange behaviour),<br />

— and the mass–energy relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> special relativity (the particle behaviour), itself due<br />

to the fundamental principle.<br />

And all three ingredients are reproduced by the strand model. We see that the apparent<br />

complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac equati<strong>on</strong> hides its fundamental simplicity. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model<br />

reproduces the ingredients <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac equati<strong>on</strong>, reproduces the equati<strong>on</strong> itself, and<br />

makes the simplicity manifest. In fact, we can say:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> Dirac equati<strong>on</strong> describes the relativistic infinitesimal belt trick or string<br />

trick.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> belt trick is fundamental for understanding the Dirac equati<strong>on</strong>. In the strand model,<br />

core rotati<strong>on</strong>s vary al<strong>on</strong>g two dimensi<strong>on</strong>s – the rotati<strong>on</strong> is described by two angles – and<br />

so does the belt trick. <str<strong>on</strong>g>The</str<strong>on</strong>g> resulting four combinati<strong>on</strong>s form the four comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Dirac spinor and <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac equati<strong>on</strong>.<br />

In summary, tangles can be used as a precise visualizati<strong>on</strong> and explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

quantum physics. Wave functi<strong>on</strong>s, also those <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong>s, are blurred tangles –withthe<br />

detail that not the strands, but their crossings are blurred.<br />

Quantum mechanics vs. quantum field theory<br />

Quantum mechanics is the approximati<strong>on</strong> to quantum physics in which fields are c<strong>on</strong>tinuous<br />

and particles are immutable. In the strand model, quantum mechanics is thus<br />

the approximati<strong>on</strong> in which a particle is described by a tangle with a shape that is fixed<br />

in time. This approximati<strong>on</strong> allows us to derive the Dirac equati<strong>on</strong>, the Klein–Gord<strong>on</strong><br />

equati<strong>on</strong>, the Proca equati<strong>on</strong>, the Pauli equati<strong>on</strong> and the Schrödinger equati<strong>on</strong>. In this<br />

approximati<strong>on</strong>, the strand model for the electr<strong>on</strong> in a hydrogen atom is illustrated in<br />

Figure 46. This approximati<strong>on</strong> already will allow us to deduce the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> the three<br />

gauge interacti<strong>on</strong>s, as we will see in the next chapter.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


quantum theory deduced from strands 221<br />

A hydrogen atom<br />

Simplified<br />

strand model :<br />

time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches<br />

Observed<br />

electr<strong>on</strong><br />

probability<br />

density :<br />

prot<strong>on</strong><br />

prot<strong>on</strong><br />

Page 110<br />

electr<strong>on</strong><br />

tangle<br />

FIGURE 46 A simple, quantum-mechanical view <str<strong>on</strong>g>of</str<strong>on</strong>g> a hydrogen atom.<br />

electr<strong>on</strong> cloud<br />

In c<strong>on</strong>trast, quantum field theory is the descripti<strong>on</strong> in which fields are themselves described<br />

by bos<strong>on</strong>s, and particles types can transform into each other. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model<br />

allows us to deduce the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> all known gauge bos<strong>on</strong>s, as shown in the next chapter.<br />

In the strand descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum field theory, particles are not tangles with a fixed<br />

shape <str<strong>on</strong>g>of</str<strong>on</strong>g> their core, but for each particle, the shape varies. This variati<strong>on</strong> leads to gauge<br />

bos<strong>on</strong> emissi<strong>on</strong> and absorpti<strong>on</strong>.<br />

A flashback: settling three paradoxes <str<strong>on</strong>g>of</str<strong>on</strong>g> Galilean physics<br />

In all descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> physics, space and time are measured, explained and defined using<br />

matter. This occurs, for example, with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> metre bars and clocks. On the other<br />

hand, matter is measured, explained and defined using space and time. This occurs, for<br />

example, by following a localized body over space and time. <str<strong>on</strong>g>The</str<strong>on</strong>g> circularity <str<strong>on</strong>g>of</str<strong>on</strong>g> the two<br />

definiti<strong>on</strong>s is at the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> modern physics.<br />

As already menti<strong>on</strong>ed above, the circularity is a natural c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand<br />

model. Both matter and space-time turn out to be approximati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the same basic<br />

building blocks; this comm<strong>on</strong> origin explains the apparent circular reas<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> Galilean<br />

physics. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> all, the strand model changes it from a paradox to a logical necessity.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model defines vacuum, and thus physical space, as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> averaging<br />

strand crossings. Space is thus a relative c<strong>on</strong>cept. Newt<strong>on</strong>’s bucket experiment is sometimes<br />

seen as a counter-argument to this c<strong>on</strong>clusi<strong>on</strong> and as an argument for absolute<br />

space. However, the strand model shows that any turning object is c<strong>on</strong>nected to the rest<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the universe through its tails. This c<strong>on</strong>necti<strong>on</strong> makes every rotati<strong>on</strong> an example <str<strong>on</strong>g>of</str<strong>on</strong>g> relative<br />

moti<strong>on</strong>. Rotati<strong>on</strong> is thus always performed relatively to the horiz<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe.<br />

On the other hand, the detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles am<strong>on</strong>g the tails allows a local determinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the rotati<strong>on</strong> state, as is observed. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s thus c<strong>on</strong>firm that rotati<strong>on</strong> and space are relative<br />

c<strong>on</strong>cepts. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s thus also explain why we can turn ourselves <strong>on</strong> ice by rotating an<br />

arm over our head, without outside help. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s lie to rest all issues around the rotating<br />

bucket.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


222 8 quantum theory deduced from strands<br />

Challenge 143 s<br />

Challenge 144 e<br />

Challenge 145 e<br />

Challenge 146 s<br />

Challenge 147 s<br />

Ref. 177<br />

Challenge 148 e<br />

Ref. 178<br />

Challenge 149 r<br />

A l<strong>on</strong>g time ago, Zeno <str<strong>on</strong>g>of</str<strong>on</strong>g> Elea based <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> his paradoxes – the flying arrow that<br />

cannot reach the target – <strong>on</strong> an assumpti<strong>on</strong> that is usually taken as granted: he stated<br />

the impossibility to distinguish a short-time image (or state) <str<strong>on</strong>g>of</str<strong>on</strong>g> a moving body from the<br />

image (or state) <str<strong>on</strong>g>of</str<strong>on</strong>g> a resting body. <str<strong>on</strong>g>The</str<strong>on</strong>g> flattening <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangles involved shows that the<br />

assumpti<strong>on</strong> is incorrect; moti<strong>on</strong> and rest are distinguishable, even in (imagined) photographs<br />

taken with extremely short shutter times. <str<strong>on</strong>g>The</str<strong>on</strong>g> argument <str<strong>on</strong>g>of</str<strong>on</strong>g> Zeno is thus not<br />

possible, and the paradox disappears.<br />

Fun challenges about quantum theory<br />

“Urlaub ist die Fortsetzung des Familienlebens<br />

unter erschwerten Bedingungen.*<br />

Dieter<br />

Are the definiti<strong>on</strong>s for the additi<strong>on</strong> and multiplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Schrödinger wave<br />

Hildebrandt”<br />

functi<strong>on</strong>s<br />

that were given above also valid for spinor tangle functi<strong>on</strong>s?<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle functi<strong>on</strong>s, or wave functi<strong>on</strong>s, did not take into account the crossings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum strands, but <strong>on</strong>ly those <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle tangle. Why is this allowed?<br />

∗∗<br />

<str<strong>on</strong>g>Model</str<strong>on</strong>g>ling the measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> at the quantum level as the counting <str<strong>on</strong>g>of</str<strong>on</strong>g> full turns<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a wheel is a well-known idea that is used by good teachers to take the mystery out<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> quantum physics. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model visualizes this idea by assigning the quantum <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

acti<strong>on</strong> ħ to a full turn <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e strand segment around another.<br />

∗∗<br />

Is any axiomatic system <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory in c<strong>on</strong>trast with the strand model?<br />

∗∗<br />

In the strand model, tangle energy is related to tangle core rotati<strong>on</strong>. What is the difference<br />

between the angular frequency for tangles in the n<strong>on</strong>-relativistic and in the relativistic<br />

case?<br />

∗∗<br />

If you do not like the deducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum mechanics given here, there is an alternative:<br />

you can deduce quantum mechanics in the way Schwinger did in his course, using the<br />

quantum acti<strong>on</strong> principle.<br />

∗∗<br />

Modern teaching <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac equati<strong>on</strong> replaces the spinor picture with the vector<br />

picture. Hrvoje Nikolić showed that the vector picture significantly simplifies the understanding<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Lorentz covariance <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac equati<strong>on</strong>. How does the vector picture clarify<br />

the relati<strong>on</strong> between the belt trick and the Dirac equati<strong>on</strong>?<br />

* ‘Vacati<strong>on</strong> is the c<strong>on</strong>tinuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> family life under aggravated c<strong>on</strong>diti<strong>on</strong>s.’ Dieter Hildebrandt (b. 1927<br />

Bunzlau, d. 2013 Munich) was a cabaret artist, actor and author.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


summary <strong>on</strong> quantum theory <str<strong>on</strong>g>of</str<strong>on</strong>g> matter: experimental predicti<strong>on</strong>s 223<br />

Challenge 150 s<br />

Challenge 151 e<br />

Page 181<br />

Challenge 152 s<br />

∗∗<br />

In the strand descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum mechanics, strands are impenetrable: they cannot<br />

pass through each other (at finite distances). Can quantum mechanics also be derived if<br />

the model is changed and this process is allowed? Is entanglement still found?<br />

∗∗<br />

A puzzle: Is the belt trick possible in a c<strong>on</strong>tinuous and deformable medium – such as a<br />

sheet or a mattress – in which a coloured sphere is suspended? Is the belt trick possible<br />

with an uncountably infinite number <str<strong>on</strong>g>of</str<strong>on</strong>g> tails?<br />

∗∗<br />

At first sight, the apheresis machine diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 24 suggests that, using the belt<br />

trick, animals could grow and use wheels instead <str<strong>on</strong>g>of</str<strong>on</strong>g> legs, because rotating wheels could<br />

be supplied with blood and c<strong>on</strong>nected to nerves. Why did wheels not evolve nevertheless?<br />

summary <strong>on</strong> quantum theory <str<strong>on</strong>g>of</str<strong>on</strong>g> matter:<br />

experimental predicti<strong>on</strong>s<br />

In this chapter, we used the fundamental principle – crossing switches define the<br />

quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> ħ and the other Planck units – to deduce that particles are tangles<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> strands and that wave functi<strong>on</strong>s are time-averaged rotating tangles. In simple words,<br />

⊳ Both n<strong>on</strong>-relativistic and relativistic wave functi<strong>on</strong>s are blurred rotating<br />

tangles.<br />

More precisely, a wave functi<strong>on</strong> appears from the blurred crossings <str<strong>on</strong>g>of</str<strong>on</strong>g> a tangle. <str<strong>on</strong>g>The</str<strong>on</strong>g> comp<strong>on</strong>ents<br />

and phases <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave functi<strong>on</strong> at a point in space are due to the orientati<strong>on</strong><br />

and phase <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings at that point. We also deduced that blurred tangles obey the least<br />

acti<strong>on</strong> principle and the Dirac equati<strong>on</strong>.<br />

In other words, visualizing the quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> as a crossing switch implies<br />

quantum theory. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model c<strong>on</strong>firms Bohr’s statement: quantum theory is indeed<br />

a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong>. Specifically, the strand model thus shows<br />

that all quantum effects are c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong> and c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> the three dimensi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> space. More precisely, all quantum effects are due to tails, the tails <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

tangles that represent a quantum system. In particular, the strand model c<strong>on</strong>firms that<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> Dirac equati<strong>on</strong> is essentially the infinitesimal versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt trick<br />

(or string trick).<br />

In other words, strands also reproduce also the propagator <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum particles.<br />

As a result, we have shown that strands reproduce the relativistic Lagrangian density<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


224 8 quantum theory deduced from strands<br />

L <str<strong>on</strong>g>of</str<strong>on</strong>g> charged, elementary, relativistic fermi<strong>on</strong>s in an external electromagnetic field A<br />

L = φ(iħc/D −c 2 m) φ , (145)<br />

where<br />

/D =γ σ D σ =γ σ (∂ σ −iqA σ ) . (146)<br />

Page 40<br />

Page 164<br />

We thus c<strong>on</strong>clude that strands reproduce the quantum theory <str<strong>on</strong>g>of</str<strong>on</strong>g> matter.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts deviati<strong>on</strong>s from the relativistic matter Lagrangian, and thus<br />

from the Dirac equati<strong>on</strong>, <strong>on</strong>ly in three cases: first, when quantum aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> electrodynamic<br />

field play a role, sec<strong>on</strong>d, when nuclear interacti<strong>on</strong>s play a role, and third, when<br />

space curvature, i.e., str<strong>on</strong>g gravity, plays a role. All this agrees with observati<strong>on</strong>.<br />

We will deduce the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum electrodynamics and <str<strong>on</strong>g>of</str<strong>on</strong>g> the nuclear interacti<strong>on</strong>s<br />

in the next chapter. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity, the strand model predicts that<br />

deviati<strong>on</strong>s from quantum theory occur exclusively when the energy–momentum <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

elementary particle approaches the Planck value, i.e., for really str<strong>on</strong>g gravity. Such deviati<strong>on</strong>s<br />

are not accessible to experiment at present. We will explore this situati<strong>on</strong> in the<br />

subsequent chapter.<br />

In additi<strong>on</strong>, the strand model predicts that in nature, the Planck values for momentum<br />

and energy are limit values that cannot be exceeded by a quantum particle. All experiments<br />

agree with this predicti<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> deducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory from strands given here is, at present, the <strong>on</strong>ly<br />

known microscopic explanati<strong>on</strong> for quantum physics. So far, no other microscopic<br />

model, no different explanati<strong>on</strong> nor any other Planck-scale deducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory<br />

has been found. In particular, the extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fundamental entities – together with<br />

observability limited to crossing switches – is the key to understanding quantum physics.<br />

Let us evaluate the situati<strong>on</strong>. In our quest to explain the open issues <str<strong>on</strong>g>of</str<strong>on</strong>g> the millennium<br />

list, we have explained the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> Planck units, the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> wave functi<strong>on</strong>s, the origin<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the least acti<strong>on</strong> principle, the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time dimensi<strong>on</strong>s, the Lorentz and Poincaré<br />

symmetries, the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> particle identity, and the simplest part <str<strong>on</strong>g>of</str<strong>on</strong>g> the Lagrangian<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> quantum field theory, namely, the Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> free fermi<strong>on</strong>s, such as the electr<strong>on</strong>,<br />

and that <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong>s in c<strong>on</strong>tinuous external fields. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, for the next leg, we turn to<br />

the most important parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard model Lagrangian that are missing: those due<br />

to gauge interacti<strong>on</strong>s.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


Chapter9<br />

GAUGE INTERACTIONS DEDUCED<br />

FROM STRANDS<br />

Page 18<br />

Ref. 179<br />

Ref. 180<br />

Page 176<br />

Ref. 165<br />

What are interacti<strong>on</strong>s? At the start <str<strong>on</strong>g>of</str<strong>on</strong>g> this volume, when we summarized<br />

hat relates the Planck units to relativity and to quantum theory,<br />

e pointed out that the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s at Planck scales was still in the<br />

dark. In the year 2000, it was known for several decades that the essential properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the electromagnetic, the weak and the str<strong>on</strong>g nuclear interacti<strong>on</strong> are their respective<br />

gauge symmetries: all three interacti<strong>on</strong>s are gauge interacti<strong>on</strong>s. But the underlying<br />

reas<strong>on</strong> for this property was still unknown.<br />

In this chapter we discover that fluctuating strands in three spatial dimensi<strong>on</strong>s explain<br />

the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> precisely three gauge interacti<strong>on</strong>s, each with precisely the gauge<br />

symmetry group that is observed. This is the first time ever that such an explanati<strong>on</strong><br />

is possible. In other terms, we will deduce quantum field theory from strands. Indeed,<br />

strands provide a natural mechanism for interacti<strong>on</strong>s that explains and implies Feynman<br />

diagrams. <str<strong>on</strong>g>The</str<strong>on</strong>g> term ‘mechanism’ has to be taken with a grain <str<strong>on</strong>g>of</str<strong>on</strong>g> salt, because there is<br />

nothing mechanical involved; nevertheless, the term is not wr<strong>on</strong>g, because we shall discover<br />

a surprisingly simple result: Gaugeinteracti<strong>on</strong>sandgaugesymmetriesaredueto<br />

specific strand deformati<strong>on</strong>s.<br />

In this chapter, we work in flat space-time,asisalwaysd<strong>on</strong>einquantumfieldtheory.<br />

We leave the quantum aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> curved space-time and <str<strong>on</strong>g>of</str<strong>on</strong>g> gravitati<strong>on</strong> for the next<br />

chapter. We thus start by exploring the n<strong>on</strong>-gravitati<strong>on</strong>al interacti<strong>on</strong>s in the quantum<br />

domain.<br />

Interacti<strong>on</strong>s and phase change<br />

Experiments in the quantum domain show that interacti<strong>on</strong>s change the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> wave<br />

functi<strong>on</strong>s. But how precisely does this happen? <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model will give us a simple<br />

answer: the emissi<strong>on</strong> and the absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gauge bos<strong>on</strong>s is <strong>on</strong>ly possible together with<br />

a phase change. To explain this c<strong>on</strong>necti<strong>on</strong>, we need to study the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle cores in<br />

more detail.<br />

When we explored spin and its c<strong>on</strong>necti<strong>on</strong> to the belt trick, we pictured the rotati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle core in the same way as the rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a belt buckle: we assumed that the<br />

core <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle rotates like a rigid object. <str<strong>on</strong>g>The</str<strong>on</strong>g> rotati<strong>on</strong> is achieved through the shape<br />

fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the tails <strong>on</strong>ly. Why did we assume this?<br />

In Feynman’s descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory, free particles are advancing rotating arrows.<br />

In the strand model, free particle moti<strong>on</strong> is modelled as the change <str<strong>on</strong>g>of</str<strong>on</strong>g> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the tangle core and spin as the rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the core. We boldly assumed that the core<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


226 9 gauge interacti<strong>on</strong>s deduced from strands<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g> model :<br />

tail<br />

spin<br />

time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

changes<br />

Observed<br />

probability<br />

density :<br />

spin<br />

positi<strong>on</strong><br />

phase<br />

positi<strong>on</strong><br />

phase<br />

core<br />

FIGURE 47 In the chapter <strong>on</strong> quantum theory, the phase was defined assuming a rigidly rotating core;<br />

this approximati<strong>on</strong> was also used in the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particle translati<strong>on</strong>.<br />

positi<strong>on</strong><br />

phase<br />

FIGURE 48 A magnified tangle core shows that the phase can also change due to core deformati<strong>on</strong>s;<br />

such core deformati<strong>on</strong>s lead to gauge interacti<strong>on</strong>s.<br />

remained rigid, attached the phase arrow to it, and described spin as the rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

core with its attached arrow, as shown again in Figure 47. This bold simplificati<strong>on</strong> led us<br />

to the Dirac equati<strong>on</strong>. In short, the assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a rigid core works. But what happens<br />

ifthecoreisnot rigid?<br />

We know from observati<strong>on</strong> and from quantum theory that<br />

⊳ An interacti<strong>on</strong> is a process that changes the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> a wave functi<strong>on</strong>, but<br />

differs from a rotati<strong>on</strong>.<br />

In the strand model, shape deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle cores also lead to phase changes – and<br />

such deformati<strong>on</strong>s differ from a rotati<strong>on</strong>. In fact, we will discover that core deformati<strong>on</strong>s<br />

automatically lead to precisely those three gauge interacti<strong>on</strong>s that we observe in nature.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


gauge interacti<strong>on</strong>s deduced from strands 227<br />

Reidemeister move I<br />

or twist<br />

Reidemeister move II<br />

or poke<br />

Reidemeister move III<br />

or slide<br />

FIGURE 49 <str<strong>on</strong>g>The</str<strong>on</strong>g> Reidemeister moves: the three types <str<strong>on</strong>g>of</str<strong>on</strong>g> deformati<strong>on</strong>s that induce crossing switches – if<br />

the moves are properly defined in three dimensi<strong>on</strong>s.<br />

Tail deformati<strong>on</strong>s versus core deformati<strong>on</strong>s<br />

We can summarize the previous chapter, <strong>on</strong> the free moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> matter tangles, as the<br />

chapter that focused <strong>on</strong> shape fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> tails. Indeed, the belt trick completed the<br />

pro<str<strong>on</strong>g>of</str<strong>on</strong>g> that<br />

⊳ Space-time symmetries are due to tail deformati<strong>on</strong>s.<br />

All space-time symmetries – translati<strong>on</strong>, rotati<strong>on</strong>, boost, spin and particle exchange – are<br />

due to tail deformati<strong>on</strong>s; in such tail deformati<strong>on</strong>s, the tangle core is assumed to remain<br />

unchanged and rigid (in its own rest frame).<br />

In c<strong>on</strong>trast, the present chapter focuses <strong>on</strong> shape fluctuati<strong>on</strong>s in tangle cores.We will<br />

discover that<br />

⊳ Gauge symmetries are due to core deformati<strong>on</strong>s.<br />

Let us explore the tangle core in more detail. Figure 48 shows a magnified view <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

core and its phase arrow. <str<strong>on</strong>g>The</str<strong>on</strong>g> phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the core results from the phases <str<strong>on</strong>g>of</str<strong>on</strong>g> all its crossings.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> figure illustrates that the phase arrow will be sensitive to the shape fluctuati<strong>on</strong>s and<br />

deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand segments that make up the core.<br />

In nature, any phase change <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave functi<strong>on</strong> that is not due to a space-time symmetry<br />

is due to an interacti<strong>on</strong>. For the strand model, this c<strong>on</strong>necti<strong>on</strong> implies:<br />

⊳ When the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> a core changes through rigid orientati<strong>on</strong> change, wespeak<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> core rotati<strong>on</strong>.<br />

⊳ When the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> a core changes through core shape deformati<strong>on</strong>,wespeak<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>.<br />

We thus need to understand two things: First, what kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> core deformati<strong>on</strong> exist?<br />

Sec<strong>on</strong>dly, how precisely is the phase – i.e., each arrow definiti<strong>on</strong> – influenced by core<br />

deformati<strong>on</strong>s? In particular, we have to check the answers and deducti<strong>on</strong>s with experiment.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> first questi<strong>on</strong>, <strong>on</strong> the classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the core deformati<strong>on</strong>s, is less hard than<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


228 9 gauge interacti<strong>on</strong>s deduced from strands<br />

Ref. 180 it might appear. <str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental principle – events are crossing switches <str<strong>on</strong>g>of</str<strong>on</strong>g> strands –<br />

implies that deformati<strong>on</strong>s are observable <strong>on</strong>ly if they induce crossing switches. Other<br />

deformati<strong>on</strong>s do not have any physical effect. (Of course, certain deformati<strong>on</strong>s will have<br />

crossing switches for <strong>on</strong>e observer and n<strong>on</strong>e for another. We will take this fact into c<strong>on</strong>siderati<strong>on</strong>.)<br />

Already in 1926, the mathematician Kurt Reidemeister classified all those<br />

Ref. 182 tangle deformati<strong>on</strong>s that lead to crossing switches. <str<strong>on</strong>g>The</str<strong>on</strong>g> classificati<strong>on</strong> yields exactly three<br />

classes <str<strong>on</strong>g>of</str<strong>on</strong>g> deformati<strong>on</strong>s, today called the three Reidemeister moves. <str<strong>on</strong>g>The</str<strong>on</strong>g>yareshownin<br />

Figure 49.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> first Reidemeister move, ortype I move, ortwist, is the additi<strong>on</strong> or removal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a twist in a strand.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d Reidemeister move, ortype II move, orpoke, is the additi<strong>on</strong> or<br />

removal <str<strong>on</strong>g>of</str<strong>on</strong>g> a bend <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e strand under (or over) a sec<strong>on</strong>d strand.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> third Reidemeister move,ortype III move,orslide,isthedisplacement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e strand segment under (or over) the crossing <str<strong>on</strong>g>of</str<strong>on</strong>g> two other strands.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> type number <str<strong>on</strong>g>of</str<strong>on</strong>g> each Reidemeister move is also the number <str<strong>on</strong>g>of</str<strong>on</strong>g> involved strands.<br />

We will discover that despite appearances, each Reidemeister move induces a crossing<br />

switch. To find this c<strong>on</strong>necti<strong>on</strong>, we have to generalize the original Reidemeister moves,<br />

which were defined in a two-dimensi<strong>on</strong>al projecti<strong>on</strong> plane, to the three-dimensi<strong>on</strong>al<br />

situati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle cores.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> three Reidemeister moves turn out to be related to the three gauge interacti<strong>on</strong>s:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> first Reidemeister move corresp<strong>on</strong>ds to electromagnetism. ⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d<br />

Reidemeister move corresp<strong>on</strong>ds to the weak nuclear interacti<strong>on</strong>. ⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> third<br />

Reidemeister move corresp<strong>on</strong>ds to the str<strong>on</strong>g nuclear interacti<strong>on</strong>.<br />

We will prove this corresp<strong>on</strong>dence in the following.<br />

For each Reidemeister move we will explore two types <str<strong>on</strong>g>of</str<strong>on</strong>g> core deformati<strong>on</strong> processes:<br />

One deformati<strong>on</strong> type are core fluctuati<strong>on</strong>s, which corresp<strong>on</strong>d, as we will see, to the emissi<strong>on</strong><br />

and absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> virtual interacti<strong>on</strong> bos<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> other deformati<strong>on</strong>s are externally<br />

induced core disturbances, which corresp<strong>on</strong>d to the emissi<strong>on</strong> and absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> real interacti<strong>on</strong><br />

bos<strong>on</strong>s. As the first step, we show that both for fluctuati<strong>on</strong>s and for disturbances,<br />

the first Reidemeister move, the twist, is related to the electromagnetic interacti<strong>on</strong>.<br />

electrodynamics and the first reidemeister move<br />

Experiments show that electromagnetism is described by potentials. Experiments also<br />

show that potentials change the phase, the rotati<strong>on</strong> frequency and the wave number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wave functi<strong>on</strong>s. In particular, for electromagnetism, the potentials are due to the flow<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> real and virtual, massless, uncharged spin-1 phot<strong>on</strong>s. Phot<strong>on</strong>s are emitted from or<br />

absorbed by charged elementary particles; neutral elementary particles do not emit or<br />

absorb phot<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are two types <str<strong>on</strong>g>of</str<strong>on</strong>g> electric charge, positive and negative. <str<strong>on</strong>g>The</str<strong>on</strong>g> attrac-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


electrodynamics and the first reidemeister move 229<br />

phot<strong>on</strong><br />

vacuum<br />

twist<br />

transfer<br />

fermi<strong>on</strong><br />

fermi<strong>on</strong><br />

with<br />

different<br />

phase<br />

Ref. 5<br />

Ref. 183<br />

Page 176<br />

FIGURE 50 A single strand changes the rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a tangle: twist transfer is the basis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

electromagnetism in the strand model. No strand is cut or reglued; the transfer occurs statistically,<br />

through the excluded volume due to the impenetrability <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. Twist transfer generates a U(1)<br />

gauge group, as explained in the text.<br />

ti<strong>on</strong> and repulsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> static charges diminishes with the inverse square <str<strong>on</strong>g>of</str<strong>on</strong>g> the distance.<br />

Charge is c<strong>on</strong>served. All charged particles are massive and move slower than light. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> matter coupled to the electromagnetic field has a U(1) gauge symmetry –<br />

it is described by minimal coupling. Electromagnetism has a single fundamental Feynman<br />

diagram. <str<strong>on</strong>g>The</str<strong>on</strong>g> electromagnetic coupling c<strong>on</strong>stant at low energy, the so-called fine<br />

structure c<strong>on</strong>stant, ismeasuredtobeα = 1/137.035 999 139(31) ; its energy dependence<br />

is described by renormalizati<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> previous paragraph c<strong>on</strong>tains everything known about the electromagnetic interacti<strong>on</strong>.<br />

For example, Maxwell’s field equati<strong>on</strong>s follow from Coulomb’s inverse square<br />

relati<strong>on</strong>, its relativistic generalizati<strong>on</strong>, and the c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> charge . More precisely, all<br />

experimental observati<strong>on</strong>s about electricity and magnetism follow from the Lagrangian<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> quantum electrodynamics, or QED. In short, we now need to show that the Lagrangian<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> QED follows from the strand model.<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s and the twist, the first Reidemeister move<br />

In the strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> electromagnetism, massless spin 1 bos<strong>on</strong>s such as the phot<strong>on</strong> are<br />

made <str<strong>on</strong>g>of</str<strong>on</strong>g> a single strand. How can a single strand change the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> a tangle? <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

answer is given in Figure 50: atwisted loop in a single strand will influence the rotati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a tangle because it changes the possible shape fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle core. Due to<br />

the impenetrability <str<strong>on</strong>g>of</str<strong>on</strong>g> strands, an approaching twisted loop will sometimes transfer its<br />

twist to the tangle: this process will deform the tangle core and thereby change its phase.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> observed effect <str<strong>on</strong>g>of</str<strong>on</strong>g> an electromagnetic field <strong>on</strong> the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> a charged fermi<strong>on</strong> is the<br />

time average <str<strong>on</strong>g>of</str<strong>on</strong>g> all such twist transfers.<br />

Single strands represent bos<strong>on</strong>s, as we saw above. Rotating the core <str<strong>on</strong>g>of</str<strong>on</strong>g> the twist around<br />

the tethers by 2π gives back the original c<strong>on</strong>figurati<strong>on</strong>: twists have spin 1. Twisted loops<br />

are single strands and can have two twist senses, or two polarizati<strong>on</strong>s. Single, twisted and<br />

unknotted strands have no mass; in other words, twisted loops effectively move with the<br />

speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light. And twisted loops, being curved, carry energy.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


230 9 gauge interacti<strong>on</strong>s deduced from strands<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> phot<strong>on</strong><br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g> model:<br />

phase<br />

time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches<br />

helicity<br />

Observati<strong>on</strong> :<br />

electric<br />

field<br />

strength<br />

Page 235<br />

or, equivalently:<br />

wavelength<br />

FIGURE 51 <str<strong>on</strong>g>The</str<strong>on</strong>g> phot<strong>on</strong> in the strand model.<br />

moti<strong>on</strong><br />

Approaching twisted loops will change the phase, i.e., the orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a matter<br />

tangle. Twisted loops corresp<strong>on</strong>d to a local rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a strand segment by π. But twists<br />

can be generalized to arbitrary angles. <str<strong>on</strong>g>The</str<strong>on</strong>g>se generalized twists can be c<strong>on</strong>catenated. Because<br />

they are described by a single angle, and because a double twist is equivalent to no<br />

twist at all, twists form a U(1) group. We show this in detail shortly.<br />

In summary, twists behave like phot<strong>on</strong>s in all their properties. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, the strand<br />

model suggests:<br />

⊳ A phot<strong>on</strong> is a twisted strand. An illustrati<strong>on</strong> is given in Figure 51.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> electromagnetic interacti<strong>on</strong> is the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> twists, i.e., the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

first Reidemeister moves, between two particles, as shown in Figure 50.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> a twist from a single strand to a tangle core thus models the absorpti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a phot<strong>on</strong>. We stress again that this transfer results from the way that strands hinder<br />

each other’s moti<strong>on</strong>, because <str<strong>on</strong>g>of</str<strong>on</strong>g> their impenetrability. No strand is ever cut or reglued.<br />

Can phot<strong>on</strong>s decay, disappearorbreak up?<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> the phot<strong>on</strong>, as shown in Figure 51, might be seen to suggest that<br />

phot<strong>on</strong>s can disappear. For example, if a phot<strong>on</strong> strand is straightened out by pulling the<br />

ends <str<strong>on</strong>g>of</str<strong>on</strong>g> the helical deformati<strong>on</strong>, the helix might disappear. A helix might also disappear<br />

by a shape fluctuati<strong>on</strong> or transform into several helices. However, this is a fallacy.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


electrodynamics and the first reidemeister move 231<br />

Page 351<br />

Challenge 153 e<br />

A l<strong>on</strong>e twist cannot disappear by pulling; ‘‘pulling’’ requires an apparatus that performs<br />

it. That is impossible. A l<strong>on</strong>e twist cannot disappear by fluctuati<strong>on</strong>s either, because<br />

a phot<strong>on</strong> also includes the vacuum strands around it. In the strand model, the energy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the phot<strong>on</strong> is localized in the c<strong>on</strong>figurati<strong>on</strong> formed by the phot<strong>on</strong> strand and the surrounding<br />

vacuum strands. In the strand model, energy is localized in regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> strand<br />

curvature. If the helical strands disappears, the surrounding vacuum strands are curved<br />

instead, or more str<strong>on</strong>gly, and the twist energy is taken up by these surrounding strands.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> net result is that the helix is transferred, permanently or for a short time, to another<br />

strand. In other terms, in the strand model, phot<strong>on</strong>s can also move by hopping from <strong>on</strong>e<br />

strand to the next.<br />

Also, a single phot<strong>on</strong> strand cannot break up into several phot<strong>on</strong> strands <str<strong>on</strong>g>of</str<strong>on</strong>g> smaller<br />

helical diameters or <str<strong>on</strong>g>of</str<strong>on</strong>g> different rotati<strong>on</strong> frequencies. Such a process is prevented by the<br />

fundamental principle, when the vacuum is taken into account.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>on</strong>ly way in which a phot<strong>on</strong> can disappear completely is by transferring its crossing,<br />

i.e., its energy to a tangle. Such a process is called the absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a phot<strong>on</strong> by a<br />

charged particle.<br />

In short, due to energy and to topological restricti<strong>on</strong>s, the strand model prevents the<br />

decay, disappearance or splitting <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s, as l<strong>on</strong>g as no electric charge is involved.<br />

Linear and angular momentum c<strong>on</strong>servati<strong>on</strong> also lead to the same c<strong>on</strong>clusi<strong>on</strong>. Phot<strong>on</strong>s<br />

are stable particles in the strand model.<br />

Electric charge<br />

Surrounded by a bath <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> strands, not all fermi<strong>on</strong> tangles will change their phase.<br />

A tangle subject to randomly approaching virtual phot<strong>on</strong>s will feel a net effect over time<br />

<strong>on</strong>ly if it lacks some symmetry. In other words, <strong>on</strong>ly tangles that lack a certain symmetry<br />

will be electrically charged. Which symmetry will this be?<br />

In a bath <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong> strands, thus in a bath that induces random Reidemeister I moves,<br />

<strong>on</strong>ly chiral fermi<strong>on</strong> tangles are expected to be influenced. In other terms:<br />

⊳ Electric charge is due to lack <str<strong>on</strong>g>of</str<strong>on</strong>g> mirror symmetry, i.e., to tangle chirality.<br />

C<strong>on</strong>versely, we have:<br />

⊳ Electrically charged particles randomly emit twisted strands. Due to the<br />

tangle chirality, a random emissi<strong>on</strong> will lead to a slight asymmetry, so that<br />

right-handed twists will be in the majority for particles <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e charge, and<br />

left-handed twists will be in the majority for particles <str<strong>on</strong>g>of</str<strong>on</strong>g> the opposite charge.<br />

Equating electric charge with tangle chirality allows modelling several important observati<strong>on</strong>s.<br />

First, because chirality can be right-handed or left-handed, there are positive and<br />

negative charges. Sec<strong>on</strong>d, because strands are never cut or reglued in the strand model,<br />

chirality, and thus electric charge, is a c<strong>on</strong>served quantity. Third, chirality is <strong>on</strong>ly possible<br />

for tangles that are localized, and thus massive. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, chiral tangles – charged<br />

particles – always move slower than light. Fourth, a chiral tangle at rest induces a twisted<br />

strand density around it that changes as 1/r 2 ,asisillustratedinFigure 52. Finally,<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


232 9 gauge interacti<strong>on</strong>s deduced from strands<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> twist move (or first<br />

Reidemeister move)<br />

in textbook form :<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> twist move (or first<br />

Reidemeister move)<br />

applied to an interacting<br />

tangle and loop :<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> unique<br />

generator<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the twist<br />

move is a<br />

rotati<strong>on</strong> by π.<br />

Page 437<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> basic twist can be described<br />

as a local rotati<strong>on</strong> by π.<br />

A full rotati<strong>on</strong>, from -π to π,<br />

produces a crossing switch.<br />

Large numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> random twists<br />

affect <strong>on</strong>ly chiral tangles :<br />

affected<br />

not affected<br />

fermi<strong>on</strong><br />

Emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> numerous random twists by<br />

chiral tangles leads to Coulomb’s law :<br />

strand<br />

model<br />

phot<strong>on</strong><br />

observed<br />

time average<br />

vacuum<br />

FIGURE 52 Electromagnetism in the strand model: the electromagnetic interacti<strong>on</strong>, electric charge and<br />

Coulomb’s inverse square relati<strong>on</strong>. (This image needs to be updated: no knotted tangles occur in<br />

nature.)<br />

phot<strong>on</strong>s are uncharged; thus they are not influenced by other phot<strong>on</strong>s (to first order).<br />

In short, all properties <str<strong>on</strong>g>of</str<strong>on</strong>g> electric charge found in nature are reproduced by the tangle<br />

model. We now check this in more detail.<br />

Challenge: What topological invariant is electric charge?<br />

Chirality explains the sign <str<strong>on</strong>g>of</str<strong>on</strong>g> electric charge, but not its magnitude in units <str<strong>on</strong>g>of</str<strong>on</strong>g> the elementary<br />

charge e. A full definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electric charge must include this aspect.<br />

Mathematicians defined various topological invariants for knot and tangles. Topological<br />

invariants are properties that are independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the knot or tangle, but<br />

allow to distinguish knots or tangles that differ in the ways they are knotted or tangled up.<br />

Several invariants are candidates as building blocks for electric charge: chirality c,which<br />

can be +1 or −1, minimal crossing number n,ortopological writhe w, i.e., the signed minimal<br />

crossing number.<br />

A definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electric charge q, proposed by Claus Ernst, is q=c(nmod 2). Another<br />

opti<strong>on</strong> for the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> charge is q=w/3. Equivalent definiti<strong>on</strong>s use the linking<br />

number. At this point <str<strong>on</strong>g>of</str<strong>on</strong>g> our explorati<strong>on</strong>, the issue is open. We will come back to the<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


electrodynamics and the first reidemeister move 233<br />

Page 390<br />

detailed c<strong>on</strong>necti<strong>on</strong> between charge, chirality and tangle topology later <strong>on</strong>.<br />

Page 186<br />

Challenge 154 e<br />

Electric and magnetic fields and potentials<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s with twisted strands leads to the following definiti<strong>on</strong>.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> electric field is the volume density <str<strong>on</strong>g>of</str<strong>on</strong>g> (oriented) crossings <str<strong>on</strong>g>of</str<strong>on</strong>g> twisted<br />

loops.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> magnetic field is the flow density <str<strong>on</strong>g>of</str<strong>on</strong>g> (oriented) crossings <str<strong>on</strong>g>of</str<strong>on</strong>g> twisted<br />

loops.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> electric potential is the density <str<strong>on</strong>g>of</str<strong>on</strong>g> twisted loops.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> magnetic potential is the flow density <str<strong>on</strong>g>of</str<strong>on</strong>g> twisted loops.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> simplest way to check these definiti<strong>on</strong>s is to note that the random emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> twisted<br />

loops by electric charges yields Coulomb’s inverse square relati<strong>on</strong>: the force between two<br />

static spherical charges changes with inverse square <str<strong>on</strong>g>of</str<strong>on</strong>g> the distance. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model<br />

implies that in this case, the crossing density is proporti<strong>on</strong>al to the square <str<strong>on</strong>g>of</str<strong>on</strong>g> the loop density;<br />

in other words, the potential falls <str<strong>on</strong>g>of</str<strong>on</strong>g> as the inverse distance, and the electric field as<br />

thesquaredistance.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetic field simply follows from that <str<strong>on</strong>g>of</str<strong>on</strong>g> the electric field<br />

by changing to moving frame <str<strong>on</strong>g>of</str<strong>on</strong>g> reference. <str<strong>on</strong>g>The</str<strong>on</strong>g> two field definiti<strong>on</strong>s are illustrated in<br />

Figure 53.<br />

We note that the electric field is defined almost in the same way as the wave functi<strong>on</strong>:<br />

both are oriented crossing densities. However, the electric field is defined with the crossing<br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> twisted loops, whereas the wave functi<strong>on</strong> is defined with the crossing density<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tangles. <str<strong>on</strong>g>The</str<strong>on</strong>g> definiti<strong>on</strong>s differ <strong>on</strong>ly by the topology <str<strong>on</strong>g>of</str<strong>on</strong>g> the underlying strand structures.<br />

In the strand model, energy, or acti<strong>on</strong> per time, is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches<br />

per time. <str<strong>on</strong>g>The</str<strong>on</strong>g> electromagnetic field energy per volume is thus given by the density <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

crossing switches per time that are due to twisted loops. Now, the strand model implies<br />

that the crossing switch density per time is given by half the square <str<strong>on</strong>g>of</str<strong>on</strong>g> the crossing density<br />

plus half the square <str<strong>on</strong>g>of</str<strong>on</strong>g> the crossing density flow. For twisted loops, we thus get that the<br />

energy density is half the square <str<strong>on</strong>g>of</str<strong>on</strong>g> the electric plus half the square <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetic field.<br />

Inserting the proporti<strong>on</strong>ality factors that lead from Planck units to SI units we get the<br />

well-known expressi<strong>on</strong><br />

E<br />

V = ε 0<br />

2 E2 + 1<br />

2μ 0<br />

B 2 . (147)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus reproduces electromagnetic energy.<br />

We note that in the strand model, the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fields implies that there is no<br />

magnetic charge in nature. This agrees with observati<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts limit values to all observables. <str<strong>on</strong>g>The</str<strong>on</strong>g>y always appear when<br />

strands are as closely packed as possible. This implies a maximum electric field value<br />

E max =c 4 /4Ge ≈ 1.9 ⋅ 10 62 V/m and a maximum magnetic field value B max =c 3 /4Ge ≈<br />

6.3⋅10 53 T. All physical systems – including all astrophysical objects, such as gamma-ray<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


234 9 gauge interacti<strong>on</strong>s deduced from strands<br />

twisted<br />

loop<br />

t 1<br />

t 2<br />

average<br />

loop<br />

moti<strong>on</strong><br />

small<br />

volume<br />

element<br />

with<br />

crossing<br />

charge<br />

velocity<br />

electric<br />

field<br />

E<br />

magnetic<br />

field<br />

B<br />

FIGURE 53 Moving twists allow us to define electric fields – as the density <str<strong>on</strong>g>of</str<strong>on</strong>g> twisted loop crossings –<br />

and magnetic fields – as the corresp<strong>on</strong>ding flow.<br />

bursters or quasars – are predicted to c<strong>on</strong>form to this limit. This strand model predicti<strong>on</strong><br />

indeed agrees with observati<strong>on</strong>s so far.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> the electromagnetic field<br />

In classical electrodynamics, the energy density <str<strong>on</strong>g>of</str<strong>on</strong>g> the electromagnetic field is used to<br />

deduce its Lagrangian density. <str<strong>on</strong>g>The</str<strong>on</strong>g> Lagrangian density describes the intrinsic, observerindependent<br />

change that occurs in a system. In additi<strong>on</strong>, the Lagrangian density must<br />

be quadratic in the fields and be a Lorentz-scalar.<br />

A precise versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these arguments leads to the Lagrangian density <str<strong>on</strong>g>of</str<strong>on</strong>g> the electromagnetic<br />

field F<br />

L EM = ε 0<br />

2 E2 − 1 B 2 =− 1 F<br />

2μ 0 4μ μν F μν (148)<br />

0<br />

where the electromagnetic field F is defined with the electromagnetic potential A as<br />

F μν =∂ μ A ν −∂ ν A μ . (149)<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


electrodynamics and the first reidemeister move 235<br />

Freedom <str<strong>on</strong>g>of</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the crossing phase / crossing orientati<strong>on</strong>:<br />

phase 1<br />

phase 2<br />

phase 3<br />

Ref. 183<br />

FIGURE 54 <str<strong>on</strong>g>The</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the phase or orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a single crossing is not unique: there is a<br />

freedom <str<strong>on</strong>g>of</str<strong>on</strong>g> choice.<br />

Since the strand model reproduces the electromagnetic energy, it also reproduces the<br />

Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> classical electrodynamics. In particular, Maxwell’s equati<strong>on</strong>s for the electromagnetic<br />

field follow from this Lagrangian density. Maxwell’s field equati<strong>on</strong>s are thus<br />

a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model. Obviously, this is no news, because any model that<br />

reproduces Coulomb’s inverse square distance relati<strong>on</strong> and leaves the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light invariant<br />

automatically c<strong>on</strong>tains Maxwell’s field equati<strong>on</strong>s.<br />

U(1) gauge invariance induced by twists<br />

In nature, the electromagnetic potential A μ is not uniquely defined: <strong>on</strong>e says that there<br />

is a freedom in the choice <str<strong>on</strong>g>of</str<strong>on</strong>g> gauge. <str<strong>on</strong>g>The</str<strong>on</strong>g> change from <strong>on</strong>e gauge to another is a gauge<br />

transformati<strong>on</strong>. Gauge transformati<strong>on</strong>s are thus transformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the electromagnetic<br />

potential that have no effect <strong>on</strong> observati<strong>on</strong>s. In particular, gauge transformati<strong>on</strong>s leave<br />

unchanged all field intensities and field energies <strong>on</strong> the <strong>on</strong>e hand and particle probabilities<br />

and particle energies <strong>on</strong> the other hand.<br />

All these observati<strong>on</strong>s can be reproduced with strands. In the strand model, the following<br />

definiti<strong>on</strong>s are natural:<br />

⊳ A gauge choice for radiati<strong>on</strong> and for matter is the choice <str<strong>on</strong>g>of</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

respective phase arrow.<br />

⊳ A gauge transformati<strong>on</strong> is a change <str<strong>on</strong>g>of</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the phase arrow.<br />

In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> electrodynamics, the gauge freedom is a result <str<strong>on</strong>g>of</str<strong>on</strong>g> allowing phase choices<br />

that lie in a plane around the crossing orientati<strong>on</strong>. (<str<strong>on</strong>g>The</str<strong>on</strong>g> other interacti<strong>on</strong>s follow from<br />

the other possible phase choices.) <str<strong>on</strong>g>The</str<strong>on</strong>g> phase choice can be different at every point in<br />

space. Changing the (local) phase definiti<strong>on</strong> is a (local) gauge transformati<strong>on</strong>. Changing<br />

the phase definiti<strong>on</strong> for a single crossing implies changing the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> wave functi<strong>on</strong>s<br />

and <str<strong>on</strong>g>of</str<strong>on</strong>g> the electromagnetic potentials. A schematic illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the choice <str<strong>on</strong>g>of</str<strong>on</strong>g> gauge is<br />

given in Figure 54 and Figure 55.<br />

We note that gauge transformati<strong>on</strong>s have no effect <strong>on</strong> the density or flow <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings<br />

or crossing switches. In other words, gauge transformati<strong>on</strong>s leave electromagnetic<br />

field intensities and electromagnetic field energy invariant, as observed. Similarly, gauge<br />

transformati<strong>on</strong>s have no effect <strong>on</strong> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches <str<strong>on</strong>g>of</str<strong>on</strong>g> rotating tangles.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


236 9 gauge interacti<strong>on</strong>s deduced from strands<br />

Freedom <str<strong>on</strong>g>of</str<strong>on</strong>g> definiti<strong>on</strong> for the crossing phase <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g> model :<br />

Matter :<br />

spin<br />

time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

changes<br />

Observati<strong>on</strong> :<br />

spin<br />

U(1) phase<br />

definiti<strong>on</strong><br />

freedom<br />

Phot<strong>on</strong>s :<br />

core<br />

helicity<br />

U(1) phase<br />

definiti<strong>on</strong><br />

freedom<br />

probability<br />

amplitude<br />

helicity<br />

electromagnetic<br />

potential<br />

FIGURE 55 <str<strong>on</strong>g>The</str<strong>on</strong>g> freedom in definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings leads to the gauge invariance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

electrodynamics. Three exemplary choices <str<strong>on</strong>g>of</str<strong>on</strong>g> phase are shown.<br />

Twists <strong>on</strong> tangle cores<br />

form a U(1) group<br />

axis<br />

π<br />

axis<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> basic twist, or Reidemeister I<br />

move, is a local rotati<strong>on</strong>, by<br />

an angle π around the axis,<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the core regi<strong>on</strong> enclosed<br />

by a dashed circle.<br />

Generalized to arbitary angles,<br />

the basic twist generates<br />

a U(1) group.<br />

FIGURE 56 How the set <str<strong>on</strong>g>of</str<strong>on</strong>g> generalized twists – the set <str<strong>on</strong>g>of</str<strong>on</strong>g> all local rotati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a single strand segment<br />

around an axis – forms a U(1) gauge group.<br />

Arotati<strong>on</strong>by4π does not change the phase, independently <str<strong>on</strong>g>of</str<strong>on</strong>g> which definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arrow<br />

is chosen. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, gauge transformati<strong>on</strong>s leave probability densities – and even<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


electrodynamics and the first reidemeister move 237<br />

observable phase differences – unchanged. This agrees with experiment.<br />

A gauge transformati<strong>on</strong> <strong>on</strong> a wave functi<strong>on</strong>s also implies a gauge transformati<strong>on</strong> <strong>on</strong><br />

the electrodynamic potential. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus implies that the two transformati<strong>on</strong>s<br />

are c<strong>on</strong>nected, as is observed. This c<strong>on</strong>necti<strong>on</strong> is called minimal coupling. Inshort,<br />

minimal coupling is a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model.<br />

U(1) gauge interacti<strong>on</strong>s induced by twists<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re is <strong>on</strong>ly a small step from a gauge choice to a gauge interacti<strong>on</strong>. We recall:<br />

Challenge 155 e<br />

⊳ A gauge interacti<strong>on</strong> is a change <str<strong>on</strong>g>of</str<strong>on</strong>g> phase resulting from a strand deformati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the particle core.<br />

In particular, electromagnetism results from the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> twists; twistsare<strong>on</strong>e<str<strong>on</strong>g>of</str<strong>on</strong>g>the<br />

three types <str<strong>on</strong>g>of</str<strong>on</strong>g> core deformati<strong>on</strong>s that lead to a crossing switch.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> basic twist, or first Reidemeister move, corresp<strong>on</strong>ds to a local rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some<br />

strand segment in the core by an angle π, asillustratedbyFigure 56. Twists can be<br />

generalized to arbitrary angles: we simply define a generalized twist as a local rotati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a strand segment by an arbitrary angle. <str<strong>on</strong>g>The</str<strong>on</strong>g> rotati<strong>on</strong> axis is chosen as shown in<br />

Figure 56. Generalized twists can be c<strong>on</strong>catenated, and the identity twist – no local rotati<strong>on</strong><br />

at all – also exists. Generalized twists thus form a group. Furthermore, a generalized<br />

twist by 2π is equivalent to no twist at all, as is easily checked with a piece <str<strong>on</strong>g>of</str<strong>on</strong>g> rope: keeping<br />

the centre regi<strong>on</strong> is it disappears by pulling the ends, in c<strong>on</strong>trast to a twist by π.<br />

Generalized twists thus behave like e iθ . <str<strong>on</strong>g>The</str<strong>on</strong>g>ir c<strong>on</strong>catenati<strong>on</strong> produces a multiplicati<strong>on</strong><br />

table<br />

⋅ e iπ<br />

e iπ (150)<br />

1<br />

that generate and define a U(1) group. In other words, Figure 56 shows that generalized<br />

twists define the group U(1), which has the topology <str<strong>on</strong>g>of</str<strong>on</strong>g> a circle.<br />

In summary, the additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a twist to a fermi<strong>on</strong> tangle or to a phot<strong>on</strong> strand changes<br />

their phase, and thus represents a gauge interacti<strong>on</strong>. We have shown that core fluctuati<strong>on</strong>s<br />

induced by twists produce a U(1) gauge symmetry. Electromagnetic field energy<br />

and particle energy are U(1) invariant. In short, the strand model implies that the gauge<br />

group <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum electrodynamics is U(1). With this result, we are now able to deduce<br />

the full Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> QED.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> QED<br />

Given the U(1) gauge invariance <str<strong>on</strong>g>of</str<strong>on</strong>g> observables, the Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum electrodynamics,<br />

or QED, follows directly, because U(1) gauge invariance is equivalent to minimal<br />

coupling. We start from the Lagrangian density L <str<strong>on</strong>g>of</str<strong>on</strong>g> a neutral, free, and relativistic fermi<strong>on</strong><br />

in an electromagnetic field. It is given by<br />

L = Ψ(iħc/∂−c 2 m)Ψ − 1<br />

4μ 0<br />

F μν F μν . (151)<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


238 9 gauge interacti<strong>on</strong>s deduced from strands<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g> model :<br />

time average<br />

Observati<strong>on</strong> :<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

charged phot<strong>on</strong><br />

switches<br />

fermi<strong>on</strong><br />

t 2<br />

charged<br />

fermi<strong>on</strong><br />

phot<strong>on</strong><br />

Page 223<br />

Page 382<br />

charged<br />

fermi<strong>on</strong><br />

t 2<br />

t 1<br />

charged<br />

t fermi<strong>on</strong><br />

1<br />

time<br />

(Only crossing switches<br />

are observable, strands<br />

are not.)<br />

FIGURE 57 <str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental Feynman diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> QED and its tangle versi<strong>on</strong>.<br />

We deduced the fermi<strong>on</strong> term in the chapter <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory, and we deduced the<br />

electromagnetic term just now, from the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> twisted loops.<br />

As we have seen, the strand model implies minimal coupling. This changes the Lagrangian<br />

density for a charged, i.e., interacting, relativistic fermi<strong>on</strong> in the electromagnetic<br />

field, into the Lagrangian density <str<strong>on</strong>g>of</str<strong>on</strong>g> QED:<br />

L QED = Ψ(iħc/D −c 2 m)Ψ − 1<br />

4μ 0<br />

F μν F μν . (152)<br />

Here, /D =γ σ D σ is the gauge covariant derivative that is defined through minimal coupling<br />

to the charge q:<br />

D σ =∂ σ −iqA σ . (153)<br />

Minimal coupling implies that the Lagrangian density <str<strong>on</strong>g>of</str<strong>on</strong>g> QED is invariant under U(1)<br />

gauge transformati<strong>on</strong>s. We will discuss the details <str<strong>on</strong>g>of</str<strong>on</strong>g> the charge q later <strong>on</strong>.<br />

We have thus recovered the Lagrangian density <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum electrodynamics from<br />

strands. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s thus reproduce the most precisely tested theory <str<strong>on</strong>g>of</str<strong>on</strong>g> physics.<br />

Feynman diagrams and renormalizati<strong>on</strong><br />

Feynman diagrams are abbreviati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> formulas to calculate effects <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum electrodynamics<br />

in perturbati<strong>on</strong> expansi<strong>on</strong>. Feynman diagrams follow from the Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

QED. All Feynman diagrams <str<strong>on</strong>g>of</str<strong>on</strong>g> QED can be c<strong>on</strong>structed from <strong>on</strong>e fundamental diagram,<br />

shown <strong>on</strong> the right-hand side <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 57. Important Feynman diagrams are shown <strong>on</strong><br />

the left-hand sides <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 58 and <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 59.<br />

In the strand model, the fundamental Feynman diagram can be visualized directly<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


electrodynamics and the first reidemeister move 239<br />

real<br />

electr<strong>on</strong><br />

virtual<br />

phot<strong>on</strong><br />

t 2<br />

real<br />

electr<strong>on</strong><br />

real<br />

phot<strong>on</strong><br />

virtual<br />

electr<strong>on</strong><br />

real<br />

phot<strong>on</strong><br />

t 2<br />

t 2 t 2<br />

vacuum<br />

t 1 t<br />

t 1<br />

1<br />

t 1<br />

real time<br />

virtual time<br />

electr<strong>on</strong><br />

vacuum electr<strong>on</strong><br />

virtual real<br />

electr<strong>on</strong> phot<strong>on</strong> t 2<br />

vacuum<br />

t 2<br />

t 1<br />

t 2<br />

t 1<br />

virtual<br />

electr<strong>on</strong><br />

virtual<br />

electr<strong>on</strong><br />

time<br />

real<br />

positr<strong>on</strong><br />

t 2<br />

vacuum<br />

t 2<br />

t 2<br />

t 1<br />

Page 229<br />

Page 314<br />

real<br />

electr<strong>on</strong><br />

virtual<br />

electr<strong>on</strong><br />

time<br />

virtual<br />

positr<strong>on</strong><br />

t 2<br />

t 1<br />

t<br />

t 1<br />

1<br />

real<br />

phot<strong>on</strong><br />

time<br />

t 1<br />

t 2<br />

vacuum<br />

t 2<br />

real real<br />

electr<strong>on</strong> positr<strong>on</strong><br />

t 2<br />

t 2<br />

vacuum<br />

t 1<br />

t 1<br />

time<br />

virtual<br />

phot<strong>on</strong><br />

t 1<br />

real<br />

phot<strong>on</strong><br />

virtual<br />

electr<strong>on</strong><br />

virtual<br />

phot<strong>on</strong><br />

real<br />

positr<strong>on</strong><br />

t 1<br />

time<br />

t 2<br />

t 1<br />

time<br />

FIGURE 58 <str<strong>on</strong>g>The</str<strong>on</strong>g> different variati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental Feynman diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> QED and their tangle<br />

versi<strong>on</strong>s.<br />

in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> strands, as shown <strong>on</strong> the left-hand side <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 57. This is the same diagram<br />

that we have explored right at the start <str<strong>on</strong>g>of</str<strong>on</strong>g> the secti<strong>on</strong> <strong>on</strong> electrodynamics, when we<br />

defined electrodynamics as twist exchange. (<str<strong>on</strong>g>The</str<strong>on</strong>g> precise tangles for the charged fermi<strong>on</strong>s<br />

will be deduced later <strong>on</strong>.) Since all possible Feynman diagrams are c<strong>on</strong>structed from<br />

the fundamental diagram, the strand model allows us to interpret all possible Feynman<br />

diagrams as strand diagrams. For example, the strand model implies that the vacuum is<br />

full <str<strong>on</strong>g>of</str<strong>on</strong>g> virtual particle-antiparticle pairs, as shown in Figure 59.<br />

In quantum field theory, Lagrangians must not <strong>on</strong>ly be Lorentz and gauge invariant,<br />

but must also be renormalizable. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model makes several statements <strong>on</strong><br />

this issue. At this point, we focus <strong>on</strong> QED <strong>on</strong>ly; the other gauge interacti<strong>on</strong>s will be<br />

treated below. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model reproduces the QED Lagrangian, which is renormalizable.<br />

Renormalizability is a natural c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model in the limit that<br />

strand diameters are negligible. <str<strong>on</strong>g>The</str<strong>on</strong>g> reas<strong>on</strong> for renormalizability that the strand model<br />

reproduces the single, fundamental Feynman diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> QED, without allowing other<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> diagrams.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> twist deformati<strong>on</strong>s underlying the strand model for QED also suggest new ways<br />

to calculate higher order Feynman diagrams. Such ways are useful in calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> gfactors<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> charged particles, as shown in the next secti<strong>on</strong>. In particular, the strand model<br />

for QED,asshowninFigure 57, implies that higher order QED diagrams are simple strand<br />

deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> lower order diagrams. Taking statistical averages <str<strong>on</strong>g>of</str<strong>on</strong>g> strand deformati<strong>on</strong>s<br />

up to a given number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings thus allows us to calculate QED effects up to a given<br />

order in the coupling. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus suggests that n<strong>on</strong>-perturbative calculati<strong>on</strong>s<br />

are possible in QED.<br />

vacuum<br />

vacuum<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


240 9 gauge interacti<strong>on</strong>s deduced from strands<br />

Virtual pair creati<strong>on</strong>:<br />

t 3<br />

t 2<br />

electr<strong>on</strong><br />

t 3<br />

t 1<br />

positr<strong>on</strong><br />

t 2<br />

electr<strong>on</strong><br />

positr<strong>on</strong><br />

t 1<br />

Electr<strong>on</strong>-positr<strong>on</strong> annihilati<strong>on</strong>:<br />

time<br />

t 3<br />

t t 2<br />

2<br />

t 1<br />

electr<strong>on</strong><br />

positr<strong>on</strong><br />

t 1<br />

time<br />

t 3<br />

electr<strong>on</strong><br />

FIGURE 59 Some Feynman diagrams <str<strong>on</strong>g>of</str<strong>on</strong>g> QED with their tangle versi<strong>on</strong>s.<br />

positr<strong>on</strong><br />

For precise n<strong>on</strong>-perturbative calculati<strong>on</strong>s, the effective diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> the strands must<br />

be taken into account. <str<strong>on</strong>g>The</str<strong>on</strong>g> diameter eliminates the Landau pole and all ultraviolet divergences<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> QED. In the strand model, the vacuum energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the electromagnetic field<br />

is automatically zero. In other words, the strand model eliminates all problems <str<strong>on</strong>g>of</str<strong>on</strong>g> QED;<br />

in fact, QED appears as an approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model for negligible strand diameter.<br />

In passing, we thus predict that perturbati<strong>on</strong> theory for QED is valid and c<strong>on</strong>verges<br />

if the strand model, and in particular the finite strand diameter, is taken into account.<br />

(<str<strong>on</strong>g>The</str<strong>on</strong>g> diameter is the <strong>on</strong>ly gravitati<strong>on</strong>al influence predicted to affect QED.) However, we<br />

do not pursue these topics in the present text.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also suggests that the difference between renormalized and unrenormalized<br />

mass and charge is related to the difference between minimal and n<strong>on</strong>minimal<br />

crossing switch number, or equivalently, between tangle deformati<strong>on</strong>s with few<br />

and with many crossings, where strands are deformed <strong>on</strong> smaller distance scales. In other<br />

terms, unrenormalized quantities – the so-called bare quantities at Planck energy – can<br />

be imagined as those deduced when the tangles are pulled tight, i.e., pulled to Planck<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


electrodynamics and the first reidemeister move 241<br />

Page 386<br />

Page 227<br />

distances, whereas renormalized mass and charge values are those deduced for particles<br />

surrounded by many large-size fluctuati<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also suggests a visualizati<strong>on</strong> for the cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f used in QED. <str<strong>on</strong>g>The</str<strong>on</strong>g>cut<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

is a characteristic energy or length used in intermediate calculati<strong>on</strong>s. In the strand<br />

model, the cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f corresp<strong>on</strong>ds to the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the image.<br />

In summary, the strand model provides a new underlying picture or mechanism for<br />

Feynman diagrams. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model does not change any physical result at any experimentally<br />

accessible energy scale. In particular, the measured change or ‘running’ with<br />

energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the fine structure c<strong>on</strong>stant and <str<strong>on</strong>g>of</str<strong>on</strong>g> the masses <str<strong>on</strong>g>of</str<strong>on</strong>g> charged particles are reproduced<br />

by the strand model, because Feynman diagrams <str<strong>on</strong>g>of</str<strong>on</strong>g> all orders are reproduced up<br />

to energies just below the Planck scale. Deviati<strong>on</strong>s between QED and the strand model<br />

are <strong>on</strong>ly expected near the Planck energy, when tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> Planck diameter are pulled<br />

tight.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> anomalous magnetic moment<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> anomalous magnetic moment g <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> and <str<strong>on</strong>g>of</str<strong>on</strong>g> the mu<strong>on</strong> is given by the<br />

well-known expressi<strong>on</strong><br />

g<br />

2 =1+ α 2π −O(α2 ), (154)<br />

where g/2 is half the so-called g-factor, with a measured value <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.00116(1), andα is<br />

the fine structure c<strong>on</strong>stant, with a measured value <str<strong>on</strong>g>of</str<strong>on</strong>g> 1/137.036(1). Julian Schwinger<br />

discovered this expressi<strong>on</strong> in 1948; the involved calculati<strong>on</strong>s that led Schwinger to this<br />

and similar results in quantum field theory earned him the 1965 Nobel Prize in <str<strong>on</strong>g>Physics</str<strong>on</strong>g>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> result is also inscribed <strong>on</strong> the memorial marker near his grave in Mount Auburn<br />

Cemetery. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model proposes an intuitive explanati<strong>on</strong> for this result.<br />

Generally speaking, the factor g/2 describes the ratio between the ‘mechanical’ or<br />

‘geometric’ rotati<strong>on</strong> frequency – the rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle mass that leads to spin –<br />

and ‘magnetic’ rotati<strong>on</strong> frequency – the rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle charge that leads to the<br />

magnetic moment. More precisely, the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the g-factor <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle with charge<br />

e and mass m is<br />

g<br />

2 = μ/e<br />

S/m . (155)<br />

Here, μ is the magnetic moment and S is the intrinsic angular momentum, or spin.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> mechanical or geometric rotati<strong>on</strong> frequency is related to the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the intrinsic<br />

angular momentum L and the mass m. Using the definiti<strong>on</strong>s from classical physics, we<br />

have S/m = r × v. <str<strong>on</strong>g>The</str<strong>on</strong>g>magnetic rotati<strong>on</strong> frequency is related to the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetic<br />

moment μ and the electric charge e. Classically, this ratio is μ/e = r × v. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, in<br />

classical physics – and also in the first order <str<strong>on</strong>g>of</str<strong>on</strong>g> the Pauli–Dirac descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong><br />

– the two rotati<strong>on</strong> frequencies coincide, and the factor g/2 is thus equal to 1. However, as<br />

menti<strong>on</strong>ed, both experiment and QED show a slight deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> g/2 from unity, called<br />

the anomalous magnetic moment.<br />

In the strand model, the geometric or mechanical rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a charged elementary<br />

particle is due to the rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle core as a rigid whole, whereas the magnetic<br />

rotati<strong>on</strong> also includes phase changes due to the deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle core. In par-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


242 9 gauge interacti<strong>on</strong>s deduced from strands<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> propagating electr<strong>on</strong><br />

C<strong>on</strong>jecture 1<br />

C<strong>on</strong>jecture 2<br />

FIGURE 60 Two c<strong>on</strong>jectured corresp<strong>on</strong>dences between the Feynman diagrams <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum<br />

electrodynamics and the strand model for a propagating free electr<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> lower strand model<br />

c<strong>on</strong>figurati<strong>on</strong>s are shown for a single instant – marked in magenta – <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> propagator drawn<br />

above them. (For simplicity, the external field is not drawn.) In the first c<strong>on</strong>jecture, the loops <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt<br />

trick are c<strong>on</strong>jectured to corresp<strong>on</strong>d to the virtual phot<strong>on</strong>s in the propagator and to be resp<strong>on</strong>sible for<br />

the anomalous magnetic moment. In the sec<strong>on</strong>d c<strong>on</strong>jecture, the deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the core corresp<strong>on</strong>d<br />

to the virtual phot<strong>on</strong>s.<br />

ticular, the magnetic rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a charged elementary particle includes phase changes<br />

due to emissi<strong>on</strong> and reabsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> virtual phot<strong>on</strong>s, i.e., <str<strong>on</strong>g>of</str<strong>on</strong>g> twisted loops.<br />

In nature, the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> the emissi<strong>on</strong> and reabsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a phot<strong>on</strong> is determinedbythefinestructurec<strong>on</strong>stantα.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> emissi<strong>on</strong> and reabsorpti<strong>on</strong> process leads to an<br />

additi<strong>on</strong>al angle that makes the ‘magnetic’ rotati<strong>on</strong> angle differ from the ‘mechanical’<br />

rotati<strong>on</strong> angle. Since the fine structure c<strong>on</strong>stant describes the rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the phase due<br />

to virtual phot<strong>on</strong> exchange, the emissi<strong>on</strong> and reabsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a virtual phot<strong>on</strong> leads to<br />

an angle difference, and this angle difference is given by the fine structure c<strong>on</strong>stant itself.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> ratio between the purely mechanical or geometric and the full magnetic rotati<strong>on</strong><br />

frequency is therefore not <strong>on</strong>e, but increased by the ratio between the additi<strong>on</strong>al angle α<br />

and 2π. This is Schwinger’s formula.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


electrodynamics and the first reidemeister move 243<br />

Challenge 156 e<br />

Page 227<br />

Page 393<br />

Ref. 183<br />

In short, the strand model reproduces Schwinger’s celebrated formula for the anomalous<br />

magnetic moment almost from thin air. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also implies that<br />

Schwinger’s formula is valid for all charged elementary particles, independently <str<strong>on</strong>g>of</str<strong>on</strong>g> their<br />

mass; this is indeed observed. Higher order correcti<strong>on</strong>s also appear naturally in the<br />

strand model. Finally, the strand model implies that the complete expressi<strong>on</strong>, with all<br />

orders included, c<strong>on</strong>verges, because the full result is due to the shape and dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the tangle core. <str<strong>on</strong>g>The</str<strong>on</strong>g> discussi<strong>on</strong>s about the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> the perturbati<strong>on</strong> limit in QED are<br />

thus laid to rest.<br />

If we look into the details, it might be that the belt trick itself is at the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

anomalous magnetic moment. A c<strong>on</strong>jecture for this c<strong>on</strong>necti<strong>on</strong> is proposed and illustrated<br />

in Figure 60: if the two loops formed by the belt trick are seen as virtual phot<strong>on</strong>s,<br />

the factor 2α/4π arises naturally. So do the higher-order terms. This explanati<strong>on</strong> would<br />

relate the belt trick directly to the additi<strong>on</strong>al magnetic rotati<strong>on</strong> angle. However, it might<br />

also be that this corresp<strong>on</strong>dence <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand images in the figure to the upper diagrams<br />

is not fully correct. <str<strong>on</strong>g>The</str<strong>on</strong>g> topic is subject <str<strong>on</strong>g>of</str<strong>on</strong>g> research.<br />

A sec<strong>on</strong>d c<strong>on</strong>jecture is also given in Figure 60. <str<strong>on</strong>g>The</str<strong>on</strong>g> virtual phot<strong>on</strong>s could corresp<strong>on</strong>d<br />

to deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle core. This c<strong>on</strong>jecture is more in line with the distincti<strong>on</strong><br />

between gravity and gauge interacti<strong>on</strong>s given above, where it was stated that gravity is<br />

due to tail deformati<strong>on</strong>s and gauge interacti<strong>on</strong>s are due to core deformati<strong>on</strong>s. This c<strong>on</strong>jecture<br />

is more in line with the distincti<strong>on</strong> between a geometric and a magnetic rotati<strong>on</strong>:<br />

the geometric rotati<strong>on</strong> would be due to the rigid rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle core, and the<br />

magnetic rotati<strong>on</strong> would be due to an additi<strong>on</strong>al effect due to core deformati<strong>on</strong>.<br />

Both c<strong>on</strong>jectures <strong>on</strong> the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the g-factor imply that 1


244 9 gauge interacti<strong>on</strong>s deduced from strands<br />

Page 234<br />

Page 234<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> first <str<strong>on</strong>g>of</str<strong>on</strong>g> these equati<strong>on</strong>s is satisfied whatever the precise mechanism at the basis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> twisted loop emissi<strong>on</strong> by electric charges may be. Indeed, any mechanism in which a<br />

charge randomly sends out or swallows a twisted handle yields a 1/r 2 dependence for the<br />

electrostatic field and the required c<strong>on</strong>necti<strong>on</strong> between charge and the divergence <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

electric field. This is not a deep result: any spherically-symmetric system that randomly<br />

emits or swallows some entity produces the equati<strong>on</strong>, including the underlying inversesquare<br />

dependence. <str<strong>on</strong>g>The</str<strong>on</strong>g> result can also be c<strong>on</strong>firmed in another, well-known way. In any<br />

exchange interacti<strong>on</strong> between two charges, the exchange time is proporti<strong>on</strong>al to their<br />

distance apart r; in additi<strong>on</strong>, quantum theory states that the exchanged momentum is<br />

inversely proporti<strong>on</strong>al to the distance r. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, the force, or momentum per unit<br />

time, varies as 1/r 2 . This relati<strong>on</strong> is valid independently <str<strong>on</strong>g>of</str<strong>on</strong>g> the underlying moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

twisted loops, because space has three dimensi<strong>on</strong>s: all localized sources automatically<br />

fulfil the inverse square dependence.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>stant <strong>on</strong> the right-hand side <str<strong>on</strong>g>of</str<strong>on</strong>g> the first equati<strong>on</strong> results from the definiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the units; in the language <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model, the c<strong>on</strong>stant fixes the twisted loop<br />

emissi<strong>on</strong> rate for an elementary charge.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> the field equati<strong>on</strong>s (157) expresses the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> magnetic charges. This<br />

equati<strong>on</strong> is automatically fulfilled by the strand model, as the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetic<br />

field with strands does not admit any magnetic sources. In fact, strands suggest that no<br />

localized entity can have a magnetic charge. Also this equati<strong>on</strong> is valid independently <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the details <str<strong>on</strong>g>of</str<strong>on</strong>g> the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strands. Again, this is a topological effect.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> third field equati<strong>on</strong> relates the temporal change <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetic field to the curl<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the electric field. In the strand model, this is satisfied naturally, because a curl in<br />

the electric field implies, by c<strong>on</strong>structi<strong>on</strong>, a change <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetic field, as shown by<br />

Figure 53. Again, this relati<strong>on</strong> is valid independently <str<strong>on</strong>g>of</str<strong>on</strong>g> the details <str<strong>on</strong>g>of</str<strong>on</strong>g> the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

strands, as l<strong>on</strong>g as the averaging scale is taken to be large enough to allow the definiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> electric and the magnetic fields.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> most interesting equati<strong>on</strong> is the last <str<strong>on</strong>g>of</str<strong>on</strong>g> the four Maxwell equati<strong>on</strong>s (157): in particular,<br />

the sec<strong>on</strong>d term <strong>on</strong> the right-hand side, the dependence <strong>on</strong> the charge current.<br />

In the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electrodynamics, the charge current J appears with a positive sign<br />

and with no numerical factor. (This is in c<strong>on</strong>trast to linearized gravity, where the current<br />

has a numerical factor and a negative sign.) <str<strong>on</strong>g>The</str<strong>on</strong>g> positive sign means that a larger current<br />

produces a larger magnetic field. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model reproduces this factor: strands lead<br />

to an effect that is proporti<strong>on</strong>al both to charge (because more elementary charges produce<br />

more crossing flows) and to speed <str<strong>on</strong>g>of</str<strong>on</strong>g> movement <str<strong>on</strong>g>of</str<strong>on</strong>g> charge (large charge speed lead<br />

to larger flows). Because <str<strong>on</strong>g>of</str<strong>on</strong>g> this result, the classical phot<strong>on</strong> spin, which is defined as L/ω,<br />

and which determines the numerical factor, namely 1, that appears before the charge current<br />

J, is recovered. Also this c<strong>on</strong>necti<strong>on</strong> is obviously independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the precise moti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the underlying strands.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> first term <strong>on</strong> the right-hand side <str<strong>on</strong>g>of</str<strong>on</strong>g> the fourth equati<strong>on</strong>, representing the c<strong>on</strong>necti<strong>on</strong><br />

between a changing electric field and the curl <str<strong>on</strong>g>of</str<strong>on</strong>g> the magnetic field, is automatically<br />

in agreement with the model. This can again be checked from Figure 53 – and again,<br />

this is a topological effect, valid for any underlying strand fluctuati<strong>on</strong>. As an example,<br />

when a capacitor is charged, a compass needle between the plates is deflected. In the<br />

strand model, the accumulating charges <strong>on</strong> the plates lead to a magnetic field. <str<strong>on</strong>g>The</str<strong>on</strong>g> last<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Maxwell’s equati<strong>on</strong>s is thus also c<strong>on</strong>firmed by the strand model.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


electrodynamics and the first reidemeister move 245<br />

Challenge 157 e<br />

Challenge 158 e<br />

Challenge 159 e<br />

Challenge 160 e<br />

Challenge 161 d<br />

Page 164<br />

In summary, the strand model reproduces Maxwell’s equati<strong>on</strong>s. However, this is not<br />

a great feat. Maxwell-like equati<strong>on</strong>s appear in many places in field theory, for example<br />

in solid-state physics and hydrodynamics. Mathematical physicists are so used to the<br />

appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> Maxwell-like equati<strong>on</strong>s in other domains that they seldom pay it much<br />

attenti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> real tests for any model <str<strong>on</strong>g>of</str<strong>on</strong>g> electrodynamics, quantum or classical, are the<br />

deviati<strong>on</strong>s that the model predicts from electrodynamics, especially at high energies.<br />

Curiosities and fun challenges about QED<br />

Can you show that the calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum energy density <str<strong>on</strong>g>of</str<strong>on</strong>g> an infinite flat vacuum,<br />

when using strands, yields exactly zero, as expected?<br />

∗∗<br />

Can you c<strong>on</strong>firm that the strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum electrodynamics does not violate<br />

charge c<strong>on</strong>jugati<strong>on</strong> C nor parity P at any energy?<br />

∗∗<br />

Can you c<strong>on</strong>firm that the strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum electrodynamics c<strong>on</strong>serves colour<br />

and weak charge at all energies, using the results <str<strong>on</strong>g>of</str<strong>on</strong>g> the next secti<strong>on</strong>s?<br />

∗∗<br />

Can you determine whether the U(1) gauge group deduced here is that <str<strong>on</strong>g>of</str<strong>on</strong>g> electrodynamics<br />

or that <str<strong>on</strong>g>of</str<strong>on</strong>g> weak hypercharge?<br />

∗∗<br />

Can you find a measurable deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model from QED?<br />

Summary <strong>on</strong> QED and experimental predicti<strong>on</strong>s<br />

In the strand model, phot<strong>on</strong>s are single, helically twisted strands, randomly exchanged<br />

between charges; charges are chiral tangles, and therefore they effectively emit and absorb<br />

real and virtual phot<strong>on</strong>s. This is the complete descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> QED using strands.<br />

In particular, we have shown that Reidemeister I moves – or twists – <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle cores<br />

lead to U(1) gauge invariance, Coulomb’s inverse square relati<strong>on</strong>, Maxwell’s equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

electrodynamics and to Feynman diagrams. In short, we have deduced all experimental<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum electrodynamics, except <strong>on</strong>e: the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the coupling. Despite<br />

this open point, we have settled <strong>on</strong>e line <str<strong>on</strong>g>of</str<strong>on</strong>g> the millennium list <str<strong>on</strong>g>of</str<strong>on</strong>g> open issues: we<br />

know the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the electromagnetic interacti<strong>on</strong> and <str<strong>on</strong>g>of</str<strong>on</strong>g> its properties.<br />

Is there a difference between the strand model and quantum electrodynamics? <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

precise answer is: there are no measurable differences between the strand model and QED.<br />

For example, the g-factor <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> or the mu<strong>on</strong> predicted by QED is not changed<br />

by the strand model. <str<strong>on</strong>g>The</str<strong>on</strong>g> U(1) gauge symmetry and the whole <str<strong>on</strong>g>of</str<strong>on</strong>g> QED remain valid at all<br />

energies. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are no magnetic charges. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are no other gauge groups. QED remains<br />

exact in all cases – as l<strong>on</strong>g as gravity plays no role.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> larger gauge symmetries is disc<strong>on</strong>certing.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re is thus no grand unificati<strong>on</strong> in nature; there is no general gauge group in nature,<br />

be it SU(5), SO(10), E6, E7, E8, SO(32) or any other. This result indirectly also rules out<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


246 9 gauge interacti<strong>on</strong>s deduced from strands<br />

Ref. 184<br />

Page 255<br />

supersymmetry and supergravity. This unpopular result c<strong>on</strong>trasts with many cherished<br />

habits <str<strong>on</strong>g>of</str<strong>on</strong>g> thought.<br />

In the strand model, the equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> Feynman diagrams and strand diagrams implies<br />

that deviati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model from QED are expected <strong>on</strong>ly when gravity starts<br />

to play a role. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts that this will <strong>on</strong>ly happen just near the Planck<br />

energy √ħc 5 /4G . At lower energies, QED is predicted to remain valid.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also c<strong>on</strong>firms that the combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity and quantum theory<br />

turns all Planck units into limit values, because there is a maximum density <str<strong>on</strong>g>of</str<strong>on</strong>g> strand<br />

crossings in nature, due to the fundamental principle. In particular, the strand model<br />

c<strong>on</strong>firms the maximum electric field value E max =c 4 /4Ge ≈ 1.9 ⋅ 10 62 V/m andamaximum<br />

magnetic field value B max =c 3 /4Ge ≈ 6.3 ⋅ 10 53 T. So far, these predicti<strong>on</strong>s are not<br />

in c<strong>on</strong>trast with observati<strong>on</strong>s.<br />

Thus the strand model predicts that approaching the electric or magnetic field limit<br />

values – given by quantum gravity – is the <strong>on</strong>ly opti<strong>on</strong> to observe deviati<strong>on</strong>s from QED.<br />

But measurements are not possible in those domains. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore we can state that there<br />

are no measurable differences between the strand model and QED.<br />

Our explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> QED has left open <strong>on</strong>ly two points: the calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electromagnetic<br />

coupling c<strong>on</strong>stant and the determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> possible tangles for<br />

the elementary particles. Before we clarify these points, we look at the next Reidemeister<br />

move.<br />

the weak nuclear interacti<strong>on</strong> and the sec<strong>on</strong>d<br />

reidemeister move<br />

In nature, the weak interacti<strong>on</strong> is the result <str<strong>on</strong>g>of</str<strong>on</strong>g> the absorpti<strong>on</strong> and the emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> massive<br />

spin-1 bos<strong>on</strong>s that form a broken weak triplet. <str<strong>on</strong>g>The</str<strong>on</strong>g> W and the Z bos<strong>on</strong>s are emitted or<br />

absorbed by particles with weak charge; these are the left-handed fermi<strong>on</strong>s and righthanded<br />

antifermi<strong>on</strong>s. In other words, the weak interacti<strong>on</strong> breaks parity P maximally.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> W bos<strong>on</strong> has unit electric charge, the Z bos<strong>on</strong> has vanishing electric charge.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> emissi<strong>on</strong> or absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> W bos<strong>on</strong>s changes the particle type <str<strong>on</strong>g>of</str<strong>on</strong>g> the involved fermi<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> weak bos<strong>on</strong>s also interact am<strong>on</strong>g themselves. All weakly charged particles<br />

are massive and move slower than light. <str<strong>on</strong>g>The</str<strong>on</strong>g> Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> matter coupled to the weak<br />

field has a broken SU(2) gauge symmetry. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are fundamental Feynman diagrams<br />

with triple and with quartic vertices. <str<strong>on</strong>g>The</str<strong>on</strong>g> weak coupling c<strong>on</strong>stant is determined by the<br />

electromagnetic coupling c<strong>on</strong>stant and the weak bos<strong>on</strong> masses; its energy dependence is<br />

fixed by renormalizati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> Higgs bos<strong>on</strong> ensures full c<strong>on</strong>sistency <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantum field<br />

theory <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> previous paragraph summarizes the main observati<strong>on</strong>s about the weak interacti<strong>on</strong>.<br />

More precisely, all observati<strong>on</strong>s related to the weak interacti<strong>on</strong> are described by<br />

its Lagrangian. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, we need to check whether the weak interacti<strong>on</strong> Lagrangian<br />

follows from the strand model.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the weak nuclear interacti<strong>on</strong> and the sec<strong>on</strong>d reidemeister move 247<br />

Reidemeister move II, or poke, in textbook form :<br />

A poke transfer :<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> basic poke<br />

can be described<br />

as a local rotati<strong>on</strong> by π.<br />

A full rotati<strong>on</strong>, from -π to π,<br />

produces crossing switches.<br />

Page 225<br />

fermi<strong>on</strong><br />

weak bos<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

unbroken SU(2)<br />

poke<br />

transfer<br />

fermi<strong>on</strong><br />

with<br />

different<br />

phase<br />

vacuum<br />

FIGURE 61 Poke transfer is the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong> in the strand model. No strand is cut or<br />

reglued; the transfer occurs <strong>on</strong>ly through the excluded volume due to the impenetrability <str<strong>on</strong>g>of</str<strong>on</strong>g> strands.<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s, pokes and SU(2)<br />

As explained above, any gauge interacti<strong>on</strong> involving a fermi<strong>on</strong> is a deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

tangle core that changes the phase and rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fermi<strong>on</strong> tangle. We start directly<br />

with the main definiti<strong>on</strong>.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> weak interacti<strong>on</strong> is the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> a poke, i.e., the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> a Reidemeister<br />

II move, between two particles. An illustrati<strong>on</strong> is given in Figure<br />

61. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s are not cut in this process; they simply transfer the deformati<strong>on</strong><br />

as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> their impenetrability.<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s describe the weak interacti<strong>on</strong> as exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> pokes. In tangle cores, the basic<br />

pokes induce local rotati<strong>on</strong>s by an angle π,asshowninFigure 62: each basic poke rotates<br />

the regi<strong>on</strong> enclosed by the dotted circle. A full poke produces two crossings. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are<br />

three, linearly independent, basic pokes, in three mutually orthog<strong>on</strong>al directi<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

three basic pokes τ x , τ y and τ z act <strong>on</strong> the local regi<strong>on</strong> in the same way as the three possible<br />

mutually orthog<strong>on</strong>al rotati<strong>on</strong>s act <strong>on</strong> a belt buckle. For completeness, we note that the<br />

following arguments do not depend <strong>on</strong> whether the two strands involved in a poke are<br />

parallel, orthog<strong>on</strong>al, or at a general angle. <str<strong>on</strong>g>The</str<strong>on</strong>g> following arguments also do not depend<br />

Challenge 162 e <strong>on</strong> whether the pokes are represented by deforming two strands or <strong>on</strong>ly <strong>on</strong>e strand. Both<br />

cases lead to crossing switches, for each possible poke type.<br />

Figure 62 illustrates that the product <str<strong>on</strong>g>of</str<strong>on</strong>g> two different basic pokes gives the third basic<br />

Challenge 163 e poke, together with a sign – which depends <strong>on</strong> whether the sequence is cyclic or not –<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


248 9 gauge interacti<strong>on</strong>s deduced from strands<br />

Pokes <strong>on</strong> tangle cores<br />

form an SU(2) group<br />

τ<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> poke, or Reidemeister II move,<br />

is a local rotati<strong>on</strong>, by an angle π,<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the core regi<strong>on</strong> enclosed by a<br />

dashed circle.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> three basic pokes <strong>on</strong> tangle cores are<br />

local rotati<strong>on</strong>s by an angle π around the three<br />

coordinate axes <str<strong>on</strong>g>of</str<strong>on</strong>g> the core regi<strong>on</strong> (enclosed by<br />

a dashed circle). <str<strong>on</strong>g>The</str<strong>on</strong>g> infinitesimal versi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the three basic pokes generate an<br />

SU(2) group. <str<strong>on</strong>g>The</str<strong>on</strong>g> SU(2) group appears<br />

most clearly when the analogy to the<br />

belt trick is highlighted.<br />

Page 191<br />

τ x<br />

τ y<br />

τ z<br />

π<br />

π<br />

π<br />

axis<br />

axis<br />

FIGURE 62 How the set <str<strong>on</strong>g>of</str<strong>on</strong>g> all pokes – the set <str<strong>on</strong>g>of</str<strong>on</strong>g> all deformati<strong>on</strong>s induced <strong>on</strong> tangle cores by the weak<br />

interacti<strong>on</strong> – forms an SU(2) gauge group: the three pokes lead to the belt trick, illustrated here with a<br />

pointed buckle and two belts. <str<strong>on</strong>g>The</str<strong>on</strong>g> illustrated deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands represent the three unbroken<br />

weak vector bos<strong>on</strong>s.<br />

and a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> i. Using the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> −1 as a local rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the buckle regi<strong>on</strong> by<br />

2π, weals<str<strong>on</strong>g>of</str<strong>on</strong>g>indthatthe square <str<strong>on</strong>g>of</str<strong>on</strong>g> each basic poke is −1. Indetail,wecanread<str<strong>on</strong>g>of</str<strong>on</strong>g>fthe<br />

following multiplicati<strong>on</strong> table for the three basic pokes:<br />

axis<br />

⋅ τ x τ y τ z<br />

τ x −1 iτ z −iτ y<br />

τ y −iτ z −1 iτ x<br />

τ z iτ y −iτ x −1<br />

τ x<br />

τ y<br />

τ z<br />

(158)<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the weak nuclear interacti<strong>on</strong> and the sec<strong>on</strong>d reidemeister move 249<br />

Pokes <strong>on</strong> cores generate an SU(2) group, like the belt trick does :<br />

x<br />

y<br />

z<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> three basic pokes<br />

– shown here applied to<br />

a tangle core – define, when<br />

reduced to infinitesimal<br />

angles, the 3 generators<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> SU(2).<br />

Random pokes affect <strong>on</strong>ly tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> identical spin and handedness :<br />

A poke affects a tangle and a tangle differently.<br />

FIGURE 63 <str<strong>on</strong>g>The</str<strong>on</strong>g> three basic pokes and weak charge in the strand model.<br />

In other terms, the three basic pokes – and in particular also their infinitesimal versi<strong>on</strong>s –<br />

behave like the generators <str<strong>on</strong>g>of</str<strong>on</strong>g> an SU(2) group. Because pokes can be seen as local rotati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a buckle regi<strong>on</strong>, they can be generalized to arbitrary angles. Such arbitrary pokes can<br />

be c<strong>on</strong>catenated. We thus find that arbitrary pokes form a full SU(2) group. This is the<br />

reas<strong>on</strong> for their equivalence with the belt trick.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> different gauge choices for a particle are not illustrated in Figure 62. <str<strong>on</strong>g>The</str<strong>on</strong>g>gauge<br />

choices arise from the different ways in which the basic pokes τ x , τ y and τ z can be assigned<br />

to the set <str<strong>on</strong>g>of</str<strong>on</strong>g> deformati<strong>on</strong>s that describe the belt trick.<br />

In summary, we can state that in any definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> a tangled fermi<strong>on</strong> core,<br />

there is an SU(2) gauge freedom; in additi<strong>on</strong>, there exists an interacti<strong>on</strong> with SU(2) gauge<br />

symmetry. In other words, the strand model implies, through the sec<strong>on</strong>d Reidemeister<br />

move, the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> the unbroken weak interacti<strong>on</strong> with a gauge group SU(2).<br />

Weak charge and parity violati<strong>on</strong><br />

A particle has weak charge if, when subject to many random pokes, a n<strong>on</strong>-zero average<br />

phase change occurs. Surrounded by a bath <str<strong>on</strong>g>of</str<strong>on</strong>g> strands that c<strong>on</strong>tinuously induce random<br />

pokes, not all tangles will change their phase <strong>on</strong> a l<strong>on</strong>g-time average: <strong>on</strong>ly tangles that<br />

lack symmetry will. One symmetry that must be lacking is spherical symmetry. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore,<br />

<strong>on</strong>ly tangles whose cores lack spherical symmetry have the chance to be influenced<br />

by random pokes. Since all tangles, independently <str<strong>on</strong>g>of</str<strong>on</strong>g> their core details, lack spherical<br />

symmetry, all such tangles, i.e., all massive particles, are candidates to be influenced, and<br />

thus are candidates for weakly charged particles. We therefore explore them in detail<br />

now.<br />

If a tangle is made <str<strong>on</strong>g>of</str<strong>on</strong>g> two or more linked strands, it represents a massive spin-1/2<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


250 9 gauge interacti<strong>on</strong>s deduced from strands<br />

Page 298<br />

Page 220<br />

particle (except for a simple twist, which represents the gravit<strong>on</strong>). All such fermi<strong>on</strong> cores<br />

lack spherical and cylindrical symmetry. When a fermi<strong>on</strong> spins, two things happen:<br />

the core rotates and the belt trick occurs, which untangles the tails. Compared to the<br />

directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>, the rotati<strong>on</strong> and the untangling can be either left-handed or righthanded.<br />

Every poke is a shape transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the core with a preferred handedness. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

chirality is <str<strong>on</strong>g>of</str<strong>on</strong>g> importance in the following.<br />

A particle has weak charge if random pokes lead to a l<strong>on</strong>g-time phase change. In order<br />

to feel any average effect when large numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> random pokes are applied, a core must<br />

undergo different effects for a poke and its reverse. As already menti<strong>on</strong>ed, this requires<br />

a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> core symmetry. Whenever the core has no symmetry, n<strong>on</strong>-compensating phase<br />

effects will occur: if the core rotati<strong>on</strong> with its tail untangling and the poke are <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

same handedness, the phase will increase, whereas for opposite handedness, the phase<br />

will decrease a bit less.<br />

⊳ N<strong>on</strong>-vanishing weak charge for fermi<strong>on</strong>s appears <strong>on</strong>ly for tangle cores<br />

whose handedness leads to average poke effects.<br />

In other words, the strand model predicts that random pokes will <strong>on</strong>ly affect a core if<br />

the core handedness and the randomly applied belt trick are <str<strong>on</strong>g>of</str<strong>on</strong>g> the same handedness. In<br />

physical terms, random pokes will <strong>on</strong>ly affect left-handed particles or right-handed antiparticles.<br />

Thus, the strand model predicts that the weak interacti<strong>on</strong> violates parity maximally,<br />

This is exactly as observed. In other terms, weak charge and the parity violati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong> are c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt trick. This relati<strong>on</strong> is summarized<br />

in Figure 63.<br />

If an elementary particle is described by a two tangled strands, we expect it to be influenced<br />

by average pokes. Such tangle cores are spin-1 bos<strong>on</strong>s; their cores lack spherical<br />

and cylindrical symmetry. <str<strong>on</strong>g>The</str<strong>on</strong>g> core rotati<strong>on</strong> will induce a left-right asymmetry that will<br />

lead to a higher effect <str<strong>on</strong>g>of</str<strong>on</strong>g> a poke than <str<strong>on</strong>g>of</str<strong>on</strong>g> its reverse. Two-stranded particles are thus predicted<br />

to carry weak charge. We therefore expect that quarks – to be explored below –<br />

and the weak bos<strong>on</strong>s themselves interact weakly.<br />

Because the weak bos<strong>on</strong>s interact weakly, the strand model implies that the weak interacti<strong>on</strong><br />

is a n<strong>on</strong>-Abelian gauge theory, as is observed.*<br />

If a tangle is made <str<strong>on</strong>g>of</str<strong>on</strong>g> a single unknotted strand, it is not affected by random pokes.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus predicts that the phot<strong>on</strong> has no weak charge, as is observed. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

same also holds for glu<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weak charge leads to two c<strong>on</strong>clusi<strong>on</strong>s that can be checked<br />

by experiment. First, all electrically charged particles – having cores that are chiral and<br />

thus lack cylindrical symmetry – are predicted to be weakly charged. Sec<strong>on</strong>dly, in the<br />

strand model, <strong>on</strong>ly massive particles interact weakly; in fact, all massive particles interact<br />

weakly, because their cores lack cylindrical symmetry. In other words, all weakly<br />

* N<strong>on</strong>-Abelian gauge theory was introduced by Wolfgang Pauli. In the 1950s, he explained the theory in<br />

series <str<strong>on</strong>g>of</str<strong>on</strong>g> talks. Two physicists, Yang Chen Ning and Robert Mills, then wrote down his ideas. Yang later<br />

received the Nobel Prize in <str<strong>on</strong>g>Physics</str<strong>on</strong>g> with Lee Tsung Dao for a different topic, namely for the violati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

parity <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong>.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the weak nuclear interacti<strong>on</strong> and the sec<strong>on</strong>d reidemeister move 251<br />

Bos<strong>on</strong> mass generati<strong>on</strong> and SU(2) breaking :<br />

phot<strong>on</strong><br />

weak bos<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

unbroken SU(2)<br />

Higgs<br />

bos<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> U(1) and SU(2)<br />

after symmetry breaking<br />

a<br />

d<br />

f<br />

B<br />

B<br />

B<br />

+<br />

–<br />

b<br />

e<br />

g<br />

W 0<br />

W x W 0<br />

+ c<br />

+<br />

h<br />

Z 0<br />

A<br />

W –<br />

Z bos<strong>on</strong><br />

candidate<br />

(massive)<br />

phot<strong>on</strong><br />

W bos<strong>on</strong><br />

candidate<br />

(massive)<br />

FIGURE 64 Poke-inducing strand moti<strong>on</strong>s (left) become massive weak vector tangles (right) through<br />

symmetry breaking and tail braiding. Tail braiding is related to the Higgs bos<strong>on</strong>, whose tangle model<br />

will be clarified later <strong>on</strong>.<br />

charged particles move more slowly than light and vice versa. Both c<strong>on</strong>clusi<strong>on</strong>s agree<br />

with observati<strong>on</strong>.<br />

In summary, all properties <str<strong>on</strong>g>of</str<strong>on</strong>g> weak charge found in nature are reproduced by the<br />

tangle model.<br />

Weak bos<strong>on</strong>s<br />

Gauge bos<strong>on</strong>s are those particles that are exchanged between interacting fermi<strong>on</strong>s: gauge<br />

bos<strong>on</strong>s induce phase changes <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong>s. This implies that the (unbroken) weak bos<strong>on</strong>s<br />

are the particles* that induce the three poke moves:<br />

* This reworked strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> the W and Z bos<strong>on</strong>s arose in 2015.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


252 9 gauge interacti<strong>on</strong>s deduced from strands<br />

Page 234<br />

⊳ Weak, unbroken, intermediate bos<strong>on</strong>s are described by double strands. Illustrati<strong>on</strong>s<br />

are given in and Figure 62 and Figure 64.<br />

Single strands that induce phase changes in fermi<strong>on</strong>s interacting weakly are shown <strong>on</strong><br />

the left side <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 64. <str<strong>on</strong>g>The</str<strong>on</strong>g>y corresp<strong>on</strong>d to the three basic pokes τ x , τ y and τ z .<br />

We note two additi<strong>on</strong>al points. First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, the (unbroken) bos<strong>on</strong>s could also be<br />

described by the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a single strand in a strand group. This makes them spin 1<br />

particles.<br />

Furthermore, unknotted tangles are massless. In the strand model, tangles that induce<br />

pokes differ from the massive weak intermediate bos<strong>on</strong>s, shown <strong>on</strong> the right <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 64.<br />

This difference is due to the breaking <str<strong>on</strong>g>of</str<strong>on</strong>g>theSU(2)gaugesymmetry,aswewillfindout<br />

so<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> the unbroken SU(2) gauge interacti<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak field is given by the density <str<strong>on</strong>g>of</str<strong>on</strong>g> weak gauge bos<strong>on</strong> strands. As<br />

l<strong>on</strong>g as the SU(2) symmetry is not broken, the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak field and the energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fermi<strong>on</strong>s are both SU(2) invariant. As a c<strong>on</strong>sequence, we are now able to deduce a large<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> the Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong>, namely the Lagrangian for the case that<br />

the SU(2) symmetry is unbroken.<br />

As l<strong>on</strong>g as SU(2) is unbroken, the vector bos<strong>on</strong>s are described as unknotted tangles<br />

that induce pokes, as shown <strong>on</strong> the left <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 64. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are three such bos<strong>on</strong>s. Since<br />

they can be described by a single strand that moves, they have spin 1; since they are<br />

unknotted, they have zero mass and electric charge.<br />

Energy is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches per time. As l<strong>on</strong>g as SU(2) is unbroken<br />

and the weak bos<strong>on</strong>s are massless, the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak bos<strong>on</strong> field and thus their<br />

Lagrangian density is given by the same expressi<strong>on</strong> as the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the phot<strong>on</strong> field. In<br />

particular, the strand model implies that energy density is quadratic in the field intensities.<br />

We <strong>on</strong>ly have to add the energies <str<strong>on</strong>g>of</str<strong>on</strong>g> all three bos<strong>on</strong>s together to get:<br />

L =− 1 4<br />

3<br />

∑ W a μνW μν a , (159)<br />

a=1<br />

This expressi<strong>on</strong> is SU(2) gauge invariant. Indeed, SU(2) gauge transformati<strong>on</strong>s have no<br />

effect <strong>on</strong> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches due to weak bos<strong>on</strong>s or to the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pokes.<br />

Thus, gauge transformati<strong>on</strong>s leave weak field intensities and thus also the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

weak fields invariant, as observed.<br />

We can now write down the Lagrangian for weakly charged fermi<strong>on</strong>s interacting with<br />

the weak vector bos<strong>on</strong>s. Starting from the idea that tangle core deformati<strong>on</strong>s lead to<br />

phase redefiniti<strong>on</strong>s, we have found that pokes imply that the unbroken weak Lagrangian<br />

density for matter and radiati<strong>on</strong> fields is SU(2) gauge invariant. In parallel to electrodynamics<br />

we thus get the Lagrangian<br />

L unbroken weak =∑Ψ f (iħc/D −m f c 2 )Ψ f − 1 3<br />

∑ W a<br />

4<br />

μνW μν a , (160)<br />

a=1<br />

f<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the weak nuclear interacti<strong>on</strong> and the sec<strong>on</strong>d reidemeister move 253<br />

Page 257<br />

Page 358<br />

Page 250<br />

Page 257<br />

Page 256<br />

where /D is now the SU(2) gauge covariant derivative and the first sum is taken over<br />

all fermi<strong>on</strong>s. In this Lagrangian, <strong>on</strong>ly the left-handed fermi<strong>on</strong>s and the right-handed<br />

antifermi<strong>on</strong>s carry weak charge. This Lagrangian, however, does not describe nature:<br />

the observed SU(2) breaking is missing.<br />

SU(2) breaking<br />

In nature, the weak interacti<strong>on</strong> does not have an SU(2) gauge symmetry. <str<strong>on</strong>g>The</str<strong>on</strong>g> symmetry<br />

is <strong>on</strong>ly approximate; is said to be broken. <str<strong>on</strong>g>The</str<strong>on</strong>g> main effect <str<strong>on</strong>g>of</str<strong>on</strong>g> SU(2) symmetry breaking are<br />

the n<strong>on</strong>-vanishing – and different – masses for the W and Z bos<strong>on</strong>s, and thus the weakness<br />

and the short range <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong>. In additi<strong>on</strong>, the symmetry breaking<br />

implies a mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak and the electromagnetic interacti<strong>on</strong>: it yields the so-called<br />

electroweak interacti<strong>on</strong>. This mixing is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten called electroweak ‘unificati<strong>on</strong>’.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model suggests the following descripti<strong>on</strong>:<br />

⊳ Mass generati<strong>on</strong> for bos<strong>on</strong>s and the related SU(2) symmetry breaking are<br />

due to tail braiding at the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space. Figure 64 illustrates the idea.<br />

In this descripti<strong>on</strong>, tail braiding* is assumed to occur at a distance outside the domain<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>; in that regi<strong>on</strong> – which can be also the border <str<strong>on</strong>g>of</str<strong>on</strong>g> physical space – tail<br />

braiding is not forbidden and can occur. <str<strong>on</strong>g>The</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> tail braiding is low, because<br />

the crossings have first to fluctuate to that distance and then fluctuate back. Nevertheless,<br />

the process <str<strong>on</strong>g>of</str<strong>on</strong>g> tail braiding can take place.<br />

Tail braiding appears <strong>on</strong>ly in the weak interacti<strong>on</strong>. It does not appear in the other<br />

two gauge interacti<strong>on</strong>s, as the other Reidemeister moves are not affected by processes at<br />

the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space. In the strand model, this is the reas<strong>on</strong> that <strong>on</strong>ly SU(2) is broken<br />

in nature. In short, SU(2) breaking is a natural c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the sec<strong>on</strong>d Reidemeister<br />

move.<br />

Tail braiding transforms the unbraided, and thus massless, poke strands into the<br />

braided, and thus massive W and Z strands. Tail braiding leads to particle cores: therefore<br />

is a mass-generating process. <str<strong>on</strong>g>The</str<strong>on</strong>g> precise mass values that it generates will be determined<br />

below. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus c<strong>on</strong>firms that mass generati<strong>on</strong> is related to the<br />

breaking <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong>.<br />

Tail braiding mixes the W 0 with the ‘original’ phot<strong>on</strong>. This is shown in Figure 64.<str<strong>on</strong>g>The</str<strong>on</strong>g><br />

mixing is due to the topological similarities <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand models <str<strong>on</strong>g>of</str<strong>on</strong>g> the two particles. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

resulting Z bos<strong>on</strong> is achiral, and thus electrically neutral, as observed. We note that the<br />

existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a neutral, massive Z bos<strong>on</strong> implies that elastic neutrino scattering in matter<br />

occurs in nature, as was observed for the first time in 1974. Since any electrically charged<br />

particle also has weak charge, the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a Z bos<strong>on</strong> implies that any two electrically<br />

charged particles can interact both by exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s and by exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> Z bos<strong>on</strong>s.<br />

In other words, SU(2) breaking implies electroweak mixing, or, as is it usually called,<br />

electroweak ‘unificati<strong>on</strong>’.<br />

Tail braiding takes place in several weak interacti<strong>on</strong> processes, as shown in Figure 67.<br />

Tail braiding thus can change particle topology, and thus particle type. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model<br />

* In the original strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak bos<strong>on</strong>s, from the year 2008, the role <str<strong>on</strong>g>of</str<strong>on</strong>g> tail braiding was taken<br />

by strand overcrossing.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


254 9 gauge interacti<strong>on</strong>s deduced from strands<br />

Incorrect weak bos<strong>on</strong>s models <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

unbroken SU(2)<br />

Incorrect weak bos<strong>on</strong>s models <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

broken SU(2)<br />

W x<br />

W y<br />

W + W –<br />

W 0<br />

Z 0<br />

Page 318<br />

Page 358<br />

Page 360<br />

FIGURE 65 <str<strong>on</strong>g>The</str<strong>on</strong>g> supposed models for the massive weak gauge bos<strong>on</strong>s after symmetry breaking, from<br />

2008 (<strong>on</strong> the right side), now seen to be incorrect.<br />

thus predicts that the weak interacti<strong>on</strong> changes particle flavours (types), as is observed.<br />

In fact, the strand model also predicts that <strong>on</strong>ly the weak interacti<strong>on</strong> has this property.<br />

Thisisalsoobserved.<br />

On the other hand, strands are never cut or glued back together in the strand model,<br />

not even in the weak interacti<strong>on</strong>. As a result, the strand model predicts that the weak interacti<strong>on</strong><br />

c<strong>on</strong>serves electric charge, spin and, as we will see below, colour charge, bary<strong>on</strong><br />

number and lept<strong>on</strong> number. All this is observed.<br />

Tail braiding also implies that the tangles for the Z bos<strong>on</strong> and for the W bos<strong>on</strong> shown<br />

above are <strong>on</strong>ly the simplest tangles associated with each bos<strong>on</strong>; more complicated tangles<br />

are higher order propagating states <str<strong>on</strong>g>of</str<strong>on</strong>g> the same basic open knots. This will be <str<strong>on</strong>g>of</str<strong>on</strong>g> great<br />

importance later <strong>on</strong>, for the pro<str<strong>on</strong>g>of</str<strong>on</strong>g> that all gauge bos<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> nature are already known<br />

today.<br />

In summary, the sec<strong>on</strong>d Reidemeister move leads to tail braiding; tail braiding leads<br />

to the observed properties <str<strong>on</strong>g>of</str<strong>on</strong>g> SU(2) symmetry breaking. (Equivalently, the strand model<br />

implies that the simplest tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong> bos<strong>on</strong>s show SU(2) symmetry,<br />

whereas the more complicated, massive tangles break this symmetry.) <str<strong>on</strong>g>The</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

mixing angle and the particle masses have still to be determined. This will be d<strong>on</strong>e below.<br />

Open issue: are the W and Z tangles correct?<br />

In 2014, Sergei Fadeev raised an issue: A tangle versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the W and Z that does not<br />

c<strong>on</strong>tain any knot and does not require an actual strand overcrossing process at spatial<br />

infinity, the strand model would gain in simplicity and elegance. Thinking about the<br />

issue, it became clear that such a tangle could occur when vacuum strands were included,<br />

as shown above.<br />

In c<strong>on</strong>trast, in 2008, in the first versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model, the W bos<strong>on</strong> after symmetry<br />

breaking was thought to be an open overhand knot, and the Z bos<strong>on</strong> an open<br />

figure-eight knot.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the weak nuclear interacti<strong>on</strong> and the sec<strong>on</strong>d reidemeister move 255<br />

Neutral current processes<br />

Charged current processes<br />

quark 1 or<br />

lept<strong>on</strong> 1<br />

Z<br />

quark 2 or<br />

lept<strong>on</strong> 2<br />

W<br />

quark 1 or<br />

lept<strong>on</strong> 1<br />

quark 1 or<br />

lept<strong>on</strong> 1<br />

Triple bos<strong>on</strong> coupling processes<br />

Quartic coupling processes<br />

W<br />

W<br />

Z, γ<br />

W<br />

W<br />

Page 251<br />

Challenge 164 ny<br />

Page 328<br />

Page 376<br />

W<br />

Z, γ<br />

W<br />

FIGURE 66 <str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental Feynman diagrams <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong> that do not involve the Higgs<br />

bos<strong>on</strong>.<br />

It might well be that the new, 2015/2016 strand models for the two intermediate vector<br />

bos<strong>on</strong>s, shown in Figure 64 are still not correct. <str<strong>on</strong>g>The</str<strong>on</strong>g> possibility remains intriguing and<br />

adefinitiveissuestillneedstobefound.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> electroweak Lagrangian<br />

Wecannowusetheresults<strong>on</strong>SU(2)symmetrybreakingtodeducetheelectroweak Lagrangian<br />

density. We have seen that symmetry breaking leaves the phot<strong>on</strong> massless but<br />

introduces masses to the weak vector bos<strong>on</strong>s, as shown in Figure 64.<str<strong>on</strong>g>The</str<strong>on</strong>g>n<strong>on</strong>-vanishing<br />

bos<strong>on</strong> masses M W and M Z add kinetic terms for the corresp<strong>on</strong>ding fields in the Lagrangian.<br />

Due to the symmetry breaking induced by tail braiding, the Z bos<strong>on</strong> results from<br />

the mixing with the (unbroken) phot<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts that the mixing can<br />

be described by an angle, the so-called weak mixing angle θ w . In particular, the strand<br />

model implies that cos θ w =M W /M Z .<br />

As so<strong>on</strong> as symmetry breaking is described by a mixing angle due to tail braiding,<br />

we get the known electroweak Lagrangian, though at first without the terms due to the<br />

Higgs bos<strong>on</strong>. (We will come back to the Higgs bos<strong>on</strong> later <strong>on</strong>.) We do not write down<br />

the Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong> predicted by the strand model, but the terms are<br />

the same as those found in the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is <strong>on</strong>e<br />

important difference: the Lagrangian so derived does not yet c<strong>on</strong>tain quark and lept<strong>on</strong><br />

mixing. Indeed, experiments show that the weak fermi<strong>on</strong> eigenstates are not the same as<br />

the str<strong>on</strong>g or electromagnetic eigenstates: quarks mix, and so do neutrinos. <str<strong>on</strong>g>The</str<strong>on</strong>g> reas<strong>on</strong><br />

for this observati<strong>on</strong>, and the effect that mixing has <strong>on</strong> the weak Lagrangian, will become<br />

clear <strong>on</strong>ce we have determined the tangles for each fermi<strong>on</strong>.<br />

Z, γ<br />

W<br />

W<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


256 9 gauge interacti<strong>on</strong>s deduced from strands<br />

Weak strand diagrams<br />

electr<strong>on</strong><br />

Z bos<strong>on</strong><br />

time average <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

crossing switches,<br />

at lower magnificati<strong>on</strong><br />

Weak Feynman diagrams<br />

electr<strong>on</strong><br />

Z<br />

neutrino<br />

W<br />

W<br />

Z<br />

vacuum<br />

electr<strong>on</strong><br />

W<br />

vacuum<br />

electr<strong>on</strong><br />

W<br />

W<br />

Z<br />

vacuum<br />

γ(phot<strong>on</strong>)<br />

t 1<br />

t 2<br />

t 1<br />

t 1<br />

t 2<br />

t 1<br />

electr<strong>on</strong><br />

t 2<br />

time<br />

neutrino<br />

W<br />

electr<strong>on</strong><br />

t 2<br />

t 2<br />

time<br />

W<br />

W<br />

t 1<br />

t 1 γ(phot<strong>on</strong>)<br />

time<br />

t 2<br />

t 2<br />

W<br />

W<br />

t 1<br />

t 1<br />

time Z<br />

Z<br />

t 2<br />

FIGURE 67 <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model for the fundamental Feynman diagrams <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

tangles for the fermi<strong>on</strong>s are introduced later <strong>on</strong>.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the weak nuclear interacti<strong>on</strong> and the sec<strong>on</strong>d reidemeister move 257<br />

Challenge 165 e<br />

Page 386<br />

Challenge 166 e<br />

Ref. 185<br />

In summary, the strand model implies the largest part <str<strong>on</strong>g>of</str<strong>on</strong>g> the Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak<br />

interacti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> issue <str<strong>on</strong>g>of</str<strong>on</strong>g> the Higgs bos<strong>on</strong> is still open, and the electroweak Lagrangian<br />

c<strong>on</strong>tains a number <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stants that are not yet clarified. <str<strong>on</strong>g>The</str<strong>on</strong>g>se unexplained c<strong>on</strong>stants are<br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> the involved elementary particles, their masses, couplings, mixing angles<br />

and CP violati<strong>on</strong> phases, as well as the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak mixing angle.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> weak Feynman diagrams<br />

In nature, the weak interacti<strong>on</strong> is described by a small number <str<strong>on</strong>g>of</str<strong>on</strong>g> fundamental Feynman<br />

diagrams. Those not c<strong>on</strong>taining the Higgs bos<strong>on</strong> are shown in Figure 66. <str<strong>on</strong>g>The</str<strong>on</strong>g>se Feynman<br />

diagrams encode the corresp<strong>on</strong>ding Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong>.<br />

In the strand model, pokes lead naturally to strand versi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental Feynman<br />

diagrams. This happens as shown in Figure 67. We see again that the strand model<br />

reproduces the weak interacti<strong>on</strong>: each Feynman diagram is due to a strand diagram for<br />

which <strong>on</strong>ly crossing switches are c<strong>on</strong>sidered, and for which Planck size is approximated<br />

as zero size. In particular, the strand model does not allow any other fundamental diagrams<br />

for the weak interacti<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> finite and small number <str<strong>on</strong>g>of</str<strong>on</strong>g> possible strand diagrams and thus <str<strong>on</strong>g>of</str<strong>on</strong>g> Feynman diagrams<br />

implies that the weak interacti<strong>on</strong> is renormalizable. For example, the change or<br />

‘running’ <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak coupling with energy is reproduced by the strand model, because<br />

the running can be determined through the appropriate Feynman diagrams.<br />

Fun challenges and curiosities about the weak interacti<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> W bos<strong>on</strong> and its antiparticle are observed to annihilate through the electromagnetic<br />

interacti<strong>on</strong>, yielding two or more phot<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> tangle model <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak bos<strong>on</strong>s has a<br />

lot <str<strong>on</strong>g>of</str<strong>on</strong>g> advantages compared to the knot model: <str<strong>on</strong>g>The</str<strong>on</strong>g> annihilati<strong>on</strong> is much easier to understand.<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model, like the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics, predicts that everything<br />

about the weak interacti<strong>on</strong> is already known. Nevertheless, the most important weak<br />

process, the decay <str<strong>on</strong>g>of</str<strong>on</strong>g> the neutr<strong>on</strong>, is being explored by many precisi<strong>on</strong> experiments. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

strand model predicts that n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> these experiments will yield any surprise.<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model makes clear that the weak interacti<strong>on</strong> and the electromagnetic interacti<strong>on</strong><br />

mix, but do not unify. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is <strong>on</strong>ly electroweak mixing, and no electroweak unificati<strong>on</strong>,<br />

despite claims to the c<strong>on</strong>trary by the Nobel Prize committee and many other<br />

physicists. In fact, Sheld<strong>on</strong> Glashow, who received the Nobel Prize in <str<strong>on</strong>g>Physics</str<strong>on</strong>g> for this<br />

alleged ‘unificati<strong>on</strong>’, agrees with this assessment. So do Richard Feynman and, above<br />

all, Martin Veltman, who was also involved in the result; he even makes this very point<br />

in his Nobel Prize lecture. <str<strong>on</strong>g>The</str<strong>on</strong>g> incorrect habit to call electroweak mixing a ‘unificati<strong>on</strong>’<br />

was <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the main reas<strong>on</strong> for the failure <str<strong>on</strong>g>of</str<strong>on</strong>g> past unificati<strong>on</strong> attempts: it directed the<br />

attenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> researchers in the wr<strong>on</strong>g directi<strong>on</strong>.<br />

In the strand model, the mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> the electromagnetic and the weak interacti<strong>on</strong> can<br />

be seen as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> knot geometry: the poke generators <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong><br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


258 9 gauge interacti<strong>on</strong>s deduced from strands<br />

Page 328<br />

Page 164<br />

also c<strong>on</strong>tain twists, i.e., also c<strong>on</strong>tain generators <str<strong>on</strong>g>of</str<strong>on</strong>g> the electromagnetic interacti<strong>on</strong>. In<br />

c<strong>on</strong>trast, generators <str<strong>on</strong>g>of</str<strong>on</strong>g> other Reidemeister moves do not mix am<strong>on</strong>g them or with pokes;<br />

and indeed, no other type <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong> mixing is observed in nature.<br />

Summary <strong>on</strong> the weak interacti<strong>on</strong> and experimental predicti<strong>on</strong>s<br />

We have deduced the main properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak Lagrangian from the strand model.<br />

We have shown that Reidemeister II moves – or pokes – in tangle cores lead to a broken<br />

SU(2) gauge group and to massive weak bos<strong>on</strong>s. We found that the deviati<strong>on</strong> from<br />

tangle core sphericity plus chirality is weak charge, and that the weak interacti<strong>on</strong> is n<strong>on</strong>-<br />

Abelian. We have also shown that the weak interacti<strong>on</strong> naturally breaks parity maximally<br />

and mixes with the electromagnetic interacti<strong>on</strong>. In short, we have deduced the main experimental<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong>.<br />

Is there a difference between the strand model and the electroweak Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics? Before we can fully answer the questi<strong>on</strong> <strong>on</strong> deviati<strong>on</strong>s<br />

between the strand model and the standard model, we must settle the issue <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Higgsbos<strong>on</strong>.Thisisd<strong>on</strong>elater<strong>on</strong>.<br />

In any case, the strand model predicts that the broken SU(2) gauge symmetry remains<br />

valid at all energies. No other gauge groups appear in nature. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus<br />

predicts again that there is no grand unificati<strong>on</strong>, and thus no larger gauge group, be it<br />

SU(5), SO(10), E6, E7, E8, SO(32) or any other group. Also this result indirectly rules out<br />

supersymmetry and supergravity.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also predicts that the combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity and quantum theory<br />

turns all Planck units into limit values, because there is a maximum density <str<strong>on</strong>g>of</str<strong>on</strong>g> strand<br />

crossings in nature, due to the fundamental principle. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, the strand model predicts<br />

a maximum weak field value given by the Planck force divided by the smallest weak<br />

charge. All physical systems – including all astrophysical objects, such as neutr<strong>on</strong> stars,<br />

quark starts, gamma-ray bursters or quasars – are predicted to c<strong>on</strong>form to this limit. So<br />

far, no observed field value is near this limit, so that the predicti<strong>on</strong> does not c<strong>on</strong>tradict<br />

observati<strong>on</strong>.<br />

So far, our explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong> has left us with a few open issues: we<br />

need to calculate the weak coupling c<strong>on</strong>stant and determine the tangle for each particle<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the standard model, including the Higgs bos<strong>on</strong>. But we also need to explain weak fermi<strong>on</strong><br />

mixing, CP violati<strong>on</strong> and the masses <str<strong>on</strong>g>of</str<strong>on</strong>g> all particles. Despite these open points, we<br />

have settled another line <str<strong>on</strong>g>of</str<strong>on</strong>g> the millennium list: we know the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong><br />

and <str<strong>on</strong>g>of</str<strong>on</strong>g> its main properties. Before we clarify the open issues, we explore the third<br />

Reidemeister move.<br />

the str<strong>on</strong>g nuclear interacti<strong>on</strong> and the third<br />

reidemeister move<br />

In nature, the str<strong>on</strong>g interacti<strong>on</strong> is the result <str<strong>on</strong>g>of</str<strong>on</strong>g> the absorpti<strong>on</strong> and the emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> massless,<br />

electrically uncharged, spin-1 gauge bos<strong>on</strong>s that are called glu<strong>on</strong>s. Glu<strong>on</strong>sinteract<br />

with quarks, the <strong>on</strong>ly fermi<strong>on</strong>s with colour charge. Fermi<strong>on</strong>s can have three different colour<br />

charges, antifermi<strong>on</strong>s three different anticolours. Glu<strong>on</strong>s form an octet, are them-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the str<strong>on</strong>g nuclear interacti<strong>on</strong> and the third reidemeister move 259<br />

Reidemeister move III, or slide, in textbook form : Slide in SU(3) form (<strong>on</strong>e example) :<br />

A slide transfer :<br />

Page 225<br />

fermi<strong>on</strong><br />

glu<strong>on</strong><br />

slide<br />

transfer<br />

fermi<strong>on</strong><br />

with<br />

different<br />

phase<br />

vacuum<br />

FIGURE 68 A glu<strong>on</strong> changes the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> a tangle: slide transfer is the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g interacti<strong>on</strong> in<br />

the strand model. During the interacti<strong>on</strong>, no strand is cut or reglued; the transfer occurs purely through<br />

the excluded volume that results from the impenetrability <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. Slide transfer generates a SU(3)<br />

gauge group, as explained in the text.<br />

selves colour charged and therefore also interact am<strong>on</strong>g themselves. <str<strong>on</strong>g>The</str<strong>on</strong>g> Lagrangian<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> quarks coupled to the glu<strong>on</strong> field has an unbroken SU(3) gauge symmetry. <str<strong>on</strong>g>The</str<strong>on</strong>g>re<br />

are three fundamental Feynman diagrams: <strong>on</strong>e for quark-glu<strong>on</strong> interacti<strong>on</strong> and two for<br />

glu<strong>on</strong>-glu<strong>on</strong> interacti<strong>on</strong>s: a triple and a quartic glu<strong>on</strong> vertex. <str<strong>on</strong>g>The</str<strong>on</strong>g> str<strong>on</strong>g coupling c<strong>on</strong>stant<br />

is about 0.5 at low energy; its energy dependence is determined by renormalizati<strong>on</strong>.<br />

Its value decreases with increasing energy.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> previous paragraph summarizes the main observati<strong>on</strong>s about the str<strong>on</strong>g interacti<strong>on</strong>.<br />

All known observati<strong>on</strong>s related to the str<strong>on</strong>g interacti<strong>on</strong>, without any known<br />

excepti<strong>on</strong>, are c<strong>on</strong>tained in its Lagrangian. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, we need to show that the str<strong>on</strong>g<br />

interacti<strong>on</strong> Lagrangian follows from the strand model.<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s and the slide, the third Reidemeister move<br />

As explained above, interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong>s are deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle core that<br />

change its phase. We start directly by presenting the strand model for the str<strong>on</strong>g interacti<strong>on</strong>.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> str<strong>on</strong>g interacti<strong>on</strong> is the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> slides, i.e., the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> third Reidemeister<br />

moves, between a glu<strong>on</strong> and a particle. As shown in Figure 68,<br />

strands are not cut in this process; glu<strong>on</strong>s simply transfer slide deformati<strong>on</strong>s<br />

to tangle cores as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> their impenetrability.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


260 9 gauge interacti<strong>on</strong>s deduced from strands<br />

Challenge 167 e<br />

Such a slide transfer will influence the phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the affected particle tangle. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore,<br />

slidetransfersareindeedatype<str<strong>on</strong>g>of</str<strong>on</strong>g>interacti<strong>on</strong>.<br />

An introducti<strong>on</strong> to SU(3)<br />

Before we show that slides are resp<strong>on</strong>sible for the str<strong>on</strong>g nuclear interacti<strong>on</strong>, we summarize<br />

the mathematical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the Lie group SU(3). This Lie group is the structure<br />

generated by the unitary 3×3matrices with determinant +1. Itisagroup, because<br />

matrices can be properly multiplied, because the identity matrix is included, and inverse<br />

matrices exist. SU(3) is also a manifold; a quick check shows that it has eight dimensi<strong>on</strong>s.<br />

In short, SU(3) is a Lie group: its elements behave like points <strong>on</strong> a manifold that can be<br />

multiplied. <str<strong>on</strong>g>The</str<strong>on</strong>g> Lie bracket is the commutator. A general element E <str<strong>on</strong>g>of</str<strong>on</strong>g> SU(3) can be<br />

written as an exp<strong>on</strong>ential in the well-known way<br />

E=e ∑8 n=1 α niλ n /2<br />

(161)<br />

where the eight real parameters α n can be thought <str<strong>on</strong>g>of</str<strong>on</strong>g> as the eight coordinates <str<strong>on</strong>g>of</str<strong>on</strong>g> the group<br />

elements <strong>on</strong> the group manifold. Since SU(3) is compact and simple, these coordinates<br />

are best visualized as angles. Of course, i istheimaginaryunit. <str<strong>on</strong>g>The</str<strong>on</strong>g>generatorsλ n are<br />

complex, traceless and hermitian 3×3matrices; they are used to define a basis for the<br />

group elements. <str<strong>on</strong>g>The</str<strong>on</strong>g> eight generators are not group elements themselves. <str<strong>on</strong>g>The</str<strong>on</strong>g>y describe<br />

the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the group manifold near the identity matrix; for a Lie group, this local<br />

structure defines the full group manifold. Like for any basis, also set <str<strong>on</strong>g>of</str<strong>on</strong>g> eight generators<br />

λ n is not unique. Of the many possible choices for the generators, the Gell-Mann matrices<br />

λ 1 to λ 8 are the most comm<strong>on</strong>ly used in physics.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Gell-Mann matrices λ n , the corresp<strong>on</strong>ding group elements D n for general angles,<br />

and the group elements E n for the finite angle π are given by:<br />

0 1 0<br />

cos α/2 i sin α/2 0<br />

λ 1 =( 1 0 0), D 1 (α) = e αiλ1/2 =( i sin α/2 cos α/2 0),<br />

0 0 0<br />

0 0 1<br />

0 i 0<br />

E 1 = e πiλ1/2 =( i 0 0)<br />

0 0 1<br />

0 −i 0<br />

cos α/2 sin α/2 0<br />

λ 2 =( i 0 0), D 2 (α) = e αiλ2/2 =( − sin α/2 cos α/2 0),<br />

0 0 0<br />

0 0 1<br />

0 1 0<br />

E 2 = e πiλ2/2 =( −1 0 0)<br />

0 0 1<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the str<strong>on</strong>g nuclear interacti<strong>on</strong> and the third reidemeister move 261<br />

1 0 0<br />

cos α/2 + i sin α/2 0 0<br />

λ 3 =( 0 −1 0), D 3 (α) = e αiλ3/2 =( 0 cos α/2 − i sin α/2 0),<br />

0 0 0<br />

0 0 1<br />

i 0 0<br />

E 3 = e πiλ3/2 =( 0 −i 0)<br />

0 0 1<br />

0 0 1<br />

cos α/2 0 i sin α/2<br />

λ 4 =( 0 0 0), D 4 (α) = e αiλ4/2 =( 0 1 0 ),<br />

1 0 0<br />

i sin α/2 0 cos α/2<br />

0 0 i<br />

E 4 = e πiλ4/2 =( 0 1 0)<br />

i 0 0<br />

0 0 −i<br />

cos α/2 0 sin α/2<br />

λ 5 =( 0 0 0), D 5 (α) = e αiλ5/2 =( 0 1 0 ),<br />

i 0 0<br />

− sin α/2 0 cos α/2<br />

0 0 1<br />

E 5 = e πiλ5/2 =( 0 1 0)<br />

−1 0 0<br />

0 0 0<br />

1 0 0<br />

λ 6 =( 0 0 1), D 6 (α) = e αiλ6/2 =( 0 cos α/2 i sin α/2),<br />

0 1 0<br />

0 isin α/2 cos α/2<br />

1 0 0<br />

E 6 = e πiλ6/2 =( 0 0 i)<br />

0 i 0<br />

0 0 0<br />

1 0 0<br />

λ 7 =( 0 0 −i), D 7 (α) = e αiλ7/2 =( 0 cos α/2 sin α/2),<br />

0 i 0<br />

0 −sin α/2 cos α/2<br />

1 0 0<br />

E 7 = e πiλ7/2 =( 0 0 1)<br />

0 −1 0<br />

λ 8 = 1 1 0 0<br />

√3 ( 0 1 0 ),<br />

0 0 −2<br />

cos α/2 + i sin α/2 0 0<br />

D 8 (α) = e √3 αiλ8/2 =( 0 cos α/2 + i sin α/2 0 ),<br />

0 0 cos α−isin α<br />

i 0 0<br />

E 8 =D 8 (π) = ( 0 i 0 ) . (162)<br />

0 0 −1<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> eight Gell-Mann matrices λ n are hermitean, traceless and trace-orthog<strong>on</strong>al. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

corresp<strong>on</strong>ding group elements D n and E n canbethoughtastheunnormedandnormed<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


262 9 gauge interacti<strong>on</strong>s deduced from strands<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. V, page 226<br />

basisvectors<str<strong>on</strong>g>of</str<strong>on</strong>g>thegroupmanifold.Wenotethatthedefiniti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>E 8 differs from that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the other group elements E n : it c<strong>on</strong>tains an extra factor √3 . <str<strong>on</strong>g>The</str<strong>on</strong>g> fourfold c<strong>on</strong>catenati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> each matrix iλ n is the identity matrix – except for the case iλ 8 . Instead, the generator<br />

λ 8 commutes with λ 1 , λ 2 and λ 3 – though not with the other generators.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re is no ninth or tenth Gell-Mann matrix. Such a matrix would not be linearly<br />

independent from the first eight <strong>on</strong>es. Indeed, the two matrices deduced from λ 3 using<br />

symmetry c<strong>on</strong>siderati<strong>on</strong>s, namely<br />

−1 0 0<br />

cos α/2 − i sin α/2 0 0<br />

λ 9 =( 0 0 0), D 9 (α) = e αiλ9/2 =( 0 1 0 ),<br />

0 0 1<br />

0 0 cos α/2 + i sin α/2<br />

−i 0 0<br />

E 9 =D 9 (π) = ( 0 1 0)<br />

0 0 i<br />

0 0 0<br />

1 0 0<br />

λ 10 =( 0 1 0 ), D 10 (α) = e αiλ10/2 =( 0 cos α/2 + i sin α/2 0 ),<br />

0 0 −1<br />

0 0 cos α/2 − i sin α/2<br />

1 0 0<br />

E 10 =D 10 (π) = ( 0 i 0) (163)<br />

0 0 −i<br />

are linear combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> λ 3 and λ 8 ;inparticular,wehaveλ 3 +λ 9 +λ 10 = 0 and<br />

√3 λ 8 +λ 9 =λ 10 . <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, λ 9 and λ 10 are not Gell-Mann matrices. (Also two further<br />

matrices corresp<strong>on</strong>ding to λ 8 in the other two triplets can be defined. <str<strong>on</strong>g>The</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

three matrices is 0 as well.)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> multiplicati<strong>on</strong> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the Gell-Mann generators λ 1 to λ 8 are listed in<br />

Table 10. To make the threefold symmetry more evident, the table also lists the products<br />

c<strong>on</strong>taining the linearly dependent matrices λ 9 and λ 10 . Writing the table with the commutators<br />

would directly show that the generators form a Lie algebra.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> centre <str<strong>on</strong>g>of</str<strong>on</strong>g> SU(3) – the subgroup that commutes with all other elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

group – is Z 3 ; its threefold symmetry is useful in understanding the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

group elements and <str<strong>on</strong>g>of</str<strong>on</strong>g> the generators in more detail.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> group elements E 1 to E 8 listed above share the property that their fourth powers<br />

(E n ) 4 are the identity matrix. <str<strong>on</strong>g>The</str<strong>on</strong>g> first matrix triplet E 1 ,E 2 ,E 3 ,thesec<strong>on</strong>dtriplet<br />

E 4 ,E 5 ,E 9 and the third triplet E 6 ,E 7 ,E 10 each form a SU(2) subgroup. Reflecting the<br />

threefold symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> its centre, SU(3) c<strong>on</strong>tains three linearly independent SU(2) subgroups.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> group element E 8 commutes with the first triplet E 1 ,E 2 ,E 3 ; therefore, these<br />

four elements generate a U(2) subgroup <str<strong>on</strong>g>of</str<strong>on</strong>g> SU(3). This U(2) subgroup, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten sloppily<br />

labeled as SU(2)xU(1), is given by those 3 by 3 matrices that c<strong>on</strong>tain a unitary 2 by 2<br />

matrix in the upper left, c<strong>on</strong>tain zeroes in the remaining four <str<strong>on</strong>g>of</str<strong>on</strong>g>f-diag<strong>on</strong>al elements, and<br />

c<strong>on</strong>tain the inverse value <str<strong>on</strong>g>of</str<strong>on</strong>g> the determinant <str<strong>on</strong>g>of</str<strong>on</strong>g> the 2 by 2 matrix in the remaining, lower<br />

right diag<strong>on</strong>al element. In short, SU(3) c<strong>on</strong>tains three linearly independent U(2) subgroups.<br />

SU(3) is characterized by the way that the SU(2) triplets are c<strong>on</strong>nected. In particular,<br />

the product E 3 E 9 E 10 is the identity, reflecting the linear dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the three corresp<strong>on</strong>ding<br />

generators λ n .WealsohaveE 8 E 9 =E 10 . Also the product <str<strong>on</strong>g>of</str<strong>on</strong>g> E 8 with its<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the str<strong>on</strong>g nuclear interacti<strong>on</strong> and the third reidemeister move 263<br />

TABLE 10 <str<strong>on</strong>g>The</str<strong>on</strong>g> multiplicati<strong>on</strong> table for the generators λ 1 to λ 8 <str<strong>on</strong>g>of</str<strong>on</strong>g> SU(3), and for the additi<strong>on</strong>al, linearly<br />

dependent matrices λ 9 =−λ 3 /2 − λ 8<br />

√3 /2 and λ 10 =−λ 3 /2 + λ 8<br />

√3 /2 that are not generators. Note that,<br />

despite the appearance, λ 2 4 =λ2 5 =λ2 9 and λ2 6 =λ2 7 =λ2 10 .<br />

λ 1 λ 2 λ 3 λ 4 λ 5 λ 9 λ 6 λ 7 λ 10 λ 8<br />

λ 1 2/3 iλ 3 −iλ 2 λ 6 /2 −iλ 6 /2 −λ 1 /2 λ 4 /2 −iλ 4 /2 λ 1 /2 λ 1 /√3<br />

+λ 8 /√3 +iλ 7 /2 +λ 7 /2 +iλ 2 /2 +iλ 5 /2 +λ 5 /2 +iλ 2 /2<br />

λ 2 −iλ 3 2/3 iλ 1 iλ 6 /2 λ 6 /2 −iλ 1 /2 −iλ 4 /2 −λ 4 /2 −iλ 1 /2 λ 2 /√3<br />

+λ 8 /√3 −λ 7 /2 +iλ 7 /2 −λ 2 /2 +λ 5 /2 −iλ 5 /2 +λ 2 /2<br />

λ 3 iλ 2 −iλ 1 2/3 λ 4 /2 −iλ 4 /2 −1/3 − λ 3 /3 −λ 6 /2 iλ 6 /2 −1/3 + λ 3 /3 λ 3 /√3<br />

+λ 8 /√3 +iλ 5 /2 +λ 5 /2 +λ 9 /3 −iλ 7 /2 −λ 7 /2 +λ 10 /3<br />

λ 4 λ 6 /2 −iλ 6 /2 λ 4 /2 2/3 + λ 3 /2 −iλ 9 iλ 5 λ 1 /2 iλ 1 /2 −λ 4 /2 −λ 4 /2√3<br />

−iλ 7 /2 −λ 7 /2 −iλ 5 /2 −λ 8 /2√3 +iλ 2 /2 −λ 2 /2 −iλ 5 /2 −i√3 λ 5 /2<br />

λ 5 iλ 6 /2 λ 6 /2 iλ 4 /2 iλ 9 2/3 + λ 3 /2 −iλ 4 −iλ 1 /2 λ 1 /2 iλ 4 /2 i√3 λ 4 /2<br />

+λ 7 /2 −iλ 7 /2 +λ 5 /2 −λ 8 /2√3 +λ 2 /2 +iλ 2 /2 −λ 5 /2 −λ 5 /2√3<br />

λ 9 −λ 1 /2 iλ 1 /2 −1/3 − λ 3 /3 −iλ 5 iλ 4 2/3 + 2λ 3 /3 λ 6 /2 iλ 6 /2 −1/3 − λ 9 /3 −1<br />

−iλ 2 /2 −λ 2 /2 +λ 9 /3 +λ 9 /3 −iλ 7 /2 +λ 7 /2 +λ 10 /3 +λ 10<br />

λ 6 +λ 4 /2 iλ 4 /2 −λ 6 /2 λ 1 /2 iλ 1 /2 λ 6 /2 2/3 − λ 3 /2 iλ 10 −iλ 7 −λ 6 /2√3<br />

−iλ 5 /2 +λ 5 /2 +iλ 7 /2 −iλ 2 /2 +λ 2 /2 +iλ 7 /2 −λ 8 /2√3 −i√3 λ 7 /2<br />

λ 7 iλ 4 /2 −λ 4 /2 −iλ 6 /2 −iλ 1 /2 λ 1 /2 −iλ 6 /2 −iλ 10 2/3 − λ 3 /2 iλ 6 i√3 λ 6 /2<br />

+λ 5 /2 +iλ 5 /2 −λ 7 /2 −λ 2 /2 −iλ 2 /2 +λ 7 /2 −λ 8 /2√3 −λ 7 /2√3<br />

λ 10 −λ 1 /2 −iλ 1 /2 −1/3 + λ 3 /3 −λ 4 /2 −iλ 4 /2 −1/3 − λ 9 /3 iλ 7 −iλ 6 2/3 − λ 3 /3 1<br />

+iλ 2 /2 −λ 2 /2 −λ 10 /3 +iλ 5 /2 −λ 5 /2 +λ 10 /3 +λ 9 /3 +λ 9<br />

λ 8 λ 1 /√3 λ 2 /√3 λ 3 /√3 −λ 4 /2√3 −i√3 λ 4 /2 −1 −λ 6 /2√3 −i√3 λ 6 /2 1 2/3<br />

+i√3 λ 5 /2 −λ 5 /2√3 +λ 10 +i√3 λ 7 /2 −λ 7 /2√3 +λ 9 −λ 8 /√3<br />

compani<strong>on</strong>s from the other two triplets is the identity.<br />

Finally, the product (E k E l ) 3 for any k taken from the set (1,2,4,5,6,7)and any l from<br />

the same set, but from a different triplet, is also the identity matrix. This property <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

third powers – taken together with the threefold symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> its centre – can be seen as<br />

the essential property that distinguishes SU(3) from other Lie groups. We now return to<br />

the strand model and show that slides indeed define an SU(3) group.<br />

From slides to SU(3)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> slide, orthird Reidemeister move, involvesthree pieces <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. <str<strong>on</strong>g>The</str<strong>on</strong>g> textbook versi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the third Reidemeister move – which is called E 0 here and is illustrated in Figure<br />

69 – moves or ‘slides’ <strong>on</strong>e strand, taken to be the horiz<strong>on</strong>tal blue <strong>on</strong>e in the figure,


264 9 gauge interacti<strong>on</strong>s deduced from strands<br />

A textbook slide, or Reidemeister III move:<br />

E 0<br />

Colours and arrows are <strong>on</strong>ly added for clarity.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> textbook slide is unobservable, because it lacks crossing switches.<br />

It is thus not physical and uninteresting.<br />

FIGURE 69 <str<strong>on</strong>g>The</str<strong>on</strong>g> textbook versi<strong>on</strong> E 0 <str<strong>on</strong>g>of</str<strong>on</strong>g> the slide move, or third Reidemeister move, is unobservable,<br />

because it does not involve crossing switches.<br />

against a crossing <str<strong>on</strong>g>of</str<strong>on</strong>g> the other two. Equivalently, we can say that a slide pushes two<br />

strands against the blue strand that is kept in place. This textbook slide – we also call<br />

it a pure slide here – does not c<strong>on</strong>tain any crossing switch; following the fundamental<br />

principle <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model, it is therefore unobservable, or, simply said, <str<strong>on</strong>g>of</str<strong>on</strong>g> no physical<br />

relevance. However, related strand moves that do involve crossing switches do exist.<br />

We introduce eight generalized slides, or slide-rotati<strong>on</strong>s, for a three-strand c<strong>on</strong>figurati<strong>on</strong>;<br />

they are shown in Figure 70. We directly call these generalized slides E 1 to E 8 ,because<br />

they will turn out to corresp<strong>on</strong>d to the SU(3) group elements with the same name<br />

that were introduced above. In other words, we will show that the generalized slides E n<br />

are elements <str<strong>on</strong>g>of</str<strong>on</strong>g> a Lie group SU(3); in particular, they obey all the properties expected<br />

from the corresp<strong>on</strong>dence with the SU(3) generators λ n in Gell-Mann’s choice:<br />

E n = e πiλ n/2 . (164)<br />

In the strand model, the generators λ n describe the difference between an infinitesimal<br />

generalized slide – thus a slide-rotati<strong>on</strong> with a rotati<strong>on</strong> by an infinitesimal angle – and<br />

the identity. For slides, c<strong>on</strong>catenati<strong>on</strong> is equivalent to group multiplicati<strong>on</strong>, as expected.<br />

Slides form a group. We will now show that the slide generators obey the multiplicati<strong>on</strong><br />

table already given in Table 10.<br />

To see how the SU(3) multiplicati<strong>on</strong> table follows from Figure 70, wefirstnotethat<br />

the starting strand c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Reidemeister III move c<strong>on</strong>tains, if all spatial c<strong>on</strong>figurati<strong>on</strong>sarec<strong>on</strong>sidered,thesamethreefoldsymmetryasthecentre<str<strong>on</strong>g>of</str<strong>on</strong>g>SU(3).Inparticular,<br />

like the generators and the basis vectors <str<strong>on</strong>g>of</str<strong>on</strong>g> SU(3), also the slides <str<strong>on</strong>g>of</str<strong>on</strong>g> the figure can<br />

be grouped into three triplets.<br />

We now focus <strong>on</strong> the first triplet, the <strong>on</strong>e formed by the three slides E 1 , E 2 and E 3 .<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the str<strong>on</strong>g nuclear interacti<strong>on</strong> and the third reidemeister move 265<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> generalized slides, or Reidemeister III moves, acting <strong>on</strong> three strands, form an SU(3) group.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> 8 generalized slides are shown below, with grey background. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are<br />

local slides and rotati<strong>on</strong>s by an angle π <str<strong>on</strong>g>of</str<strong>on</strong>g> an imaginary buckle formed<br />

by (usually) two strands. <str<strong>on</strong>g>The</str<strong>on</strong>g> strands lie (mostly) in a paper plane.<br />

For each SU(2) triplet inside SU(3), the rotati<strong>on</strong> axes <str<strong>on</strong>g>of</str<strong>on</strong>g> the finite group<br />

elements E n are arranged at right angles to each other, as are those <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the generators λ n shown <strong>on</strong> the right. <str<strong>on</strong>g>The</str<strong>on</strong>g> rotati<strong>on</strong> axes for E 3, E 9 and<br />

E 10 are parallel; they are perpendicular to the paper plane. <str<strong>on</strong>g>The</str<strong>on</strong>g> three<br />

imaginary belt buckles for the three SU(2) subgroups are also shown.<br />

Starting<br />

positi<strong>on</strong><br />

E 1 = e i π λ 1 / 2<br />

E 2 = e i π λ 2 / 2<br />

E 3 = e i π λ 3 / 2<br />

π<br />

π<br />

π<br />

antigreen<br />

antired<br />

antiblue<br />

blue<br />

E 9 = e i π λ 9 / 2<br />

λ 3<br />

λ 7 λ 10=<br />

B<br />

λ 4<br />

λ 2<br />

λ 1<br />

λ 6<br />

R<br />

G<br />

λ 8<br />

λ 9 = – λ 3 / 2<br />

– λ 8 √3 / 2<br />

λ 5<br />

– λ 3 /2<br />

+ λ 8 √3/2<br />

E 4 = e i π λ 4 / 2 E 6 = e i π λ 6 / 2<br />

π<br />

π<br />

antiblue<br />

red<br />

E 5 = e i π λ 5 / 2 E 7 = e i π λ 7 / 2<br />

antigreen<br />

antired<br />

E 8 = e i π √3 λ 8 / 2<br />

π √3<br />

E 10 = e i π λ 10 / 2<br />

π<br />

π<br />

antired<br />

π<br />

antiblue<br />

antigreen<br />

green<br />

FIGURE 70 <str<strong>on</strong>g>The</str<strong>on</strong>g> strand deformati<strong>on</strong>s for the generalized slide moves E n . <str<strong>on</strong>g>The</str<strong>on</strong>g> corresp<strong>on</strong>ding generators<br />

λ n lead to an SU(3) structure, as shown in the text. Note that the rotati<strong>on</strong> vectors for the generators λ n<br />

and for the generalized slide moves E n differ from each other. For clarity, the figure shows, instead <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand under discussi<strong>on</strong>, the complementary deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the other two<br />

strands.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


266 9 gauge interacti<strong>on</strong>s deduced from strands<br />

Page 263<br />

To makes things clear, these moves can be pictured as combined deformati<strong>on</strong>s and slides<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the red and green strands against the horiz<strong>on</strong>tal blue strand. We can imagine these<br />

moves like those <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt trick, but acting <strong>on</strong> an imaginary buckle formed <strong>on</strong>ly by the<br />

red and green strands. <str<strong>on</strong>g>The</str<strong>on</strong>g>se generalized slides do c<strong>on</strong>tain crossing changes; therefore<br />

they are observable and are <str<strong>on</strong>g>of</str<strong>on</strong>g> physical relevance.<br />

We note that ‘slide’ is not a perfect term for the generalized deformati<strong>on</strong>s E 1 to E 8 ;<br />

in fact, we might prefer to call them slide-rotati<strong>on</strong>s, because they are slide-rotati<strong>on</strong>s by<br />

an angle π that are applied to an imaginary belt buckle. Despite the involved c<strong>on</strong>structi<strong>on</strong>,<br />

these generalized, observable moves remain modelled <strong>on</strong> the textbook slide E 0 ;in<br />

particular, they require three strand segments. <str<strong>on</strong>g>The</str<strong>on</strong>g> generalized, observable moves just<br />

defined differ from the twists and pokes discussed above, in the secti<strong>on</strong>s <strong>on</strong> the electromagnetic<br />

and weak interacti<strong>on</strong>s; thus they differ from Reidemeister I and II moves. As<br />

a result, we will usually c<strong>on</strong>tinue to call the generalized, observable moves simply slides.<br />

For simplicity, we assume – similarly to what we did in the discussi<strong>on</strong> about the weak<br />

interacti<strong>on</strong> – that the three strand segments are (roughly) in a plane. This is an idealized<br />

situati<strong>on</strong>; in fact, the arguments given in the following apply also to all other threedimensi<strong>on</strong>al<br />

c<strong>on</strong>figurati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands. In particular, the same results appear if all<br />

three strands segments are assumed perpendicular to each other, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> lying in a<br />

plane.<br />

We note that the rotati<strong>on</strong> axes <str<strong>on</strong>g>of</str<strong>on</strong>g> the generalized slides E 1 and E 2 are neither aligned<br />

nor orthog<strong>on</strong>al to the paper plane. More precisely, the rotati<strong>on</strong> axes <str<strong>on</strong>g>of</str<strong>on</strong>g> E 1 , E 4 and E 6 are<br />

perpendicular to the sides <str<strong>on</strong>g>of</str<strong>on</strong>g> a cube. E 2 , E 5 and E 7 are perpendicular to them. For the<br />

first triplet, the rotati<strong>on</strong> axes E 1 , E 2 and E 3 form an orth<strong>on</strong>ormal basis; the same is valid<br />

for the other two triplets. We now show that the slides <str<strong>on</strong>g>of</str<strong>on</strong>g> the first triplet define an SU(2)<br />

group.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> observable, generalized slides in the triplet E 1 , E 2 and E 3 can be c<strong>on</strong>catenated.<br />

We distinguish two cases. <str<strong>on</strong>g>The</str<strong>on</strong>g> first case is the c<strong>on</strong>catenati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> any such slide with itself.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> result corresp<strong>on</strong>ds to a rotati<strong>on</strong> by 2π <str<strong>on</strong>g>of</str<strong>on</strong>g> the chosen strand pair and its imaginary<br />

belt buckle, and thus induces a corresp<strong>on</strong>ding amount <str<strong>on</strong>g>of</str<strong>on</strong>g> tail twisting. In fact, when<br />

any slide <str<strong>on</strong>g>of</str<strong>on</strong>g> the triplet is c<strong>on</strong>catenated four times with itself, the result is the identity<br />

operati<strong>on</strong>. Comparing a tw<str<strong>on</strong>g>of</str<strong>on</strong>g>old and a fourfold c<strong>on</strong>catenati<strong>on</strong>, we see that they differ<br />

<strong>on</strong>ly by an entangling, or algebraically, by a minus sign for the imaginary buckle. This<br />

already realizes half <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt trick that visualizes SU(2).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> other case to be checked is the c<strong>on</strong>catenati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two different slides <str<strong>on</strong>g>of</str<strong>on</strong>g> the triplet.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> result is always the third slide <str<strong>on</strong>g>of</str<strong>on</strong>g> the triplet (up to a sign that depends <strong>on</strong> whether the<br />

combinati<strong>on</strong> is cyclical or not). This behaviour realizes the other half <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt trick. In<br />

short, we have shown that the triplet c<strong>on</strong>taining the first three generalized slides defines<br />

an SU(2) group. More precisely, the infinitesimal slide-rotati<strong>on</strong>s λ 1 , λ 2 and λ 3 corresp<strong>on</strong>ding<br />

to the finite SU(3) elements E 1 , E 2 and E 3 generate the SU(2) Lie algebra <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

SU(2) Lie group. <str<strong>on</strong>g>The</str<strong>on</strong>g> SU(2) subgroup just found is just <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the three linearly independent<br />

SU(2) subgroups <str<strong>on</strong>g>of</str<strong>on</strong>g> SU(3). <str<strong>on</strong>g>The</str<strong>on</strong>g> generators <str<strong>on</strong>g>of</str<strong>on</strong>g> the first slide triplet thus reproduce<br />

the nine results in the upper left <str<strong>on</strong>g>of</str<strong>on</strong>g> Table 10. We thus retain that we can indeed visualize<br />

the first three generalized slides with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> the three orthog<strong>on</strong>al rotati<strong>on</strong>s by π <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

an imaginary belt buckle formed by the red and green strands.<br />

For the visualizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> SU(3) it is essential to recall that the directi<strong>on</strong> in threedimensi<strong>on</strong>al<br />

space <str<strong>on</strong>g>of</str<strong>on</strong>g> the vectors visualizing λ n and those visualizing E n differ from each<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the str<strong>on</strong>g nuclear interacti<strong>on</strong> and the third reidemeister move 267<br />

other.ThisalreadythecaseforU(1).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> remaining generalized slides that are possible in the three-strand c<strong>on</strong>figurati<strong>on</strong><br />

are easily c<strong>on</strong>structed using the threefold symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>figurati<strong>on</strong>; they<br />

are illustrated in Figure 70. For each <str<strong>on</strong>g>of</str<strong>on</strong>g> the three strand segments there is a triplet <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

observable slides; this yields a total <str<strong>on</strong>g>of</str<strong>on</strong>g> nine possible generalized slides for the observer<br />

defined by the paper plane. In the sec<strong>on</strong>d triplet, the slides corresp<strong>on</strong>ding to E 1 and E 2<br />

are called E 4 and E 5 , and in the third triplet they are called E 6 and E 7 . For the three slides<br />

corresp<strong>on</strong>ding to E 3 – we call the other two E 9 and E 10 – <strong>on</strong>ly two generators are linearly<br />

independent. Indeed, the figure shows that E 3 E 9 E 10 – whose axes are all three parallel –<br />

is the identity matrix; this expected from an SU(3) structure. <str<strong>on</strong>g>The</str<strong>on</strong>g> three operati<strong>on</strong>s E 3 , E 9<br />

and E 10 also commute with all other operati<strong>on</strong>s; thus they form the centre <str<strong>on</strong>g>of</str<strong>on</strong>g> the group<br />

defined by all E. <str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d linearly independent, generalized slide <str<strong>on</strong>g>of</str<strong>on</strong>g> comm<strong>on</strong> use, E 8 ,<br />

is also shown in the figure; it is a linear combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> E 9 and E 10 . We note that the<br />

strand model also visualizes the factor √3 in the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> E 8 .Intotal,wegeteight<br />

linearly independent generalized slides. All slides, except for E 8 , act <strong>on</strong> an imaginary<br />

belt buckle that is formed by two strands.<br />

We saw that the generators corresp<strong>on</strong>ding to the slides E 1 , E 2 and E 3 generate an<br />

SU(2) subgroup. <str<strong>on</strong>g>The</str<strong>on</strong>g> same holds for the corresp<strong>on</strong>ding triplet E 4 , E 5 and the linear<br />

combinati<strong>on</strong> E 9 =−E 3 /2 − E 8<br />

√3 /2 (corresp<strong>on</strong>ding to E 3 ), and for the triplet E 6 , E 7<br />

and E 10 =−E 3 /2 + E 8<br />

√3 /2. For each <str<strong>on</strong>g>of</str<strong>on</strong>g> these slides, a fourfold c<strong>on</strong>catenati<strong>on</strong> yields the<br />

identity; and inside each triplet, the c<strong>on</strong>catenati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two different slides yields a multiple<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the third slide. In short, for each triplet, the corresp<strong>on</strong>ding infinitesimal slides<br />

generate an SU(2) group. <str<strong>on</strong>g>The</str<strong>on</strong>g>se three SU(2) groups are linearly independent. We have<br />

thus reproduced an important part <str<strong>on</strong>g>of</str<strong>on</strong>g> the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> SU(3). In additi<strong>on</strong>, we have found<br />

a visualizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> SU(3); since each SU(2) group can be represented by a separate imaginary<br />

buckle, the group SU(3) can be visualized – in many, but not all in aspects – with the<br />

help <str<strong>on</strong>g>of</str<strong>on</strong>g> three imaginary buckles. <str<strong>on</strong>g>The</str<strong>on</strong>g> top right <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 70 illustratesthisvisualizati<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> corresp<strong>on</strong>dence <str<strong>on</strong>g>of</str<strong>on</strong>g> the slides and the multiplicati<strong>on</strong> table increases further if we<br />

change slightly the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the first triplet. In this first triplet we can take as imaginary<br />

buckle the set <str<strong>on</strong>g>of</str<strong>on</strong>g> all three central segments. Moving all three strands together simplifies<br />

the visualizati<strong>on</strong>, because for the first triplert, the blue strand is trapped between the<br />

other two strands. In this way, generalized slide still c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a rotati<strong>on</strong> followed by a<br />

slide. And we still have a SU(2) subgroup for the first triplet.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> slide E 8 differs from the other slides, as expected from SU(3). It describes a moti<strong>on</strong><br />

that rotates the red and green strands in opposite directi<strong>on</strong>s; this is illustrated in<br />

Figure 70. E 8 is thus not well described with an imaginary belt buckle. It is straightforward<br />

to check that the slide E 8 commutes with E 1 , E 2 , E 3 and obviously with itself, but<br />

not with the other generalized slides. Together, E 8 and the first triplet thus form a U(2)<br />

Lie group, as expected. In additi<strong>on</strong>, we find that E 8 commutes with E 9 and E 10 ,andthat<br />

E 8 E 9 =E 10 , as expected from SU(3). <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also implies that the product <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

E 8 with its two counterparts from the other triplets is the identity matrix, as expected<br />

from SU(3).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> last step to show the equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> slides and SU(3) requires us to c<strong>on</strong>firm the<br />

multiplicati<strong>on</strong> properties – between slides E n or between generators λ n –fromdifferent<br />

triplets. In fact, because <str<strong>on</strong>g>of</str<strong>on</strong>g> the three-fold symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> the centre, we <strong>on</strong>ly need to check<br />

two multiplicati<strong>on</strong> results between slides from different triplets: <strong>on</strong>e that either involves<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


268 9 gauge interacti<strong>on</strong>s deduced from strands<br />

Page 313<br />

λ 3 or λ 8 , and <strong>on</strong>e that does not.<br />

We begin with products involving λ 3 and <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the first two elements <str<strong>on</strong>g>of</str<strong>on</strong>g> another<br />

triplet. Such products yield a weighted sum <str<strong>on</strong>g>of</str<strong>on</strong>g> generators <str<strong>on</strong>g>of</str<strong>on</strong>g> the triplet. It is easier to<br />

check these product properties by using the exemplary relati<strong>on</strong> between finite group elements<br />

E 5 E 3 E 4 =E 3 . Note that <strong>on</strong>ly this specific permutati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 5, 3 and 4 yields this<br />

result. Playing with the strand model c<strong>on</strong>firms the relati<strong>on</strong>. Similar comments apply to<br />

E 6 E 3 E 7 =E 3 – and to the corresp<strong>on</strong>ding products involving E 9 ,suchasE 1 E 9 E 2 =E 9 ,<br />

or E 10 ,suchasE 1 E 10 E 2 =E 10 –aswellasE 4 E 8 E 5 =E 8 and E 6 E 8 E 7 =E 8 .<str<strong>on</strong>g>The</str<strong>on</strong>g>strand<br />

model allows anybody to check that these relati<strong>on</strong>s are satisfied.<br />

We c<strong>on</strong>tinue with the exemplary product λ 5 λ 7 , respectively E 5 E 7 .Wenoteabasicdifference<br />

between a product like λ 5 λ 7 and any product <str<strong>on</strong>g>of</str<strong>on</strong>g> two generators from the same<br />

triplet. <str<strong>on</strong>g>The</str<strong>on</strong>g> product λ 5 λ 7 – like the other c<strong>on</strong>catenati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> generators from different<br />

triplets – does not yield a single generator, but yields a combinati<strong>on</strong>, i.e., a sum <str<strong>on</strong>g>of</str<strong>on</strong>g> generators.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> combinati<strong>on</strong> is not easy to visualize with strands; an easier way is to check<br />

the SU(3) algebra using the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the product E 5 E 7 .<br />

As menti<strong>on</strong>ed above, in SU(3), for products involving the first two members from<br />

different triplets, the threefold c<strong>on</strong>catenati<strong>on</strong> (E i E j ) 3 is the identity. And indeed, Figure 70<br />

c<strong>on</strong>firms that (E 2 E 4 ) 3 or (E 5 E 7 ) 3 is the identity. Similarly, also the other products can be<br />

tested with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands.<br />

Using the visualizati<strong>on</strong> with three strands, we have thus c<strong>on</strong>firmed all products <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

generators from two different triplets that appear in Table 10.WenotethatFigure 70 also<br />

illustrates that the three slides E 2 , E 5 and E 7 generate an SO(3) group, the rotati<strong>on</strong> group<br />

in three dimensi<strong>on</strong>s. In order to see this, we observe that the infinitesimal versi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the three slides generate all possible rotati<strong>on</strong>s in three dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the central triangle.<br />

An SO(3) group also appears for the slides 1, 4 and 7, for the slides 1, 5 and 6, and for<br />

theslides2,4and6.<str<strong>on</strong>g>The</str<strong>on</strong>g>searethefourbasicSO(3)subgroups<str<strong>on</strong>g>of</str<strong>on</strong>g>SU(3).<str<strong>on</strong>g>The</str<strong>on</strong>g>remaining<br />

combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> three operati<strong>on</strong>s from three different triplets – such as 1, 4 and 6, or the<br />

combinati<strong>on</strong> 1, 5 and 7, or the combinati<strong>on</strong> 2, 4 and 7, or the combinati<strong>on</strong> 2, 5 and 6 –<br />

do not generate any subgroup. This can be c<strong>on</strong>firmed by exploring the corresp<strong>on</strong>ding<br />

strand moves.<br />

We can c<strong>on</strong>clude: in a regi<strong>on</strong> with three strands crossing each other, the eight linearly<br />

independent, generalized slides that can be applied to that regi<strong>on</strong> define the group SU(3).<br />

In other words, the group SU(3) follows from the third Reidemeister move.<br />

In the same way as for the other gauge groups, we find that particles whose strand<br />

models c<strong>on</strong>tain c<strong>on</strong>figurati<strong>on</strong>s with three strand segments can be subject to an SU(3)<br />

gauge interacti<strong>on</strong>. In experiments, this interacti<strong>on</strong> is called the str<strong>on</strong>g nuclear interacti<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> str<strong>on</strong>g interacti<strong>on</strong> is due to the Reidemeister III move. Like for the other interacti<strong>on</strong>s,<br />

a particle will <strong>on</strong>ly interact str<strong>on</strong>gly if its tangle is not too symmetric, because in<br />

the symmetric case, averaged over time, there will be no net interacti<strong>on</strong>. We will clarify<br />

the details below, when we discuss the specific tangles and colour charges <str<strong>on</strong>g>of</str<strong>on</strong>g> the different<br />

elementary matter particles.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model for glu<strong>on</strong>s<br />

Physically, the eight slides corresp<strong>on</strong>ding to the Gell-Mann matrices represent the effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the eight glu<strong>on</strong>s, the intermediate vector bos<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g interacti<strong>on</strong>, that can act<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the str<strong>on</strong>g nuclear interacti<strong>on</strong> and the third reidemeister move 269<br />

<strong>on</strong> a particle.<br />

⊳ Given that the eight slides E 1 to E 8 represent the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the eight glu<strong>on</strong>s,<br />

they also represent the glu<strong>on</strong>s themselves.<br />

Interacti<strong>on</strong>s are transfers <str<strong>on</strong>g>of</str<strong>on</strong>g> a tangle process to another tangle. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a glu<strong>on</strong> is a slide that is transferred to another particle.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a glu<strong>on</strong> is a slide that is transferred to three vacuum strands.<br />

Challenge 168 e<br />

To visualize the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> glu<strong>on</strong> even further, we can say that every glu<strong>on</strong> can be described<br />

as a strand structure that c<strong>on</strong>tinuously performs an SU(3) operati<strong>on</strong>, i.e., a generalized<br />

slide c<strong>on</strong>tinuously repeating itself. We found a similar corresp<strong>on</strong>dence for the<br />

other gauge interacti<strong>on</strong>s. In case <str<strong>on</strong>g>of</str<strong>on</strong>g> the electromagnetic interacti<strong>on</strong>, the intermediate<br />

vector bos<strong>on</strong>, the phot<strong>on</strong>, can be described as a strand that c<strong>on</strong>tinuously performs a<br />

U(1) operati<strong>on</strong>, i.e., a rotati<strong>on</strong>. In case <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong>, a weak intermediate vector<br />

bos<strong>on</strong> can be described as a strand that c<strong>on</strong>tinuously performs an SU(2) operati<strong>on</strong>,<br />

i.e., an operati<strong>on</strong> from the belt trick. This is most evident in the unbroken form <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

weak bos<strong>on</strong>s.<br />

Every glu<strong>on</strong> can also be seen as the deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a single strand that drags its surrounding<br />

with it. This single strand descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glu<strong>on</strong>s implies that glu<strong>on</strong>s have vanishing<br />

mass and vanishing charge. This single strand descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glu<strong>on</strong>s also implies<br />

that they have spin 1, as is observed. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> the glu<strong>on</strong> also implies that free<br />

glu<strong>on</strong>s would have a huge energy.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> SU(3) multiplicati<strong>on</strong> table c<strong>on</strong>firms that the eight glu<strong>on</strong>s transform according to<br />

the adjoint (and faithful) representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> SU(3). <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, each row or column in a<br />

Gell-Mann matrix thus corresp<strong>on</strong>ds to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the three colours <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g interacti<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> slide c<strong>on</strong>catenati<strong>on</strong> also showed that two general slides do not<br />

commute and do not anticommute. <str<strong>on</strong>g>The</str<strong>on</strong>g> group SU(3) is n<strong>on</strong>-Abelian. This implies that<br />

glu<strong>on</strong>s interact am<strong>on</strong>g themselves. Both the multiplicati<strong>on</strong> table and the strand model<br />

for glu<strong>on</strong>s imply that two interacting glu<strong>on</strong>s can yield either <strong>on</strong>e or two new glu<strong>on</strong>s, but<br />

not more. This is illustrated in Figure 71. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model, through its generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

SU(3), thus implies that glu<strong>on</strong>s interact am<strong>on</strong>g themselves, but <strong>on</strong>ly in triple and quartic<br />

glu<strong>on</strong> vertices.<br />

Slides – i.e., glu<strong>on</strong> emissi<strong>on</strong> or absorpti<strong>on</strong> – never change the topology <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles,<br />

and in particular, <str<strong>on</strong>g>of</str<strong>on</strong>g> matter tangles. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, the strand model predicts that the str<strong>on</strong>g<br />

interacti<strong>on</strong>s c<strong>on</strong>serve electric charge, bary<strong>on</strong> number, weak isospin, flavour, spin and all<br />

parities. This is indeed observed. In particular, there is a natural lack <str<strong>on</strong>g>of</str<strong>on</strong>g> C, P and CP<br />

violati<strong>on</strong> by slides. This is precisely what is observed for the str<strong>on</strong>g interacti<strong>on</strong>.<br />

Because glu<strong>on</strong>s do not change the topology <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle tangles they act up<strong>on</strong>, but<br />

<strong>on</strong>ly change their shape, glu<strong>on</strong>s are predicted to be massless in the strand model, despite<br />

interacting am<strong>on</strong>g themselves. And because glu<strong>on</strong>s interact am<strong>on</strong>g themselves, free<br />

glu<strong>on</strong>s are predicted not to appear in nature. And <str<strong>on</strong>g>of</str<strong>on</strong>g> course, all these c<strong>on</strong>clusi<strong>on</strong>s agree<br />

with experiments.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


270 9 gauge interacti<strong>on</strong>s deduced from strands<br />

A triple glu<strong>on</strong> vertex :<br />

anti-green<br />

green<br />

red<br />

vacuum<br />

red<br />

anti-blue<br />

t 2<br />

t 1<br />

t 1<br />

time<br />

anti-green red<br />

anti-blue<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> quartic glu<strong>on</strong> vertex :<br />

anti-green green<br />

red anti-blue<br />

green<br />

anti-blue<br />

t 2<br />

t 2<br />

t 2<br />

t 1<br />

t 1<br />

time<br />

FIGURE 71 <str<strong>on</strong>g>The</str<strong>on</strong>g> two types <str<strong>on</strong>g>of</str<strong>on</strong>g> self-interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glu<strong>on</strong>s in the strand model.<br />

In summary, we have shown that in the strand model, the str<strong>on</strong>g nuclear interacti<strong>on</strong><br />

and all its properties appear automatically form slides, i.e., from Reidemeister III moves.<br />

In particular, the strand model implies that the Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>gly interacting fermi<strong>on</strong>s<br />

has a SU(3) gauge invariance that is due to generalized slide deformati<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> glu<strong>on</strong> Lagrangian<br />

Glu<strong>on</strong>s are massless particles with spin 1. As a result, the field intensities and the Lagrangian<br />

are determined in the same way as for phot<strong>on</strong>s: energy density is the square <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

crossing density, i.e., the ‘square’ <str<strong>on</strong>g>of</str<strong>on</strong>g> field intensity. Since there are 8 glu<strong>on</strong>s, the Lagrangian<br />

density becomes<br />

L glu<strong>on</strong>s =− 1 8<br />

∑ G a μν<br />

4<br />

Gμν a<br />

(165)<br />

a=1<br />

where the glu<strong>on</strong> field intensities, with two greek indices, are given naturally as<br />

G a μν =∂ μG a ν −∂ νG a μ −gfabc G b μ Gc ν , (166)<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the str<strong>on</strong>g nuclear interacti<strong>on</strong> and the third reidemeister move 271<br />

Str<strong>on</strong>g charge, or colour :<br />

Random slides affect<br />

<strong>on</strong>ly rati<strong>on</strong>al tangles<br />

with broken threefold<br />

tail symmetry :<br />

Random slides<br />

do not affect<br />

knotted tangles :<br />

Page 234<br />

Random slides<br />

affect glu<strong>on</strong>s :<br />

Random slides<br />

do not affect phot<strong>on</strong>s :<br />

FIGURE 72 Tangles with and without colour charge. (This image needs to be updated: no knotted<br />

tangles occur in nature.)<br />

and f abc are the structure c<strong>on</strong>stants <str<strong>on</strong>g>of</str<strong>on</strong>g> SU(3) that can be deduced from the multiplicati<strong>on</strong><br />

table given above. <str<strong>on</strong>g>The</str<strong>on</strong>g> quantities G a μ<br />

,with<strong>on</strong>e greek index, are the glu<strong>on</strong> vector<br />

potentials. <str<strong>on</strong>g>The</str<strong>on</strong>g> last term in the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the field intensities corresp<strong>on</strong>ds to the triple<br />

and quartic vertices in the Feynman diagrams <str<strong>on</strong>g>of</str<strong>on</strong>g> glu<strong>on</strong> interacti<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are shown<br />

in Figure 71. <str<strong>on</strong>g>The</str<strong>on</strong>g> Lagrangian is simply the natural generalizati<strong>on</strong> from the U(1) case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phot<strong>on</strong>s to the SU(3) case <str<strong>on</strong>g>of</str<strong>on</strong>g> glu<strong>on</strong>s. In short, we obtain the usual free glu<strong>on</strong> Lagrangian<br />

from the strand model.<br />

Colourcharge<br />

Surrounded by a bath <str<strong>on</strong>g>of</str<strong>on</strong>g> glu<strong>on</strong>s that randomly induce slides <str<strong>on</strong>g>of</str<strong>on</strong>g> all kinds, not all fermi<strong>on</strong><br />

cores will change their rotati<strong>on</strong> state. Generally speaking, particles have colour if a bath<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> random glu<strong>on</strong>s changes their phase. Only tangles which lack some symmetry will<br />

therefore possess colour charge. Tangle that are symmetric will be neutral, or ‘white’.<br />

Which symmetry is important here?<br />

We see directly that the phot<strong>on</strong> tangle is not sensitive to a glu<strong>on</strong> bath. <str<strong>on</strong>g>The</str<strong>on</strong>g> same is<br />

valid for W and Z bos<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>se tangles are too simple. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts that<br />

these particles are colour-neutral, i.e., that they are ‘white’, as is observed.<br />

On the other hand, the multiplicati<strong>on</strong> properties given above shows that glu<strong>on</strong>s interact<br />

am<strong>on</strong>g themselves and thus that they have colour charge. In fact, group theory<br />

shows that their properties are best described by saying that glu<strong>on</strong>s have a colour and an<br />

anticolour; this is the simplest way to describe the representati<strong>on</strong> to which they bel<strong>on</strong>g.<br />

In short, the strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> glu<strong>on</strong>s automatically implies that they carry both a colour<br />

and an anti-colour.<br />

Fermi<strong>on</strong>s behave differently. In the strand model, a fermi<strong>on</strong> has colour charge if the<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


272 9 gauge interacti<strong>on</strong>s deduced from strands<br />

Str<strong>on</strong>g interacti<strong>on</strong> diagram : Feynman diagram :<br />

time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches<br />

real<br />

quark<br />

+<br />

virtual<br />

glu<strong>on</strong><br />

t 2<br />

real<br />

quark<br />

virtual<br />

glu<strong>on</strong><br />

Challenge 169 ny<br />

core is<br />

t 2<br />

rotated by<br />

2π/3 around<br />

t<br />

vertical axis<br />

1<br />

t 1<br />

time<br />

quark<br />

FIGURE 73 <str<strong>on</strong>g>The</str<strong>on</strong>g> Feynman diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g interacti<strong>on</strong> for a quark. <str<strong>on</strong>g>The</str<strong>on</strong>g> upper triplet <str<strong>on</strong>g>of</str<strong>on</strong>g> tails<br />

corresp<strong>on</strong>d to the three belts.<br />

corresp<strong>on</strong>ding triple belt model is affected by large numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> random glu<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

first tangles that come to mind are tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands, such as the simple<br />

tangles shown in Figure 70. But a short investigati<strong>on</strong> shows that such tangles are colourneutral,<br />

or ‘white’. We will see below that this implies that lept<strong>on</strong>s are colour-neutral, or<br />

‘white’. In c<strong>on</strong>trast, a rati<strong>on</strong>al fermi<strong>on</strong> tangle does not suffer this fate. (We recall that<br />

a so-called rati<strong>on</strong>al tangle is by definiti<strong>on</strong> made <str<strong>on</strong>g>of</str<strong>on</strong>g> exactly two strands; a two-stranded<br />

tangle is rati<strong>on</strong>al if the two strands can be untangled just by moving the tails around.) In a<br />

bath <str<strong>on</strong>g>of</str<strong>on</strong>g> glu<strong>on</strong> strands that induce slides, i.e., third Reidemeister moves, a general rati<strong>on</strong>al<br />

tangle made <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands is expected to be influenced, and thus to be colour-charged.<br />

Rati<strong>on</strong>al tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands are the simplest possible tangles with colour. A<br />

tangle is called rati<strong>on</strong>al if it can be untangled just by moving the tails around. An example<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a rati<strong>on</strong>al tangle is shown in Figure 73. Such tangles break the three-fold symmetry<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the three-belt structure, and are thus colour-charged. We will show below how these<br />

tangles are related to quarks. Wecanthussay:<br />

⊳ Afermi<strong>on</strong>tanglehascolour charge if its three-belt model is not symmetric<br />

for rotati<strong>on</strong>s by ±2π/3.<br />

Coloured rati<strong>on</strong>al tangles automatically have three possible colours:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> three colour charges are the three possibilities to map a tangle to the<br />

three belt model.* Each colour is thus a particular orientati<strong>on</strong> in ordinary<br />

space.<br />

If we want to explore more complicated types <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands, such as prime<br />

* Can you define a geometric or even a topological knot invariant that reproduces colour charge?<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the str<strong>on</strong>g nuclear interacti<strong>on</strong> and the third reidemeister move 273<br />

Page 318<br />

tangles or locally knotted tangles, we recall that such tangles are not part <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand<br />

model. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus predicts that rati<strong>on</strong>al tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands are<br />

the basic colour states. And indeed, in nature, quarks are the <strong>on</strong>ly fermi<strong>on</strong>s with colour<br />

charge.<br />

We can summarize that colour charge is related to orientati<strong>on</strong> in space. <str<strong>on</strong>g>The</str<strong>on</strong>g> three<br />

possible colours and anticolours are c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> the possible orientati<strong>on</strong>s al<strong>on</strong>g the<br />

three dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> space.<br />

Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g interacti<strong>on</strong><br />

In the strand model, all interacti<strong>on</strong>s are deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle core. Specifically, the<br />

str<strong>on</strong>g interacti<strong>on</strong> is due to exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> slides. Particles have str<strong>on</strong>g charge, or colour, if<br />

their tangles lack the three-belt symmetry just specified. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> coloured fermi<strong>on</strong>s,<br />

colour change is a change <str<strong>on</strong>g>of</str<strong>on</strong>g> the mapping to the three-belt model, i.e., a change <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle in space.<br />

If we use the strand definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g interacti<strong>on</strong>, visual inspecti<strong>on</strong> shows us<br />

that slide exchanges, and thus glu<strong>on</strong> exchanges, are deformati<strong>on</strong>s that c<strong>on</strong>serve topology;<br />

therefore glu<strong>on</strong> exchange c<strong>on</strong>serves colour. Since the str<strong>on</strong>g interacti<strong>on</strong> c<strong>on</strong>serves the<br />

topology <str<strong>on</strong>g>of</str<strong>on</strong>g> all involved tangles and knots, the str<strong>on</strong>g interacti<strong>on</strong> also c<strong>on</strong>serves electric<br />

charge, parity, and,asweshallseebelow,all other quantum numbers –exceptcolour<br />

itself, <str<strong>on</strong>g>of</str<strong>on</strong>g> course. All these results corresp<strong>on</strong>d to observati<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> QCD<br />

We started from the idea that tangle core deformati<strong>on</strong>s lead to phase redefiniti<strong>on</strong>s. We<br />

then found that slides imply that the str<strong>on</strong>g interacti<strong>on</strong> Lagrangian for matter and for<br />

radiati<strong>on</strong> fields is SU(3) gauge invariant. If we include these two gauge invariances into<br />

the fermi<strong>on</strong> Lagrangian density from the Dirac equati<strong>on</strong>, we get<br />

L QCD =∑Ψ q (iħc/D −m q c 2 δ qq )Ψ q<br />

− 1 8<br />

∑ G a<br />

q<br />

4<br />

μνG μν a , (167)<br />

a=1<br />

where the index q counts the coloured fermi<strong>on</strong>, i.e., the quark. In this Lagrangian density,<br />

/D isnowtheSU(3)gaugecovariantderivative<br />

/D = /∂−gγ μ G a μ λ a , (168)<br />

where g is the gauge coupling, λ a are the generators <str<strong>on</strong>g>of</str<strong>on</strong>g> SU(3), i.e., the Gell-Mann<br />

matrices given above, and the G a μ<br />

are, as before, the glu<strong>on</strong> vector potentials. <str<strong>on</strong>g>The</str<strong>on</strong>g> last<br />

term in the covariant derivative corresp<strong>on</strong>ds to the Feynman diagram and the strand<br />

diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 73. This is the Lagrangian density <str<strong>on</strong>g>of</str<strong>on</strong>g> QCD.<br />

In summary: the strand model reproduces QCD. However, we have not yet deduced<br />

the number and masses m q <str<strong>on</strong>g>of</str<strong>on</strong>g> the quarks, nor the str<strong>on</strong>g gauge coupling g.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


274 9 gauge interacti<strong>on</strong>s deduced from strands<br />

Page 386<br />

Page 332, page 340<br />

Page 337<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. V, page 289<br />

Ref. 186<br />

Challenge 170 ny<br />

Challenge 171 ny<br />

Challenge 172 s<br />

Challenge 173 e<br />

Renormalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g interacti<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> slide move descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g interacti<strong>on</strong> implies that <strong>on</strong>ly three Feynman<br />

diagrams are possible: <strong>on</strong>e QCD Feynman diagram is possible for quarks, and <strong>on</strong>ly the<br />

triple and the quartic vertices are possible am<strong>on</strong>g glu<strong>on</strong>s. This limited range <str<strong>on</strong>g>of</str<strong>on</strong>g> opti<strong>on</strong>s<br />

allowed us to deduce the QCD Lagrangian. <str<strong>on</strong>g>The</str<strong>on</strong>g> limited range <str<strong>on</strong>g>of</str<strong>on</strong>g> opti<strong>on</strong>s is also essential<br />

for the renormalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> QCD. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus automatically ensures that the<br />

str<strong>on</strong>g interacti<strong>on</strong> is renormalizable.<br />

In short, the strand model provides a new underlying picture for the Feynman diagrams<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g interacti<strong>on</strong>, but does not change the physical results at any energy<br />

scale accessible in the laboratory. In particular, the measured running <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g coupling<br />

c<strong>on</strong>stant is reproduced. Indeed, in the strand model, a flux-tube–like b<strong>on</strong>d between<br />

the quarks appears automatically, as we will see when exploring hadr<strong>on</strong>s. At high kinetic<br />

energies, the b<strong>on</strong>d has little effect, so that quarks behave more like free particles. In<br />

short, we find that the strand model reproduces asymptotic freedom and also provides an<br />

argument for quark c<strong>on</strong>finement. We will return to the issue in more detail below.<br />

Curiosities and fun challenges about SU(3)<br />

Deducing the Lie group SU(3) from a three-dimensi<strong>on</strong>al model is a new result. In particular,<br />

deducing the gauge group SU(3) as a deformati<strong>on</strong> gauge group is new. Frank<br />

Wilczek, Alfred Shapere, Alden Mead, Jerry Marsden and several others have c<strong>on</strong>firmed<br />

that before this discovery, <strong>on</strong>ly the geometric Lie group SO(3) and its subgroups had<br />

been found in deformati<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental principle <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model shows its<br />

power by overcoming this limitati<strong>on</strong>. (Apparently, nobody had even realized that the<br />

belt trick already implies the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> an SU(2) gauge group for deformati<strong>on</strong>s.)<br />

∗∗<br />

We have discussed the shape deformati<strong>on</strong>s that lead to the SU(3) group. But what are the<br />

precise phase choices for a crossing that lead to SU(3) invariance?<br />

∗∗<br />

Do the two linear independent glu<strong>on</strong>s with lined-up tails have the same properties as the<br />

other six glu<strong>on</strong>s?<br />

∗∗<br />

Three strands can cross each other also in another way, such that the three strands are<br />

interlocked. Why can we disregard the situati<strong>on</strong> in this secti<strong>on</strong>?<br />

∗∗<br />

Deducing the Lie groups U(1), SU(2) and SU(3) directly from a basic principle c<strong>on</strong>tradicts<br />

another old dream. Many scholars hoped that the three gauge groups have something<br />

to do with the sequence complex numbers, quaterni<strong>on</strong>s and oct<strong>on</strong>i<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand<br />

model quashes this hope – or at least changes it in an almost unrecognizable way.<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> tangles for the W and Z bos<strong>on</strong>s have no colour charge. Can you c<strong>on</strong>firm this?<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the str<strong>on</strong>g nuclear interacti<strong>on</strong> and the third reidemeister move 275<br />

Challenge 174 ny<br />

Challenge 175 e<br />

Challenge 176 e<br />

Challenge 177 d<br />

Ref. 187<br />

Challenge 178 ny<br />

Page 353<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Lie group SU(3) is also the symmetry group <str<strong>on</strong>g>of</str<strong>on</strong>g> the three-dimensi<strong>on</strong>al harm<strong>on</strong>ic<br />

oscillator. What is the geometric relati<strong>on</strong> to the Lie group SU(3) induced by slides?<br />

∗∗<br />

C<strong>on</strong>firm that the strand model does not c<strong>on</strong>tradict the Coleman–Mandula theorem <strong>on</strong><br />

the possible c<strong>on</strong>served quantities in quantum field theory.<br />

∗∗<br />

C<strong>on</strong>firm that the strand model does not c<strong>on</strong>tradict the Weinberg–Witten theorem <strong>on</strong><br />

the possible massless particles in quantum field theory.<br />

∗∗<br />

Are the Wightman axioms <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum field theory fulfilled by the strand model with<br />

interacti<strong>on</strong>s? <str<strong>on</strong>g>The</str<strong>on</strong>g> Haag–Kastler axioms? Is Haag’s theorem circumvented?<br />

∗∗<br />

Show that the BCFW recursi<strong>on</strong> relati<strong>on</strong> for tree level glu<strong>on</strong> scattering follows from the<br />

strand model.<br />

Summary <strong>on</strong> the str<strong>on</strong>g interacti<strong>on</strong> and experimental predicti<strong>on</strong>s<br />

We have deduced the Lagrangian density <str<strong>on</strong>g>of</str<strong>on</strong>g> QCD from the strand model with the help <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

slides. Is there a difference between the strand model and QCD? No, not as l<strong>on</strong>g as gravity<br />

plays no role. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts that gravitati<strong>on</strong> <strong>on</strong>ly comes into play near the<br />

Planck energy √ħc 5 /4G . And indeed, accelerator experiments have not yet found any<br />

effect that c<strong>on</strong>tradicts QCD, and therefore no effect that c<strong>on</strong>tradicts the strand model <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the str<strong>on</strong>g interacti<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also predicts that the str<strong>on</strong>g interacti<strong>on</strong> is naturally CP-invariant.<br />

This means that axi<strong>on</strong>s – particles invented to explain the invariance – are unnecessary:<br />

as shown below, the strand model even predicts that they do not to exist. Both predicti<strong>on</strong>s<br />

agree with experiment.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g interacti<strong>on</strong> implies that the SU(3) gauge symmetry is<br />

valid at all energies. No other gauge group plays a role in the str<strong>on</strong>g interacti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

strand model thus predicts again that there is no grand unificati<strong>on</strong> in nature, and thus<br />

no larger gauge group. Often discussed groups such as SU(5), SO(10), E6, E7, E8 or<br />

SO(32) are predicted not to apply to nature. Also this predicti<strong>on</strong> is not c<strong>on</strong>tradicted by<br />

experiment.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model further predicts that the combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity and quantum theory<br />

turns all Planck units into limit values. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus predicts a maximum<br />

str<strong>on</strong>g field value given by the Planck force divided by the str<strong>on</strong>g charge <str<strong>on</strong>g>of</str<strong>on</strong>g> the quark. All<br />

physical systems – including all astrophysical objects, such as neutr<strong>on</strong> stars, quark stars,<br />

gamma-ray bursters or quasars – are predicted to c<strong>on</strong>form to this field limit. So far, this<br />

predicti<strong>on</strong> is validated by experiment.<br />

In summary, we have shown that Reidemeister III moves – or slides – in tangle cores<br />

lead to an SU(3) gauge invariance and a Lagrangian that reproduces the str<strong>on</strong>g interac-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


276 9 gauge interacti<strong>on</strong>s deduced from strands<br />

Page 164<br />

ti<strong>on</strong>. Colour charge is related to the topology <str<strong>on</strong>g>of</str<strong>on</strong>g> certain rati<strong>on</strong>al tangles. In this way, we<br />

have deduced the origin and most observed properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g interacti<strong>on</strong>. We have<br />

thus settled another issue <str<strong>on</strong>g>of</str<strong>on</strong>g> the millennium list. However, we still need to deduce the<br />

tangles and the number <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks, their masses and the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g coupling.<br />

Page 152<br />

Page 149<br />

Page 164<br />

Ref. 182<br />

summary and predicti<strong>on</strong>s about gauge interacti<strong>on</strong>s<br />

At this point <str<strong>on</strong>g>of</str<strong>on</strong>g> our adventure, we have deduced gauge theory and the three known gauge<br />

interacti<strong>on</strong>s from strands. Using <strong>on</strong>ly the fundamental principle, we explained the dimensi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> space-time, the Planck units, the principle <str<strong>on</strong>g>of</str<strong>on</strong>g> least acti<strong>on</strong>, the appearance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the gauge groups U(1), broken SU(2) and SU(3), <str<strong>on</strong>g>of</str<strong>on</strong>g> renormalizati<strong>on</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g> Lorentz symmetry<br />

and <str<strong>on</strong>g>of</str<strong>on</strong>g> permutati<strong>on</strong> symmetry. Thus we have deduced all the c<strong>on</strong>cepts and all the<br />

mathematical structures that are necessary to formulate the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary<br />

particles.<br />

In particular, the strand model provides a descripti<strong>on</strong> and explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the three<br />

gauge interacti<strong>on</strong>s at Planck scales that is based <strong>on</strong> deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. <str<strong>on</strong>g>The</str<strong>on</strong>g> descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> QED is illustrated in Figure 74: it shows the way that strands model the emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a phot<strong>on</strong> by an electr<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> deducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the three gauge interacti<strong>on</strong>s given in this text,<br />

with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> the Reidemeister moves, is the first and, at present, the <strong>on</strong>ly explanati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the three gauge forces. No other explanati<strong>on</strong> or deducti<strong>on</strong> has ever been given.<br />

We have shown that quantum field theory is an approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> approximati<strong>on</strong> appears when the strand diameter is neglected; quantum field theory<br />

is thus valid for all energies below the Planck scale. In other words, in c<strong>on</strong>trast to many<br />

other attempts at unificati<strong>on</strong>, the strand model is not a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum field<br />

theory. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model for the three gauge interacti<strong>on</strong>s is also unmodifiable. <str<strong>on</strong>g>The</str<strong>on</strong>g>se<br />

properties are in agreement with our list <str<strong>on</strong>g>of</str<strong>on</strong>g> requirements for a final theory.<br />

We have not yet deduced the complete standard model: we still need to show which<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> particles exist, which properties they have and what couplings they produce.<br />

However, we have found that the strand model explains all the mathematical structures<br />

from the millennium list that occur in quantum field theory and in the standard model<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics. In fact, the strand explanati<strong>on</strong> for the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the gauge interacti<strong>on</strong>s<br />

allows us to make several definite predicti<strong>on</strong>s.<br />

Predicting the number <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s in nature<br />

Already in 1926, Kurt Reidemeister proved an important theorem about possible deformati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> knots or tangles that lead to changes <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings. When tangles are described<br />

with two-dimensi<strong>on</strong>al diagrams, all possible deformati<strong>on</strong>s can be reduced to exactly three<br />

moves, nowadays called after him. In the strand model, the two-dimensi<strong>on</strong>al tangle diagram<br />

describes what an observer sees about a physical system. Together with the equivalence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s as crossing-changing deformati<strong>on</strong>s, Reidemeister’s theorem thus<br />

proves that there are <strong>on</strong>ly three gauge interacti<strong>on</strong>s in nature. In particular, there is no fifth<br />

force. Searches for additi<strong>on</strong>al gauge interacti<strong>on</strong>s are predicted to fail. And indeed, they<br />

have all failed up to now.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


summary and predicti<strong>on</strong>s about gauge interacti<strong>on</strong>s 277<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand c<strong>on</strong>jecture for QED<br />

above<br />

paper<br />

plane<br />

time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches<br />

Observati<strong>on</strong> in space-time<br />

below paper plane<br />

below<br />

electr<strong>on</strong><br />

phase<br />

t 1<br />

t 1<br />

above<br />

above spin below<br />

tangle core determines<br />

rotati<strong>on</strong> frequency, thus<br />

determines mass, and,s with<br />

momentum, determines<br />

phase helix wavelength<br />

and thus propagator<br />

t 2<br />

t 2<br />

tangle core deformati<strong>on</strong><br />

t 3 produces phot<strong>on</strong> and t 3<br />

crossing inside<br />

phase change and thus<br />

electr<strong>on</strong><br />

determines fine<br />

tangle<br />

vacuum<br />

structure c<strong>on</strong>stant<br />

t 4 t 4<br />

t 5<br />

switched<br />

electr<strong>on</strong><br />

t 5<br />

crossing<br />

inside<br />

electr<strong>on</strong> tangle<br />

phot<strong>on</strong><br />

Ref. 142<br />

propagator<br />

described by<br />

mass<br />

interacti<strong>on</strong><br />

described by<br />

fine structure<br />

c<strong>on</strong>stant<br />

phot<strong>on</strong><br />

FIGURE 74 QED in <strong>on</strong>e picture: In the strand model, the electr<strong>on</strong> mass and the fine structure c<strong>on</strong>stant<br />

are determined by the tangle – <strong>on</strong>ly the simplest family member is shown here – and its shape change<br />

under fluctuati<strong>on</strong>s.<br />

Unificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s<br />

We can also state that there is <strong>on</strong>ly <strong>on</strong>e Reidemeister move. This becomes especially clear<br />

if we explore the three-dimensi<strong>on</strong>al shape <str<strong>on</strong>g>of</str<strong>on</strong>g> knots instead <str<strong>on</strong>g>of</str<strong>on</strong>g> their two-dimensi<strong>on</strong>al diagrams:<br />

all three Reidemeister moves can be deduced from the same deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


278 9 gauge interacti<strong>on</strong>s deduced from strands<br />

Page 385<br />

Page 153<br />

Page 396<br />

single strand. Only the projecti<strong>on</strong> <strong>on</strong> a two-dimensi<strong>on</strong>al diagram creates the distincti<strong>on</strong><br />

between the three moves. In the terms <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model, this means that all gauge<br />

interacti<strong>on</strong>s are in fact aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly <strong>on</strong>e basic process, a fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> strand shape,<br />

and that the three gauge interacti<strong>on</strong>s are <strong>on</strong>ly distinguished by their projecti<strong>on</strong>s. In this<br />

way, the three gauge interacti<strong>on</strong>s are thus unified by the strand model.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> plane <str<strong>on</strong>g>of</str<strong>on</strong>g> projecti<strong>on</strong> used in a strand diagram defines a mapping from strand fluctuati<strong>on</strong>s<br />

to Reidemeister moves. <str<strong>on</strong>g>The</str<strong>on</strong>g> projecti<strong>on</strong> plane is defined by the observer, i.e.,<br />

by the frame <str<strong>on</strong>g>of</str<strong>on</strong>g> reference. Depending <strong>on</strong> the projecti<strong>on</strong> plane, a general deformati<strong>on</strong><br />

is mapped into different Reidemeister moves. At first sight, the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> an interacti<strong>on</strong><br />

– whether electromagnetic, str<strong>on</strong>g or weak – seems to depend <strong>on</strong> the observer. In<br />

nature, however, this is not the case. But this c<strong>on</strong>tradicti<strong>on</strong> is <strong>on</strong>ly apparent. In the<br />

strand model, the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle results from the type <str<strong>on</strong>g>of</str<strong>on</strong>g> asymmetry<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its tangle core. Certain strand deformati<strong>on</strong>s do not lead to interacti<strong>on</strong>s, because their<br />

effects are suppressed by the averaging <str<strong>on</strong>g>of</str<strong>on</strong>g> short-time fluctuati<strong>on</strong>s underlying every observati<strong>on</strong>.<br />

In other words, the averaging process at the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>s also ensures<br />

that interacti<strong>on</strong>s are effectively observer-independent at low energy.<br />

In short, the strand model provides a natural unificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the interacti<strong>on</strong>s. And this<br />

unificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the interacti<strong>on</strong>s differs completely from any past proposal. <str<strong>on</strong>g>The</str<strong>on</strong>g> final test,<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> course, can <strong>on</strong>ly be provided by experiment.<br />

No divergences<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model implies that there are no divergences in the quantum descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nature. This lack <str<strong>on</strong>g>of</str<strong>on</strong>g> divergence occurs because all measurement values appear after<br />

strand effects have been averaged out. As menti<strong>on</strong>ed above, strand effects <strong>on</strong> space-time<br />

disappear through ‘shivering’ and strand effects <strong>on</strong> particles disappear through wavefuncti<strong>on</strong>s.<br />

In summary, in the strand model, no interacti<strong>on</strong> implies or c<strong>on</strong>tains divergences:<br />

neither gravity nor the gauge interacti<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are neither ultraviolet nor infrared divergences.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model avoids divergences, infinities and singularities <str<strong>on</strong>g>of</str<strong>on</strong>g> any kind<br />

from its very start.<br />

Grand unificati<strong>on</strong>, supersymmetry and other dimensi<strong>on</strong>s<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> three gauge interacti<strong>on</strong>s are due to the three Reidemeister moves. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, the<br />

strand model asserts that there is no single gauge group for all interacti<strong>on</strong>s. In short, the<br />

strand model asserts that there is no so-called grand unificati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>absence<str<strong>on</strong>g>of</str<strong>on</strong>g>grand<br />

unificati<strong>on</strong> implies the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> large prot<strong>on</strong> decay rates, the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al, still<br />

undiscovered gauge bos<strong>on</strong>s, the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> neutr<strong>on</strong>–antineutr<strong>on</strong> oscillati<strong>on</strong>s, and the<br />

absence <str<strong>on</strong>g>of</str<strong>on</strong>g> sizeable electric dipole moments in elementary particles. All these searches<br />

are <strong>on</strong>going at present; the strand model predicts that they yield null results.<br />

Supersymmetry and approaches based <strong>on</strong> it assume gauge group unificati<strong>on</strong>. However,<br />

as just explained, the strand model predicts that there is no supersymmetry and<br />

therefore no supergravity. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also predicts the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> all c<strong>on</strong>jectured<br />

‘superparticles’. In 2016 and again in 2017, the numerous experiments at CERN c<strong>on</strong>firmed<br />

the predicti<strong>on</strong>: there is no sign <str<strong>on</strong>g>of</str<strong>on</strong>g> supersymmetry in nature.<br />

Reidemeister moves are c<strong>on</strong>fined to three spatial dimensi<strong>on</strong>s. Indeed, the strand<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


summary and predicti<strong>on</strong>s about gauge interacti<strong>on</strong>s 279<br />

Page 348<br />

Page 149<br />

Page 412<br />

Page 8<br />

Page 311<br />

Page 164<br />

model is based <strong>on</strong> exactly three spatial dimensi<strong>on</strong>s. It predicts that there are no other,<br />

undetected dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> space. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also predicts the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>commutative<br />

space-time, even though, with some imaginati<strong>on</strong>, strands can be seen as<br />

remotely related to that approach. Finally, the strand model predicts the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

vacua: the vacuum is unique.<br />

In short, the strand model differs both experimentally and theoretically from the unificati<strong>on</strong><br />

proposals made in the twentieth century. In particular, the strand model predicts<br />

the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al symmetries, <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al energy scales, and <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al<br />

space-time properties at high energy. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts that unificati<strong>on</strong> is not<br />

achieved by searching for higher symmetries, nor for higher dimensi<strong>on</strong>s, nor for c<strong>on</strong>cepts<br />

that c<strong>on</strong>tain both. This lack <str<strong>on</strong>g>of</str<strong>on</strong>g> complex mathematical or symmetry c<strong>on</strong>cepts in<br />

nature is disappointing; the hopes and search activities in the last fifty years are predicted<br />

to have been misguided. In other words, the predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model are unpopular.<br />

However, these predicti<strong>on</strong>s agree with our list <str<strong>on</strong>g>of</str<strong>on</strong>g> requirements for a final theory;<br />

and so far, all these predicti<strong>on</strong>s agree with experiment.<br />

No new observable gravity effects in particle physics<br />

In the ‘cube’ structure <str<strong>on</strong>g>of</str<strong>on</strong>g> physics shown in Figure 1, the transiti<strong>on</strong> from the final, unified<br />

descripti<strong>on</strong> to quantum field theory occurs by neglecting gravity, i.e., by assuming flat<br />

space-time. <str<strong>on</strong>g>The</str<strong>on</strong>g> same transiti<strong>on</strong> occurs in the strand model, where neglecting gravity in<br />

additi<strong>on</strong> requires neglecting the strand diameter. In this way, the gravitati<strong>on</strong>al c<strong>on</strong>stant<br />

G disappears completely from the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

We can summarize our findings <strong>on</strong> quantum field theory also in the following way:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts that particle masses are the <strong>on</strong>ly observable effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gravity in quantum physics and in particle physics.<br />

This result will be complemented below by a sec<strong>on</strong>d, equally restrictive result that limits<br />

the observable quantum effects in the study <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity. In short, the strand model<br />

keeps particle physics and general relativity almost completely separated from each other.<br />

This is a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the different effects produced by tail deformati<strong>on</strong>s and by core<br />

deformati<strong>on</strong>s. And again, the predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al gravitati<strong>on</strong>al effects in<br />

particle physics agrees with all experiments so far.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> status <str<strong>on</strong>g>of</str<strong>on</strong>g> ourquest<br />

In this chapter, we have deduced that strands predict exactly three interacti<strong>on</strong>s. Interacti<strong>on</strong>s<br />

are deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle cores and just three classes <str<strong>on</strong>g>of</str<strong>on</strong>g> such core deformati<strong>on</strong>s<br />

exist. <str<strong>on</strong>g>The</str<strong>on</strong>g> three classes <str<strong>on</strong>g>of</str<strong>on</strong>g> deformati<strong>on</strong>s are given by the three Reidemeister moves. Because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the Reidemeister moves, the three interacti<strong>on</strong>s are described<br />

by a U(1), a broken SU(2) and a SU(3) gauge symmetry, respectively.<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s also show that the three interacti<strong>on</strong>s are renormalizable, relativistically invariant,<br />

and that they follow the least acti<strong>on</strong> principle. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s thus imply the three interacti<strong>on</strong><br />

Lagrangians <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics. In additi<strong>on</strong>, strands predict<br />

the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> other interacti<strong>on</strong>s, symmetries and space-time structures.<br />

If we look at the millennium list <str<strong>on</strong>g>of</str<strong>on</strong>g> open issues in fundamental physics, we have now<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


280 9 gauge interacti<strong>on</strong>s deduced from strands<br />

solved all issues c<strong>on</strong>cerning the mathematical structures that appear in quantum field<br />

theory and in the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics.<br />

⊳ All mathematical structures found in quantum physics result from the fundamental<br />

principle <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model.<br />

Equivalently, extensi<strong>on</strong> c<strong>on</strong>tains all quantum effects. This is an intriguing result that<br />

induces us to c<strong>on</strong>tinue our explorati<strong>on</strong>. Only two groups <str<strong>on</strong>g>of</str<strong>on</strong>g> issues are still unexplained:<br />

the theory <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity and the spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles. We proceed in<br />

this order.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


Chapter10<br />

GENERAL RELATI<str<strong>on</strong>g>VI</str<strong>on</strong>g>TY DEDUCED<br />

FROM STRANDS<br />

Page 209<br />

Page 213<br />

General relativity describes the deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum. In everyday life,<br />

ravitati<strong>on</strong> is the <strong>on</strong>ly such effect that we observe. But <strong>on</strong> astr<strong>on</strong>omical scale,<br />

ravity shows more phenomena: vacuum can deflect light, producing gravitati<strong>on</strong>al<br />

lenses, can wobble, giving gravitati<strong>on</strong>al waves, and can accelerate, yielding the<br />

darkness <str<strong>on</strong>g>of</str<strong>on</strong>g> the sky and the fascinating black holes. All these observati<strong>on</strong>s require general<br />

relativity for their descripti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, general relativity must be part <str<strong>on</strong>g>of</str<strong>on</strong>g> any unified<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

In the following, we explain the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. <str<strong>on</strong>g>The</str<strong>on</strong>g>n<br />

we deduce the field equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity, the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes and relativistic<br />

cosmology from the strand model. We also predict the outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> many quantum<br />

gravity experiments. Finally, we deduce the c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> strands for cosmology. We<br />

include several experimental predicti<strong>on</strong>s. Of all Planck-scale models <str<strong>on</strong>g>of</str<strong>on</strong>g> space or spacetime,<br />

strands seem to be the simplest <strong>on</strong>e that provides these deducti<strong>on</strong>s.<br />

Flat space, special relativity and its limitati<strong>on</strong>s<br />

We have seen above that any observer automatically introduces a 3+1-dimensi<strong>on</strong>al background<br />

space-time. We have also seen that in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory, physical spacetime,<br />

the space-time that is formed by the fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum strands, is naturally<br />

3+1-dimensi<strong>on</strong>al and flat. In the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity, physical space and background space<br />

coincide.<br />

Using strands, we have deduced:<br />

⊳ cis the invariant limit for all energy speeds.<br />

This limit is achieved <strong>on</strong>ly by free massless particles, such as phot<strong>on</strong>s. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s also<br />

showed us that massive particles move more slowly than light. In short, strands reproduce<br />

special relativity.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus predicts that pure special relativity is correct for all situati<strong>on</strong>s<br />

and all energies in which gravity and quantum theory play no role. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model<br />

also predicts that when gravity or quantum effects do play a role, general relativity or<br />

quantum theory must be taken into account. This means that there is no domain <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nature in which intermediate descripti<strong>on</strong>s are valid.<br />

It is sometimes suggested that the invariant Planck energy limit for elementary<br />

particles might lead to a ‘doubly special relativity’ that deviates from special relativity<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


282 10 general relativity deduced from strands<br />

first mass<br />

gravitati<strong>on</strong>al<br />

interacti<strong>on</strong><br />

~ 1 / r 2<br />

via virtual<br />

gravit<strong>on</strong>s<br />

sec<strong>on</strong>d mass<br />

Ref. 85<br />

Page 65<br />

Ref. 188<br />

Page 8<br />

distance r<br />

FIGURE 75 Gravitati<strong>on</strong>al attracti<strong>on</strong> as result <str<strong>on</strong>g>of</str<strong>on</strong>g> twisted tail pairs – or twisted tether pairs.<br />

at high particle energy. However, this suggesti<strong>on</strong> is based <strong>on</strong> two assumpti<strong>on</strong>s: that at<br />

Planck energy point masses are a viable approximati<strong>on</strong> to particles, and that at Planck<br />

energy vacuum and matter differ. In the strand model, and in nature, both assumpti<strong>on</strong>s<br />

are incorrect. Nature, as general relativity shows, does not allow the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> point<br />

masses: the densest objects in nature are black holes, and these are not point-like for any<br />

mass value.<br />

In additi<strong>on</strong>, quantum theory implies the fuzziness <str<strong>on</strong>g>of</str<strong>on</strong>g> matter and space. As a result,<br />

near Planck energy, matter and vacuum cannot be distinguished. Put simply, no system<br />

near Planck energy can be described without general relativity and without quantum<br />

gravity. In short, the strand model predicts that the approach <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘doubly special relativity’<br />

cannot be correct. Also Figure 1 makes this point: there is no descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature<br />

besides the usual <strong>on</strong>es.<br />

To sum up, the strand model reproduces special relativity when masses are approximated<br />

as point-like in flat space. But at the same time, the strand model states that a<br />

negligibly small, light and localizable mass cannot exist – neither in flat nor in curved<br />

space. This matches observati<strong>on</strong>s.<br />

Classical gravitati<strong>on</strong><br />

In nature, at low speeds and in the flat space limit, gravitati<strong>on</strong> is observed to lead to<br />

an accelerati<strong>on</strong> a <str<strong>on</strong>g>of</str<strong>on</strong>g> test masses that changes as the inverse square distance from the<br />

gravitating mass;<br />

a=G M R 2 . (169)<br />

This accelerati<strong>on</strong> is called universal gravitati<strong>on</strong> or classical gravitati<strong>on</strong>. It is an excellent<br />

approximati<strong>on</strong> for the solar system and for many star systems throughout the universe.<br />

In the strand model, every space-time effect, including gravitati<strong>on</strong>, is due to the behaviour<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tangle tails. In the strand model, every mass, i.e., every system <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles, is<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


general relativity deduced from strands 283<br />

c<strong>on</strong>nected to the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space by tails. <str<strong>on</strong>g>The</str<strong>on</strong>g> nearer a mass is to a sec<strong>on</strong>d mass, the<br />

more frequently the twisted tails <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e mass affect the other mass. Figure 75 illustrates<br />

the situati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model states:<br />

Challenge 179 e<br />

Page 358<br />

Ref. 189<br />

⊳ Gravitati<strong>on</strong> is due to the fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> tail crossings: gravity is due to twisted<br />

tail pairs.<br />

Around a mass, the tail twists fluctuate; averaged <str<strong>on</strong>g>of</str<strong>on</strong>g> time, the fluctuati<strong>on</strong>s lead to a crossing<br />

switch density around every mass. <str<strong>on</strong>g>The</str<strong>on</strong>g> resulting potential energy – where energy is<br />

acti<strong>on</strong> per time and thus given by the number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches per time – changes like<br />

the inverse distance from the central mass. This is the reas<strong>on</strong> for the 1/r-dependence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the gravitati<strong>on</strong>al potential and the 1/r 2 -dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> gravitati<strong>on</strong>al accelerati<strong>on</strong>. (This<br />

applies to all those cases where spatial curvature is negligible.) In simple words, in the<br />

strand model, the inverse square dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> gravitati<strong>on</strong>al accelerati<strong>on</strong> is due to the<br />

three-dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> space combined with the <strong>on</strong>e-dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> strands.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also shows that masses and energies are always positive: every<br />

tangle c<strong>on</strong>tains curved strands. <str<strong>on</strong>g>The</str<strong>on</strong>g> model also shows qualitatively that larger masses<br />

produce str<strong>on</strong>ger attracti<strong>on</strong>: larger masses c<strong>on</strong>tain more particles and thus produce more<br />

crossing switches. We will show below that the number density <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches for<br />

each particle is indeed determined by the mass.<br />

In the strand model, twisted tail pairs are (virtual) gravit<strong>on</strong>s. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s thus reproduce<br />

the idea that gravity is due to the exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> (virtual) gravit<strong>on</strong>s. Indeed, the strand<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> the gravit<strong>on</strong>, illustrated below in Figure 79, provides a c<strong>on</strong>sistent model that<br />

fulfils all requirements: it has the correct spin and quantum numbers, it fits with the idea<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> curvature defect, and it couples to masses producing universal gravity.<br />

In the strand model, crossing switches are not <strong>on</strong>ly related to acti<strong>on</strong> and energy; they<br />

are also related to entropy. A slightly different – but equivalent – view <strong>on</strong> gravitati<strong>on</strong><br />

therefore appears when we put the stress <strong>on</strong> the entropic aspect.<br />

Deducing universal gravitati<strong>on</strong> from black hole properties<br />

Black holes have entropy; this implies universal gravitati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are at least two ways<br />

to explain this c<strong>on</strong>necti<strong>on</strong>.<br />

An especially c<strong>on</strong>cise explanati<strong>on</strong> was recently given by Erik Verlinde. In this view,<br />

gravity appears because any mass M generates an effective vacuum temperature around it.<br />

A gravitating mass M attracts test masses because during the fall <str<strong>on</strong>g>of</str<strong>on</strong>g> a test mass, the total<br />

entropy decreases. It is not hard to describe these ideas quantitatively.<br />

Given a spherical surface A enclosing a gravitating mass M at its centre, the accelerati<strong>on</strong><br />

a <str<strong>on</strong>g>of</str<strong>on</strong>g> a test mass located somewhere <strong>on</strong> the surface is given by the local vacuum<br />

temperature T:<br />

2π kc<br />

a=T , (170)<br />

ħ<br />

where k is the Boltzmann c<strong>on</strong>stant. This relati<strong>on</strong> is called the Fulling–Davies–Unruh<br />

effect and relates vacuum temperature and local accelerati<strong>on</strong>. Thus, an inertial or a freely<br />

falling mass (or observer) measures a vanishing vacuum temperature.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


284 10 general relativity deduced from strands<br />

Page 289<br />

In the strand model, the vacuum temperature at the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the enclosing sphere is<br />

given by the crossing switches induced by the tails starting at the mass. We can determine<br />

the vacuum temperature by dividing the energy E c<strong>on</strong>tained inside the sphere by twice<br />

the maximum possible entropy S for that sphere. This maximum value is the entropy that<br />

the sphere would have if it were a black hole horiz<strong>on</strong>; it can be calculated by the strand<br />

model, as we will see shortly.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> temperature T is thus given by the expressi<strong>on</strong><br />

T= E 2S = M A<br />

2Għ<br />

kc . (171)<br />

Page 283<br />

Page 295<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> factor 2 needs explanati<strong>on</strong>; it derives from the dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> entropy <strong>on</strong> the square<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the radius. We do not discuss the details here.<br />

Neglecting spatial curvature, we can set A=4πR 2 ; this gives a temperature at the<br />

enclosing sphere given by<br />

T= M Għ<br />

R 2 2π kc . (172)<br />

Inserting this expressi<strong>on</strong> into the expressi<strong>on</strong> (170) for the Fulling–Davies–Unruh accelerati<strong>on</strong><br />

a, weget<br />

a=G M R 2 . (173)<br />

This is universal gravitati<strong>on</strong>, as discovered by Robert Hooke and popularized by Isaac<br />

Newt<strong>on</strong>. Since spatial curvature was neglected, and the central mass was assumed at rest,<br />

this expressi<strong>on</strong> is <strong>on</strong>ly valid for large distances and small speeds. We have thus deduced<br />

universal gravity from the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> gravitating masses <strong>on</strong> vacuum temperature. Below,<br />

we show that in the relativistic case this sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> arguments – which was given by<br />

Jacobs<strong>on</strong> fifteen years before Verlinde – leads to the field equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity.<br />

An alternative deducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> universal gravitati<strong>on</strong> from black hole entropy is the following.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> gravitati<strong>on</strong>al force F <strong>on</strong> a test mass m is given by the vacuum temperature T<br />

created by the central mass M and by the change <str<strong>on</strong>g>of</str<strong>on</strong>g> entropy S per length that is induced<br />

by the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the test mass:<br />

F=T dS<br />

dx . (174)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> change <str<strong>on</strong>g>of</str<strong>on</strong>g> entropy dS/dx when a test mass m moves by a distance x can be determined<br />

from the strand model in a simple manner. When the test mass m moves by a<br />

(reduced) Compt<strong>on</strong> wavelength, in the strand model, the mass has rotated by a full turn:<br />

the entropy change is thus 2πk per (reduced) Compt<strong>on</strong> wavelength. Thus we have<br />

dS kc<br />

=m2π . (175)<br />

dx ħ<br />

Using the temperature T found in expressi<strong>on</strong> (172), we get an expressi<strong>on</strong> for the gravita-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


general relativity deduced from strands 285<br />

ti<strong>on</strong>al force given by<br />

F=G Mm<br />

R 2 . (176)<br />

Page 36<br />

Page 289<br />

Ref. 190<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. I, page 218<br />

Thisisuniversalgravitati<strong>on</strong>again.<br />

We have thus deduced universal gravitati<strong>on</strong> from the entropy and the vacuum temperature<br />

generated by gravitating masses. We note that the temperature and entropy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

black holes are limit values. We can thus state that universal gravitati<strong>on</strong> is a c<strong>on</strong>sequence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nature’s limit values.<br />

Summary <strong>on</strong> universal gravitati<strong>on</strong> from strands<br />

Universal gravitati<strong>on</strong> is due to the temperature and entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> the (curved) vacuum<br />

around masses. <str<strong>on</strong>g>The</str<strong>on</strong>g> limit case is the temperature and entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes. In the<br />

strand model, these temperature and entropy values are a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the underlying<br />

strand crossing switches; we will show this shortly.<br />

More precisely, gravitati<strong>on</strong> is due to twisted tail pairs. In the strand model, universal<br />

gravitati<strong>on</strong> thus appears as an effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the crossing switches induced by masses. In fact,<br />

we have several explanati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> universal 1/r 2 gravitati<strong>on</strong> using strands. We have deduced<br />

universal gravitati<strong>on</strong> from the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> strands, from the temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> strands<br />

and from the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> strands around a mass. We have also have deduced universal<br />

gravitati<strong>on</strong> from the maximum force, which strands fulfil as well. In short, strands explain<br />

the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> universal gravitati<strong>on</strong> in several c<strong>on</strong>sistent ways.<br />

Incidentally, modelling mass as a source for strand crossing switches – twisted strand<br />

pairs – is remotely reminiscent <str<strong>on</strong>g>of</str<strong>on</strong>g> Georges-Louis Lesage’s eighteenth-century model <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gravitati<strong>on</strong>. Lesage proposed that gravity appears because many tiny, usually unnoticed<br />

corpuscules push masses together. In fact, as we will see shortly, there is a certain similarity<br />

between these assumed tiny corpuscules and virtual gravit<strong>on</strong>s. And interestingly,<br />

all criticisms <str<strong>on</strong>g>of</str<strong>on</strong>g> Lesage’s model then cease to hold. First, there is no decelerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> free<br />

masses in inertial moti<strong>on</strong>, thanks to the built-in special-relativistic invariance. Sec<strong>on</strong>dly,<br />

there is no heating <str<strong>on</strong>g>of</str<strong>on</strong>g> masses, because the entangled tails represent virtual gravit<strong>on</strong>s that<br />

scatter elastically. Thirdly, and most <str<strong>on</strong>g>of</str<strong>on</strong>g> all, by replacing the corpuscules ultra-m<strong>on</strong>dains <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Lesage by virtual gravit<strong>on</strong>s – and finally by strands – we can predict an additi<strong>on</strong>al effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gravity that is not described by the inverse square dependence: space-time curvature.<br />

Curved space<br />

In nature, observati<strong>on</strong> shows that physical space is not flat around masses, i.e., in the<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity. Near mass and energy, physical space is curved. Observati<strong>on</strong>salso<br />

show that curved space-time remains 3+1-dimensi<strong>on</strong>al. <str<strong>on</strong>g>The</str<strong>on</strong>g> observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this type <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

curvature was predicted l<strong>on</strong>g before it was measured, because curvature follows unambiguously<br />

when the observer-invariance <str<strong>on</strong>g>of</str<strong>on</strong>g> the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light c and the observerinvariance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the gravitati<strong>on</strong>al c<strong>on</strong>stant G are combined.<br />

We c<strong>on</strong>tinue directly with the strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial curvature and show that all<br />

observati<strong>on</strong>s are reproduced.<br />

⊳ Curvature (<str<strong>on</strong>g>of</str<strong>on</strong>g> physical space-time) is due to simple, unknotted and weakly<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


286 10 general relativity deduced from strands<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> partial link :<br />

2R<br />

axis<br />

Page 358<br />

other vacuum strands<br />

FIGURE 76 A schematic model <str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental defect, and thus the fundamental type <str<strong>on</strong>g>of</str<strong>on</strong>g> curvature:<br />

the partial link.<br />

localized defects in the tangle <str<strong>on</strong>g>of</str<strong>on</strong>g> strands that make up the vacuum. An example<br />

is shown in Figure 76.<br />

⊳ Inthecase<str<strong>on</strong>g>of</str<strong>on</strong>g>curvature,physical space-time, which is due to averaged strand<br />

crossing switches, differs from flat background space-time, which usually<br />

corresp<strong>on</strong>ds to the tangent or to the asymptotic space-time. In Figure 76,<br />

the grey background colour can be taken as visualizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the background<br />

space.<br />

⊳ Mass is a localized defect in space and is due to tangled strands. Thus mass<br />

curves space around it.<br />

⊳ Energy in a volume is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches per unit time. As a<br />

result, mass is equivalent to energy. As a sec<strong>on</strong>d result, energy also curves<br />

space.<br />

⊳ Gravitati<strong>on</strong> is the space-time curvature originating from compact regi<strong>on</strong>s<br />

with mass or energy.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se natural definiti<strong>on</strong>s show that curvature is due to strand c<strong>on</strong>figurati<strong>on</strong>s. In particular,<br />

curvature is built <str<strong>on</strong>g>of</str<strong>on</strong>g> unknotted – i.e., massless – defects. <str<strong>on</strong>g>The</str<strong>on</strong>g> massless defects leading<br />

to curvature are usually dynamic: they evolve and change. Such curvature defects – virtual<br />

gravit<strong>on</strong>s – originate at regi<strong>on</strong>s c<strong>on</strong>taining matter or energy. In fact, the curvature <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

space around masses is a natural result <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the strands that make up matter<br />

tangles.<br />

We note that curved space, being a time average, is c<strong>on</strong>tinuous and unique. Vacuumor<br />

curved space, more precisely, curved physical space, thus differs from background space,<br />

which is flat (and drawn in grey in the figures).<br />

Incidentally, the distincti<strong>on</strong> between physical and background space also avoids Einstein’s<br />

hole argument; in fact, the distincti<strong>on</strong> allows discussing it clearly, as <strong>on</strong>ly physical<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


general relativity deduced from strands 287<br />

General horiz<strong>on</strong> :<br />

(side view)<br />

Black hole :<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 284<br />

FIGURE 77 A schematic model <str<strong>on</strong>g>of</str<strong>on</strong>g> a general and a spherical horiz<strong>on</strong> as tight weaves, as pictured by a<br />

distant observer. In the strand model there is nothing, no strands and thus no space, behind a horiz<strong>on</strong>.<br />

space describes nature.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong>s and black holes<br />

In general relativity, another c<strong>on</strong>cept plays a fundamental role. In the strand model we<br />

have:<br />

⊳ A horiz<strong>on</strong> is a tight, <strong>on</strong>e-sided weave <str<strong>on</strong>g>of</str<strong>on</strong>g> strands.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>refore, there are no strands behind the horiz<strong>on</strong>. This implies that behind a horiz<strong>on</strong>,<br />

there is no matter, no light, no space and no time – just nothing. Indeed, this is the<br />

experience <str<strong>on</strong>g>of</str<strong>on</strong>g> any observer about a horiz<strong>on</strong>. A horiz<strong>on</strong> is thus a structure that limits<br />

physical space. It does not limit background space.<br />

One particular type <str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong> is well-known:<br />

⊳ A black hole is a tight, <strong>on</strong>e-sided and closed weave <str<strong>on</strong>g>of</str<strong>on</strong>g> strands.<br />

In principle, closed horiz<strong>on</strong>s can have any shape. <str<strong>on</strong>g>The</str<strong>on</strong>g> simplest case is the spherical, n<strong>on</strong>rotating<br />

horiz<strong>on</strong>, which defines the Schwarzschild black hole. It is illustrated <strong>on</strong> the righthand<br />

side <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 77.<br />

If an observer is located outside a spherical horiz<strong>on</strong>, the strand model states that there<br />

is nothing inside the horiz<strong>on</strong>: no matter, no light and no vacuum. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model<br />

thus provides a simple and drastic view <str<strong>on</strong>g>of</str<strong>on</strong>g> black hole horiz<strong>on</strong>s. Figure 77 also illustrates<br />

that the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> radius (or size) <str<strong>on</strong>g>of</str<strong>on</strong>g> a black hole has to be approached with the (wellknown)<br />

care. In general, the size <str<strong>on</strong>g>of</str<strong>on</strong>g> a structure made <str<strong>on</strong>g>of</str<strong>on</strong>g> strands is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings<br />

encountered when travelling through it. However, an observer cannot travel through a<br />

black hole: there are no strands inside, thus there is no vacuum there! <str<strong>on</strong>g>The</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> a black<br />

hole must therefore be defined indirectly. <str<strong>on</strong>g>The</str<strong>on</strong>g> simplest way is to take the square root<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the area, divided by 4π, as the radius. Thus the strand model, like general relativity,<br />

requires that the size <str<strong>on</strong>g>of</str<strong>on</strong>g> a compact horiz<strong>on</strong> be defined by travelling around it.<br />

We note that the strand model also provides an intuitive explanati<strong>on</strong> for the differ-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


288 10 general relativity deduced from strands<br />

Challenge 180 e<br />

ences between a rotating and a n<strong>on</strong>-rotating black hole.<br />

Is there something behind a horiz<strong>on</strong>?<br />

A drawing <str<strong>on</strong>g>of</str<strong>on</strong>g> a horiz<strong>on</strong> weave, such as the <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 77, clearly points out the difference<br />

between the background space and the physical space. <str<strong>on</strong>g>The</str<strong>on</strong>g> background space is<br />

the space we need for thinking, and is the space in which the drawing is set. <str<strong>on</strong>g>The</str<strong>on</strong>g> physical<br />

space is the <strong>on</strong>e that appears as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the averaging <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand crossings.<br />

Physical, curved space exists <strong>on</strong>ly <strong>on</strong> the observer side – usually outside – <str<strong>on</strong>g>of</str<strong>on</strong>g> the horiz<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> physical space around a black hole is curved; it agrees with the background space<br />

<strong>on</strong>ly at infinite distance from the horiz<strong>on</strong>. Inside the horiz<strong>on</strong>, there is background space,<br />

but no physical space. In short, the strand model implies that – for an observer at spatial<br />

infinity – there is nothing, not even a singularity, inside a black hole horiz<strong>on</strong>.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g>re is no physical space, no matter and no singularity inside a horiz<strong>on</strong>.<br />

Horiz<strong>on</strong>s are observer-dependent. Both the existence and the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> a horiz<strong>on</strong> depends<br />

<strong>on</strong> the observer. As we will see, this happens in precisely the same way as in usual<br />

general relativity. In the strand model, there is no c<strong>on</strong>tradicti<strong>on</strong> between the <strong>on</strong>e observer<br />

at spatial infinity who says that there is nothing behind a horiz<strong>on</strong>, not even physical<br />

space, and another, falling observer, who does not observe a horiz<strong>on</strong> and thus states<br />

that there is something there. In the strand model, the two statements naturally transform<br />

into each other under change <str<strong>on</strong>g>of</str<strong>on</strong>g> viewpoint. Indeed, the transformati<strong>on</strong> between<br />

the two viewpoints c<strong>on</strong>tains a deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the involved strands.<br />

We note that the equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> viewpoints and the statement that there is nothing<br />

behind a horiz<strong>on</strong> is based <strong>on</strong> the combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity and quantum theory.<br />

If we would c<strong>on</strong>tinue thinking that space and time is a manifold <str<strong>on</strong>g>of</str<strong>on</strong>g> points – thus<br />

disregarding quantum theory – these statements would not follow.<br />

In summary, <strong>on</strong>e-sided tight weaves are a natural definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong>s.<br />

Energy <str<strong>on</strong>g>of</str<strong>on</strong>g> black hole horiz<strong>on</strong>s<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model allows us to calculate the energy c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> a closed horiz<strong>on</strong>. Energy is<br />

acti<strong>on</strong> per unit time. In the strand model, the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>-rotating spherical horiz<strong>on</strong><br />

is thus given by the number N cs <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches per time unit. In a tight weave,<br />

crossing switches cannot happen in parallel, but have to happen sequentially. As a result,<br />

a crossing switch ‘propagates’ to the neighbouring Planck area <strong>on</strong> the surface. Since the<br />

horiz<strong>on</strong> weave is tight and the propagati<strong>on</strong> speed is <strong>on</strong>e crossing per crossing switch<br />

time, this happens at the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light. In the time T that light takes to circumnavigate<br />

the spherical horiz<strong>on</strong>, all crossings switch. We thus have:<br />

E= N cs<br />

T<br />

= 4πR2<br />

2πR<br />

c 4 c4<br />

=R<br />

4G 2G . (177)<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s thus imply the well-known relati<strong>on</strong> between energy (or mass) and radius <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Schwarzschild black holes.<br />

How do the crossing switches occur at a horiz<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a black hole? This interesting<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


general relativity deduced from strands 289<br />

Challenge 181 e<br />

puzzle is left to the reader.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> tight-weave model <str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong>s also illustrates and c<strong>on</strong>firms both the hoop c<strong>on</strong>jecture<br />

and the Penrose c<strong>on</strong>jecture. For a given mass, because <str<strong>on</strong>g>of</str<strong>on</strong>g> the minimum size <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings,<br />

a spherical horiz<strong>on</strong> has the smallest possible diameter, compared to other possible<br />

shapes. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model naturally implies that, for a given mass, spherical black holes<br />

indeed are the densest objects in nature.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model naturally implies the no-hair theorem. Since all strands are the same,<br />

independently <str<strong>on</strong>g>of</str<strong>on</strong>g> the type <str<strong>on</strong>g>of</str<strong>on</strong>g> matter that formed or fell into the horiz<strong>on</strong>, a black hole<br />

has no characteristics other than mass, angular momentum and charge. Here we used a<br />

result from the next chapter, when it will become clear that all elementary particles are<br />

indeed made <str<strong>on</strong>g>of</str<strong>on</strong>g> the same featureless strands. Taking that result as given, we deduce that<br />

flavour quantum numbers and particle number do not make sense for black holes. We<br />

also deduce that weak and str<strong>on</strong>g charge are not defined for black holes. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s explain<br />

naturally why neutral black holes made <str<strong>on</strong>g>of</str<strong>on</strong>g> antimatter and neutral black holes made <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

matter do not differ, if their masses and angular momenta are the same. In short, the<br />

strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> nature implies the no-hair theorem: strands, not hairs.<br />

Horiz<strong>on</strong>s and black holes are borderline systems between space and matter. This borderline<br />

property must be fulfilled by every final theory. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model fulfils this<br />

requirement: in the strand model, black holes can either be described as curved space or<br />

as tightly packed particles in permanent free fall.<br />

Entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum and matter<br />

Both vacuum and matter are made <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuating strands. We note directly:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> flat and infinite vacuum has vanishing entropy, because the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

crossing switches is zero <strong>on</strong> average.<br />

At the same time,<br />

⊳ Curved space and horiz<strong>on</strong>s have n<strong>on</strong>-vanishing entropy.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum and <str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong>s differs from that <str<strong>on</strong>g>of</str<strong>on</strong>g> matter. In the absence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gravity, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> microstates <str<strong>on</strong>g>of</str<strong>on</strong>g> matter is determined – as in usual thermodynamics<br />

(thermostatics) – by the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle cores.<br />

In str<strong>on</strong>g gravity, when the distincti<strong>on</strong> between matter and vacuum is not so clear-cut,<br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> microstates is determined by the possible crossing switches <str<strong>on</strong>g>of</str<strong>on</strong>g> the strands.<br />

In str<strong>on</strong>g gravity, <strong>on</strong>ly tails play a role. This becomes clear when we calculate the entropy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> black holes.<br />

Entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes deduced from the strand model<br />

Despite the tight weaving, the strands making up a horiz<strong>on</strong> are fluctuating and moving:<br />

the weave shape fluctuates and crossing switch all the time. This fluctuating moti<strong>on</strong> is<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


290 10 general relativity deduced from strands<br />

Ref. 191<br />

FIGURE 78 <str<strong>on</strong>g>The</str<strong>on</strong>g> entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes results from the number <str<strong>on</strong>g>of</str<strong>on</strong>g> possible crossing states above a<br />

Planck area.<br />

the reas<strong>on</strong> why horiz<strong>on</strong>s – in particular those <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes – have entropy.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> weave model <str<strong>on</strong>g>of</str<strong>on</strong>g> a horiz<strong>on</strong>, illustrated in detail in Figure 78, allows us to calculate<br />

the corresp<strong>on</strong>ding entropy. Since the horiz<strong>on</strong> is a tight weave, there is a crossing <strong>on</strong> each<br />

Planck area. To a first approximati<strong>on</strong>, <strong>on</strong> each (corrected) Planck area <str<strong>on</strong>g>of</str<strong>on</strong>g> the horiz<strong>on</strong>, the<br />

strands can cross in two different ways. <str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental principle <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model<br />

thus yields two microstates per Planck area. <str<strong>on</strong>g>The</str<strong>on</strong>g> number N <str<strong>on</strong>g>of</str<strong>on</strong>g> Planck areas is given by<br />

N 2 =Ac 3 /4Għ. <str<strong>on</strong>g>The</str<strong>on</strong>g> resulting number <str<strong>on</strong>g>of</str<strong>on</strong>g> black hole microstates is 2 N2 .<str<strong>on</strong>g>The</str<strong>on</strong>g>entropyis<br />

given by the natural logarithm <str<strong>on</strong>g>of</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> the possible microstates times k. This<br />

approximati<strong>on</strong> gives an entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> a horiz<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

S=A kc3 ln 2 . (178)<br />

4Għ<br />

This result is the well-known first approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> black hole entropy: <strong>on</strong>e bit per corrected<br />

Planck area. In the strand model, the proporti<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> entropy and area is thus<br />

a direct c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strands. This proporti<strong>on</strong>ality is also well<br />

known from studies <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum gravity and <str<strong>on</strong>g>of</str<strong>on</strong>g> strings. In those approaches however,<br />

the relati<strong>on</strong> between the area proporti<strong>on</strong>ality and extensi<strong>on</strong> is less obvious.<br />

For Schwarzschild black holes, the entropy value <str<strong>on</strong>g>of</str<strong>on</strong>g> expressi<strong>on</strong> (178) isnot correct.<br />

In the strand model, this incorrect value is explained as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> neglecting<br />

the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand tails. Indeed, additi<strong>on</strong>al c<strong>on</strong>tributi<strong>on</strong>s to the entropy appear at<br />

a finite distance from the horiz<strong>on</strong>, due to the crossing <str<strong>on</strong>g>of</str<strong>on</strong>g> the tails <strong>on</strong> their way to the<br />

border <str<strong>on</strong>g>of</str<strong>on</strong>g> space, as shown in Figure 78. <str<strong>on</strong>g>The</str<strong>on</strong>g> actual entropy will thus be larger than the<br />

first approximati<strong>on</strong>, but still be proporti<strong>on</strong>al to the area A.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> correct proporti<strong>on</strong>ality factor between the area and the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> a black hole<br />

results when the strand tails are taken into account. (<str<strong>on</strong>g>The</str<strong>on</strong>g> correcti<strong>on</strong> factor is called the<br />

Barbero–Immirzi parameter in the research literature <strong>on</strong> quantum gravity.) <str<strong>on</strong>g>The</str<strong>on</strong>g> calculati<strong>on</strong><br />

is simplest for Schwarzschild black holes. By c<strong>on</strong>structi<strong>on</strong>, a black hole with macroscopic<br />

radius R, being a tight weave, has R/l Pl tails. For each given Planck area, there<br />

are, apart from the basic, or lowest crossing, additi<strong>on</strong>al crossings ‘above it’, al<strong>on</strong>g the<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


general relativity deduced from strands 291<br />

Challenge 182 e<br />

Ref. 192<br />

radial directi<strong>on</strong>, as shown in Figure 78. <str<strong>on</strong>g>The</str<strong>on</strong>g>seadditi<strong>on</strong>alcrossingsareduetothetails<br />

from neighbouring and distant Planck areas.<br />

Taking into effect all strand tails allows us to calculate the average number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings<br />

above a given Planck area. <str<strong>on</strong>g>The</str<strong>on</strong>g> main point is to perform this calculati<strong>on</strong> for all those<br />

tails that start in a circular strip <str<strong>on</strong>g>of</str<strong>on</strong>g> Planck width centred around the Planck area under<br />

c<strong>on</strong>siderati<strong>on</strong>. We then add the probabilities for all possible circular strips. One such<br />

circular strip is drawn in Figure 78.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong>s as tight weaves implies that a horiz<strong>on</strong> with N 2 Planck areas<br />

is made <str<strong>on</strong>g>of</str<strong>on</strong>g> N strands. This means that for each circular strip <str<strong>on</strong>g>of</str<strong>on</strong>g> radius nl Pl ,thereis<strong>on</strong>ly<br />

<strong>on</strong>e strand that starts there and reaches spatial infinity as a tail. For this tail, the average<br />

probability p that it crosses above the central Planck area under c<strong>on</strong>siderati<strong>on</strong> is<br />

p= 1 n! . (179)<br />

Summing over all strips, i.e., over all values n, we get a total <str<strong>on</strong>g>of</str<strong>on</strong>g> ∑ ∞ n=0<br />

1/n! = e = 2.71828...<br />

microstates <strong>on</strong> and above the central Planck area under c<strong>on</strong>siderati<strong>on</strong>. Thus the number<br />

e replaces the number 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> the first approximati<strong>on</strong>: the number <str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong> microstates<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a Schwarzschild black hole is not 2 N2 ,bute N2 . As a c<strong>on</strong>sequence, the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

macroscopic Schwarzschild horiz<strong>on</strong> becomes<br />

S=A kc3<br />

4Għ . (180)<br />

This is the Bekenstein–Hawking expressi<strong>on</strong> for the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> Schwarzschild black holes.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus reproduces this well-known result. With this explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

difference between 2 and e = 2.71828..., the strand model c<strong>on</strong>firms an old idea:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> a black hole is located at and near the horiz<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> above calculati<strong>on</strong>, however, counts some states more than <strong>on</strong>ce. Topologically<br />

identical spherical horiz<strong>on</strong>s can differ in the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> their north pole and in their<br />

state <str<strong>on</strong>g>of</str<strong>on</strong>g> rotati<strong>on</strong> around the north–south axis. If a spherical horiz<strong>on</strong> is made <str<strong>on</strong>g>of</str<strong>on</strong>g> N strands,<br />

it has N 2 possible physical orientati<strong>on</strong>s for the north pole and N possible angular orientati<strong>on</strong>s<br />

around the north–south axis. <str<strong>on</strong>g>The</str<strong>on</strong>g> actual number <str<strong>on</strong>g>of</str<strong>on</strong>g> microstates is thus e N2 /N 3 .<br />

Using the relati<strong>on</strong> between N 2 and the surface area A, namelyA=N 2 4Għ/c 3 ,weget<br />

the final result<br />

S=A kc3<br />

4Għ − 3k Ac3<br />

ln<br />

2 4Għ . (181)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus makes a specific predicti<strong>on</strong> for the logarithmic correcti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> a Schwarzschild black hole. This final predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model<br />

agrees with many (but not all) calculati<strong>on</strong>s using superstrings or other quantum gravity<br />

approaches.<br />

In summary, the entropy value (180), respectively (181), <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes is due to the<br />

extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental entities in the strand model and to the three dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


292 10 general relativity deduced from strands<br />

Ref. 57, Ref. 58<br />

space. If either <str<strong>on</strong>g>of</str<strong>on</strong>g> these properties were not fulfilled, the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes would<br />

not result. This is not a surprise; also our deducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory was based <strong>on</strong> the<br />

same two properties. In short: like every quantum effect, also the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes<br />

is a result <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong> and three-dimensi<strong>on</strong>ality. Only a three-dimensi<strong>on</strong>al descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nature agrees with observati<strong>on</strong>.<br />

Temperature, radiati<strong>on</strong> and evaporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strands that make up a horiz<strong>on</strong> fluctuate in shape. Since every horiz<strong>on</strong> c<strong>on</strong>tains<br />

energy, the shape fluctuati<strong>on</strong>s imply energy fluctuati<strong>on</strong>s. In other words, horiz<strong>on</strong>s are<br />

predicted to have a temperature. <str<strong>on</strong>g>The</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> the temperature can be deduced from<br />

the strand model by noting that the characteristic size <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluctuati<strong>on</strong>s for a spherical<br />

horiz<strong>on</strong> is the radius R <str<strong>on</strong>g>of</str<strong>on</strong>g> the horiz<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore we have<br />

Using the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface gravity as a=c 2 /R,weget<br />

kT = ħc<br />

2πR . (182)<br />

T=<br />

ħa<br />

2πkc . (183)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts that horiz<strong>on</strong>s have a temperature proporti<strong>on</strong>al to their surface<br />

gravity. This result has been known since 1973.<br />

All hot bodies radiate. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus predicts that Schwarzschild black holes<br />

radiate thermal radiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the horiz<strong>on</strong> temperature, with power and wavelength<br />

P=2πħc 2 /R 2 , λ ≈ R . (184)<br />

This c<strong>on</strong>firms a well-known c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes.<br />

Like all thermal systems, horiz<strong>on</strong>s follow thermodynamics. In the strand model, black<br />

hole radiati<strong>on</strong> and evaporati<strong>on</strong> occur by reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> strands that make<br />

up the horiz<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus predicts that black holes evaporate completely,<br />

until <strong>on</strong>ly elementary particles are left over. In particular, the strand model implies that<br />

in black hole radiati<strong>on</strong>, there is no informati<strong>on</strong> loss.<br />

In short, strands reproduce all aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> black hole evaporati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model<br />

also shows that there is no informati<strong>on</strong> loss in this process.<br />

Black hole limits<br />

In many ways, black holes are extreme physical systems. Not <strong>on</strong>ly are black holes the<br />

limit systems <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity; black holes also realize various other limits. As such,<br />

black holes resemble light, which realizes the speed limit. We now explore some <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

limits.<br />

For a general physical system, not necessarily bound by a horiz<strong>on</strong>, the definiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

energy and entropy with strands allow some interesting c<strong>on</strong>clusi<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

system is the result <str<strong>on</strong>g>of</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing possibilities. <str<strong>on</strong>g>The</str<strong>on</strong>g> energy <str<strong>on</strong>g>of</str<strong>on</strong>g> a system is<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


general relativity deduced from strands 293<br />

Ref. 193<br />

Ref. 194<br />

Page 382<br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing changes per unit time. A large entropy is thus <strong>on</strong>ly possible if a<br />

system shows many crossing changes per time. Since the typical system time is given by<br />

the circumference <str<strong>on</strong>g>of</str<strong>on</strong>g> the system, the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> a physical system is therefore limited:<br />

S⩽ER2πk/ħc. (185)<br />

This relati<strong>on</strong> is known as Bekenstein’s entropy bound; the precise definiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantities<br />

in the bound need some care, as D<strong>on</strong> Page explains. <str<strong>on</strong>g>The</str<strong>on</strong>g> bound thus also follows<br />

from the strand model. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s imply that the equality is realized <strong>on</strong>ly for black holes.<br />

In the strand model, horiz<strong>on</strong>s are tight, <strong>on</strong>e-sided weaves. For example, this implies<br />

that any tangle that encounters a horiz<strong>on</strong> is essentially flat. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle flatness and<br />

the extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the tails, at most <strong>on</strong>e Planck mass can cross a horiz<strong>on</strong> during a Planck<br />

time. This yields the mass rate limit<br />

dm/dt ⩽c 3 /4G (186)<br />

that is valid in general relativity and in nature.<br />

Black holes can rotate. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model states that there is a highest angular frequency<br />

possible; it appears when the equator <str<strong>on</strong>g>of</str<strong>on</strong>g> the black hole rotates with the speed <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

light. As a result, the angular momentum J <str<strong>on</strong>g>of</str<strong>on</strong>g> a black hole is limited by<br />

J


294 10 general relativity deduced from strands<br />

In summary, the strand model reproduces the known limit properties <str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong>s.<br />

And all these results are independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the precise fluctuati<strong>on</strong> details <str<strong>on</strong>g>of</str<strong>on</strong>g> the strands.<br />

Curvature around black holes<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> tails <str<strong>on</strong>g>of</str<strong>on</strong>g> a black hole extend up to the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space; the density <str<strong>on</strong>g>of</str<strong>on</strong>g> tails is highest at<br />

the horiz<strong>on</strong>. A black hole is therefore surrounded by partial links at any finite distance<br />

from the horiz<strong>on</strong>. In other words, the space around a black hole is curved. <str<strong>on</strong>g>The</str<strong>on</strong>g>value<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the space-time curvature increases as <strong>on</strong>e approaches the horiz<strong>on</strong>, because <str<strong>on</strong>g>of</str<strong>on</strong>g> the way<br />

in which the partial links hinder each other in their moti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> nearer they are to the<br />

horiz<strong>on</strong>, the more they hinder each other. <str<strong>on</strong>g>The</str<strong>on</strong>g> curvature that appears is proporti<strong>on</strong>al to<br />

the density <str<strong>on</strong>g>of</str<strong>on</strong>g> partial links and to their average strand curvature.<br />

At the horiz<strong>on</strong>, the curvature radius is the horiz<strong>on</strong> radius R. By c<strong>on</strong>structi<strong>on</strong>, the<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> tails departing from a n<strong>on</strong>-rotating black hole is proporti<strong>on</strong>al to R. <str<strong>on</strong>g>The</str<strong>on</strong>g> spatial<br />

curvature is given by the average crossing density gradient. Hence at a radial distance r<br />

from a static black hole, the spatial curvature K is<br />

K∼ R r 3 . (190)<br />

So at the horiz<strong>on</strong> itself, the curvature K is (<str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g>) the inverse square <str<strong>on</strong>g>of</str<strong>on</strong>g> the horiz<strong>on</strong><br />

radius; further away, it decreases rapidly, with the third power <str<strong>on</strong>g>of</str<strong>on</strong>g> the distance. This<br />

result is a well-known property <str<strong>on</strong>g>of</str<strong>on</strong>g> the Schwarzschild soluti<strong>on</strong> and is due to the extensi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the strands. <str<strong>on</strong>g>The</str<strong>on</strong>g> rapid decay with radius is the reas<strong>on</strong> why in everyday situati<strong>on</strong>s there<br />

is no noticeable curvature <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time. In short, strands allow us to deduce the correct<br />

curvature <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time around black holes and spherical masses.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> shape <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-rotating black holes<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also explains and visualizes the importance <str<strong>on</strong>g>of</str<strong>on</strong>g> spherical horiz<strong>on</strong>s in<br />

nature. First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, strands illustrate the n<strong>on</strong>-existence <str<strong>on</strong>g>of</str<strong>on</strong>g> (uncharged) <strong>on</strong>e-dimensi<strong>on</strong>al<br />

or toroidal horiz<strong>on</strong>s in 3+1space-time dimensi<strong>on</strong>s. Such c<strong>on</strong>figurati<strong>on</strong>s are unstable,<br />

in particular against transverse shear and rearrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> the strands.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also implies that n<strong>on</strong>-rotating, closed horiz<strong>on</strong>s are spherical. Obviously,<br />

spheres are the bodies with the smallest surface for a given volume. <str<strong>on</strong>g>The</str<strong>on</strong>g> minimum<br />

horiz<strong>on</strong> surface appears because the strands, through their fluctuati<strong>on</strong>s, effectively ‘pull’<br />

<strong>on</strong> each Planck area <str<strong>on</strong>g>of</str<strong>on</strong>g> the horiz<strong>on</strong>. As a result, all n<strong>on</strong>-rotating macroscopic horiz<strong>on</strong>s<br />

will evolve to the spherical situati<strong>on</strong> in a few Planck times. (Deviati<strong>on</strong>s from the spherical<br />

shape will mainly occur near Planck scales.) With the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity waves given<br />

below, it also becomes clear that str<strong>on</strong>gly deformed, macroscopic and n<strong>on</strong>-spherical horiz<strong>on</strong>s<br />

are unstable against emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity waves or <str<strong>on</strong>g>of</str<strong>on</strong>g> other particles. In short,<br />

⊳ All n<strong>on</strong>-rotating horiz<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-spherical shape are unstable.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus c<strong>on</strong>firms that spherical horiz<strong>on</strong>s are favoured and that the most<br />

compact bodies with a given mass. <str<strong>on</strong>g>The</str<strong>on</strong>g> reas<strong>on</strong>ing can be extended to rotating horiz<strong>on</strong>s,<br />

yielding the well-known shapes.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


general relativity deduced from strands 295<br />

Page 282<br />

Ref. 22<br />

Page 33<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 98<br />

In summary, strands reproduce all known qualitative and quantitative properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong>s and <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes, and thus <str<strong>on</strong>g>of</str<strong>on</strong>g> general systems with str<strong>on</strong>g gravitati<strong>on</strong>al<br />

fields. All predicti<strong>on</strong>s from strands agree with observati<strong>on</strong>s and with other approaches<br />

to quantum gravity. <str<strong>on</strong>g>The</str<strong>on</strong>g>se hints already suggest that strands imply the field equati<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> field equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> field equati<strong>on</strong>s can be deduced from the fundamental principle in two different, but<br />

related ways. Essentially, both derivati<strong>on</strong>s repeat the reas<strong>on</strong>ing for universal gravitati<strong>on</strong><br />

given above, but for the relativistic case. <str<strong>on</strong>g>The</str<strong>on</strong>g> first deducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the field equati<strong>on</strong>s is based<br />

<strong>on</strong> an old argument <strong>on</strong> the thermodynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s show that horiz<strong>on</strong>s<br />

have three thermodynamic properties:<br />

— an area–entropy relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S=Akc 3 /4Għ,<br />

— a curvature–temperature relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T=aħ/2πkc,<br />

— a relati<strong>on</strong> between heat and entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> δQ = TδS.<br />

Using these three properties, and using the relati<strong>on</strong><br />

δQ = δE , (191)<br />

that is valid <strong>on</strong>ly in case <str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong>s, we get the first principle <str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong> mechanics<br />

δE =<br />

c2<br />

aδA . (192)<br />

8πG<br />

From this relati<strong>on</strong>, using the Raychaudhuri equati<strong>on</strong>, we obtain the field equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

general relativity. This deducti<strong>on</strong> was given above.*<br />

In other words, the field equati<strong>on</strong>s result from the thermodynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. It is<br />

worth noting that the result is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the details <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluctuati<strong>on</strong>s or <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

microscopic model <str<strong>on</strong>g>of</str<strong>on</strong>g> space, as l<strong>on</strong>g as the three thermodynamic properties just given<br />

* Here is the argument in a few lines. <str<strong>on</strong>g>The</str<strong>on</strong>g> first principle <str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong> mechanics can be rewritten, using the<br />

energy–momentum tensor T ab ,as<br />

∫T ab k a dΣ b =<br />

c2<br />

8πG aδA<br />

where dΣ b is the general surface element and k is the Killing vector that generates the horiz<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

Raychaudhuri equati<strong>on</strong> allows us to rewrite the right-hand side as<br />

∫T ab k a dΣ b =<br />

c4<br />

8πG ∫R abk a dΣ b<br />

where R ab is the Ricci tensor describing space-time curvature. This equality implies that<br />

T ab =<br />

c4<br />

8πG (R ab −(R/2+Λ)g ab )<br />

where Λ is an undeterminedc<strong>on</strong>stant<str<strong>on</strong>g>of</str<strong>on</strong>g> integrati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>se are Einstein’s field equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> generalrelativity.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> field equati<strong>on</strong>s are valid everywhere and for all times, because a suitable coordinate transformati<strong>on</strong>can<br />

put a horiz<strong>on</strong> at any point and at any time. To achieve this, just change to a suitable accelerating frame, as<br />

explained in the volume <strong>on</strong> relativity.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


296 10 general relativity deduced from strands<br />

Page 188<br />

Ref. 19<br />

Page 33<br />

are valid. In fact, these properties must be fulfilled by any model <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time; and<br />

indeed, several competing models <str<strong>on</strong>g>of</str<strong>on</strong>g> space claim to fulfil them.<br />

We can use the relati<strong>on</strong> between fluctuati<strong>on</strong>s and strands to settle an issue menti<strong>on</strong>ed<br />

above, in the secti<strong>on</strong> <strong>on</strong> quantum theory. <str<strong>on</strong>g>Strand</str<strong>on</strong>g> fluctuati<strong>on</strong>s must obey the thermodynamic<br />

properties to allow us to define space-time. If they obey these properties, then<br />

space-time exists and curves according to general relativity.<br />

A sec<strong>on</strong>d derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the field equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity follows the spirit <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

strand model most closely. It is even shorter. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s imply that all physical quantities<br />

are limited by the corresp<strong>on</strong>ding Planck limit. <str<strong>on</strong>g>The</str<strong>on</strong>g>se limits are due to the limit to the<br />

fundamental principle, in other words, they are due to the packing limit <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. In<br />

particular, the fundamental principle limits force by F⩽c 4 /4G and power by P⩽c 5 /4G.<br />

We have already shown above that this limit implies the field equati<strong>on</strong>.<br />

In other words,<br />

⊳ Given that black holes and thus horiz<strong>on</strong>s are thermodynamic systems, so is<br />

curved space.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> reas<strong>on</strong>: both can be transformed into each other. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore:<br />

⊳ Since black holes have thermodynamic aspects, so has gravity.<br />

And since black holes are built from microscopic degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom, so is curved space.<br />

Or, in simple words:<br />

⊳ Space is made <str<strong>on</strong>g>of</str<strong>on</strong>g> many small entities.<br />

And finally we can state:<br />

⊳ Space is made <str<strong>on</strong>g>of</str<strong>on</strong>g> strands, because strands are the simplest entities that yield<br />

black hole entropy.<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s are the simplest way to incorporate quantum effects into gravitati<strong>on</strong>. If we take<br />

into c<strong>on</strong>siderati<strong>on</strong> that strands are the <strong>on</strong>ly way known so far to incorporate gauge interacti<strong>on</strong>s,<br />

we can even c<strong>on</strong>clude that strands are the <strong>on</strong>ly way known so far to incorporate<br />

all quantum effects into gravitati<strong>on</strong>.<br />

In summary, the strand model asserts that the field equati<strong>on</strong>s appear as c<strong>on</strong>sequences<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> impenetrable, featureless strands. In particular, the strand model implies<br />

and c<strong>on</strong>firms that a horiz<strong>on</strong> and a particle gas at Planck energy do not differ. However,<br />

the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the cosmological c<strong>on</strong>stant is not predicted from strand thermodynamics.<br />

Equati<strong>on</strong>s from no equati<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model asserts that the field equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity are not the result<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> another, more basic evoluti<strong>on</strong> equati<strong>on</strong>, but result directly from the fundamental<br />

principle. To say it bluntly, the field equati<strong>on</strong>s are deduced from a drawing – the funda-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


general relativity deduced from strands 297<br />

Page 149<br />

Page 211<br />

Page 286<br />

mental principle shown in Figure 10. This str<strong>on</strong>g, almost unbelievable statement is due<br />

to a specific property <str<strong>on</strong>g>of</str<strong>on</strong>g> the field equati<strong>on</strong>s and to two properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model.<br />

First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, the field equati<strong>on</strong>s are, above all, c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> the thermodynamics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

space-time. In the strand model, the thermodynamic properties are deduced as a c<strong>on</strong>sequence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the strand fluctuati<strong>on</strong>s. This deducti<strong>on</strong> does not require underlying evoluti<strong>on</strong><br />

equati<strong>on</strong>s; the field equati<strong>on</strong>s follow from the statistical behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> strands.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d, essential property <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model is its independence from the underlying<br />

moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strands. In the strand model we obtain the evoluti<strong>on</strong> equati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum – the field equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity – without deducing them from<br />

another equati<strong>on</strong>. We do not need an evoluti<strong>on</strong> equati<strong>on</strong> for the strand shape; the deducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the field equati<strong>on</strong>s works for any underlying behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> strand shapes, as<br />

l<strong>on</strong>g as the thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand fluctuati<strong>on</strong>s are reproduced.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> third and last essential property that allows us to deduce the field equati<strong>on</strong>s directly<br />

from a graph, and not from another equati<strong>on</strong>, is the relati<strong>on</strong> between the graph and<br />

natural physical units. <str<strong>on</strong>g>The</str<strong>on</strong>g> relati<strong>on</strong> with natural units, in particular with the quantum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> ħ and the Boltzmann c<strong>on</strong>stant k, is fundamental for the success <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand<br />

model.<br />

In summary, the fundamental principle <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model c<strong>on</strong>tains all the essential<br />

properties necessary for deducing the field equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity. In fact, the discussi<strong>on</strong><br />

so far makes another important point: unique, underlying, more basic evoluti<strong>on</strong><br />

equati<strong>on</strong>s for the tangle shape cannot exist. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are two reas<strong>on</strong>s. First, an underlying<br />

equati<strong>on</strong> would itself require a deducti<strong>on</strong>, thus would not be a satisfying soluti<strong>on</strong> to unificati<strong>on</strong>.<br />

Sec<strong>on</strong>dly, and more importantly, evoluti<strong>on</strong> equati<strong>on</strong>s are differential equati<strong>on</strong>s;<br />

they assume well-behaved, smooth space-time. At Planck scales, this is impossible.<br />

⊳ Any principle that allows deducing the field equati<strong>on</strong>s cannot itself be an<br />

evoluti<strong>on</strong> equati<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Hilbert acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity<br />

We have just shown that the strand model implies the field equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity.<br />

We have also shown above that, in the strand model, the least acti<strong>on</strong> principle is a natural<br />

property <str<strong>on</strong>g>of</str<strong>on</strong>g> all moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. Combining these two results, we find that a natural<br />

way to describe the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time is the (extended) Hilbert acti<strong>on</strong> given by<br />

W=<br />

c4<br />

∫(R − 2Λ) dV , (193)<br />

16πG<br />

where R is the Ricci scalar, dV =√detg d 4 x is the invariant 4-volume element <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

metric g, andΛ is the cosmological c<strong>on</strong>stant, whose value we have not determined yet.<br />

As is well known, the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong> with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> an acti<strong>on</strong> does not add<br />

anything to the field equati<strong>on</strong>s; both descripti<strong>on</strong>s are equivalent.<br />

For a curved three-dimensi<strong>on</strong>al space, the Ricci scalar R is the average amount, at a<br />

given point in space, by which the curvature deviates from the zero value <str<strong>on</strong>g>of</str<strong>on</strong>g> flat space.<br />

In the strand model, this leads to a simple statement, already implied by Figure 76:<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


298 10 general relativity deduced from strands<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> gravit<strong>on</strong> :<br />

FIGURE 79 <str<strong>on</strong>g>The</str<strong>on</strong>g> gravit<strong>on</strong> in the strand model: a twist in a pair <str<strong>on</strong>g>of</str<strong>on</strong>g> tethers.<br />

Ref. 195<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> Ricci scalar R is the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al or missing crossings per spatial<br />

volume, compared to flat space.<br />

As usual, the averaging is performed over all spatial orientati<strong>on</strong>s. A similar statement<br />

can be made for the cosmological c<strong>on</strong>stant Λ. Inshort,wecansay:theHilbertacti<strong>on</strong><br />

follows directly from the fundamental principle <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model.<br />

Space-time foam<br />

Quantum physics implies that at scales near the Planck length and the Planck time,<br />

space-time fluctuates heavily. John Wheeler called the situati<strong>on</strong> space-time foam; the<br />

term quantum foam is also used. In a sense, quantum gravity can be defined, if at all, as<br />

the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time foam. This reduced view arises because no separate theory<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> quantum gravity is possible in nature.<br />

Historically, there have been many speculati<strong>on</strong>s <strong>on</strong> the details <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time foam.<br />

Apart from its fluctuati<strong>on</strong>s, researchers speculated about the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> topology<br />

changes – such as microscopic wormholes – about the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al dimensi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> space – between six and twenty-two – or about the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> other unusual<br />

properties – such as microscopic regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> negative energy, networks or loop structures.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model makes a simple predicti<strong>on</strong> that c<strong>on</strong>tradicts most previous speculati<strong>on</strong>s:<br />

⊳ Space-time foam is made <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuating strands.<br />

At everyday scales, the foam is not noticed, because background space and physical space<br />

are indistinguishable. At Planck scales, space-time is not fundamentally different from<br />

everyday space-time. No unusual topology, no additi<strong>on</strong>al dimensi<strong>on</strong>s, and no new or<br />

unusual properties appear at Planck scales. Above all, the strand model predicts that<br />

there are no observable effects <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time foam; for example, ‘space-time noise’ or<br />

‘particle diffusi<strong>on</strong>’ do not exist. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time foam is both simple and<br />

unspectacular.<br />

Gravit<strong>on</strong>s, gravitati<strong>on</strong>al waves and their detecti<strong>on</strong><br />

In the strand model, gravit<strong>on</strong>s can be seen as a special kind <str<strong>on</strong>g>of</str<strong>on</strong>g> partial links: it appears<br />

to be a twisted pair <str<strong>on</strong>g>of</str<strong>on</strong>g> tethers. An example is shown in Figure 79. As a twisted pair <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

parallel strands, the gravit<strong>on</strong> returns to itself after rotati<strong>on</strong> by π; itthusbehaveslikea<br />

spin-2 bos<strong>on</strong>, as required.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


general relativity deduced from strands 299<br />

A candidate<br />

tangle for an<br />

extended<br />

defect :<br />

Challenge 183 e<br />

Ref. 196<br />

Challenge 184 ny<br />

FIGURE 80 A speculative, highly schematic model for a cosmic string, a <strong>on</strong>e-dimensi<strong>on</strong>al defect in<br />

space-time<br />

Can single gravit<strong>on</strong>s be observed? <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model implies that the absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a single gravit<strong>on</strong> by an elementary particle changes its spin or positi<strong>on</strong>. However, such<br />

achangecannot be distinguished from a quantum fluctuati<strong>on</strong>, because the gravit<strong>on</strong> is<br />

predicted to be massless. Furthermore, the strand model predicts that gravit<strong>on</strong>s do not<br />

interact with phot<strong>on</strong>s, because they have no electric charge. In summary, the strand<br />

model predicts:<br />

⊳ Single gravit<strong>on</strong>s cannot be detected.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> situati<strong>on</strong> changes for gravitati<strong>on</strong>al waves. Such waves are coherent superpositi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> large numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> gravit<strong>on</strong>s and are observable classically. In such a case, the argument<br />

against the detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> single gravit<strong>on</strong>s does not apply. In short, the strand model<br />

predicts that gravitati<strong>on</strong>al waves can be observed. (This predicti<strong>on</strong>, made by many since<br />

1915 and repeated in this text <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model in 2008, came true in<br />

February 2016. <str<strong>on</strong>g>The</str<strong>on</strong>g> observati<strong>on</strong>s also produced the extremely low mass limit <str<strong>on</strong>g>of</str<strong>on</strong>g> at most<br />

1.2 × 10 −22 eV/c 2 for any possible mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the phot<strong>on</strong>.)<br />

Open challenge: Improve the argument for the gravit<strong>on</strong> tangle<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> argument that leads to the gravit<strong>on</strong> tangle is rather hand-waving. Can you make<br />

theargumentmorecompelling? Could the four tails form a cross and thus span a plane<br />

instead <str<strong>on</strong>g>of</str<strong>on</strong>g> a ribb<strong>on</strong>?<br />

Otherdefects in vacuum<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model provides a quantum descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gravitati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model does<br />

so by explaining physical space as the average <str<strong>on</strong>g>of</str<strong>on</strong>g> the crossing switches induced by strand<br />

fluctuati<strong>on</strong>s am<strong>on</strong>g untangled strands. Matter, radiati<strong>on</strong> and horiz<strong>on</strong>s are defects in the<br />

‘sea’ <str<strong>on</strong>g>of</str<strong>on</strong>g> untangled strands.<br />

So far, we have been c<strong>on</strong>cerned with particles, i.e., localized, zero-dimensi<strong>on</strong>al defects,<br />

and with horiz<strong>on</strong>s, i.e., two-dimensi<strong>on</strong>al defects. Now, modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum as a set<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> untangled strands also suggests the possible existence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e-dimensi<strong>on</strong>al –equivalent<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


300 10 general relativity deduced from strands<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. IV, page 143<br />

Page 204<br />

to dislocati<strong>on</strong>s and disclinati<strong>on</strong>s in solids – <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al two-dimensi<strong>on</strong>al defects, or<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> three-dimensi<strong>on</strong>al defects. Such defects could model cosmic strings, domain walls,<br />

wormholes, toroidal black holes, time-like loops and regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> negative energy.<br />

An example <str<strong>on</strong>g>of</str<strong>on</strong>g> such a possible new defect is illustrated in Figure 80. <str<strong>on</strong>g>The</str<strong>on</strong>g> illustrati<strong>on</strong><br />

can be seen as the image <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>on</strong>e-dimensi<strong>on</strong>al defect or as the cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

two-dimensi<strong>on</strong>al defect. Are such defects stable against fluctuati<strong>on</strong>s? <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model<br />

suggests that they are not. <str<strong>on</strong>g>The</str<strong>on</strong>g>se defects are expected to decay into a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> gravit<strong>on</strong>s,<br />

black holes, matter and radiati<strong>on</strong> particles. However, this issue is still a topic <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

research, and will not be covered here.<br />

Exploring the stability <str<strong>on</strong>g>of</str<strong>on</strong>g> wormholes, time-like loops and toroidal black holes leads<br />

to similar results. It seems that the strand model should not allow time-like loops <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

macroscopic size, since any c<strong>on</strong>figurati<strong>on</strong> that cannot be embedded locally into three<br />

flat spatial dimensi<strong>on</strong>s is either a particle or a black hole. Alternatively, macroscopic<br />

time-like loops would collapse or decay because <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the strands. In<br />

the same way, wormholes or black holes with n<strong>on</strong>-trivial topology should be unstable<br />

against more usual strand structures, such as particles or black holes.<br />

We also note the strand model does not allow volume defects (black holes being<br />

surface-like defects). <str<strong>on</strong>g>The</str<strong>on</strong>g> most discussed types <str<strong>on</strong>g>of</str<strong>on</strong>g> volume defects are macroscopic regi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> negative energy. Energy being acti<strong>on</strong> per unit time, and acti<strong>on</strong> being c<strong>on</strong>nected<br />

to crossing changes, the model does not allow the c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> negative-energy regi<strong>on</strong>s.<br />

However, the strand model does allow the c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>s with lower<br />

energy than their envir<strong>on</strong>ment, as in the Casimir effect, by placing restricti<strong>on</strong>s <strong>on</strong> the<br />

wavelengths <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus predicts the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al defects and tangle types.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> final and general c<strong>on</strong>necti<strong>on</strong> between tangle types and defects is shown (again) in<br />

Table 11. <str<strong>on</strong>g>The</str<strong>on</strong>g> next chapter will give details <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangles corresp<strong>on</strong>ding to each particle.<br />

In summary, the strand model reproduces the results <str<strong>on</strong>g>of</str<strong>on</strong>g> modern quantum gravity and<br />

predicts that the more spectacular defects c<strong>on</strong>jectured in the past – linear defects such<br />

as cosmic strings, surface defects such as wormholes, volume defects such as negativeenergy<br />

regi<strong>on</strong>s – do not appear in nature.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> gravity <str<strong>on</strong>g>of</str<strong>on</strong>g> superpositi<strong>on</strong>s<br />

What is the gravitati<strong>on</strong>al field <str<strong>on</strong>g>of</str<strong>on</strong>g> a quantum system in a macroscopic superpositi<strong>on</strong>? <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

issue has been raised by many scholars as an important step towards the understanding<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> how to combine gravitati<strong>on</strong> and quantum theory.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model deflates the importance <str<strong>on</strong>g>of</str<strong>on</strong>g> the issue. <str<strong>on</strong>g>The</str<strong>on</strong>g> model shows – or predicts,<br />

if <strong>on</strong>e prefers – that the gravitati<strong>on</strong>al field <str<strong>on</strong>g>of</str<strong>on</strong>g> a superpositi<strong>on</strong> is the temporal and spatial<br />

average <str<strong>on</strong>g>of</str<strong>on</strong>g> the evolving quantum system, possibly under inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> decoherence.<br />

What is the gravitati<strong>on</strong>al field <str<strong>on</strong>g>of</str<strong>on</strong>g> a single quantum particle in a double-slit experiment?<br />

As Figure 39 shows, the gravitati<strong>on</strong>al field almost always appears in both slits,<br />

and<strong>on</strong>lyveryrarelyinjust<strong>on</strong>eslit.<br />

In summary, in the strand model, the combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gravitati<strong>on</strong> and quantum theory<br />

is much simpler than was expected by most researchers. For many decades it was<br />

suggested that the combinati<strong>on</strong> was an almost unattainable goal. In fact, in the strand<br />

model we can almost say that the two descripti<strong>on</strong>s combine naturally.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


general relativity deduced from strands 301<br />

Ref. 197<br />

Ref. 198<br />

Ref. 199<br />

Ref. 157<br />

Ref. 200<br />

Ref. 158<br />

Ref. 201<br />

TABLE 11 Corresp<strong>on</strong>dences between physical systems and mathematical tangles.<br />

Physical system <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s Tangle type<br />

Vacuum many infinite unknotted strands unlinked<br />

Dark energy many fluctuating infinite strands unlinked<br />

Elementary vector bos<strong>on</strong> <strong>on</strong>e infinite strand a curve<br />

Quark two infinite strands rati<strong>on</strong>al tangle<br />

Lept<strong>on</strong> three infinite strands braided tangle<br />

Mes<strong>on</strong>, bary<strong>on</strong> three or more infinite strands composed <str<strong>on</strong>g>of</str<strong>on</strong>g> rati<strong>on</strong>al<br />

tangles<br />

Higher-order propagating two or more infinite strands general rati<strong>on</strong>al tangle<br />

fermi<strong>on</strong><br />

Virtual particles open or unlinked strands trivial tangles<br />

Composed systems many strands separable tangles<br />

Gravit<strong>on</strong> two infinite twisted strands specific rati<strong>on</strong>al tangle<br />

Gravity wave many infinite twisted strands many gravit<strong>on</strong> tangles<br />

Horiz<strong>on</strong> many tightly woven infinite strands web-like rati<strong>on</strong>al tangle<br />

Young universe closed strand(s) knot (link)<br />

Torsi<strong>on</strong>, curiosities and challenges about quantum gravity<br />

On the <strong>on</strong>e hand, the strand model denies the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> any specific effects <str<strong>on</strong>g>of</str<strong>on</strong>g> torsi<strong>on</strong><br />

<strong>on</strong> gravitati<strong>on</strong>. On the other hand, the strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> matter describes spin with the<br />

belt trick. <str<strong>on</strong>g>The</str<strong>on</strong>g> belt trick is thus the strand phenomen<strong>on</strong> that is closest to the idea <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

torsi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, exaggerating a bit in the other directi<strong>on</strong>, it could also be argued that<br />

in the strand model, torsi<strong>on</strong> effects are quantum field theory effects.<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model describes three-dimensi<strong>on</strong>al space as made <str<strong>on</strong>g>of</str<strong>on</strong>g> tangled strands. Several<br />

similar models have been proposed in the past.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> model <str<strong>on</strong>g>of</str<strong>on</strong>g> space as a nematic world crystal stands out as the most similar. This<br />

model was proposed by Hagen Kleinert in the 1980s. He took his inspirati<strong>on</strong> from<br />

the famous analogy by Ekkehart Kröner between the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> solid-state elasticity<br />

around line defects and the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity.<br />

Also in the 1980s, the menti<strong>on</strong>ed posets have been proposed as the fundamental<br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> space. Various models <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum gravity from the 1990s, inspired by spin<br />

networks, spin foams and by similar systems, describe empty space as made <str<strong>on</strong>g>of</str<strong>on</strong>g> extended<br />

c<strong>on</strong>stituents. <str<strong>on</strong>g>The</str<strong>on</strong>g>se extended c<strong>on</strong>stituents tangle, or bifurcate, or are c<strong>on</strong>nected, or<br />

sometimes all <str<strong>on</strong>g>of</str<strong>on</strong>g> this at the same time. Depending <strong>on</strong> the model, the c<strong>on</strong>stituents are<br />

lines, circles or ribb<strong>on</strong>s. In some models their shapes fluctuate, in others they d<strong>on</strong>’t.<br />

Around the year 2000, another type <str<strong>on</strong>g>of</str<strong>on</strong>g> Planck-scale crystal model <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum has<br />

been proposed by David Finkelstein. In 2008, a specific model <str<strong>on</strong>g>of</str<strong>on</strong>g> space, a crystal-like<br />

network <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>nected bifurcating lines, has been proposed by Gerard ’t Ho<str<strong>on</strong>g>of</str<strong>on</strong>g>t.<br />

All these models describe space as made <str<strong>on</strong>g>of</str<strong>on</strong>g> some kind <str<strong>on</strong>g>of</str<strong>on</strong>g> extended c<strong>on</strong>stituents in<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


302 10 general relativity deduced from strands<br />

Challenge 185 e<br />

Ref. 202<br />

Page 163<br />

Ref. 155<br />

Ref. 203<br />

Challenge 186 e<br />

Page 36<br />

a three-dimensi<strong>on</strong>al background. All these models derive general relativity from these<br />

c<strong>on</strong>stituents by some averaging procedure. <str<strong>on</strong>g>The</str<strong>on</strong>g> less<strong>on</strong> is clear: it is not difficult to derive<br />

general relativity from a Planck-scale model <str<strong>on</strong>g>of</str<strong>on</strong>g> space. It is not difficult to unify gravity<br />

and quantum theory. As Luca Bombelli said already in the early 1990s, the challenge for<br />

a Planck-scale model <str<strong>on</strong>g>of</str<strong>on</strong>g> nature is not to derive gravity or general relativity; the challenge<br />

is to derive the other interacti<strong>on</strong>s. So far, the strand model seems to be the <strong>on</strong>ly model<br />

that has provided such a derivati<strong>on</strong>.<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Planck force is the force value necessary to produce a change ħ in a Planck time over<br />

aPlancklength. <str<strong>on</strong>g>The</str<strong>on</strong>g> Planck force thus appears almost exclusively at horiz<strong>on</strong>s.<br />

∗∗<br />

Already in the 1990s, Le<strong>on</strong>ard Susskind speculated that black holes could be formed<br />

by a single wound-up string. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s differ from strings; they differ in the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dimensi<strong>on</strong>s, in their intrinsic properties, in their symmetry properties, in the fields they<br />

carry and in the ways they generate entropy. Nevertheless, the similarity with the strand<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes is intriguing.<br />

∗∗<br />

In September 2010, two years after the strand model appeared, independent research<br />

c<strong>on</strong>firmed its descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> physical space, as already menti<strong>on</strong>ed above. In an extendedarticleexploringthesmallscalestructure<str<strong>on</strong>g>of</str<strong>on</strong>g>spacefromseveraldifferentresearch<br />

perspectives in general relativity, Steven Carlip comes to the c<strong>on</strong>clusi<strong>on</strong> that all these<br />

perspectives suggest the comm<strong>on</strong> idea that ‘space at a fixed time is thus threaded by<br />

rapidly fluctuating lines’.<br />

In 2011, also independently, Marcelo Botta Cantcheff modelled space as a statistic<br />

ensemble <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e-dimensi<strong>on</strong>al ‘strings’. He explained the main properties <str<strong>on</strong>g>of</str<strong>on</strong>g> space, including<br />

the thermodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes.<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> first versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model assumed that space is not defined at the cosmic<br />

horiz<strong>on</strong>, and that therefore, strand impenetrability does not hold there. <str<strong>on</strong>g>The</str<strong>on</strong>g> same was<br />

thought to occur at black hole horiz<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> newest versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model does<br />

not seem to need this excepti<strong>on</strong> to impenetrability. Can you explain black hole entropy<br />

without it?<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also allows us to answer the questi<strong>on</strong> whether quantum particles are<br />

black holes: no, they are not. Quantum particles are tangles, like black holes are, but<br />

particles do not have horiz<strong>on</strong>s. As a side result, the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> all particles is lower than a<br />

Planck mass, or more precisely, lower than a Planck mass black hole.<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s imply that gravity is weaker than the three gauge interacti<strong>on</strong>s. This c<strong>on</strong>sequence,<br />

like the low particle mass just menti<strong>on</strong>ed, is due to the different origins <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gravity and gauge interacti<strong>on</strong>s. Gravity is due to the strand tails, whereas gauge interacti<strong>on</strong>s<br />

are due to the tangle cores. Thus gravity is the weakest interacti<strong>on</strong> in everyday<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


general relativity deduced from strands 303<br />

life. <str<strong>on</strong>g>The</str<strong>on</strong>g> observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the weakness <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity at everyday and other energy scales is<br />

sometimes called the weak gravity c<strong>on</strong>jecture. It is naturally valid in the strand model.<br />

Page 8 <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>jecture is also part <str<strong>on</strong>g>of</str<strong>on</strong>g> the Br<strong>on</strong>shtein cube shown in Figure 1.<br />

Ref. 204<br />

Ref. 205<br />

Ref. 206<br />

Challenge 187 s<br />

∗∗<br />

Foranobserveratspatialinfinity,ablackholehoriz<strong>on</strong>isanaveraged-outtightweb<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

strands. What does a falling observer experience? <str<strong>on</strong>g>The</str<strong>on</strong>g> questi<strong>on</strong> will still capture the<br />

imaginati<strong>on</strong> in many years. Such an observer will also see strands; above all, a falling<br />

observer will never hit any singularity. <str<strong>on</strong>g>The</str<strong>on</strong>g> details <str<strong>on</strong>g>of</str<strong>on</strong>g> the fall are so involved that they<br />

are not discussed here, because the fall affects both the black hole appearance and the<br />

observer.<br />

∗∗<br />

Can black hole radiati<strong>on</strong> be seen as the result <str<strong>on</strong>g>of</str<strong>on</strong>g> trying to tear vacuum apart? Yes and no.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> answer is no, because physical vacuum cannot be torn apart, due to the maximum<br />

force principle. But the answer is also yes in a certain sense, because the maximum force<br />

is the closest attempt to this idea that can be realized or imagined.<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model makes the point that entanglement and the vacuum – and thus<br />

quantum gravity – have the same nature: both are due to crossing strands. This idea<br />

has been explored independently by Mark van Raamsd<strong>on</strong>k.<br />

∗∗<br />

As we have seen, the strand model predicts no observable violati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Lorentz-invariance<br />

– even though it predicts its violati<strong>on</strong> at Planck scale. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s predict the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersi<strong>on</strong>,<br />

birefringence and opacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s predict that the vacuum has three<br />

dimensi<strong>on</strong>s whenever it is observed and that it is unique, without phase transiti<strong>on</strong>s. We<br />

already menti<strong>on</strong>ed the impossibility <str<strong>on</strong>g>of</str<strong>on</strong>g> detecting single gravit<strong>on</strong>s.<br />

All these negative predicti<strong>on</strong>s are examples <str<strong>on</strong>g>of</str<strong>on</strong>g> the ‘no avail’ c<strong>on</strong>jecture:<br />

⊳ Quantum gravity effects cannot be distinguished from ordinary quantum<br />

fluctuati<strong>on</strong>s.<br />

Despite many attempts to disprove it, all experiments so far c<strong>on</strong>firm the c<strong>on</strong>jecture. Because<br />

both quantum gravity effects and quantum effects are due to tail fluctuati<strong>on</strong>s, the<br />

strand model seems to imply the c<strong>on</strong>jecture.<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes also c<strong>on</strong>firms a result by Zurek and Thorne from the<br />

1980s: the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> a black hole is the logarithm <str<strong>on</strong>g>of</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> ways in which it<br />

could have been made.<br />

∗∗<br />

Argue that because <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model, no black hole can have a mass below the (corrected)<br />

Planck mass, about 11 μg, and thus that microscopic black holes do not exist. Can<br />

you find a higher lower limit for the mass?<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


304 10 general relativity deduced from strands<br />

Ref. 207<br />

Challenge 188 ny<br />

Page 59<br />

Ref. 208<br />

∗∗<br />

Do atoms or the elementary fermi<strong>on</strong>s moving inside matter emit gravitati<strong>on</strong>al radiati<strong>on</strong>,<br />

and why? <str<strong>on</strong>g>The</str<strong>on</strong>g> questi<strong>on</strong> was already raised by Albert Einstein in 1916. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model<br />

answers the issue in the same way as textbook physics. Elementary particles in atoms –<br />

in the ground state – do not emit gravitati<strong>on</strong>al waves for the same reas<strong>on</strong> that they do not<br />

emit electromagnetic waves: for atoms in the ground state, there is no lower state into<br />

which they could decay. Excited atomic states do not emit gravitati<strong>on</strong>al waves because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the extremely low emissi<strong>on</strong> probability; it is due to the extremely low mass quadrupole<br />

values.<br />

∗∗<br />

In 2009 Mikhail Shaposhnikov and Christ<str<strong>on</strong>g>of</str<strong>on</strong>g> Wetterich argued that if gravitati<strong>on</strong> is<br />

‘asymptotically safe’, there is no physics bey<strong>on</strong>d the standard model and the Higgs mass<br />

must be around 126 GeV – exactly the value that was found experimentally a few years<br />

afterwards. A quantum field theory is called asymptotically safe if it has a fixed point<br />

at extremely high energies. Does the strand model imply that gravity is – maybe <strong>on</strong>ly<br />

effectively – asymptotically safe?<br />

∗∗<br />

It is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten stated that general relativity does not allow the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong>s if the<br />

topology<str<strong>on</strong>g>of</str<strong>on</strong>g>spaceiskeptfixed.Thisiswr<strong>on</strong>g:thestrandmodelshowsthatfermi<strong>on</strong>scan<br />

be included in the case that space is seen as an average <str<strong>on</strong>g>of</str<strong>on</strong>g> extended fundamental entities.<br />

∗∗<br />

Following the fundamental principle <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model, G is the fundamental c<strong>on</strong>stant<br />

that describes gravitati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts that gravity is the same for all energy<br />

scales; in other words, the c<strong>on</strong>stant G is not expected to change with energy. This<br />

agrees with recent results from quantum gravity and distinguishes the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> G<br />

from that <str<strong>on</strong>g>of</str<strong>on</strong>g> the coupling c<strong>on</strong>stants in the gauge interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics.<br />

Predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model about gravity<br />

As just presented, the strand model makes several verifiable predicti<strong>on</strong>s about general<br />

relativity and quantum gravity.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> maximum energy speed in nature is c, at all energy scales, in all directi<strong>on</strong>s, at all<br />

times, at all positi<strong>on</strong>s, for every physical observer. This agrees with observati<strong>on</strong>s.<br />

— No deviati<strong>on</strong>s from special relativity appear for any measurable energy scale, as l<strong>on</strong>g<br />

as gravity plays no role. No ‘double’ or ‘deformed special relativity’ holds in nature,<br />

even though a maximum energy-momentum for elementary particles does exist in<br />

nature. Whenever special relativity is not valid, general relativity, or quantum field<br />

theory, or both together need to be used. This agrees with observati<strong>on</strong>s.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a maximum power or luminosity c 5 /4G, a maximum force or momentum<br />

flow c 4 /4G, and a maximum mass change rate c 3 /4G in nature. <str<strong>on</strong>g>The</str<strong>on</strong>g> limits hold for<br />

all energy scales, in all directi<strong>on</strong>s, at all times, at all positi<strong>on</strong>s, for every physical observer.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se predicti<strong>on</strong>s agree with observati<strong>on</strong>s, though <strong>on</strong>ly few experimental ob-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


general relativity deduced from strands 305<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. V, page 147<br />

Ref. 209<br />

servati<strong>on</strong>s are close to these limit values.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a minimum distance and a minimum time interval in nature. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a maximum<br />

curvature and a maximum mass density in nature. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are no singularities in<br />

nature. All this agrees with observati<strong>on</strong>s, including the newly discovered black hole<br />

mergers.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> usual black hole entropy expressi<strong>on</strong> given by Bekenstein and Hawking holds.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> value has never been measured, but is c<strong>on</strong>sistently found in all calculati<strong>on</strong>s performed<br />

so far. In fact, black hole entropy is related to the Fulling–Davies–Unruh effect,<br />

which itself is related to the Sokolov–Ternov effect. This latter effect has already<br />

been observed in several accelerators, for the first time in 1971. However, it now<br />

seems that this observati<strong>on</strong> does not actually prove black hole entropy.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g>re are no deviati<strong>on</strong>s from general relativity, as described by the Hilbert acti<strong>on</strong>, for<br />

any measurable scale. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>on</strong>ly deviati<strong>on</strong>s appear in situati<strong>on</strong>s with a few strands,<br />

i.e., in situati<strong>on</strong>s where quantum theory is necessary. This agrees with observati<strong>on</strong>s,<br />

including those <str<strong>on</strong>g>of</str<strong>on</strong>g> black hole mergers, but experimental data are far from sufficient;<br />

undetected deviati<strong>on</strong>s could still exist.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g>re is no modified Newt<strong>on</strong>ian dynamics, or MOND, with evoluti<strong>on</strong> equati<strong>on</strong>s that<br />

differ from general relativity. <str<strong>on</strong>g>The</str<strong>on</strong>g> rotati<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> stars in galaxies are due to dark<br />

matter, to other c<strong>on</strong>venti<strong>on</strong>al explanati<strong>on</strong>s, or both.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g>re is no effect <str<strong>on</strong>g>of</str<strong>on</strong>g> torsi<strong>on</strong> that modifies general relativity. This agrees with observati<strong>on</strong>s.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g>re is no effect <str<strong>on</strong>g>of</str<strong>on</strong>g> higher derivatives <str<strong>on</strong>g>of</str<strong>on</strong>g> the metric <strong>on</strong> the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bodies. This<br />

agrees with observati<strong>on</strong>s, but experimental data are far from sufficient.<br />

— Observati<strong>on</strong>s are independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the precise strand fluctuati<strong>on</strong>s. Mathematical c<strong>on</strong>sistency<br />

checks <str<strong>on</strong>g>of</str<strong>on</strong>g> this predicti<strong>on</strong> are possible.<br />

— No wormholes, no negative energy regi<strong>on</strong>s and no time-like loops exist. This agrees<br />

with observati<strong>on</strong>s, but experimental data are far from covering every possible loophole.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> Penrose c<strong>on</strong>jecture and the hoop c<strong>on</strong>jecture hold. Here, a mathematical c<strong>on</strong>sistency<br />

check is possible.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g>re are no cosmic strings and no domain walls. This agrees with observati<strong>on</strong>s, but<br />

experimental data are far from exhaustive.<br />

— Gravit<strong>on</strong>s have spin 2; they return to their original state after a rotati<strong>on</strong> by π and are<br />

bos<strong>on</strong>s. This agrees with expectati<strong>on</strong>s.<br />

— Gravit<strong>on</strong>s cannot be detected, due to the indistinguishability with ordinary quantum<br />

fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the detector. This agrees with data so far.<br />

— Atoms emit neither gravitati<strong>on</strong>al waves nor gravit<strong>on</strong>s.<br />

— Gravitati<strong>on</strong>al waves exist and can be detected. This agrees with various experiments;<br />

the final, direct c<strong>on</strong>firmati<strong>on</strong> occurred in late 2015.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> gravitati<strong>on</strong>al c<strong>on</strong>stant G does not run with energy – as l<strong>on</strong>g as the strand diameter<br />

can be neglected. In this domain, G is not renormalized. This predicti<strong>on</strong> agrees with<br />

expectati<strong>on</strong>s and with data, though the available data is sparse.<br />

All listed predicti<strong>on</strong>s are unspectacular; they are made also by other approaches that<br />

c<strong>on</strong>tain general relativity as limiting cases. In particular, the strand model, like many<br />

other approaches, predicts:<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


306 10 general relativity deduced from strands<br />

Page 309<br />

Ref. 97<br />

Page 8<br />

⊳ With the excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cosmological c<strong>on</strong>stant and <str<strong>on</strong>g>of</str<strong>on</strong>g> particle masses (and<br />

possibly the Sokolov–Ternov effect), no quantum gravity effects will be observed.<br />

Gravity will not yield new measurable quantum effects. So far, this predicti<strong>on</strong> agrees<br />

with experiment – and with almost all proposed models <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum foam in the research<br />

literature. In other words, we have found no unexpected experimental predicti<strong>on</strong>s<br />

from the strand model in the domain <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum gravity. This is the so-called ‘no avail’<br />

c<strong>on</strong>jecture; and it is not a surprise.<br />

In fact, the Br<strong>on</strong>shtein cube <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 1 also implies:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g>re is no separate theory <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum gravity that includes relativity but<br />

does not include the other interacti<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re is no room for a theory <str<strong>on</strong>g>of</str<strong>on</strong>g> relativistic quantum gravity in nature.<br />

In short, strands lead us to expect deviati<strong>on</strong>s from general relativity <strong>on</strong>ly in two domains:<br />

in cosmology (such as changes <str<strong>on</strong>g>of</str<strong>on</strong>g> the cosmological c<strong>on</strong>stant) and in particle physics.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter deals with cosmology. <str<strong>on</strong>g>The</str<strong>on</strong>g> subsequent chapters focus <strong>on</strong><br />

particle physics.<br />

cosmology<br />

Cosmology is an active field <str<strong>on</strong>g>of</str<strong>on</strong>g> research, and new data are collected all the time. We start<br />

with a short summary.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> sky is dark at night. This and other observati<strong>on</strong>s about the red shift show that the<br />

universe is surrounded by a horiz<strong>on</strong> and is <str<strong>on</strong>g>of</str<strong>on</strong>g> finite size and age. Modern measurements<br />

show that cosmic age is about 13 800 milli<strong>on</strong> years. <str<strong>on</strong>g>The</str<strong>on</strong>g> universe expands; the expansi<strong>on</strong><br />

is described by the field equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity. <str<strong>on</strong>g>The</str<strong>on</strong>g> universe’s expansi<strong>on</strong> accelerates;<br />

the accelerati<strong>on</strong> appears to be described by the cosmological c<strong>on</strong>stant Λ – also called<br />

dark energy – that has a small positive value. <str<strong>on</strong>g>The</str<strong>on</strong>g> universe is observed to be flat, and,<br />

averaged over large scales, homogeneous and isotropic. At present, the observed average<br />

matter density in the universe is about 18 times smaller than the energy density due<br />

to the cosmological c<strong>on</strong>stant. In additi<strong>on</strong>, there appears to be a large amount <str<strong>on</strong>g>of</str<strong>on</strong>g> matter<br />

around galaxies that does not radiate; the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> this dark matter is unclear. Galaxy<br />

formati<strong>on</strong> started from early density fluctuati<strong>on</strong>s; the typical size and amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

fluctuati<strong>on</strong>s are known. <str<strong>on</strong>g>The</str<strong>on</strong>g> topology <str<strong>on</strong>g>of</str<strong>on</strong>g> space is observed to be simple.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model, like any unified descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature, must reproduce and explain<br />

these observati<strong>on</strong>s. Otherwise, the strand model is wr<strong>on</strong>g.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> finiteness <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe<br />

In the strand model, cosmology is based <strong>on</strong> the following idea:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> universe is made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e fluctuating strand that criss-crosses from and to<br />

the horiz<strong>on</strong>. Fluctuati<strong>on</strong>s increase the complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand tangledness<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


cosmology 307<br />

Ref. 210<br />

Ref. 211<br />

Page 288<br />

Universe’s<br />

horiz<strong>on</strong><br />

or<br />

‘border<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> space’<br />

(pink)<br />

Background<br />

space<br />

(grey)<br />

Universal<br />

tangle<br />

(blue<br />

lines)<br />

Physical<br />

space or<br />

vacuum<br />

(white)<br />

Background<br />

space<br />

(grey)<br />

Particle<br />

tangle<br />

(tangled<br />

blue<br />

lines)<br />

FIGURE 81 In the strand model, the universe is limited by a horiz<strong>on</strong>, as schematically illustrated here.<br />

Physical space (white) matches background space (grey) <strong>on</strong>ly inside the horiz<strong>on</strong>. Physical space thus<br />

<strong>on</strong>ly exists inside the cosmic horiz<strong>on</strong>.<br />

over time.<br />

In other words, the strands <str<strong>on</strong>g>of</str<strong>on</strong>g> all particles are woven into the sky. <str<strong>on</strong>g>The</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> finite<br />

size and <str<strong>on</strong>g>of</str<strong>on</strong>g> finite age then follows automatically:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> universe’s horiz<strong>on</strong> appears at the age or distance at which the strand<br />

crossings cannot be embedded any more into a comm<strong>on</strong> three-dimensi<strong>on</strong>al<br />

background space. <str<strong>on</strong>g>The</str<strong>on</strong>g> horiz<strong>on</strong> expands over time.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus has a simple explanati<strong>on</strong> for the finiteness <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe and the<br />

horiz<strong>on</strong> that bounds it: <str<strong>on</strong>g>The</str<strong>on</strong>g> universe’s horiz<strong>on</strong> is a weave that joins all strand tails. A<br />

schematic illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the cosmic horiz<strong>on</strong> is given in Figure 81.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts that the horiz<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe is an cosmological particle<br />

horiz<strong>on</strong>, an event horiz<strong>on</strong> similar to that <str<strong>on</strong>g>of</str<strong>on</strong>g> a black hole. Until 1998, this possibility<br />

seemed questi<strong>on</strong>able; but in 1998, it was discovered that the expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe is<br />

accelerating. This discovery implies that the cosmic horiz<strong>on</strong> is indeed an event horiz<strong>on</strong>,<br />

as required by the strand model.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts that the universe is a kind <str<strong>on</strong>g>of</str<strong>on</strong>g> inverted back hole. Likefor<br />

any situati<strong>on</strong> that involves a horiz<strong>on</strong>, the strand model thus does not allow us to make<br />

statements about properties ‘before’ the big bang or ‘outside’ the horiz<strong>on</strong>. As explained<br />

above, strands predict that there is nothing behind a horiz<strong>on</strong>.<br />

In particular, the strand model implies that the matter that appears at the cosmic horiz<strong>on</strong><br />

during the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe appears through Bekenstein–Hawking radiati<strong>on</strong>.<br />

This c<strong>on</strong>trasts with the ‘classical’ explanati<strong>on</strong> form general relativity that new matter<br />

appears simply because it existed behind the horiz<strong>on</strong> beforehand and then crosses the<br />

horiz<strong>on</strong> into the ‘visible part’ <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe.<br />

We note that modelling the universe as a single strand implies that it c<strong>on</strong>tains tangles.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


308 10 general relativity deduced from strands<br />

‘horiz<strong>on</strong>’<br />

Page 102<br />

Challenge 189 e<br />

Ref. 212<br />

Page 293<br />

‘time’<br />

FIGURE 82 An extremely simplified view <str<strong>on</strong>g>of</str<strong>on</strong>g> how the universe evolved near the big bang. In this<br />

evoluti<strong>on</strong>, physical time, space and the surrounding horiz<strong>on</strong> are in the process <str<strong>on</strong>g>of</str<strong>on</strong>g> getting defined.<br />

In other words, the strand model makes the predicti<strong>on</strong> that the universe cannot be empty,<br />

but that it must c<strong>on</strong>tain particles. <str<strong>on</strong>g>Strand</str<strong>on</strong>g> cosmology also c<strong>on</strong>firms that the questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

initial c<strong>on</strong>diti<strong>on</strong>s for the universe does not really make sense: particles appear at the<br />

horiz<strong>on</strong>.<br />

We also note that describing the universe as made <str<strong>on</strong>g>of</str<strong>on</strong>g> a single strand is a natural,<br />

but somewhat unusual way to incorporate what particle physicists and cosmologists like<br />

to call holography. Holography is the idea that all observables <str<strong>on</strong>g>of</str<strong>on</strong>g> a physical system are<br />

defined <strong>on</strong> a boundary enclosing the system. In other words, if we would know, at Planck<br />

scale, everything that happens <strong>on</strong> the walls <str<strong>on</strong>g>of</str<strong>on</strong>g> a room, we could know everything that is<br />

and goes <strong>on</strong> inside the room. Instead <str<strong>on</strong>g>of</str<strong>on</strong>g> holography, we could also call it the NSA dream.<br />

Holography is a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> nature<br />

and is a natural c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model. As a c<strong>on</strong>sequence, strand cosmology<br />

naturally reproduces holographic cosmology – though not fully, as is easy to check.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> big bang – without inflati<strong>on</strong><br />

“Or cette liais<strong>on</strong> ou cet accommodement de<br />

toutes les choses créées à chacune, et de<br />

chacune à toutes les autres, fait que chaque<br />

substance simple a des rapports qui expriment<br />

toutes les autres, et qu’elle est par c<strong>on</strong>séquent<br />

un miroir vivant perpétuel de l’univers.*<br />

Gottfried Wilhelm Leibniz, M<strong>on</strong>adologie,56.”<br />

Any expanding, homogeneous and isotropic matter distributi<strong>on</strong> had earlier stages <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

smaller size and higher density. Also the universe has been hotter and denser in the past.<br />

But the strand model also states that singularities do not appear in nature, because there<br />

is a highest possible energy density. As a result, the big bang might be imagined as illustrated<br />

in Figure 82. Obviously, physical space and time are not well defined near that<br />

situati<strong>on</strong>, so that the figure has to be taken with a grain <str<strong>on</strong>g>of</str<strong>on</strong>g> salt. Nevertheless, it shows how<br />

* ‘Now this c<strong>on</strong>nexi<strong>on</strong> or adaptati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all created things to each and <str<strong>on</strong>g>of</str<strong>on</strong>g> each to all, means that each simple<br />

substance has relati<strong>on</strong>s which express all the others, and, c<strong>on</strong>sequently, that it is a perpetual living mirror<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the universe.’<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


cosmology 309<br />

Ref. 215<br />

Challenge 190 ny<br />

Challenge 191 ny<br />

the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe can be seen as resulting from the increase in tangledness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the strand that makes up nature.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model leads to the c<strong>on</strong>jecture that the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the universal strand just<br />

after the big bang automatically yields both a homogeneous and isotropic matter distributi<strong>on</strong><br />

and a flat space. Also the scale invariance <str<strong>on</strong>g>of</str<strong>on</strong>g> early density fluctuati<strong>on</strong>s seems natural<br />

in the strand model. In short, the strand model looks like a promising alternative<br />

to inflati<strong>on</strong>: the hypothesis <str<strong>on</strong>g>of</str<strong>on</strong>g> inflati<strong>on</strong> becomes unnecessary in the strand model, because<br />

strand cosmology directly makes the predicti<strong>on</strong>s that seem so puzzling in classical<br />

cosmology. This issue is still subject <str<strong>on</strong>g>of</str<strong>on</strong>g> research.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> cosmological c<strong>on</strong>stant<br />

At present (2019), the issue <str<strong>on</strong>g>of</str<strong>on</strong>g> the cosmological c<strong>on</strong>stant, thus <str<strong>on</strong>g>of</str<strong>on</strong>g> dark energy, is under<br />

investigati<strong>on</strong>. Watch this space for updates.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>value<str<strong>on</strong>g>of</str<strong>on</strong>g>thematterdensity<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts that horiz<strong>on</strong>s emit particles. As a c<strong>on</strong>sequence, the strand<br />

model predicts an upper limit for the number N b <str<strong>on</strong>g>of</str<strong>on</strong>g> bary<strong>on</strong>s that could have been emitted<br />

by the cosmic horiz<strong>on</strong> during its expansi<strong>on</strong>. For a horiz<strong>on</strong> shining throughout the age<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the universe t 0 while emitting the maximum power c 5 /4G,weget<br />

N b0 ⩽ t 0 c 5 /4G<br />

m b c 2 =2.6⋅10 79 . (194)<br />

Equality would hold <strong>on</strong>ly if the c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s, electr<strong>on</strong>s, neutrinos and dark<br />

matter could be neglected. In short, using the age t 0 = 13.8 Ga, the strand model predicts<br />

that at most 2.6 ⋅ 10 79 bary<strong>on</strong>s exist in the universe at present. Modern measurements<br />

indeed give values around this limit.<br />

More about matter and energy densities will be added here so<strong>on</strong>.<br />

Open challenge: What are the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> dark matter?<br />

C<strong>on</strong>venti<strong>on</strong>ally, it is argued that cold dark matter exists for three reas<strong>on</strong>s: First, it is necessary<br />

to grow the density fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the cosmic microwave background rapidly<br />

enough to achieve the present-day high values. Sec<strong>on</strong>dly, it is needed to yield the observed<br />

amplitudes for the acoustic peaks in the cosmic background oscillati<strong>on</strong>s. Third,<br />

it explains the rotati<strong>on</strong> curves observed in hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> galaxies and galaxy clusters. Can<br />

the strand model change these arguments?<br />

Later <strong>on</strong>, it will be argued that following the strand model, dark matter can <strong>on</strong>ly be a<br />

mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al matter and black holes. How does this dark matter predicti<strong>on</strong><br />

explain the galaxy rotati<strong>on</strong> curves? This leads to a really speculative questi<strong>on</strong>: Could<br />

tangle effects at the scale <str<strong>on</strong>g>of</str<strong>on</strong>g> a full galaxy be related to dark matter? Research is <strong>on</strong>going,<br />

andwillbeaddedhereinthecomingm<strong>on</strong>ths.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


310 10 general relativity deduced from strands<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> topology <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe<br />

In the strand model, physical space-time, whenever it is defined, cannot be multiply c<strong>on</strong>nected.<br />

Also all quantum gravity approaches make this predicti<strong>on</strong>, and the strand model<br />

c<strong>on</strong>firms it: because physical space-time is a result <str<strong>on</strong>g>of</str<strong>on</strong>g> averaging strand crossing switches,<br />

n<strong>on</strong>-trivial topologies (except black holes) do not occur as soluti<strong>on</strong>s. For example, the<br />

strand model predicts that wormholes do not exist. In regi<strong>on</strong>s where space-time is undefined<br />

– at and bey<strong>on</strong>d horiz<strong>on</strong>s – it does not make sense to speak <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time topology.<br />

In these regi<strong>on</strong>s, the fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the universal strand determine observati<strong>on</strong>s.<br />

In short, the strand model predicts that all searches for n<strong>on</strong>-trivial macroscopic (and microscopic)<br />

topologies <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe, at both high and low energies, will yield negative<br />

results. So far, this predicti<strong>on</strong> agrees with all observati<strong>on</strong>s.<br />

Predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model about cosmology<br />

In the domain <str<strong>on</strong>g>of</str<strong>on</strong>g> cosmology, the strand model makes the following testable predicti<strong>on</strong>s.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> universe is not empty. (Agrees with observati<strong>on</strong>.)<br />

— Its integrated luminosity does not exceed the power limit c 5 /4G. (Agrees with observati<strong>on</strong>.)<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> universe’s energy density does not exceed the entropy bound. (Agrees with observati<strong>on</strong>.)<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> are no singularities in nature. (Agrees with observati<strong>on</strong>.)<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> matter density <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe decreases with age, roughly as ρt ∼ 1/t 2 .(Checks<br />

are under way. This predicti<strong>on</strong> differs from the usual cosmological models.)<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g>re is nothing behind the cosmic horiz<strong>on</strong>. Matter, energy and space appear at the<br />

horiz<strong>on</strong>. (Agrees with observati<strong>on</strong>s and requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> logic.)<br />

— Early density fluctuati<strong>on</strong>s are scale-invariant. (Agrees with observati<strong>on</strong>.)<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> universe is flat and homogeneous. (Agrees with observati<strong>on</strong>.)<br />

— Apart (maybe) from the cosmological c<strong>on</strong>stant Λ, all other fundamental c<strong>on</strong>stants <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nature are c<strong>on</strong>stant over time and space. (Agrees with observati<strong>on</strong>, despite occasi<strong>on</strong>al<br />

claims <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>trary.)<br />

— Inflati<strong>on</strong> is unnecessary.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> universe’s topology is trivial. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are no wormholes, no time-like loops, no<br />

cosmic strings, no toroidal black holes, no domain walls and no regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> negative<br />

energy. (Agrees with observati<strong>on</strong>.)<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> above statements are independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the precise fluctuati<strong>on</strong> details. (Can be<br />

tested with mathematical investigati<strong>on</strong>s.)<br />

All these predicti<strong>on</strong>s can and will be tested in the coming years, either by observati<strong>on</strong> or<br />

by computer calculati<strong>on</strong>s.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


summary <strong>on</strong> millennium issues about relativity and cosmology 311<br />

Page 355<br />

Page 279<br />

Page 8<br />

Page 149<br />

Page 164<br />

Page 276<br />

summary <strong>on</strong> millennium issues about relativity and<br />

cosmology<br />

We have deduced special relativity, general relativity and cosmology from the strand<br />

model. <str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental principle <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model implies the invariant Planck units,<br />

the Lagrangian and acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity, the finiteness <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe and, above<br />

all, it explains in simple terms the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes.<br />

Space-time foam is replaced by the strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum: empty space is the<br />

time-average <str<strong>on</strong>g>of</str<strong>on</strong>g> untangled strands. More precisely, space is the thermodynamic average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches that are due to shape fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> untangled strands.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model – and in particular, the strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum – explains the<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time dimensi<strong>on</strong>s, the vacuum energy density, the matter density and<br />

the finiteness <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe. <str<strong>on</strong>g>The</str<strong>on</strong>g> cosmological c<strong>on</strong>stant is a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the finite<br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe. <str<strong>on</strong>g>The</str<strong>on</strong>g> issue <str<strong>on</strong>g>of</str<strong>on</strong>g> the initial c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe has been defused.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> macroscopic and microscopic topology <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe is simple. And dark matter<br />

is predicted to be, as shown in the next chapter, a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al matter<br />

and black holes.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> most important predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model are the decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> the cosmological<br />

c<strong>on</strong>stant with time and the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> inflati<strong>on</strong>. Various experiments will test these<br />

predicti<strong>on</strong>s with increased precisi<strong>on</strong> in the coming years. So far, measurements do not<br />

c<strong>on</strong>tradict these predicti<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model c<strong>on</strong>firms that the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light c and the corrected Planck force<br />

c 4 /4G are limit values. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also predicts that no variati<strong>on</strong> in space and<br />

time <str<strong>on</strong>g>of</str<strong>on</strong>g> c, G, ħ and k can be detected, because they define all measurement units.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts that the cosmological c<strong>on</strong>stant and the masses <str<strong>on</strong>g>of</str<strong>on</strong>g> the elementary<br />

particles are the <strong>on</strong>ly quantum effects that will be observed in the study <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gravitati<strong>on</strong>. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s str<strong>on</strong>gly suggest that additi<strong>on</strong>al effects <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum gravity cannot<br />

be measured. In particular, no effects <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time foam will be observed.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model is, at present, the simplest – but not the <strong>on</strong>ly – known model <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

quantum gravity that allows deducing all these results. In particular, the strands’ explanati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> black hole entropy is by far the simplest <strong>on</strong>e known.<br />

General relativity is an approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model. <str<strong>on</strong>g>The</str<strong>on</strong>g> approximati<strong>on</strong> appears<br />

when the quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> and, in particular, the strand diameter are neglected.<br />

General relativity and cosmology thus appear by approximating ħ as 0 in the strand<br />

model – as required by the Br<strong>on</strong>shtein cube <str<strong>on</strong>g>of</str<strong>on</strong>g> physics that is shown in Figure 1. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s<br />

imply that general relativity is valid for all energies below the Planck energy. In other<br />

words, the strand model is not a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity. This c<strong>on</strong>forms to<br />

the list <str<strong>on</strong>g>of</str<strong>on</strong>g> requirements for the final theory.<br />

If we look at the millennium list <str<strong>on</strong>g>of</str<strong>on</strong>g> open issues in physics, we see that – except for the<br />

issue <str<strong>on</strong>g>of</str<strong>on</strong>g> dark matter – all issues about general relativity and cosmology have been settled.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model explains the mathematical descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> curved space-time and <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

general relativity. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also provides a simple model <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum gravity –<br />

maybe the simplest known <strong>on</strong>e. Above, we had already shown that the strand model explains<br />

all mathematical structures that appear in quantum theory and in particle physics.<br />

Together with the results from this chapter we can now say: the strand model explains all<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


312 10 general relativity deduced from strands<br />

c<strong>on</strong>cepts, i.e., all mathematical structures that appear in physical theories. In particular,<br />

strands explain the metric, curvature, wave functi<strong>on</strong>s, field intensities – and the probabilistic<br />

behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>of</str<strong>on</strong>g> them. <str<strong>on</strong>g>The</str<strong>on</strong>g>y all result from averaging crossing switches.<br />

In summary, starting from the fundamental principle <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model, we have<br />

understood that strands are the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> gravitati<strong>on</strong>, general relativity, quantum gravity<br />

and cosmology. We have also understood the mathematical descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gravitati<strong>on</strong> –<br />

and, before, that <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum physics – found in all textbooks. <str<strong>on</strong>g>The</str<strong>on</strong>g>se results encourage us<br />

to c<strong>on</strong>tinue our quest. Indeed, we are not d<strong>on</strong>e yet: we still need to deduce the possible<br />

elementary particles and to explain their properties.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


Chapter11<br />

THE PARTICLE SPECTRUM DEDUCED<br />

FROM STRANDS<br />

Ref. 218<br />

Page 164<br />

“No problem can withstand the assault <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sustained thinking.<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>taire**”<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s describe quantum theory, gauge interacti<strong>on</strong>s and general relativity. But do<br />

trands also settle all issues left open by twentieth-century physics? Do they<br />

ettle the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> all the elementary particles, their quantum numbers, their masses<br />

and their mixing angles? How does the infinite number <str<strong>on</strong>g>of</str<strong>on</strong>g> possible tangles lead to a finite<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles? And finally, do strands explain the coupling c<strong>on</strong>stants?<br />

In the millennium list <str<strong>on</strong>g>of</str<strong>on</strong>g> open issues in fundamental physics, these are the issues that<br />

remain. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model is correct <strong>on</strong>ly if these issues are resolved.<br />

In this chapter, we show that the strand model indeed explains the known spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

elementary particles, including the three generati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks and lept<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand<br />

model is the first approach <str<strong>on</strong>g>of</str<strong>on</strong>g> modern physics that can provide such an explanati<strong>on</strong>.<br />

It should be stressed that from this point <strong>on</strong>wards, the ideas are particularly speculative.<br />

In the chapters so far, the agreement <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model with quantum field<br />

theory and general relativity has been remarkable. <str<strong>on</strong>g>The</str<strong>on</strong>g> following chapters assign specific<br />

tangles to specific particles. Such assignments are, by nature, not completely certain. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

speculative nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the ideas now becomes particularly apparent.<br />

Particles and quantum numbers from tangles<br />

In nature, we observe three entities: vacuum, horiz<strong>on</strong>s and particles. Of these,<br />

(quantum) particles are localized entities with specific intrinsic properties, i.e., properties<br />

that do not depend <strong>on</strong> their moti<strong>on</strong>.<br />

In nature, all the intrinsic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> every particle, every object and every image<br />

are completely described by three types <str<strong>on</strong>g>of</str<strong>on</strong>g> basic properties: (1) the elementary particles<br />

they c<strong>on</strong>tain, (2) their behaviour under space-time transformati<strong>on</strong>s, (3) their interacti<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> full list <str<strong>on</strong>g>of</str<strong>on</strong>g> these basic intrinsic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> particles is given in Table 12.<br />

Given the basic intrinsic properties for each elementary particle, physicists can deduce<br />

all those intrinsic particle properties that are not listed; examples are the half life, decay<br />

modes, branching ratios, electric dipole moment, T-parity, gyromagnetic ratio or electric<br />

polarizability. Of course, the basic intrinsic properties also allow physicists to deduce<br />

every property <str<strong>on</strong>g>of</str<strong>on</strong>g> every object and image, such as size, shape, colour, brightness, density,<br />

** <str<strong>on</strong>g>Vol</str<strong>on</strong>g>taire (b. 1694 Paris, d. 1778 Paris) was an influential philosopher, politician and <str<strong>on</strong>g>of</str<strong>on</strong>g>ten satirical writer.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


314 11 the particle spectrum deduced from strands<br />

Tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e strand :<br />

Page 175<br />

Page 176<br />

1a<br />

curve<br />

Corresp<strong>on</strong>dence :<br />

phot<strong>on</strong>,<br />

vacuum<br />

1b<br />

prime l<strong>on</strong>g<br />

knot<br />

not in the<br />

strand model<br />

1c<br />

composed<br />

l<strong>on</strong>g knot<br />

not in the<br />

strand model<br />

1a’<br />

unknot<br />

FIGURE 83 Examples for each class <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e strand.<br />

1b’<br />

prime<br />

knot<br />

not in the strand model<br />

1c’<br />

composed<br />

knot<br />

elasticity, brittleness, magnetism or c<strong>on</strong>ductance.<br />

In short, understanding all properties <str<strong>on</strong>g>of</str<strong>on</strong>g> matter and images thus <strong>on</strong>ly requires understanding<br />

the basic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum particles; and understanding the basic properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> quantum particles <strong>on</strong>ly requires understanding the basic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the elementary<br />

particles.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model states that all elementary (and all composed) particles are tangles<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> strands. This leads us to ask: Which tangle is associated to each elementary particle?<br />

What kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles are possible? Do these tangles reproduce, for each<br />

elementary particle, the observed values <str<strong>on</strong>g>of</str<strong>on</strong>g> the basic properties listed in Table 12?<br />

It turns out that the strand model <strong>on</strong>ly allows a limited number <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles.<br />

In additi<strong>on</strong>, the tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> these elementary particle have intrinsic properties that match<br />

the observed properties. To prove these str<strong>on</strong>g statements, we first recall that all massive<br />

elementary particles are represented by an infinite sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles. We now explore<br />

tangles according to the number <str<strong>on</strong>g>of</str<strong>on</strong>g> strands they are made <str<strong>on</strong>g>of</str<strong>on</strong>g>.<br />

particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e strand<br />

In the strand model, all particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e strand have spin 1, are elementary, and are<br />

bos<strong>on</strong>s. C<strong>on</strong>versely, all massless elementary spin-1 bos<strong>on</strong>s can <strong>on</strong>ly have two tails, and<br />

thus must be made <str<strong>on</strong>g>of</str<strong>on</strong>g> a single strand. Such <strong>on</strong>e-stranded tangles return to the original<br />

strand after a core rotati<strong>on</strong> by 2π. Massive elementary spin-1 bos<strong>on</strong>s can have <strong>on</strong>e or<br />

more strands. Tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> more than <strong>on</strong>e strand can <strong>on</strong>ly have spin 1 if they represent<br />

massive elementary or composed particles. In short, classifying <strong>on</strong>e-stranded tangles<br />

allows classifying all elementary gauge bos<strong>on</strong>s.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e strand 315<br />

TABLE 12 <str<strong>on</strong>g>The</str<strong>on</strong>g> full list <str<strong>on</strong>g>of</str<strong>on</strong>g> basic intrinsic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum particles, from which all other observed<br />

intrinsic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> particles, objects and images can be deduced.<br />

Property Possible Value Determines<br />

Quantum numbers due to space-time symmetries:<br />

Spin S or J integerorhalf-integer statistics, rotati<strong>on</strong> behaviour, c<strong>on</strong>servati<strong>on</strong><br />

multiple <str<strong>on</strong>g>of</str<strong>on</strong>g> ħ<br />

Pparity even(+1) orodd(−1) behaviour under reflecti<strong>on</strong>, c<strong>on</strong>servati<strong>on</strong><br />

Cparity even(+1) orodd(−1) behaviour under charge c<strong>on</strong>jugati<strong>on</strong>,<br />

c<strong>on</strong>servati<strong>on</strong><br />

Interacti<strong>on</strong> properties:<br />

Mass M<br />

between 0 and the Planck gravitati<strong>on</strong>, inertia<br />

mass<br />

Electric charge Q integer multiples <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e<br />

third <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong> or prot<strong>on</strong><br />

Lorentz force, coupling to phot<strong>on</strong>s,<br />

c<strong>on</strong>servati<strong>on</strong><br />

charge<br />

Weak charge rati<strong>on</strong>al multiple <str<strong>on</strong>g>of</str<strong>on</strong>g> weak<br />

coupling c<strong>on</strong>stant<br />

weak scattering and decays, coupling to W<br />

and Z, partial c<strong>on</strong>servati<strong>on</strong><br />

Mixing angles between 0 and π/2 mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks and neutrinos, flavour<br />

change<br />

CP-violating phases between 0 and π/2 degree <str<strong>on</strong>g>of</str<strong>on</strong>g> CP violati<strong>on</strong> in quarks and<br />

neutrinos<br />

Str<strong>on</strong>g charge, i.e.,<br />

colour<br />

rati<strong>on</strong>al multiple <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g<br />

coupling c<strong>on</strong>stant<br />

c<strong>on</strong>finement, coupling to glu<strong>on</strong>s,<br />

c<strong>on</strong>servati<strong>on</strong><br />

Flavour quantum numbers, describing elementary particle c<strong>on</strong>tent:<br />

Lept<strong>on</strong> number(s) L integer(s)<br />

c<strong>on</strong>servati<strong>on</strong> in str<strong>on</strong>g and e.m.<br />

interacti<strong>on</strong>s<br />

Bary<strong>on</strong> number B integer times 1/3 c<strong>on</strong>servati<strong>on</strong> in all three gauge<br />

interacti<strong>on</strong>s<br />

Isospin I z or I 3 +1/2 or −1/2 up and down quark c<strong>on</strong>tent, c<strong>on</strong>servati<strong>on</strong><br />

in str<strong>on</strong>g and e.m. interacti<strong>on</strong>s<br />

Strangeness S integer strange quark c<strong>on</strong>tent, c<strong>on</strong>servati<strong>on</strong> in<br />

str<strong>on</strong>g and e.m. interacti<strong>on</strong>s<br />

Charmness C integer charm quark c<strong>on</strong>tent, c<strong>on</strong>servati<strong>on</strong> in<br />

str<strong>on</strong>g and e.m. interacti<strong>on</strong>s<br />

Bottomness B integer bottom quark c<strong>on</strong>tent, c<strong>on</strong>servati<strong>on</strong> in<br />

str<strong>on</strong>g and e.m. interacti<strong>on</strong>s<br />

Topness T integer top quark c<strong>on</strong>tent, c<strong>on</strong>servati<strong>on</strong> in str<strong>on</strong>g<br />

and e.m. interacti<strong>on</strong>s<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


316 11 the particle spectrum deduced from strands<br />

Phot<strong>on</strong> γ :<br />

Weak vector bos<strong>on</strong>s W – before SU(2) breaking :<br />

W x<br />

W y<br />

W 0<br />

Page 253<br />

Glu<strong>on</strong>s g :<br />

FIGURE 84 <str<strong>on</strong>g>The</str<strong>on</strong>g> gauge bos<strong>on</strong>s in the strand model. All differ from vacuum by <strong>on</strong>e curved strand –<br />

though, for clarity, the glu<strong>on</strong>s are shown here using their complementary two-strand moves.<br />

Mathematicians have already classified <strong>on</strong>e-stranded tangles; they are usually called<br />

open knots or l<strong>on</strong>g knots. To get an overview, we list an example for each class <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>estranded<br />

tangles <strong>on</strong> the left-hand side <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 83. For completeness, closed curves are<br />

shown <strong>on</strong> the right-hand side <str<strong>on</strong>g>of</str<strong>on</strong>g> the figure. We now explore each <str<strong>on</strong>g>of</str<strong>on</strong>g> these classes.<br />

Unknotted curves<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> simplest type <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e strand is an unknotted curve, shown as example<br />

1a in Figure 83. <str<strong>on</strong>g>The</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> gauge interacti<strong>on</strong>s has shown that unknotted strands are,<br />

depending <strong>on</strong> their precise average shape, either vacuum strands or gauge bos<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> time-average <str<strong>on</strong>g>of</str<strong>on</strong>g> a vacuum strand is straight. A single strand represents a particle<br />

if the time-averaged strand shape is not a straight line.<br />

In the strand model, vacuum strands in flat space are, <strong>on</strong> average, straight. In this<br />

property, vacuum strands differ from gauge bos<strong>on</strong>s, which, <strong>on</strong> average, have curved<br />

strands, and thus carry energy.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e strand 317<br />

Page 225<br />

Gauge bos<strong>on</strong>s – and Reidemeistermoves<br />

Gauge bos<strong>on</strong>s are the carrier particles <str<strong>on</strong>g>of</str<strong>on</strong>g> the interacti<strong>on</strong>s. In the strand model, the gauge<br />

interacti<strong>on</strong>s are due to the three Reidemeister moves. <str<strong>on</strong>g>The</str<strong>on</strong>g> electromagnetic, the weak and<br />

the str<strong>on</strong>g interacti<strong>on</strong> corresp<strong>on</strong>d to respectively the first, sec<strong>on</strong>d and third Reidemeister<br />

move. As we have seen above, when the three Reidemeister moves deform fermi<strong>on</strong> tangle<br />

cores they generate U(1), SU(2) and SU(3) gauge symmetries. <str<strong>on</strong>g>The</str<strong>on</strong>g> detailed explorati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the corresp<strong>on</strong>dence between tangle deformati<strong>on</strong> and gauge theory led us to the gauge<br />

bos<strong>on</strong> tangles shown in Figure 84.<br />

Page 228<br />

Page 246<br />

Page 258<br />

⊳ All gauge bos<strong>on</strong>s – before symmetry breaking when applicable – are due to<br />

a single moving and curved strand.<br />

A single strand represents a particle if the time-averaged strand shape is not a straight<br />

line. <str<strong>on</strong>g>The</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> straightness implies n<strong>on</strong>-vanishing energy. A single-strand particle can<br />

thus be either a strand with a bulge or a strand whose tails are not aligned al<strong>on</strong>g a straight<br />

line. <str<strong>on</strong>g>The</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> the bulge is related to the wavelength.<br />

As explained above, the first Reidemeister move, the twist, leads to the modelling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phot<strong>on</strong>s as helical strands. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, phot<strong>on</strong>s have vanishing mass and two possible polarizati<strong>on</strong>s.<br />

Phot<strong>on</strong>s do not have tangled, localized family members; phot<strong>on</strong>s are massless.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>ir specific unknotted and twisted strand shapes also imply that phot<strong>on</strong>s generate<br />

an Abelian gauge theory and that phot<strong>on</strong>s do not interact am<strong>on</strong>g themselves. Automatically,<br />

phot<strong>on</strong>s have no weak and no str<strong>on</strong>g charge. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model further implies<br />

that phot<strong>on</strong>s have negative P-parity and C-parity, as is observed.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> the sec<strong>on</strong>d Reidemeister move, the poke, showed that deformati<strong>on</strong>s induced<br />

by pokes can also involve braiding <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle tails; this leads to the symmetry breaking<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong>. As a result, the observed W and the Z bos<strong>on</strong> strands become<br />

massive. <str<strong>on</strong>g>The</str<strong>on</strong>g> tangle <str<strong>on</strong>g>of</str<strong>on</strong>g> the W is chiral, and thus it is electrically charged; the tangle <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Z is achiral and thus electrically neutral. Being tangled, the W and the Z also carry weak<br />

charge and thus interact am<strong>on</strong>g themselves, generating a n<strong>on</strong>-Abelian gauge theory. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

strand model also implies that the W and the Z have no P-parity, no C-parity and no<br />

colour charge, as is observed.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> the third Reidemeister move, the slide, led us to the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> eight<br />

glu<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> eight glu<strong>on</strong>s are unknotted, thus they carry no mass, no electric charge and<br />

no weak charge. Each glu<strong>on</strong> tangle has two possible polarizati<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> glu<strong>on</strong>s also implies that they have negative P-parity and no C-parity, as is observed.<br />

Glu<strong>on</strong>s tangles carry colour and interact am<strong>on</strong>g themselves, thus they generate a n<strong>on</strong>-<br />

Abelian gauge theory. In c<strong>on</strong>trast to the other two interacti<strong>on</strong>s, free, single glu<strong>on</strong>s are<br />

short-lived, because their structure induces rapid hadr<strong>on</strong>izati<strong>on</strong>: when glu<strong>on</strong>s act <strong>on</strong><br />

the vacuum, quark–antiquark pairs are produced. Glu<strong>on</strong>s do not have tangled family<br />

members; they are massless in the high energy limit, when their tails are aligned.<br />

For completeness we menti<strong>on</strong> that by assignment, all gauge bos<strong>on</strong>s differ from vacuum<br />

by a single curved strand, have vanishing lept<strong>on</strong> and bary<strong>on</strong> numbers, and thus<br />

also lack all flavour quantum numbers. All this is as observed.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model explains the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> classical SU(2) field waves as a c<strong>on</strong>sequence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the breaking <str<strong>on</strong>g>of</str<strong>on</strong>g> the SU(2) symmetry and the c<strong>on</strong>sequent mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak bos<strong>on</strong>s.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


318 11 the particle spectrum deduced from strands<br />

Page 254<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s explain the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> classical SU(3) waves, also called glu<strong>on</strong>ic waves, asac<strong>on</strong>sequence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the topological impossibility to produce such waves, which is related to the<br />

infinite mass <str<strong>on</strong>g>of</str<strong>on</strong>g> single free glu<strong>on</strong>s.<br />

In somewhat sloppy language we can say that the shape and the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s are<br />

<strong>on</strong>e-dimensi<strong>on</strong>al, those <str<strong>on</strong>g>of</str<strong>on</strong>g> the unbroken weak bos<strong>on</strong>s are two-dimensi<strong>on</strong>al, and those<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the glu<strong>on</strong>s are three-dimensi<strong>on</strong>al. This is the essential reas<strong>on</strong> that they reproduce the<br />

U(1), SU(2) and SU(3) groups, and that no higher gauge groups exist in nature.<br />

In summary, Reidemeister’s theorem implies that the list <str<strong>on</strong>g>of</str<strong>on</strong>g> known gauge bos<strong>on</strong>s with<br />

spin 1 is complete. But the list <str<strong>on</strong>g>of</str<strong>on</strong>g> possible tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> a single strand is much more<br />

extensive; we are not d<strong>on</strong>e yet.<br />

Open orl<strong>on</strong>g knots<br />

Single strands could also c<strong>on</strong>tain knotted regi<strong>on</strong>s. We have explained earlier <strong>on</strong> that all<br />

such possibilities – mathematically speaking, all so-called open knots or l<strong>on</strong>g knots –have<br />

no relati<strong>on</strong> to particles. In the strand model, they cannot appear and thus play no role.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> original strand model from 2008 did include such c<strong>on</strong>figurati<strong>on</strong>s as particles (for<br />

example as W and Z bos<strong>on</strong>s), but it now – i.e., after 2014 – seems that this inclusi<strong>on</strong> is<br />

an unnecessary complicati<strong>on</strong>.<br />

Closed tangles: knots<br />

Figure 83 shows, <strong>on</strong> the right-hand side, examples for all classes <str<strong>on</strong>g>of</str<strong>on</strong>g> closed tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e<br />

strand, i.e., <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles without tails. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are usually just called knots in mathematics. In<br />

the strand model knots do not appear. <str<strong>on</strong>g>The</str<strong>on</strong>g>y do not seem to have physical relevance and<br />

we do not explore them here.<br />

Summary <strong>on</strong> tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e strand<br />

In summary, a single strand represents a particle if the strand shape is, <strong>on</strong> average, not a<br />

straight line. This distinguishes a vacuum strand from a particle strand. A particle strand<br />

can thus be a strand with a bulge or a strand whose tails are not aligned al<strong>on</strong>g a straight<br />

line. All tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e open strand represent elementary particles <str<strong>on</strong>g>of</str<strong>on</strong>g> spin 1, thus<br />

elementary vector bos<strong>on</strong>s.<br />

Massless elementary spin-1 particles are made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e open strand also because other<br />

tangles cannot reproduce both zero mass and the spin-1 behaviour under rotati<strong>on</strong>s: <strong>on</strong>ly<br />

<strong>on</strong>e-stranded tangles return to the original strand after a core rotati<strong>on</strong> by 2π and allow<br />

vanishing mass at the same time.<br />

In the strand model, the tangle made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e curved strand is assigned to the phot<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model correctly reproduces and thus explains the properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the phot<strong>on</strong>.<br />

particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands<br />

In the strand model, particle tangles can also be made <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands. Examples for all the<br />

classes <str<strong>on</strong>g>of</str<strong>on</strong>g> two-stranded tangles are given in Figure 85. Each class has a physical particle<br />

assignment.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands 319<br />

Tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands :<br />

2a<br />

trivial<br />

tangle<br />

2b<br />

simple<br />

crossing<br />

Particle corresp<strong>on</strong>dence :<br />

vacuum<br />

or two<br />

phot<strong>on</strong>s<br />

2a’<br />

unlink<br />

vacuum<br />

or W i<br />

bos<strong>on</strong>s,<br />

or d quark<br />

2b’<br />

Hopf<br />

link<br />

2c<br />

rati<strong>on</strong>al<br />

tangle<br />

(locally<br />

unknotted)<br />

elementary:<br />

quark or<br />

gravit<strong>on</strong>,<br />

with higher<br />

orders<br />

2c’<br />

rati<strong>on</strong>al<br />

link<br />

2d<br />

prime<br />

tangle<br />

(locally<br />

unknotted)<br />

not in<br />

the strand<br />

model<br />

2d’<br />

prime<br />

link<br />

2e<br />

locally<br />

knotted<br />

tangle<br />

not in<br />

the strand<br />

model<br />

2e’<br />

composed<br />

link<br />

Particle corresp<strong>on</strong>dence : n<strong>on</strong>e - <strong>on</strong>ly found in the early universe or near horiz<strong>on</strong>s.<br />

FIGURE 85 Possible tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands.<br />

2f<br />

mixed<br />

open-closed<br />

tangle<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g>simplesttanglemade<str<strong>on</strong>g>of</str<strong>on</strong>g>twostrandsisthetrivial tangle, shown as example 2a in<br />

Figure 85. In the strand model, the trivial tangle, like all separable tangles, is a composite<br />

system. Each <str<strong>on</strong>g>of</str<strong>on</strong>g> the two strands can represent either the vacuum or a phot<strong>on</strong>.<br />

Simply stated, the trivial tangle <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands is not an elementary particle.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> simplest n<strong>on</strong>-trivial tangle made <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands is the crossing, shownas2bin<br />

Figure 85. In the strand model, the crossing appears as part <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum, or as<br />

unbroken W bos<strong>on</strong>s; in additi<strong>on</strong>, for certain tail c<strong>on</strong>figurati<strong>on</strong>s, it can represent a<br />

down quark, as we will see below.<br />

— A new class <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles are the rati<strong>on</strong>al tangles, represented by example 2c in the figure.<br />

A rati<strong>on</strong>al tangle is a tangle that can be untangled by moving its tails around. (Also<br />

example 2b is a rati<strong>on</strong>al tangle.) Rati<strong>on</strong>al tangles are distinct from prime and from<br />

locally knotted tangles, shown as examples 2d and 2e, which require pulling the tail<br />

through the tangle to untangle it. Rati<strong>on</strong>al tangles are thus weakly tangled. As we will<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


320 11 the particle spectrum deduced from strands<br />

Quarks :<br />

Parity P = +1, B = 1/3, spin S = 1/2<br />

Q = –1/3 Q = +2/3<br />

Antiquarks :<br />

P = –1, B = –1/3, S = 1/2<br />

Q = +1/3 Q = –2/3<br />

d<br />

u<br />

d<br />

u<br />

5.0 ± 1.6 MeV 2.5 ± 1.1 MeV<br />

s<br />

c<br />

s<br />

c<br />

b<br />

s<br />

t<br />

105 ± 35 MeV<br />

b<br />

4.20 ± 0.17 GeV<br />

s<br />

1.27 ± 0.11 GeV<br />

t<br />

171.3 ± 2.3 GeV<br />

Seen from a larger distance, the tails follow (<strong>on</strong> average) the skelet<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a tetrahedr<strong>on</strong> :<br />

FIGURE 86 <str<strong>on</strong>g>The</str<strong>on</strong>g> simplest tangles assigned to the quarks and antiquarks. For reference, the experimental<br />

mass values are also given.<br />

see,<br />

⊳ Rati<strong>on</strong>al tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands represent the gravit<strong>on</strong> and the quarks.<br />

We will discuss them in detail in the next two secti<strong>on</strong>s. More complicated rati<strong>on</strong>al<br />

tangles are higher-order propagating states <str<strong>on</strong>g>of</str<strong>on</strong>g> the simpler <strong>on</strong>es.<br />

— Another class <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles are prime tangles, for which the tangle 2d is an example.<br />

Like knotted <strong>on</strong>e-stranded tangles, we c<strong>on</strong>clude that prime tangles are not part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the strand model.<br />

— Still another class <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles are locally knotted tangles, shown as example 2e. Also<br />

this class is not part <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model.<br />

— Finally, closed tangles, links and mixed tangles, showninthelowerrow<str<strong>on</strong>g>of</str<strong>on</strong>g>Figure 85,<br />

have no role in the strand model.<br />

In short, the <strong>on</strong>ly two-stranded tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> interest in the strand model are the rati<strong>on</strong>al<br />

tangles. We now explore them in more detail.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands 321<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> three colour states for a strange quark :<br />

red<br />

green<br />

Page 271<br />

Page 382<br />

Page 332, page 340<br />

Page 323<br />

blue<br />

FIGURE 87 <str<strong>on</strong>g>The</str<strong>on</strong>g> three colour charges corresp<strong>on</strong>d to the three possible spatial orientati<strong>on</strong>s; the centre<br />

tail <strong>on</strong> the right is always above the paper plane, the other two tails <strong>on</strong> the right are below the paper<br />

plane.<br />

Quarks<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model and <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g interacti<strong>on</strong> showed: the tangle <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a coloured fermi<strong>on</strong>, thus <str<strong>on</strong>g>of</str<strong>on</strong>g> a quark, must be rati<strong>on</strong>al, must reproduce the three possible<br />

colour opti<strong>on</strong>s, and must break the three-belt symmetry.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> simplest tangles that realize these requirements are shown in Figure 86: quark<br />

tangles are rati<strong>on</strong>al tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands. Higher quark generati<strong>on</strong>s have larger<br />

crossing numbers. <str<strong>on</strong>g>The</str<strong>on</strong>g> four tails form the skelet<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a tetrahedr<strong>on</strong>. A particle with two<br />

strands tangled in this way automatically has spin 1/2. <str<strong>on</strong>g>The</str<strong>on</strong>g> electric charges <str<strong>on</strong>g>of</str<strong>on</strong>g> the quarks<br />

are 1/3 and −2/3, an assignment that is especially obvious for up and down quarks and<br />

that will become clearer later <strong>on</strong>, in the study <str<strong>on</strong>g>of</str<strong>on</strong>g> hadr<strong>on</strong>s. Parity is naturally assigned as<br />

d<strong>on</strong>e in Figure 86. Bary<strong>on</strong> number and the other flavour quantum numbers – isospin,<br />

strangeness, charm, bottomness, topness – are naturally assigned as usual. <str<strong>on</strong>g>The</str<strong>on</strong>g> flavour<br />

quantum numbers simply ‘count’ the number <str<strong>on</strong>g>of</str<strong>on</strong>g> corresp<strong>on</strong>ding quark tangles. Like all<br />

localized tangles, quarks have weak charge. We will explore weak charge in more detail<br />

below. Antiquarks are mirror tangles and have opposite quantum numbers. We will see<br />

below that these assignments reproduce the observed quantum numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> all mes<strong>on</strong>s<br />

and bary<strong>on</strong>s, as well as all their other properties.<br />

We note that the simplest versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the down quark is a simple crossing; nevertheless,<br />

it differs from its antiparticle, because the simple crossing mixes with the braid with<br />

seven crossings, 13 crossings, etc.; this mixing is due to the leather trick, as shown below.<br />

And for every quark type, these more complicated braids differ from those <str<strong>on</strong>g>of</str<strong>on</strong>g> their antiparticles.<br />

For each quark, the four tails form the skelet<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a tetrahedr<strong>on</strong>. In Figure 86 and<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


322 11 the particle spectrum deduced from strands<br />

An example for a flavour-changing charged current :<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g> model :<br />

Observati<strong>on</strong> :<br />

t 2<br />

t 2<br />

s quark W bos<strong>on</strong> (unbroken)<br />

s quark W bos<strong>on</strong><br />

c quark<br />

vacuum<br />

Page 267<br />

Page 332<br />

Page 332<br />

Page 337<br />

t 1<br />

c quark<br />

t 1<br />

time<br />

FIGURE 88 Absorpti<strong>on</strong> or emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a W bos<strong>on</strong> changes quark flavour.<br />

Figure 87, the tetrahedral skelet<strong>on</strong>s are drawn with <strong>on</strong>e tail in the paper plane; <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

other three tails, the middle <strong>on</strong>e is assumed to be above the paper plane, and the outer two<br />

tails to be below the paper plane. This is important for the drawing <str<strong>on</strong>g>of</str<strong>on</strong>g> quark compounds<br />

later <strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> three tails allow us to reproduce the str<strong>on</strong>g interacti<strong>on</strong> and the colour charge<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the quarks: each colour is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> three possible orientati<strong>on</strong>s in space; more precisely,<br />

the three colours result from the three possible ways to map a quark tangle to the three<br />

belt structure. Each colour corresp<strong>on</strong>ds to a different choice for the tail that lies above<br />

the paper plane, as shown in Figure 87. <str<strong>on</strong>g>The</str<strong>on</strong>g> colour interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks will be clarified<br />

in the secti<strong>on</strong> <strong>on</strong> mes<strong>on</strong>s.<br />

In the strand model, the quark tangles thus carry colour. In nature, no free coloured<br />

particle has been observed. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model reproduces this observati<strong>on</strong> in several<br />

ways. First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, all lept<strong>on</strong>s and bary<strong>on</strong>s are colour-neutral, as we will see shortly.<br />

Sec<strong>on</strong>dly, <strong>on</strong>ly free quark tangles, as shown in Figure 86, have a definite colour state, because<br />

they have a fixed orientati<strong>on</strong> in space. Thirdly, free quark states, thus quark states<br />

in the tetrahedral c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 86, do not fit into vacuum even at large distances<br />

from the core; thus free quarks carry infinitely high energy. In practice, this means<br />

that free quark states do not occur in nature. Indeed, a free, coloured quark tangle can<br />

reduce its energy by interacting with <strong>on</strong>e or several other quarks. <str<strong>on</strong>g>The</str<strong>on</strong>g> result is a str<strong>on</strong>g<br />

colour attracti<strong>on</strong> between quarks that leads to colourless composites.<br />

In short, also in the strand model, <strong>on</strong>ly colourless composites <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks exist as stable<br />

free particles. We will explore quark composites and the issue <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>finement <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks<br />

in more detail shortly.<br />

In nature, quarks are weakly charged and interact with W bos<strong>on</strong>s. In the strand<br />

model, the absorpti<strong>on</strong> or the emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a W bos<strong>on</strong> is the operati<strong>on</strong> that takes a quark<br />

tangle and adds or subtracts a braiding step. This process is illustrated in Figure 88,which<br />

shows that a braiding (unbraiding) operati<strong>on</strong> corresp<strong>on</strong>ds to the emissi<strong>on</strong> (absorpti<strong>on</strong>)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> an W bos<strong>on</strong> before symmetry breaking. It is straightforward to check that this operati<strong>on</strong><br />

fulfils all c<strong>on</strong>servati<strong>on</strong> laws and properties that are observed for these so-called<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands 323<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> leather trick :<br />

FIGURE 89 <str<strong>on</strong>g>The</str<strong>on</strong>g> leather trick is the deformati<strong>on</strong> process that changes these two structures into each<br />

other. <str<strong>on</strong>g>The</str<strong>on</strong>g> leather trick limits structures made <str<strong>on</strong>g>of</str<strong>on</strong>g> three-stranded braids to six basic types.<br />

Page 325<br />

Page 365<br />

Page 330<br />

Challenge 192 e<br />

flavour-changing charged currents. <str<strong>on</strong>g>The</str<strong>on</strong>g> absorpti<strong>on</strong> or emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an (unbroken) Z bos<strong>on</strong><br />

has no braiding effect. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus reproduces the result that <strong>on</strong>ly the charged<br />

weak bos<strong>on</strong>s can change quark flavours, as is observed.<br />

For completeness, we menti<strong>on</strong> that quarks, being tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands, have vanishing<br />

lept<strong>on</strong> number. Indeed, as we will see below, lept<strong>on</strong> tangles are made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands.<br />

In summary, all quantum numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks are reproduced by the strand model, as<br />

l<strong>on</strong>g as quarks are modelled as braids <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands with ends directed al<strong>on</strong>g the corners<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a tetrahedr<strong>on</strong>.<br />

Quark generati<strong>on</strong>s<br />

We stress that the quark tangles shown Figure 86 represent <strong>on</strong>ly the simplest tangle for<br />

each quark. First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, l<strong>on</strong>ger braids are mapped to each <str<strong>on</strong>g>of</str<strong>on</strong>g> the six quarks. This might<br />

seem related to the leather trick shown in Figure 89. This trick is well-known to all people<br />

in the leather trade: if a braid <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands has n⩾6crossings, it can be deformed<br />

into a braid with n−6crossings. We might c<strong>on</strong>jecture that, due to the leather trick, there<br />

is no way to introduce more than 6 quarks in the strand model.<br />

In fact, the leather trick argument assumes that the braid end – and thus the ends<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the strands – can be moved through the braids. In the strand model, this can <strong>on</strong>ly<br />

happen at the horiz<strong>on</strong>, the <strong>on</strong>ly regi<strong>on</strong> where space (and time) are not well-defined, and<br />

where such manipulati<strong>on</strong>s become possible. <str<strong>on</strong>g>The</str<strong>on</strong>g> low probability <str<strong>on</strong>g>of</str<strong>on</strong>g> such a process will<br />

be important in the determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quark masses.<br />

Instead <str<strong>on</strong>g>of</str<strong>on</strong>g> resting <strong>on</strong> the leather trick, it is simpler to assume that braids with large<br />

numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings are mapped modulo 6 to the braids with the smallest number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

crossings. This is c<strong>on</strong>sistent, because in the strand model, a braid with six additi<strong>on</strong>al<br />

crossings is mapped to a particle together with a virtual Higgs bos<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> modulo 6 rule<br />

thus represents the Yukawa mass generati<strong>on</strong> mechanism in the strand model.<br />

In summary, in the strand model, each quark is not <strong>on</strong>ly represented by the tangles<br />

shown in Figure 86, but also by tangles with 6 additi<strong>on</strong>al crossings, with 12 additi<strong>on</strong>al<br />

crossings, etc.<br />

As a mathematical check, we can also ask whether all other rati<strong>on</strong>al tangles are<br />

mapped to quarks. Rati<strong>on</strong>al tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> higher complexity arise by repeatedly twisting<br />

any pair <str<strong>on</strong>g>of</str<strong>on</strong>g> tails <str<strong>on</strong>g>of</str<strong>on</strong>g> a quark tangle. This process produces an infinite number <str<strong>on</strong>g>of</str<strong>on</strong>g> complex<br />

two-stranded tangles. In the strand model, these tangles are quarks surrounded by virtual<br />

particles. Equivalently, we can say that all the more complex rati<strong>on</strong>al tangles that do<br />

not appear in Figure 86 are higher-order propagators <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


324 11 the particle spectrum deduced from strands<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> gravit<strong>on</strong> :<br />

FIGURE 90 <str<strong>on</strong>g>The</str<strong>on</strong>g>gravit<strong>on</strong>inthestrandmodel.<br />

Page 298<br />

Page 281<br />

Challenge 193 s<br />

achiral 6-fold<br />

crossing tangle<br />

chiral 6-fold<br />

crossing tangle<br />

FIGURE 91 Which particle states are described by these tangles?<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> gravit<strong>on</strong><br />

chiral 8-fold<br />

crossing tangle<br />

One rati<strong>on</strong>al tangle made <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands is special. This special tangle is shown (again)<br />

in Figure 90. It differs from a quark tangle in <strong>on</strong>e property: the tails are parallel (and<br />

near) to each other, and thus lie (almost completely) in a plane. Its tangle core returns<br />

to its original state after rotati<strong>on</strong> by π, and therefore models a spin-2 particle. <str<strong>on</strong>g>The</str<strong>on</strong>g> tangle<br />

is not localized al<strong>on</strong>g its propagati<strong>on</strong> directi<strong>on</strong>; thus it has no mass, no electric and no<br />

weak charge. It also has no colour charge. <str<strong>on</strong>g>The</str<strong>on</strong>g> tangle represents the gravit<strong>on</strong>. Similar<br />

tangles with higher winding numbers represent higher orders in the perturbati<strong>on</strong> theory<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gravitati<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> chapter <strong>on</strong> gravitati<strong>on</strong> has already shown how gravit<strong>on</strong>s lead to curvature, horiz<strong>on</strong>s<br />

and the field equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity.<br />

A puzzle<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> topic <str<strong>on</strong>g>of</str<strong>on</strong>g> two-stranded tangles also requires to solve the puzzle <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 91. Towhich<br />

physical states do the three pictured tangles corresp<strong>on</strong>d?<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands 325<br />

Tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands :<br />

3a<br />

trivial<br />

tangle<br />

Particle corresp<strong>on</strong>dence :<br />

vacuum<br />

or several<br />

phot<strong>on</strong>s<br />

3b<br />

simple<br />

crossings<br />

elementary:<br />

glu<strong>on</strong>s<br />

3c<br />

braided<br />

tangle<br />

elementary:<br />

W and Z,<br />

lept<strong>on</strong>s ang<br />

Higgs bos<strong>on</strong><br />

3d<br />

rati<strong>on</strong>al<br />

tangle<br />

composed:<br />

mes<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

spin 0 and<br />

other particles<br />

3e<br />

prime<br />

tangle<br />

not part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the strand<br />

model<br />

FIGURE 92 Examples for all the classes <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands.<br />

Summary <strong>on</strong> two-stranded tangles<br />

3f<br />

locally<br />

knotted<br />

tangle<br />

not part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the strand<br />

model<br />

3g<br />

closed or<br />

mixed<br />

open-closed<br />

tangles<br />

not part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the strand<br />

model<br />

In summary, the strand model predicts that apart from the six quarks, the gravit<strong>on</strong>, and<br />

the unbroken weak bos<strong>on</strong>s W 1 , W 2 and W 3 , no other two-stranded elementary particle<br />

exists in nature.<br />

Quarks and the gravit<strong>on</strong>, the elementary particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands, are rati<strong>on</strong>al<br />

tangles. <str<strong>on</strong>g>The</str<strong>on</strong>g>ir strand models are thus not tangled in a complicated way, but tangled in<br />

the least complicated way possible. This c<strong>on</strong>necti<strong>on</strong> will be <str<strong>on</strong>g>of</str<strong>on</strong>g> importance in our search<br />

for elementary particles that are still undiscovered.<br />

particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands<br />

In the strand model, the next group are particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands. Examples for<br />

all classes <str<strong>on</strong>g>of</str<strong>on</strong>g> three-stranded tangles are given in Figure 92. Several classes <str<strong>on</strong>g>of</str<strong>on</strong>g> threestranded<br />

tangles turn out to be composites <str<strong>on</strong>g>of</str<strong>on</strong>g> two-stranded particles. However, a number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tangles are new and represent elementary particles.<br />

Lept<strong>on</strong>s<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> candidate tangles from 2008 for the lept<strong>on</strong>s shown in Figure 93 are the simplest<br />

possible n<strong>on</strong>-trivial tangles with three strands. <str<strong>on</strong>g>The</str<strong>on</strong>g>se lept<strong>on</strong> tangles are simple braids<br />

with tails reaching the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space. <str<strong>on</strong>g>The</str<strong>on</strong>g> six tails probably point al<strong>on</strong>g the coordinate<br />

axes. <str<strong>on</strong>g>The</str<strong>on</strong>g>se braided tangles have the following properties.<br />

— Each lept<strong>on</strong> is localized. Each lept<strong>on</strong> has mass: its three tails c<strong>on</strong> be braided, thus<br />

have n<strong>on</strong>-vanishing Yukawa coupling, thus generate mass. And each lept<strong>on</strong> has spin<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


326 11 the particle spectrum deduced from strands<br />

Lept<strong>on</strong> tangles, all with spin S = 1/2 , parity P = +1 , lept<strong>on</strong> number L’ = 1 and bary<strong>on</strong> number B = 0 :<br />

e μ τ<br />

all three with<br />

Q = –1<br />

0.5 MeV<br />

105 MeV<br />

1.77 GeV<br />

ν e<br />

1±1 eV<br />

ν μ<br />

1±1 eV<br />

ν τ<br />

1±1 eV<br />

all three with<br />

Q = 0<br />

Seen from a larger distance, the tails follow (<strong>on</strong> average) the x, y and z axes <str<strong>on</strong>g>of</str<strong>on</strong>g> a coordinate system.<br />

FIGURE 93 <str<strong>on</strong>g>The</str<strong>on</strong>g> simplest tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> the lept<strong>on</strong>s, with the experimental mass values. Antilept<strong>on</strong>s are<br />

mirror tangles.<br />

1/2. Each lept<strong>on</strong> thus follows the Dirac equati<strong>on</strong>.<br />

— Each lept<strong>on</strong> has weak charge.<br />

— Charged lept<strong>on</strong>s and antilept<strong>on</strong>s differ. Each has two possible chiralities.<br />

— Three <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangles are topologically chiral, thus electrically charged, and three other<br />

tangles are topologically achiral, thus uncharged.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> spatial parity P <str<strong>on</strong>g>of</str<strong>on</strong>g> the charged lept<strong>on</strong> tangles is opposite to that <str<strong>on</strong>g>of</str<strong>on</strong>g> their antiparticles.<br />

— Being made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands, lept<strong>on</strong> tangles have vanishing colour charge and vanishing<br />

bary<strong>on</strong> number.<br />

— In c<strong>on</strong>trast to quarks, lept<strong>on</strong> tangles can be inserted in the vacuum using a localized,<br />

i.e., finite amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy and are thus predicted to exist as free particles.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands 327<br />

Ref. 224<br />

Ref. 225<br />

Page 390<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> three types <str<strong>on</strong>g>of</str<strong>on</strong>g> lept<strong>on</strong> (flavour) numbers can be assigned as usual; the lept<strong>on</strong> numbers<br />

are c<strong>on</strong>served in reacti<strong>on</strong>s, apart for neutrino mixing effects, as we will see below.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts that the electr<strong>on</strong>, the charged tangle with the lowest mass,<br />

is stable, as there is no way for it to decay and c<strong>on</strong>serve charge and spin. <str<strong>on</strong>g>The</str<strong>on</strong>g> other<br />

two generati<strong>on</strong>s are predicted to be unstable, due to weak decays that simplify their<br />

topology.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> three generati<strong>on</strong>s are reproduced by the strand model, as every more complicated<br />

braid can be seen as equivalent to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the first six braids, with the same braiding<br />

argumentthatlimitsthenumber<str<strong>on</strong>g>of</str<strong>on</strong>g>quarks.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a natural mapping between the six quarks and the six lept<strong>on</strong>s. It appears<br />

when the final bend <str<strong>on</strong>g>of</str<strong>on</strong>g> the ‘l<strong>on</strong>ger’ quark strand is extended to the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space,<br />

thus transforming a two-stranded quark braid into a three-stranded lept<strong>on</strong> braid.<br />

Thus we get three comm<strong>on</strong> generati<strong>on</strong>s for quarks and lept<strong>on</strong>s.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> neutrino strands differ by tail braiding; the strand model thus predicts that the<br />

weak interacti<strong>on</strong> mixes neutrinos.<br />

— All lept<strong>on</strong> tangles differ from each other. Thus the mass values are different for each<br />

lept<strong>on</strong>.<br />

— Due to the small amount <str<strong>on</strong>g>of</str<strong>on</strong>g> tangling, the strand model predicts that the masses <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the lept<strong>on</strong>s are much smaller than those <str<strong>on</strong>g>of</str<strong>on</strong>g> the W and Z bos<strong>on</strong>. This is indeed observed.<br />

(This also suggests a relati<strong>on</strong> between the mass and the total curvature <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

tight tangle.)<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> simplest tangle for the electr<strong>on</strong> neutrino also suggests that the mass values for<br />

the electr<strong>on</strong> neutrino is naturally small, as its tangle is almost not tangled.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts that lept<strong>on</strong> masses increase with the generati<strong>on</strong> number.<br />

Since the neutrino masses are not precisely known, this predicti<strong>on</strong> cannot yet be<br />

checked.<br />

— Neutrinos and antineutrinos are both massive and differ from each other. If the tangle<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> neutrino is correct, the electr<strong>on</strong> neutrino <str<strong>on</strong>g>of</str<strong>on</strong>g> opposite chirality is expected<br />

to be seen <strong>on</strong>ly rarely – as is observed.<br />

In summary, tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands have precisely the quantum numbers and most<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> lept<strong>on</strong>s. In particular, the strand model predicts exactly three generati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> lept<strong>on</strong>s, and predicts that all lept<strong>on</strong>s have mass.<br />

This implies that searches for the neutrino-less double beta decay should yield negative<br />

results, that the magnetic moments <str<strong>on</strong>g>of</str<strong>on</strong>g> the neutrinos should have the exceedingly<br />

small values predicted by the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics, and that rare mu<strong>on</strong> and<br />

other decays should occur at the small rates predicted by the standard model.<br />

Open issue: are the lept<strong>on</strong> tangles correct?<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> argument that leads to the lept<strong>on</strong> tangles is vague. <str<strong>on</strong>g>The</str<strong>on</strong>g> tangle assignments might<br />

need correcti<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are two issues.<br />

First, there is an aesthetic issue: in most particle tangles, the electric charge unit is<br />

given by three crossings <str<strong>on</strong>g>of</str<strong>on</strong>g> the same sign. It seems odd that lept<strong>on</strong>s should form an excepti<strong>on</strong>.<br />

Sec<strong>on</strong>dly, the candidate tangles suggest that the mu<strong>on</strong> neutrino is more massive than<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


328 11 the particle spectrum deduced from strands<br />

A candidate tangle for the Higgs bos<strong>on</strong> :<br />

or<br />

FIGURE 94 A candidate tangle for the Higgs bos<strong>on</strong> in the strand model: the open versi<strong>on</strong> (left) and the<br />

corresp<strong>on</strong>ding closed versi<strong>on</strong> (right). For the left versi<strong>on</strong>, the tails approach the six coordinate axes at<br />

infinity.<br />

Challenge 194 ny<br />

Page 253<br />

Page 360<br />

Page 210<br />

the electr<strong>on</strong>. Most probably therefore, the tangles need amends. Can you improve the<br />

situati<strong>on</strong>, either by finding better tangles or by finding better arguments?<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Higgs bos<strong>on</strong> – the mistaken secti<strong>on</strong> from 2009<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> the Higgs bos<strong>on</strong> is predicted from the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary<br />

particle physics using two arguments. First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, the Higgs bos<strong>on</strong> prevents unitarity<br />

violati<strong>on</strong> in l<strong>on</strong>gitudinal W–W and Z–Z bos<strong>on</strong> scattering. Sec<strong>on</strong>dly, the Higgs bos<strong>on</strong><br />

c<strong>on</strong>firms the symmetry breaking mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> SU(2) and the related mass generati<strong>on</strong><br />

mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong>s. Quantum field theory predicts that the Higgs bos<strong>on</strong> has spin<br />

0, has no electric or str<strong>on</strong>g charge, and has positive C and P parity. In other words, the<br />

Higgs bos<strong>on</strong> is predicted to have, apart from its weak charge, the same quantum numbers<br />

as the vacuum.<br />

In the strand model, there seems to be <strong>on</strong>ly <strong>on</strong>e possible candidate tangle for the Higgs<br />

bos<strong>on</strong>, shown <strong>on</strong> the left <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 94. <str<strong>on</strong>g>The</str<strong>on</strong>g> tangle has positive C and P parity, and has<br />

vanishing electric and str<strong>on</strong>g charge. <str<strong>on</strong>g>The</str<strong>on</strong>g> tangle also corresp<strong>on</strong>ds to the tangle added by<br />

the leather trick; it thus could be seen to visualize how the Higgs bos<strong>on</strong> gives mass to the<br />

quarks and lept<strong>on</strong>s. However, there are two issues with this candidate. First, the tangle<br />

is a deformed, higher-order versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> neutrino tangle. Sec<strong>on</strong>dly, the spin<br />

value is not 0. In fact, there is no way at all to c<strong>on</strong>struct a spin-0 tangle in the strand<br />

model. <str<strong>on</strong>g>The</str<strong>on</strong>g>se issues lead us to rec<strong>on</strong>sider the arguments for the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> the Higgs<br />

bos<strong>on</strong> altogether.<br />

We have seen that the strand model proposes a clear mechanism for mass generati<strong>on</strong>:<br />

⊳ Mass is due to strand braiding.<br />

This mechanism, due to the weak interacti<strong>on</strong>, explains the W and Z bos<strong>on</strong> mass ratio,<br />

as we will see below. <str<strong>on</strong>g>The</str<strong>on</strong>g> leather trick that explains fermi<strong>on</strong> masses can be seen as the<br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a sixfold tail braiding. In particular, the rarity <str<strong>on</strong>g>of</str<strong>on</strong>g> the braiding process explains<br />

why particle masses are so much smaller than the Planck mass. In short, the strandmodel<br />

explains mass without a Higgs bos<strong>on</strong>.<br />

If the Higgs bos<strong>on</strong> does not exist, how is the unitarity <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>gitudinal W and Z bos<strong>on</strong><br />

scattering maintained? <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model states that interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles in particle<br />

collisi<strong>on</strong>s are described by deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles. Tangle deformati<strong>on</strong>s in turn are described<br />

by unitary operators. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, the strand model predicts that unitarity is never<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands 329<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g> model for a l<strong>on</strong>gitudinal massive spin 1 bos<strong>on</strong> :<br />

spin<br />

time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches<br />

Observati<strong>on</strong> :<br />

orthog<strong>on</strong>al<br />

spin<br />

precessi<strong>on</strong><br />

moti<strong>on</strong><br />

time<br />

precessi<strong>on</strong><br />

moti<strong>on</strong><br />

Ref. 226<br />

Ref. 227<br />

Ref. 228<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g> model for a transversal massive spin 1 bos<strong>on</strong> :<br />

spin<br />

moti<strong>on</strong><br />

core<br />

time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches<br />

moti<strong>on</strong><br />

FIGURE 95 In the strand model, transverse and l<strong>on</strong>gitudinal W and Z bos<strong>on</strong>s differ. (Note added in<br />

2012: this statement is mistaken.)<br />

parallel<br />

spin<br />

violated in nature. In particular, the strand model automatically predicts that the scattering<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>gitudinal W or Z bos<strong>on</strong>s does not violate unitarity.<br />

In other terms, the strand model predicts that the c<strong>on</strong>venti<strong>on</strong>al argument about unitarity<br />

violati<strong>on</strong>, which requires a Higgs bos<strong>on</strong>, must be wr<strong>on</strong>g. How can this be? <str<strong>on</strong>g>The</str<strong>on</strong>g>re are<br />

at least two loopholes available in the research literature, and the strand model realizes<br />

them both.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> first known loophole is the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-perturbative effects. It is known<br />

for a l<strong>on</strong>g time that n<strong>on</strong>-perturbative effects can mimic the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a Higgs bos<strong>on</strong> in<br />

usual, perturbative approximati<strong>on</strong>s. In this case, the standard model could remain valid<br />

at high energy without the Higgs sector. This type <str<strong>on</strong>g>of</str<strong>on</strong>g> electroweak symmetry breaking<br />

would lead to l<strong>on</strong>gitudinal W and Z scattering that does not violate unitarity.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> other loophole in the unitarity argument appears when we explore the details <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the l<strong>on</strong>gitudinal scattering process. In the strand model, l<strong>on</strong>gitudinal and transverse W<br />

or Z bos<strong>on</strong>s are modelled as shown in Figure 95. For l<strong>on</strong>gitudinal bos<strong>on</strong>s, spin and its<br />

precessi<strong>on</strong> leads to a different situati<strong>on</strong> than transversal bos<strong>on</strong>s: l<strong>on</strong>gitudinal bos<strong>on</strong>s are<br />

more delocalized than transversal bos<strong>on</strong>s. This is not the case for fermi<strong>on</strong>s, where the<br />

belt trick leads to the same delocalizati<strong>on</strong> for l<strong>on</strong>gitudinal and transverse polarizati<strong>on</strong>.<br />

Interestingly, it is also known for a l<strong>on</strong>g time that different delocalizati<strong>on</strong> for l<strong>on</strong>gitudinal<br />

and transversal bos<strong>on</strong>s maintains scattering unitarity, and that in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> delocalizati<strong>on</strong><br />

the c<strong>on</strong>venti<strong>on</strong>al argument for the necessity <str<strong>on</strong>g>of</str<strong>on</strong>g> the Higgs bos<strong>on</strong> is wr<strong>on</strong>g. <str<strong>on</strong>g>The</str<strong>on</strong>g>se<br />

are well-known c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> the so-called n<strong>on</strong>-local regularizati<strong>on</strong> in quantum field<br />

theory. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus provides a specific model for this n<strong>on</strong>-locality, and at the<br />

same time explains why it <strong>on</strong>ly appears for l<strong>on</strong>gitudinal W and Z bos<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> issue <str<strong>on</strong>g>of</str<strong>on</strong>g> different scattering behaviour for l<strong>on</strong>gitudinal and transverse weak bo-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


330 11 the particle spectrum deduced from strands<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. V, page 254<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. V, page 259<br />

s<strong>on</strong>s also raises the questi<strong>on</strong> whether the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the l<strong>on</strong>gitudinal and the transversal<br />

bos<strong>on</strong>s are precisely equal. <str<strong>on</strong>g>The</str<strong>on</strong>g> possibility, triggered by Figure 95, might seem appealing<br />

at first sight in order to solve the unitarity problem. However, the strand model forbids<br />

such a mass difference. In the strand model, mass is due to tangle fluctuati<strong>on</strong>s, but does<br />

not depend <strong>on</strong> spin directi<strong>on</strong>.<br />

In other words, the strand model predicts that the scattering <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>gitudinal W and Z<br />

bos<strong>on</strong>s is the first system that will show effects specific to the strand model. Such precisi<strong>on</strong><br />

scattering experiments might be possible at the Large Hadr<strong>on</strong> Collider in Geneva.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se experiments will allow checking the n<strong>on</strong>-perturbative effects and the regularizati<strong>on</strong><br />

effects predicted by the strand model. For example, the strand model predicts that the<br />

wave functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a l<strong>on</strong>gitudinal and a transversally polarized W or Z bos<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the same<br />

energy differ in cross secti<strong>on</strong>.<br />

In summary, the strand model predicts well-behaved scattering amplitudes for l<strong>on</strong>gitudinal<br />

W and Z bos<strong>on</strong> scattering in the TeV regi<strong>on</strong>, together with the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Higgs bos<strong>on</strong>.* <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model explains mass generati<strong>on</strong> and lack <str<strong>on</strong>g>of</str<strong>on</strong>g> unitarity violati<strong>on</strong>s<br />

in l<strong>on</strong>gitudinal W or Z bos<strong>on</strong> scattering as c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> tail braiding, i.e., as<br />

n<strong>on</strong>-perturbative and n<strong>on</strong>-local effects, and not as c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> an elementary spin-<br />

0 Higgs bos<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> forthcoming experiments at the Large Hadr<strong>on</strong> Collider in Geneva<br />

will test this predicti<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Higgs bos<strong>on</strong> – the corrected secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 2012<br />

In July 2012, CERN researchers from two different experiments announced the observati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a new neutral bos<strong>on</strong> with a mass <str<strong>on</strong>g>of</str<strong>on</strong>g> 125 GeV. Additi<strong>on</strong>al data analysis showed<br />

that the bos<strong>on</strong> has spin 0 and positive parity. All experimental checks c<strong>on</strong>firm that the<br />

bos<strong>on</strong> behaves like the Higgs bos<strong>on</strong> predicted in 1963 by Peter Higgs and a number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

other researchers.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> results lead to questi<strong>on</strong> several statements made in 2009 in the previous secti<strong>on</strong>.<br />

— Is the tangle <strong>on</strong> the left-hand side <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 94 really a higher order versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

electr<strong>on</strong> neutrino? It turns out that this statement is wr<strong>on</strong>g: in c<strong>on</strong>trast to the tangle<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the neutrino, the tangle <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 94 is not twisted.<br />

— Doesthe tangle <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 96 have spin 1/2 or spin 0? As menti<strong>on</strong>ed already in 2009,<br />

an effective spin 0 might be possible, in a similar way that it is possible for spin-0<br />

mes<strong>on</strong>s. Spin 0 behaviour might appear because the tangle can be oriented in different<br />

directi<strong>on</strong>s or because <str<strong>on</strong>g>of</str<strong>on</strong>g> the Borromean property: no two strands have more<br />

crossings than two vacuum strands; the time average <str<strong>on</strong>g>of</str<strong>on</strong>g> these situati<strong>on</strong>s has the same<br />

symmetry as the vacuum, and thus implies spin 0.<br />

— Doesthetangle<str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 96 have the correct, positive, C and P values expected for a<br />

Higgs bos<strong>on</strong>? It seems so.<br />

— Is the menti<strong>on</strong>ed n<strong>on</strong>-locality effect for W and Z bos<strong>on</strong>s real? If the effect were real, it<br />

should also appear for other spin-1 particles. In the strand model, mass values should<br />

* If the arguments againstthe Higgs bos<strong>on</strong> turn out to be wr<strong>on</strong>g, then the strand model might be saved with<br />

a dirty trick: we could argue that the tangle <strong>on</strong> the left-hand side <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 94 might effectively have spin 0.<br />

In this case, the ropelength<str<strong>on</strong>g>of</str<strong>on</strong>g> the Borromeanrings, 29.03, togetherwith the ropelengths<str<strong>on</strong>g>of</str<strong>on</strong>g> the weak bos<strong>on</strong>s,<br />

lead to a Higgs mass predicti<strong>on</strong>, to first order, in the range from (29.03/10.1) 1/3 ⋅ 80.4 GeV = 114 GeV to<br />

(29.03/13.7) 1/3 ⋅ 91.2 GeV = 117 GeV, plus or minus a few per cent.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands 331<br />

Higgs bos<strong>on</strong> :<br />

Page 370<br />

FIGURE 96 <str<strong>on</strong>g>The</str<strong>on</strong>g> tangle <str<strong>on</strong>g>of</str<strong>on</strong>g> the Higgs bos<strong>on</strong> in the strand model. Spin 0 appears because the braid can<br />

be oriented in different directi<strong>on</strong>s, so that the time average has spherical symmetry. <str<strong>on</strong>g>The</str<strong>on</strong>g> tangle has 9<br />

crossings: 3 crossings appear already in the vacuum c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands, and the additi<strong>on</strong>al 6<br />

crossings (see Figure 94) are due to the Higgs bos<strong>on</strong>.<br />

not depend <strong>on</strong> spin orientati<strong>on</strong>, but <strong>on</strong>ly <strong>on</strong> tangle core topology. <str<strong>on</strong>g>The</str<strong>on</strong>g> statements<br />

made in 2009 <strong>on</strong> delocalizati<strong>on</strong> and l<strong>on</strong>gitudinal scattering seem wr<strong>on</strong>g in retrospect.<br />

— Would the Higgs bos<strong>on</strong> tangle assignment <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 96 be testable? Yes; any tangle<br />

assignment must yield the observed mass value and the observed branching ratios<br />

and decay rates. This is a subject <str<strong>on</strong>g>of</str<strong>on</strong>g> research. But already at the qualitative level, the<br />

proposed tangle structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the Higgs bos<strong>on</strong> suggests decays into lept<strong>on</strong>s that are<br />

similar to those observed at CERN.<br />

— Isthetangle<str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 96 elementary? Yes.<br />

— Are there other possible Higgs bos<strong>on</strong> tangles? This issue is open. <str<strong>on</strong>g>The</str<strong>on</strong>g> braid structure<br />

seems the most appealing structure, as it embodies the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> tail braiding, an effect<br />

that is important for the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> mass.<br />

— Are knots and links, i.e., closed tangles, really forbidden? <str<strong>on</strong>g>The</str<strong>on</strong>g> discussi<strong>on</strong> about the<br />

Higgs bos<strong>on</strong> c<strong>on</strong>cerns the open tangle shown in Figure 96, not the Borromean link<br />

shown<strong>on</strong>theright-handside<str<strong>on</strong>g>of</str<strong>on</strong>g>Figure 94. So far, there is no evidence for closed<br />

tangles in the strand model. Such evidence would mean a departure from the idea<br />

that nature is a single strand.<br />

— Does the Higgs bos<strong>on</strong> issue put into questi<strong>on</strong> the strand model as a whole? First <str<strong>on</strong>g>of</str<strong>on</strong>g> all,<br />

SU(2) breaking is unaffected. Sec<strong>on</strong>dly, a mistaken tangle–particle assignment can be<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


332 11 the particle spectrum deduced from strands<br />

Page 331<br />

accommodated in the strand model; new forces or symmetries cannot. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore the<br />

strand model is not put into questi<strong>on</strong>.<br />

— Could several, possibly charged, Higgs bos<strong>on</strong>s exist? No such tangles seem possible<br />

– as l<strong>on</strong>g as a tangle with two Figure 96 Higgs cores in sequence is not a separate<br />

particle.<br />

— Has some other strand model effect been overlooked? Could other elementary or<br />

composed particles exist? For example, the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the Higgs bos<strong>on</strong> might be<br />

seen to suggest that lept<strong>on</strong> families reappear (roughly) every 125 GeV. Is that the<br />

case? <str<strong>on</strong>g>The</str<strong>on</strong>g> issue is not completely settled. It seems more probable that those higher<br />

tangles simply yield correcti<strong>on</strong>s to the Higgs mass.<br />

In short, the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard model Higgs bos<strong>on</strong> seems compatible with the<br />

strand model. <str<strong>on</strong>g>The</str<strong>on</strong>g> 2009 mistake about the Higgs also shows that the explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

strand model is not yet complete. In any case, the strand model has not been falsified by<br />

the discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> the Higgs bos<strong>on</strong>.<br />

Assuming that the Higgs tangle shown in Figure 96 is correct, we have an intuitive<br />

proposal for the mechanism that produces mass, namely tail braiding. <str<strong>on</strong>g>The</str<strong>on</strong>g> proposed<br />

Higgs tangle also allows a number <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental predicti<strong>on</strong>s.<br />

2012 predicti<strong>on</strong>s about the Higgs<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> Higgs tangle implies a Higgs bos<strong>on</strong> with vanishing charge, positive parity, being<br />

elementary – as is observed.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> Higgs tangle allows us to estimate the Higgs/Z mass ratio. Using the new, unknotted,<br />

tangle model for the W and Z bos<strong>on</strong>s, the estimates are in the regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

observed values. Improving the estimates is still subject <str<strong>on</strong>g>of</str<strong>on</strong>g> research.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> Higgs tangle and the strand model imply that the standard model is correct up to<br />

Planck energy, and that the Higgs mass value should reflect this. <str<strong>on</strong>g>The</str<strong>on</strong>g> observed Higgs<br />

mass <str<strong>on</strong>g>of</str<strong>on</strong>g> 125 GeV complies also with this expectati<strong>on</strong>.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, the strand model suggests that no deviati<strong>on</strong>s between the standard model<br />

and data should ever be observed in any experiment.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model again and c<strong>on</strong>sistently predicts the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> supersymmetry.<br />

— In the case that several Higgs bos<strong>on</strong>s exist or that the braided Higgs tangle does not<br />

apply, the strand model is in trouble.<br />

— In the case that effects, particles or interacti<strong>on</strong>s bey<strong>on</strong>d the standard model are observed,<br />

the strand model is in trouble.<br />

Quark-antiquark mes<strong>on</strong>s<br />

In the strand model, all three-stranded tangles apart from the lept<strong>on</strong>s, as well as all fourstranded<br />

tangles represent composite particles. <str<strong>on</strong>g>The</str<strong>on</strong>g> first example are mes<strong>on</strong>s.<br />

In the strand model, rati<strong>on</strong>al tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands are quark-antiquark mes<strong>on</strong>s with<br />

spin 0. <str<strong>on</strong>g>The</str<strong>on</strong>g> quark tangles yield a simple model <str<strong>on</strong>g>of</str<strong>on</strong>g> these pseudoscalar mes<strong>on</strong>s, shown <strong>on</strong><br />

the left-hand sides <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 97, Figure 99 and Figure 100. <str<strong>on</strong>g>The</str<strong>on</strong>g> right-hand sides <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

figures show vector mes<strong>on</strong>s, thus with spin 1, that c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> four strands. All tangles are<br />

rati<strong>on</strong>al. Inside mes<strong>on</strong>s, quarks and antiquarks ‘b<strong>on</strong>d’ at three spots that form a triangle<br />

oriented perpendicularly to the b<strong>on</strong>d directi<strong>on</strong> and to the paper plane. To increase clar-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands 333<br />

Pseudoscalar and vector mes<strong>on</strong>s made <str<strong>on</strong>g>of</str<strong>on</strong>g> up and down quarks :<br />

Spin S = 0, L = 0<br />

Parity P = –1<br />

Spin S = 1, L = 0<br />

Parity P = –1<br />

Note: the larger circle<br />

is above the paper plane.<br />

η : 548 MeV<br />

C = +1<br />

η,π0<br />

u u<br />

ω 0 , ρ 0<br />

uu<br />

ω0: 783 MeV<br />

C = –1<br />

π+ : 140 MeV<br />

π+<br />

ud<br />

ρ +<br />

ud<br />

ρ+ : 775 MeV<br />

Ref. 229<br />

Ref. 230<br />

Ref. 231<br />

π – : 140 MeV<br />

π0 : 135 MeV<br />

C = +1<br />

π–<br />

u d<br />

π0, η<br />

dd<br />

ρ–<br />

u d<br />

ρ0, ω0<br />

dd<br />

ρ – : 775 MeV<br />

ρ0 : 775 MeV<br />

C = –1<br />

Circles indicate<br />

pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> tails to the<br />

border <str<strong>on</strong>g>of</str<strong>on</strong>g> space<br />

FIGURE 97 <str<strong>on</strong>g>The</str<strong>on</strong>g> simplest strand models for the light pseudoscalar and vector mes<strong>on</strong>s (circles indicate<br />

crossed tail pairs to the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space), with the observed mass values.<br />

ity, the ‘b<strong>on</strong>ds’ are drawn as circles in the figures; however, they c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> two crossed<br />

(linked) tails <str<strong>on</strong>g>of</str<strong>on</strong>g> the involved strands that reach the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space, as shown in Figure 98.<br />

With this c<strong>on</strong>structi<strong>on</strong>, mes<strong>on</strong>s made <str<strong>on</strong>g>of</str<strong>on</strong>g> two quarks are <strong>on</strong>ly possible for the type qq.<br />

Other combinati<strong>on</strong>s, such as qq or q q, turn out to be unlinked. We note directly that<br />

this model <str<strong>on</strong>g>of</str<strong>on</strong>g> mes<strong>on</strong>s resembles the original string model <str<strong>on</strong>g>of</str<strong>on</strong>g> hadr<strong>on</strong>s from 1973, but also<br />

the Lund string model and the recent QCD string model.<br />

To compare the mes<strong>on</strong> structures with experimental data, we explore the resulting<br />

quantum numbers. As in quantum field theory, also in the strand model the parity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a particle is the product <str<strong>on</strong>g>of</str<strong>on</strong>g> the intrinsic parities and <str<strong>on</strong>g>of</str<strong>on</strong>g> wave functi<strong>on</strong> parity. <str<strong>on</strong>g>The</str<strong>on</strong>g> states<br />

with orbital angular momentum L=0are the lowest states. Experimentally, the lightest<br />

mes<strong>on</strong>s have quantum numbers J PC =0 −+ , and thus are pseudoscalars, or have J PC =<br />

1 −− , and thus are vector mes<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model reproduces these observed quantum<br />

numbers. (We note that the spin <str<strong>on</strong>g>of</str<strong>on</strong>g> any composite particle, such as a mes<strong>on</strong>, is lowenergy<br />

quantity; to determine it from the composite tangle, the tails producing the b<strong>on</strong>ds<br />

– drawn as circles in the figures – must be neglected. As a result, the low-energy spin <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mes<strong>on</strong>s and <str<strong>on</strong>g>of</str<strong>on</strong>g> bary<strong>on</strong>s is correctly reproduced by the strand model.)<br />

In the strand model, the mes<strong>on</strong> states are colour-neutral, or ‘white’, by c<strong>on</strong>structi<strong>on</strong>,<br />

because the quark and the antiquark, in all orientati<strong>on</strong>s, always have opposite colours<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


334 11 the particle spectrum deduced from strands<br />

Simplified drawing :<br />

Spin S = 0, L = 0<br />

Parity P = –1<br />

Spin S = 1, L = 0<br />

Parity P = –1<br />

Note: the large circle<br />

is above the paper plane.<br />

π0 : 135 MeV<br />

C = +1<br />

π 0 , η<br />

d d<br />

ρ 0 , ω 0<br />

dd<br />

ρ 0 : 775 MeV<br />

C = –1<br />

Complete drawing :<br />

Simplificati<strong>on</strong> used :<br />

Circles indicate<br />

pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> tails to the<br />

border <str<strong>on</strong>g>of</str<strong>on</strong>g> space<br />

FIGURE 98 <str<strong>on</strong>g>The</str<strong>on</strong>g> meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> the circles used in the tangle graphs <str<strong>on</strong>g>of</str<strong>on</strong>g> mes<strong>on</strong>s and bary<strong>on</strong>s.<br />

that add up to white.<br />

In the strand model, the electric charge is an integer for all mes<strong>on</strong>s. Chiral tangles are<br />

charged, achiral tangles uncharged. <str<strong>on</strong>g>The</str<strong>on</strong>g> charge values deduced from the strand model<br />

thus reproduce the observed <strong>on</strong>es.<br />

In experiments, no mes<strong>on</strong>s with quantum numbers 0 −− , 0 +− ,or1 −+ are observed.<br />

Also this observati<strong>on</strong> is reproduced by the quark tangles, as is easily checked by direct<br />

inspecti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus reproduces the very argument that <strong>on</strong>ce was central<br />

to the acceptance <str<strong>on</strong>g>of</str<strong>on</strong>g> the quark model itself.<br />

It is important to realize that in the strand model, each mes<strong>on</strong> is represented by a<br />

tangle family c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> several tangle structures. This has three reas<strong>on</strong>s. First, the<br />

‘circles’ can be combined in different ways. For example, both the u u and the d d have<br />

as alternate structure a line plus a ring. This comm<strong>on</strong> structure is seen as the underlying<br />

reas<strong>on</strong> that these two quark structures mix, as is indeed observed. (<str<strong>on</strong>g>The</str<strong>on</strong>g> same structure is<br />

also possible for s s, and indeed, a full descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these mes<strong>on</strong>s must include mixing<br />

with this state as well.) <str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d reas<strong>on</strong> that mes<strong>on</strong>s have several structures are the<br />

menti<strong>on</strong>ed, more complicated braid structures possible for each quark, namely with 6,<br />

12, etc. additi<strong>on</strong>al braid crossings. <str<strong>on</strong>g>The</str<strong>on</strong>g> third reas<strong>on</strong> for additi<strong>on</strong>al tangle structures is the<br />

occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> higher-order Feynman diagrams <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong>, which add yet<br />

another group <str<strong>on</strong>g>of</str<strong>on</strong>g> more complicated topologies that also bel<strong>on</strong>g to each mes<strong>on</strong>.<br />

In short, the mes<strong>on</strong>s structures <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 97, Figure 99 and Figure 100 are <strong>on</strong>ly the<br />

simplest tangles for each mes<strong>on</strong>. Nevertheless, all tangles, both the simplest and the more<br />

complicated mes<strong>on</strong> tangles, reproduce spin values, parities, and all the other quantum<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands 335<br />

Pseudoscalar and vector mes<strong>on</strong>s c<strong>on</strong>taining<br />

strange and charm quarks :<br />

K –<br />

s u<br />

494 MeV<br />

K +<br />

s u<br />

494 MeV<br />

Note: the large circle<br />

is above the paper plane.<br />

K*–<br />

s u<br />

892 MeV<br />

K*+<br />

s u<br />

892 MeV<br />

K 0<br />

s d<br />

498 MeV<br />

K*0<br />

s d<br />

899 MeV<br />

K 0<br />

s d<br />

498 MeV<br />

η'<br />

s s<br />

958 MeV<br />

D 0<br />

c u<br />

1864 MeV<br />

D0<br />

cu<br />

1864 MeV<br />

D+<br />

c d<br />

1870 MeV<br />

D –<br />

c d<br />

1870 MeV<br />

D s<br />

+<br />

c s<br />

1970 MeV<br />

D s<br />

–<br />

c s<br />

1968 MeV<br />

η c<br />

c c<br />

2981 MeV<br />

K*0<br />

s d<br />

899 MeV<br />

ϕ'<br />

s s<br />

1020 MeV<br />

D*0<br />

c u<br />

2007 MeV<br />

D*0<br />

c u<br />

2007 MeV<br />

D*+<br />

c d<br />

2010 MeV<br />

D*–<br />

c d<br />

2010 MeV<br />

D*+<br />

s<br />

c s<br />

2112 MeV<br />

D*–<br />

s<br />

c s<br />

2112 MeV<br />

J/ψ<br />

c c<br />

3097 MeV<br />

FIGURE 99 <str<strong>on</strong>g>The</str<strong>on</strong>g> simplest strand models for strange and charmed mes<strong>on</strong>s with vanishing orbital angular<br />

momentum. Mes<strong>on</strong>s <strong>on</strong> the left side have spin 0 and negative parity; mes<strong>on</strong>s <strong>on</strong> the right side have<br />

spin 1 and also negative parity. Circles indicate crossed tail pairs to the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space; grey boxes<br />

indicate tangles that mix with their antiparticles and which are thus predicted to show CP violati<strong>on</strong>.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


336 11 the particle spectrum deduced from strands<br />

Pseudoscalar and vector mes<strong>on</strong>s c<strong>on</strong>taining a bottom quark :<br />

B –<br />

b u<br />

5279 MeV<br />

Spin S = 0, L = 0<br />

Parity P = –1<br />

Spin S = 1, L = 0<br />

Parity P = –1<br />

Note: the large circle<br />

is above the paper plane.<br />

B*–<br />

b u<br />

5325 MeV<br />

B 0<br />

b d<br />

5279 MeV<br />

B*0<br />

b d<br />

5325 MeV<br />

Ref. 232<br />

B 0 s<br />

b s<br />

5366 MeV<br />

B c<br />

–<br />

b c<br />

6286 MeV<br />

η b (C=+1)<br />

b b<br />

9300 MeV<br />

B*0<br />

s<br />

b s<br />

5412 MeV<br />

B * –<br />

c<br />

b c<br />

not yet<br />

discovered<br />

Y (C=–1)<br />

b b<br />

9460 MeV<br />

Circles indicate<br />

pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> tails to the<br />

border <str<strong>on</strong>g>of</str<strong>on</strong>g> space<br />

F I G U R E 100 <str<strong>on</strong>g>The</str<strong>on</strong>g> simplest strand models for some heavy pseudoscalar and vector mes<strong>on</strong>s, together<br />

with their experimental mass values. Antiparticles are not drawn; their tangles are mirrors <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle<br />

tangles. Circles indicate crossed tail pairs to the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space; grey boxes indicate tangles that mix<br />

with their antiparticles and which are thus predicted to show CP violati<strong>on</strong>.<br />

numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> mes<strong>on</strong>s. Indeed, in the strand model, the more complicated tangles automatically<br />

share the quantum numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> the simplest <strong>on</strong>e.<br />

Mes<strong>on</strong> form factors<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also predicts directly that all mes<strong>on</strong>s from Figure 97, Figure 99 and<br />

Figure 100, in fact all mes<strong>on</strong>s with vanishing orbital momentum, are prolate. This(unsurprising)<br />

result is agreement with observati<strong>on</strong>s. Mes<strong>on</strong>s with n<strong>on</strong>-vanishing orbital<br />

momentum are also predicted to be prolate. This latter predicti<strong>on</strong> about mes<strong>on</strong> shapes<br />

is made also by all other mes<strong>on</strong> models, but has not yet been checked by experiment.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re is another way to put what we have found so far. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model makes<br />

the following predicti<strong>on</strong>: When the mes<strong>on</strong> tangles are averaged over time, the crossing<br />

densities reproduce the measured spatial, quark flavour, spin and colour part <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands 337<br />

Ref. 233<br />

Page 358<br />

Ref. 234<br />

mes<strong>on</strong> wave functi<strong>on</strong>s. This predicti<strong>on</strong> can be checked against measured form factors<br />

and against lattice QCD calculati<strong>on</strong>s.<br />

Mes<strong>on</strong> masses, excited mes<strong>on</strong>s and quark c<strong>on</strong>finement<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also allows us to understand mes<strong>on</strong> masses. We recall that a topologically<br />

complicated tangle implies a large mass. With this relati<strong>on</strong>, Figure 97 predicts<br />

that the π 0 , η and π +/− have different masses and follow the observed mes<strong>on</strong> mass sequence<br />

m(π 0 )


338 11 the particle spectrum deduced from strands<br />

Vanishing orbital angular momentum<br />

Simplified drawing :<br />

Spin S = 0, L = 0<br />

Parity P = –1<br />

Spin S = 1, L = 0<br />

Parity P = –1<br />

Note: the large circle<br />

is above the paper plane.<br />

π 0 : 135 MeV<br />

C = +1<br />

π0, η ρ0, ω0 ρ 0 : 775 MeV<br />

d d<br />

dd C = –1<br />

Complete drawing :<br />

Ref. 235<br />

Ref. 233<br />

With orbital angular momentum<br />

Simplified drawing :<br />

Complete drawing :<br />

F I G U R E 101 <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model for mes<strong>on</strong>s without (top) and with (bottom) orbital angular momentum.<br />

CP violati<strong>on</strong> in mes<strong>on</strong>s<br />

In the weak interacti<strong>on</strong>, the product CP <str<strong>on</strong>g>of</str<strong>on</strong>g> C and P parity is usually c<strong>on</strong>served. However,<br />

rare excepti<strong>on</strong>s are observed for the decay <str<strong>on</strong>g>of</str<strong>on</strong>g> the K 0 mes<strong>on</strong> and in various processes<br />

that involve the B 0 and B 0 s<br />

mes<strong>on</strong>s. In each <str<strong>on</strong>g>of</str<strong>on</strong>g> these excepti<strong>on</strong>s, the mes<strong>on</strong> is found to<br />

mix with its own antiparticle. CP violati<strong>on</strong> is essential to explain the matter–antimatter<br />

asymmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model allows us to deduce whether the mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> a mes<strong>on</strong> with its own<br />

antiparticle is possible or not. As expected, <strong>on</strong>ly neutral mes<strong>on</strong>s are candidates for such<br />

mixing, because <str<strong>on</strong>g>of</str<strong>on</strong>g> charge c<strong>on</strong>servati<strong>on</strong>. In the strand model, particle–antiparticle mixing<br />

is possible whenever the transiti<strong>on</strong> from a neutral mes<strong>on</strong> to its antiparticle is possible<br />

in two ways: by taking the mirror <str<strong>on</strong>g>of</str<strong>on</strong>g> the mes<strong>on</strong> tangle or by shifting the positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

binding strands. All mes<strong>on</strong>s for which this is possible are shown in grey boxes in Figure<br />

97, Figure 99 and Figure 100. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also makes it clear that such mixing<br />

requires shifting <str<strong>on</strong>g>of</str<strong>on</strong>g> the b<strong>on</strong>ds; this is a low-probability process that is due to the weak<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands 339<br />

Ref. 233<br />

Page 353<br />

Challenge 195 s<br />

interacti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus predicts that the weak interacti<strong>on</strong> violates CP invariance<br />

in mes<strong>on</strong>s that mix with their antiparticles.<br />

Since the spin 1 mes<strong>on</strong>s decay str<strong>on</strong>gly and thus do not live l<strong>on</strong>g enough, the small<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> CP violati<strong>on</strong> is de facto <strong>on</strong>ly observed in pseudoscalar, spin-0 mes<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

strand model thus predicts observable mixings and CP violati<strong>on</strong> for the mes<strong>on</strong>s pairs<br />

K 0 − K 0 , D 0 − D 0 , B 0 − B 0 , B 0 s − B0 s<br />

. <str<strong>on</strong>g>The</str<strong>on</strong>g> predicti<strong>on</strong> by the strand model corresp<strong>on</strong>ds<br />

precisely to those systems for which CP violati<strong>on</strong> is actually observed. (CP violati<strong>on</strong> in<br />

D mes<strong>on</strong>s was finally discovered at CERN in 2011, after it was predicted both by the<br />

standard model and the strand model, in earlier editi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this volume.)<br />

In the strand model, mes<strong>on</strong>–antimes<strong>on</strong> mixing is possible because the various quarks<br />

are braided strands. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> this braid structure, the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> mes<strong>on</strong>–antimes<strong>on</strong><br />

mixing is a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> three quark generati<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> mes<strong>on</strong> structures<br />

also make it clear that such mixings would not be possible if there were no third<br />

quark generati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus reproduces the usual explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CP violati<strong>on</strong><br />

as the result <str<strong>on</strong>g>of</str<strong>on</strong>g> three quark generati<strong>on</strong>s.<br />

For the str<strong>on</strong>g and the electromagnetic interacti<strong>on</strong>, the strand model predicts that<br />

there is no mixing and no CP violati<strong>on</strong>, because glu<strong>on</strong>s and phot<strong>on</strong>s do not change<br />

particle topology. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, the strand model suggests the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> axi<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a suitable tangle for axi<strong>on</strong>s, shown later <strong>on</strong>, then turns this suggesti<strong>on</strong>s into a predicti<strong>on</strong>.<br />

In summary, the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> CP violati<strong>on</strong> in the weak interacti<strong>on</strong>s and the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> CP<br />

violati<strong>on</strong> in the str<strong>on</strong>g interacti<strong>on</strong> are natural c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model.<br />

Otherthree-stranded tangles<br />

In the strand model, the omitted complicated tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands are either<br />

higher-order propagating versi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangles just presented or composites <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>estranded<br />

or two-stranded particles.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> three-strand analog <str<strong>on</strong>g>of</str<strong>on</strong>g> the gravit<strong>on</strong> – three parallel, but twisted strands – is not<br />

an elementary particle, but a composed structure.<br />

Spin and three-stranded particles<br />

Why do three strands sometimes form a spin 0 particle, such as the elementary Higgs<br />

bos<strong>on</strong>, sometimes a spin 1/2 particle, such as the elementary electr<strong>on</strong>, and sometimes a<br />

spin 1 particle, such as a composed mes<strong>on</strong>? <str<strong>on</strong>g>The</str<strong>on</strong>g> answer depends <strong>on</strong> how the strands are<br />

free to move against each other.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Higgs tangle appears through tangling <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum strands, and inherits the zero<br />

spin <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum. <str<strong>on</strong>g>The</str<strong>on</strong>g> W and Z tangles have a special property: two strands can rotate<br />

around the third; this makes them bos<strong>on</strong>s as well, but <str<strong>on</strong>g>of</str<strong>on</strong>g> spin 1. Fermi<strong>on</strong> tangles have<br />

neither property; their core can <strong>on</strong>ly rotate through the belt trick; thus they are fermi<strong>on</strong>s.<br />

Summary <strong>on</strong> three-stranded tangles<br />

A number <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles are made <str<strong>on</strong>g>of</str<strong>on</strong>g> trhee strands: <str<strong>on</strong>g>The</str<strong>on</strong>g> massive W and Z,<br />

the glu<strong>on</strong>s, the lept<strong>on</strong>s and the Higgs bos<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>ir tangles reproduce all their observed<br />

quantum numbers. <str<strong>on</strong>g>The</str<strong>on</strong>g> tangles also imply that neutrinos and anti-neutrinos differ, are<br />

massive, and are Dirac particles.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


340 11 the particle spectrum deduced from strands<br />

Page 330<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model (corrected in 2012) also predicts that, apart from the menti<strong>on</strong>ed<br />

particles, no other elementary particle made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands exist in nature.<br />

In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> composite particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands, the strand model proposes<br />

tangles for all pseudoscalar mes<strong>on</strong>s; the resulting quantum numbers and mass sequences<br />

match the observed values.<br />

Page 390<br />

Ref. 232<br />

tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> four and more strands<br />

If we add <strong>on</strong>e or more strand to a three-strand tangle, no additi<strong>on</strong>al class <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles<br />

appears. <str<strong>on</strong>g>The</str<strong>on</strong>g> tangle classes remain the same as in the three-strand case. In other words,<br />

no additi<strong>on</strong>al elementary particles arise in the strand model. To show this, we start our<br />

explorati<strong>on</strong> with the rati<strong>on</strong>al tangles.<br />

We saw above that the rati<strong>on</strong>al tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> four strands represent the vector<br />

mes<strong>on</strong>s. We have already explored them together with the scalar mes<strong>on</strong>s. But certain<br />

more complicated rati<strong>on</strong>al tangles are also important in nature, as we c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> them.<br />

Bary<strong>on</strong>s<br />

In the strand model, rati<strong>on</strong>al tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> five or six strands are bary<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> quark<br />

tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model yield the tangles for bary<strong>on</strong>s in a natural way, as Figure 102<br />

shows. Again, not all quark combinati<strong>on</strong>s are possible. First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, quark tangles do not<br />

allow mixed qqq or q q q structures, but <strong>on</strong>ly qqqor q q q structures. In additi<strong>on</strong>, the<br />

tangles do not allow (fully symmetric) spin 1/2 states for uuuor ddd,but<strong>on</strong>lyspin3/2<br />

states. <str<strong>on</strong>g>The</str<strong>on</strong>g> model also naturally predicts that there are <strong>on</strong>ly two spin 1/2 bary<strong>on</strong>s made <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

u and d quarks. All this corresp<strong>on</strong>ds to observati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> tangles for the simplest bary<strong>on</strong>s<br />

are shown in Figure 102.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> electric charges <str<strong>on</strong>g>of</str<strong>on</strong>g> the bary<strong>on</strong>s are reproduced. In particular, the tangle topologies<br />

imply that the prot<strong>on</strong> has the same charge as the positr<strong>on</strong>. Neutral bary<strong>on</strong>s have<br />

topologically achiral structures; nevertheless, the neutr<strong>on</strong> differs from its antiparticle, as<br />

can be deduced from Figure 102, through its three-dimensi<strong>on</strong>al shape. <str<strong>on</strong>g>The</str<strong>on</strong>g> Δ bary<strong>on</strong>s<br />

have different electric charges, depending <strong>on</strong> their writhe.<br />

Bary<strong>on</strong>s are naturally colour-neutral, as observed. <str<strong>on</strong>g>The</str<strong>on</strong>g> model also shows that the bary<strong>on</strong><br />

wave functi<strong>on</strong> usually cannot be factorized into a spin and quark part: the nucle<strong>on</strong>s<br />

need two graphs to describe them, and tangle shapes play a role. Bary<strong>on</strong> parities are reproduced;<br />

the neutr<strong>on</strong> and the antineutr<strong>on</strong> differ. All this corresp<strong>on</strong>ds to known bary<strong>on</strong><br />

behaviour. Also the observed bary<strong>on</strong> shapes (in other words, the bary<strong>on</strong> quadrupole<br />

moments) are reproduced by the tangle model.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> particle masses <str<strong>on</strong>g>of</str<strong>on</strong>g> prot<strong>on</strong> and neutr<strong>on</strong> differ, because their topologies differ. However,<br />

the topological difference is ‘small’, as seen in Figure 102, sothemassdifferenceis<br />

small. <str<strong>on</strong>g>The</str<strong>on</strong>g> topological difference between the various Δ bary<strong>on</strong>sisevensmaller,and<br />

indeed, their mass difference is barely discernible in experiments.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model naturally yields the bary<strong>on</strong> octet and decuplet, as shown in Figure<br />

103 and Figure 104. In general, complicated bary<strong>on</strong> tangles have higher mass than<br />

simpler <strong>on</strong>es, as shown in the figures; this is also the case for the bary<strong>on</strong>s, not illustrated<br />

here, that include other quarks. And like for mes<strong>on</strong>s, bary<strong>on</strong> Regge trajectories are due<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> four and more strands 341<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> prot<strong>on</strong> has two basic graphs,<br />

corresp<strong>on</strong>ding to u↑ u↓ d↑ and u↑ u↑ d↓ :<br />

u<br />

Spin S = 1/2, L = 0,<br />

d<br />

parity P = +1<br />

u<br />

u<br />

u<br />

uud = p<br />

938 MeV<br />

d<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> neutr<strong>on</strong> has two basic graphs,<br />

corresp<strong>on</strong>ding to d↑ d↓ u↑ and d↑ d↑ u↓ :<br />

d<br />

u<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> four Δ bary<strong>on</strong>s have <strong>on</strong>e graph each, corresp<strong>on</strong>ding<br />

to u↑ u↑ u↑, u↑ u↑ d↑, u↑ d↑ d↑ and d↑ d↑ d↑ :<br />

u<br />

u<br />

uud=Δ+<br />

1232 MeV<br />

udd=Δ0<br />

1232 MeV<br />

u<br />

d<br />

d<br />

d<br />

d<br />

udd = n<br />

940 MeV<br />

d<br />

u<br />

Spin S = 3/2, L = 0,<br />

parity P = +1<br />

uuu=Δ++<br />

1232 MeV<br />

d<br />

u<br />

ddd=Δ–<br />

1232 MeV<br />

u<br />

d<br />

d<br />

Circles indicate<br />

pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> tails to the<br />

border <str<strong>on</strong>g>of</str<strong>on</strong>g> space<br />

F I G U R E 102 <str<strong>on</strong>g>The</str<strong>on</strong>g> simplest strand models for the lightest bary<strong>on</strong>s made <str<strong>on</strong>g>of</str<strong>on</strong>g> up and down quarks (circles<br />

indicate linked tail pairs to the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space), together with the measured mass values.<br />

u<br />

d<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


342 11 the particle spectrum deduced from strands<br />

Bary<strong>on</strong>s with spin S = 1/2 and angular momentum L = 0 made <str<strong>on</strong>g>of</str<strong>on</strong>g> up, down and strange quarks :<br />

s<br />

s<br />

s<br />

s<br />

dss=Ξ −<br />

1322 MeV<br />

d<br />

uss=Ξ 0<br />

1315 MeV<br />

u<br />

Parity P = +1 expected<br />

for both Ξ bary<strong>on</strong>s, but<br />

not yet measured.<br />

d<br />

d<br />

u<br />

s<br />

u<br />

d<br />

u<br />

u<br />

Ref. 220<br />

Ref. 236<br />

dds=Σ −<br />

1197<br />

MeV<br />

Circles indicate<br />

pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> tails to the<br />

border <str<strong>on</strong>g>of</str<strong>on</strong>g> space<br />

s<br />

uds=Λ 0<br />

1116<br />

MeV<br />

d<br />

udd=n<br />

940 MeV<br />

d<br />

u<br />

d<br />

uds=Σ 0<br />

1192 MeV<br />

u<br />

uud=p<br />

938 MeV<br />

d<br />

s<br />

u<br />

uus=Σ +<br />

1189 MeV<br />

s<br />

P = +1 for all four.<br />

P = +1 for both<br />

neutr<strong>on</strong> and prot<strong>on</strong>.<br />

F I G U R E 103 One tangle (<strong>on</strong>ly) for each bary<strong>on</strong> in the lowest J=L+S=1/2 bary<strong>on</strong> octet (circles indicate<br />

linked tail pairs to the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space), together with the measured mass values.<br />

to ‘stretching’ and tangling <str<strong>on</strong>g>of</str<strong>on</strong>g> the binding strands. Since the b<strong>on</strong>ds to each quark are<br />

again (at most) three, the model qualitatively reproduces the observati<strong>on</strong> that the Regge<br />

slope for all bary<strong>on</strong>s is the same and is equal to that for mes<strong>on</strong>s. We note that this also<br />

implies that the quark masses play <strong>on</strong>ly a minor role in the generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hadr<strong>on</strong> masses;<br />

this old result from QCD is thus reproduced by the strand model.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> arguments presented so far <strong>on</strong>ly reproduce mass sequences, not mass values. Actual<br />

hadr<strong>on</strong> mass calculati<strong>on</strong>s are possible with the strand model: it is necessary to compute<br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing changes each tangle produces. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a chance, but no<br />

certainty, that such calculati<strong>on</strong>s might be simpler to implement than those <str<strong>on</strong>g>of</str<strong>on</strong>g> lattice QCD.<br />

Tetraquarks and exotic mes<strong>on</strong>s<br />

Am<strong>on</strong>g the exotic mes<strong>on</strong>s, tetraquarks are the most explored cases. It is now widely believed<br />

that the low-mass scalar mes<strong>on</strong>s are tetraquarks. In the strand model, tetraquarks<br />

are possible; an example is given in Figure 105. This is a six-stranded rati<strong>on</strong>al tangle. Spin,<br />

parities and mass sequences from the strand model seem to agree with observati<strong>on</strong>s. If<br />

the arrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 105 would turn out to be typical, the tetraquark looks more<br />

like a bound pair <str<strong>on</strong>g>of</str<strong>on</strong>g> two mes<strong>on</strong>s and not like a state in which all four quarks are bound in<br />

equal way to each other. On the other hand, a tetrahedral arrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks might<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> four and more strands 343<br />

Bary<strong>on</strong>s with spin S = 3/2 and angular momentum L = 0 made <str<strong>on</strong>g>of</str<strong>on</strong>g> up, down and strange quarks :<br />

s<br />

s<br />

sss=Ω −<br />

1672 MeV<br />

s<br />

Circles indicate<br />

pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> tails to the<br />

border <str<strong>on</strong>g>of</str<strong>on</strong>g> space<br />

d<br />

s<br />

u<br />

s<br />

d<br />

ddd=Δ –<br />

1232<br />

MeV<br />

d<br />

d<br />

dds=Σ∗–<br />

1387<br />

MeV<br />

d<br />

dss=Ξ ∗–<br />

1535 MeV<br />

d<br />

u<br />

udd=Δ 0<br />

1232<br />

MeV<br />

s<br />

d<br />

s<br />

u<br />

uds=Σ ∗0<br />

1384<br />

MeV<br />

d<br />

uss=Ξ ∗0<br />

1532 MeV<br />

d<br />

u<br />

s<br />

uud=Δ +<br />

1232<br />

MeV<br />

s<br />

u<br />

u<br />

uus=Σ ∗+<br />

1383<br />

MeV<br />

d<br />

u<br />

u<br />

uuu=Δ ++<br />

1232<br />

MeV<br />

F I G U R E 104 One tangle for each bary<strong>on</strong> in the lowest J=3/2 bary<strong>on</strong> decuplet (circles indicate linked<br />

tail pairs to the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space), together with the measured mass values.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> scalar σ mes<strong>on</strong> as a tetraquark (ud)(ud), c. 0.5 GeV :<br />

u<br />

d<br />

u<br />

d<br />

s<br />

u<br />

u<br />

Circles indicate<br />

pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> tails to the<br />

border <str<strong>on</strong>g>of</str<strong>on</strong>g> space<br />

F I G U R E 105 <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model for a specific tetraquark (circles indicate linked tail pairs to the border <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

space).<br />

also be possible. <str<strong>on</strong>g>The</str<strong>on</strong>g> details <str<strong>on</strong>g>of</str<strong>on</strong>g> this topic are left for future explorati<strong>on</strong>.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


344 11 the particle spectrum deduced from strands<br />

Ref. 222<br />

Page 344, page 339<br />

Ref. 219, Ref. 220<br />

Ref. 221<br />

Ref. 222<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model makes an additi<strong>on</strong>al statement: knotted (hadr<strong>on</strong>ic) strings in<br />

quark–antiquark states are impossible. Such states have been proposed by Niemi. In the<br />

strand model, such states would not be separate mes<strong>on</strong>s, but usual mes<strong>on</strong>s with <strong>on</strong>e or<br />

several added virtual weak vector bos<strong>on</strong>s. This type <str<strong>on</strong>g>of</str<strong>on</strong>g> exotic mes<strong>on</strong>s is therefore predicted<br />

not to exist.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> situati<strong>on</strong> for glueballs, which are another type <str<strong>on</strong>g>of</str<strong>on</strong>g> exotic mes<strong>on</strong>s, has already been<br />

discussed above.<br />

Othertangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> fourormore strands<br />

We do not need to explore other prime tangles or locally knotted tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> four<br />

or more strands. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are either not allowed or are higher-order versi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> rati<strong>on</strong>al<br />

tangles, as explained already in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> two and three strands. We also do not need to<br />

explore separable tangles. Separable tangles are composite <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles with fewer strands.<br />

One class <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles remains to be discussed: braided tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> four or more strands.<br />

Now, a higher-order perturbati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong> can always lead to the topological<br />

entanglement <str<strong>on</strong>g>of</str<strong>on</strong>g> some vacuum strand with a tangle <str<strong>on</strong>g>of</str<strong>on</strong>g> fewer strands. Braided<br />

tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> four or more strands are thus higher-order propagating states <str<strong>on</strong>g>of</str<strong>on</strong>g> three-stranded<br />

lept<strong>on</strong>s or hadr<strong>on</strong>s.<br />

We can also state this in another way. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are no tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> four or more strands<br />

that are more tangled than the trivial tangle but less tangled than the lept<strong>on</strong> tangles.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>refore, no additi<strong>on</strong>al elementary particles are possible. In short, the tangle model<br />

does not allow elementary particles with four or more strands.<br />

Glueballs<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re is no observati<strong>on</strong>al evidence for glueballs yet, even though simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> QCD <strong>on</strong><br />

the lattice predict the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> several such states in the 1.5 GeV/c 2 mass range. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental c<strong>on</strong>firmati<strong>on</strong> is usually explained by the str<strong>on</strong>g background noise<br />

in the reacti<strong>on</strong> that produces glueballs, and by the expected str<strong>on</strong>g mixing with mes<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> similar quantum numbers. <str<strong>on</strong>g>The</str<strong>on</strong>g> experimental search for glueballs is still <strong>on</strong>going.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten c<strong>on</strong>jectured glueball could be made <str<strong>on</strong>g>of</str<strong>on</strong>g> two or three glu<strong>on</strong>s. (<str<strong>on</strong>g>The</str<strong>on</strong>g> lowestmass<br />

glueball is usually expected to be made <str<strong>on</strong>g>of</str<strong>on</strong>g> two glu<strong>on</strong>s.) In the strand model, such<br />

structures would be tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> six or nine strands.<br />

However, the masslessness <str<strong>on</strong>g>of</str<strong>on</strong>g> glu<strong>on</strong>s and their spin do not seem to allow such a tangle.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> argument is not watertight, however, and the issue is still subject <str<strong>on</strong>g>of</str<strong>on</strong>g> research.<br />

Whatever the situati<strong>on</strong> for glueballs might be, the strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> glu<strong>on</strong>s seems in<br />

c<strong>on</strong>trast with the models <str<strong>on</strong>g>of</str<strong>on</strong>g> glueballs as knots that were proposed by Buniy and Kephart<br />

or by Niemi. <str<strong>on</strong>g>The</str<strong>on</strong>g>se models are based <strong>on</strong> closed knots, not <strong>on</strong> tangles with tails. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand<br />

model does not seem to allow real particles <str<strong>on</strong>g>of</str<strong>on</strong>g> zero spin that are composed <str<strong>on</strong>g>of</str<strong>on</strong>g> glu<strong>on</strong>s. On<br />

the other hand, if closed knots were somehow possible in the strand model, they would<br />

imply the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> glueballs.<br />

In summary, the issue <str<strong>on</strong>g>of</str<strong>on</strong>g> glueballs is not settled; a definitive soluti<strong>on</strong> might even lead<br />

to additi<strong>on</strong>al checks <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> four and more strands 345<br />

Ref. 223<br />

Page 276<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>massgapproblemandtheClayMathematicsInstitute<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Clay Mathematics Institute <str<strong>on</strong>g>of</str<strong>on</strong>g>fers a large prize to anybody who proves the following<br />

statement: For any compact simple n<strong>on</strong>-Abelian gauge group, quantum gauge theory exists<br />

in c<strong>on</strong>tinuous, four-dimensi<strong>on</strong>al space-time and produces a mass gap. Thisis<strong>on</strong>e<str<strong>on</strong>g>of</str<strong>on</strong>g>their<br />

so-called millennium problems.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model does not allow arbitrary gauge groups in quantum field theory. According<br />

to the strand model, the <strong>on</strong>ly compact simple n<strong>on</strong>-Abelian gauge group <str<strong>on</strong>g>of</str<strong>on</strong>g> interest<br />

is SU(3), the gauge group <str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g nuclear interacti<strong>on</strong>. And since the strand<br />

model does not seem to allow for glueballs, for SU(3) an effective mass gap <str<strong>on</strong>g>of</str<strong>on</strong>g> the order<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the Planck mass is predicted. (If glueballs would exist in the strand model, the mass<br />

gap would still exist but be smaller.) Indeed, the strand model explains the short range<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g interacti<strong>on</strong> as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the details <str<strong>on</strong>g>of</str<strong>on</strong>g> Reidemeister III moves and<br />

the quark tangle topology.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model further states that space-time and gauge groups are low-energy approximati<strong>on</strong>s<br />

that arise through time-average <str<strong>on</strong>g>of</str<strong>on</strong>g> strands and their crossings. Neither<br />

points nor fields exist at a fundamental level; points and fields are approximati<strong>on</strong>s to<br />

strands. According to the strand model, the quantum properties <str<strong>on</strong>g>of</str<strong>on</strong>g> nature result from<br />

the extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. As a c<strong>on</strong>sequence, the strand model denies the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> any<br />

quantum gauge theory as a separate, exact theory <strong>on</strong> c<strong>on</strong>tinuous space-time.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model does predict a mass gap for SU(3); but the strand model also denies<br />

the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum gauge theory for any other compact simple n<strong>on</strong>-Abelian gauge<br />

group. And even in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> SU(3) it denies – like for any other gauge groups – the<br />

existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a quantum gauge theory <strong>on</strong> c<strong>on</strong>tinuous space-time. As deduced above, the<br />

strand model allows <strong>on</strong>ly the three known gauge groups, and allows their existence <strong>on</strong>ly<br />

in the n<strong>on</strong>-c<strong>on</strong>tinuous strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time. In short, it is impossible to realize the<br />

wish <str<strong>on</strong>g>of</str<strong>on</strong>g> the Clay Mathematics Institute.<br />

Summary <strong>on</strong> tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> four or more strands<br />

By exploring all possible tangle classes in detail, we have shown that every localized structure<br />

made <str<strong>on</strong>g>of</str<strong>on</strong>g> strands has an interpretati<strong>on</strong> in the strand model. In particular, the strand<br />

model makes a simple statement <strong>on</strong> any tangle made <str<strong>on</strong>g>of</str<strong>on</strong>g> four or more strands: such a<br />

tangle is composite <str<strong>on</strong>g>of</str<strong>on</strong>g> the elementary tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e, two or three strands. In other<br />

terms, there are no elementary particles made <str<strong>on</strong>g>of</str<strong>on</strong>g> four or more strands in nature.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model states that each possible tangle represents a physical particle system:<br />

an overview is given in Table 13. <str<strong>on</strong>g>The</str<strong>on</strong>g> mapping between tangles and particles is<br />

<strong>on</strong>ly possible because (infinitely) many tangles are assigned to each massive elementary<br />

particle.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> this explorati<strong>on</strong> is that the strand model limits the number <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary<br />

particles to those c<strong>on</strong>tained in the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


346 11 the particle spectrum deduced from strands<br />

Challenge 196 s<br />

Challenge 197 e<br />

Ref. 237<br />

Challenge 198 r<br />

TABLE 13 <str<strong>on</strong>g>The</str<strong>on</strong>g> match between tangles and particles in the strand model.<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s Tangle Particle Type<br />

1 unknotted elementary vacuum, (unbroken) gauge bos<strong>on</strong><br />

1 knotted – not in the strand model<br />

2 unknotted composed composed <str<strong>on</strong>g>of</str<strong>on</strong>g> simpler tangles<br />

2 rati<strong>on</strong>al elementary quark or gravit<strong>on</strong><br />

2 prime, knotted – not in the strand model<br />

3 unknotted composed composed <str<strong>on</strong>g>of</str<strong>on</strong>g> simpler tangles<br />

3 braided elementary lept<strong>on</strong><br />

3 rati<strong>on</strong>al elementaryor lept<strong>on</strong>s<br />

composed<br />

3 prime, knotted – not in the strand model<br />

4 & more like for 3 strands all composed composed <str<strong>on</strong>g>of</str<strong>on</strong>g> simpler tangles<br />

fun challenges and curiosities about particle<br />

tangles<br />

In the strand model, mass appears due to tail braiding. But mass is also due to tangle<br />

rotati<strong>on</strong> and fluctuati<strong>on</strong>. How do the two definiti<strong>on</strong>s come together?<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> following statement seems absurd, but is correct:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> tangle model implies that all elementary particles are point-like, without<br />

internal structure.<br />

Indeed, if at all, the strand model implies deviati<strong>on</strong>s from point-like behaviour <strong>on</strong>ly at<br />

Planck scale; particles are point-like for all practical purposes.<br />

∗∗<br />

In the strand model, <strong>on</strong>ly crossing switches are observable. How then can the specific<br />

tangle structure <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle have any observable effects? In particular, how can<br />

quantum numbers be related to tangle structure, if the <strong>on</strong>ly observables are due to crossing<br />

changes?<br />

∗∗<br />

No neutral weak currents that change strangeness or other flavours are observed. In the<br />

strand model this observati<strong>on</strong> is a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the Z bos<strong>on</strong>.<br />

∗∗<br />

In 2014, Marek Karliner predicted the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> six-quark states. Can the strand model<br />

reproduce them? Can it settle whether they are molecules <str<strong>on</strong>g>of</str<strong>on</strong>g> three mes<strong>on</strong>s or genuine<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


fun challenges and curiosities about particle tangles 347<br />

Challenge 199 e<br />

Ref. 238<br />

Ref. 239<br />

Ref. 240<br />

Ref. 143<br />

Ref. 241<br />

Ref. 139<br />

Ref. 141<br />

Ref. 140<br />

six-quark states?<br />

∗∗<br />

Can you use the strand model to show that pentaquarks do not exist?<br />

∗∗<br />

What is the relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the model shown here to the ideas <str<strong>on</strong>g>of</str<strong>on</strong>g> Viro and Viro <strong>on</strong> skew lines?<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> most prominent prop<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the idea that particles might be knots was, in 1868,<br />

William Thoms<strong>on</strong>–Kelvin. He proposed the idea that different atoms might be differently<br />

‘knotted vortices’ in the ‘ether’. <str<strong>on</strong>g>The</str<strong>on</strong>g> proposal was ignored – and rightly so – because<br />

it did not explain anything: neither the properties nor the interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms were<br />

explained. <str<strong>on</strong>g>The</str<strong>on</strong>g> proposal simply had no relati<strong>on</strong> to reality. In retrospect, the main reas<strong>on</strong><br />

for this failure was that elementary particles and quantum theory were unknown at the<br />

time.<br />

∗∗<br />

Purely topological models for elementary particles have been proposed and explored by<br />

various scholars in the past. But <strong>on</strong>ly a few researchers ever proposed specific topological<br />

structures for each elementary particle. Such proposals are easily criticized, so that it is<br />

easy to make a fool <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>eself; any such proposal thus needs a certain amount <str<strong>on</strong>g>of</str<strong>on</strong>g> courage.<br />

— Herbert Jehle modelled elementary particles as closed knots already in the 1970s.<br />

However, his model did not reproduce quantum theory, nor does it reproduce all<br />

particles known today.<br />

— Ng Sze Kui has modelled mes<strong>on</strong>s as knots. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is however, no model for quarks,<br />

lept<strong>on</strong>s or bos<strong>on</strong>s, nor a descripti<strong>on</strong> for the gauge interacti<strong>on</strong>s.<br />

— Tom M<strong>on</strong>gan has modelled elementary particles as made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands that each<br />

carry electric charge. However, there is no c<strong>on</strong>necti<strong>on</strong> with quantum field theory or<br />

general relativity.<br />

— Jack Avrin has modelled hadr<strong>on</strong>s and lept<strong>on</strong>s as Moebius bands, and interacti<strong>on</strong>s<br />

as cut-and-glue processes. <str<strong>on</strong>g>The</str<strong>on</strong>g> model however, does not explain the masses <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

particles or the coupling c<strong>on</strong>stants.<br />

— Robert Finkelstein has modelled fermi<strong>on</strong>s as knots. This approach, however, does not<br />

explain the gauge properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the interacti<strong>on</strong>s, nor most properties <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary<br />

particles.<br />

— Sundance Bils<strong>on</strong>-Thomps<strong>on</strong>, later together with his coworkers, modelled elementary<br />

fermi<strong>on</strong>s and bos<strong>on</strong>s as structures <str<strong>on</strong>g>of</str<strong>on</strong>g> triple ribb<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> leather trick is used, like in<br />

the strand model, to explain the three generati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks and lept<strong>on</strong>s. This is by<br />

far the most complete model from this list. However, the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> particle mass, <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particle mixing and, most <str<strong>on</strong>g>of</str<strong>on</strong>g> all, <str<strong>on</strong>g>of</str<strong>on</strong>g> the gauge interacti<strong>on</strong>s is not explained.<br />

∗∗<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s are not superstrings. In c<strong>on</strong>trast to superstrings, strands have a fundamental<br />

principle. (This is the biggest c<strong>on</strong>ceptual difference.) <str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental principle for<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


348 11 the particle spectrum deduced from strands<br />

Ref. 144<br />

Ref. 242<br />

strands is not fulfilled by superstrings. In c<strong>on</strong>trast to superstrings, strands have no tensi<strong>on</strong>,<br />

no supersymmetry and no own Lagrangian. (This is the biggest physical difference.)<br />

Because strands have no tensi<strong>on</strong>, they cannot oscillate. Because strands have no supersymmetry,<br />

general relativity follows directly. Because strands have no own Lagrangian,<br />

particles are tangles, not oscillating superstrings, and quantum theory follows directly.<br />

In fact, the definiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> particles, wave functi<strong>on</strong>s, fields, vacuum, mass and horiz<strong>on</strong>s<br />

differ completely in the two approaches.<br />

In c<strong>on</strong>trast to superstrings, strands describe the number <str<strong>on</strong>g>of</str<strong>on</strong>g> gauge interacti<strong>on</strong>s and <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particle generati<strong>on</strong>s. In c<strong>on</strong>trast to superstrings, strands describe quarks, hadr<strong>on</strong>s, c<strong>on</strong>finement,<br />

Regge behaviour, asymptotic freedom, particle masses, particle mixing and<br />

coupling c<strong>on</strong>stants. In the strand model, in c<strong>on</strong>trast to ‘open superstrings’, no important<br />

c<strong>on</strong>figurati<strong>on</strong> has ends. In c<strong>on</strong>trast to open or closed superstrings, strands move in<br />

three spatial dimensi<strong>on</strong>s, not in nine or ten; strands resolve the anomaly issue without<br />

higher dimensi<strong>on</strong>s or supersymmetry, because unitarity is automatically maintained, by<br />

c<strong>on</strong>structi<strong>on</strong>; strands are not related to membranes or supermembranes. In the strand<br />

model, no strand is ‘bos<strong>on</strong>ic’ or ‘heterotic’, there is no E(8) or SO(32) gauge group, there<br />

are no general ‘pants diagrams’ for all gauge interacti<strong>on</strong>s, there is no AdS/CFT duality,<br />

there is no ‘landscape’ with numerous vacuum states, and there is no ‘multiverse’. In<br />

c<strong>on</strong>trast to superstrings, strands are based <strong>on</strong> Planck units. And in c<strong>on</strong>trast to superstrings,<br />

strands yield the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles without any alternative.<br />

In fact, not a single statement about superstrings is applicable to strands.<br />

∗∗<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s do not require higher dimensi<strong>on</strong>s. On the other hand, it can be argued that<br />

strands do produce an additi<strong>on</strong>al n<strong>on</strong>-commutative structure at each point in space. In<br />

a sense, when strands are averaged over time, a n<strong>on</strong>-commutative inner space is created<br />

at each point in space. As a result, when we focus at a specific spatial positi<strong>on</strong> over<br />

somewhat l<strong>on</strong>ger times scales than the Planck time, we can argue that, at that point <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

space, nature is described by a product <str<strong>on</strong>g>of</str<strong>on</strong>g> three-dimensi<strong>on</strong>al space with an internal, n<strong>on</strong>commutative<br />

space. Since many years, Alain C<strong>on</strong>nes and his colleagues have explored<br />

such product spaces in detail. <str<strong>on</strong>g>The</str<strong>on</strong>g>y have discovered that with an appropriately chosen<br />

n<strong>on</strong>-commutative inner space, it is possible to reproduce many, but not all, aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics. Am<strong>on</strong>g others, choosing a suitable n<strong>on</strong>-commutative<br />

space, they can reproduce the three gauge interacti<strong>on</strong>s; <strong>on</strong> the other hand, they cannot<br />

reproduce the three particle generati<strong>on</strong>s.<br />

C<strong>on</strong>nes’ approach and the strand model do not agree completely. One way to describe<br />

the differences is to focus <strong>on</strong> the relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the inner spaces at different points <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

space. C<strong>on</strong>nes’ approach assumes that each point has its own inner space, and that these<br />

spaces are not related. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model, instead, implies that the inner spaces <str<strong>on</strong>g>of</str<strong>on</strong>g> neighbouring<br />

points are related; they are related by the specific topology and entanglement <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the involved strands. For this very reas<strong>on</strong> the strand model does allow to understand the<br />

origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the three particle generati<strong>on</strong>s and the details <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle spectrum.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re are further differences between the two approaches. C<strong>on</strong>nes’ approach assumes<br />

that quantum theory and general relativity, in particular, the Hilbert space and the spatial<br />

manifold, are given from the outset. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model, instead, deduces these structures<br />

from the fundamental principle. And, as just menti<strong>on</strong>ed, C<strong>on</strong>nes’ approach is not<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


fun challenges and curiosities about particle tangles 349<br />

Hanging<br />

situati<strong>on</strong><br />

A<br />

B<br />

F I G U R E 106 A ring chain gives an impressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

moti<strong>on</strong> al<strong>on</strong>g the chain, when holding ring B<br />

while dropping ring A.<br />

unique or complete, whereas the strand model seems to be. Of the two, <strong>on</strong>ly the strand<br />

model seems to be unmodifiable, or ‘hard to vary’.<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model implies that there is nothing new at small distances. At small distances,<br />

or high energies, nature c<strong>on</strong>sists <strong>on</strong>ly <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. Thus there are no new phenomena<br />

there. Quantum theory states that at small scales, nothing new appears: at small scales,<br />

there are no new degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom. For example, quantum theory states that there is no<br />

kingdom Lilliput in nature. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus c<strong>on</strong>firms the essence <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory.<br />

And indeed, the strand model predicts that between the energy scale <str<strong>on</strong>g>of</str<strong>on</strong>g> the heaviest<br />

elementary particle, the top quark, 173 GeV, and the Planck energy, 10 19 GeV, nothing<br />

is to be found. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a so-called energy desert – empty <str<strong>on</strong>g>of</str<strong>on</strong>g> interesting features, particles<br />

or phenomena – in nature.<br />

∗∗<br />

Most ropes used in sailing, climbing or other domains <str<strong>on</strong>g>of</str<strong>on</strong>g> everyday life are produced<br />

by braiding. Searching for ‘braiding machine’ <strong>on</strong> the internet yields a large amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

videos. Searching for ‘LEGO braiding machine’ shows the most simple and beautiful<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


350 11 the particle spectrum deduced from strands<br />

Challenge 200 e<br />

Challenge 201 e<br />

F I G U R E 107 <str<strong>on</strong>g>The</str<strong>on</strong>g> ring chain trick produces an illusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> (mp4 film © Franz Aichinger). Can<br />

more rings be added in horiz<strong>on</strong>tal directi<strong>on</strong>s?<br />

Translati<strong>on</strong>al moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a phot<strong>on</strong> :<br />

t 1 t 2<br />

Translati<strong>on</strong>al moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong> :<br />

t 1 t 2<br />

F I G U R E 108 Moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s and electr<strong>on</strong>s through strand hopping.<br />

examples and allows you to see how they work.<br />

∗∗<br />

Not all tangle assignments are self-evident at first sight. Figure 109 shows a tangle whose<br />

status in the strand model is not clear. Can you explain what the tangle represents?<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


fun challenges and curiosities about particle tangles 351<br />

F I G U R E 109 A discarded candidate tangle for the W bos<strong>on</strong>.<br />

Page 153<br />

Challenge 202 ny<br />

Challenge 203 e<br />

Ref. 243<br />

∗∗<br />

What is the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> shivering <strong>on</strong> braiding, and thus <strong>on</strong> weak particle mixing, <strong>on</strong> particle<br />

tangle families and <strong>on</strong> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> generati<strong>on</strong>s?<br />

∗∗<br />

Are all bos<strong>on</strong>s made <str<strong>on</strong>g>of</str<strong>on</strong>g> strands whose ends are exactly opposite to each other at spatial<br />

infinity? Phot<strong>on</strong>, gravit<strong>on</strong>, glu<strong>on</strong>, W, Z and the virtual Higgs comply. <str<strong>on</strong>g>The</str<strong>on</strong>g> unbroken <strong>on</strong>es<br />

are axial, the broken <strong>on</strong>es are flat. Is there a reas<strong>on</strong> or a sense for this issue?<br />

CPT invariance<br />

CPT invariance is a fundamental property <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum field theory. In the strand model,<br />

charge c<strong>on</strong>jugati<strong>on</strong> C is modelled as a mirror transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle; parity P is<br />

modelled as the change <str<strong>on</strong>g>of</str<strong>on</strong>g> sign <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt trick <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle core; and moti<strong>on</strong> inversi<strong>on</strong><br />

Tismodelledastheinversemoti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>thecore<str<strong>on</strong>g>of</str<strong>on</strong>g>aparticletangle.<br />

In other words, CPT invariance is natural in the strand model. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, the strand<br />

model predicts that particles and antiparticles have the same g-factor, the same dipole<br />

moment, the same mass, the same spin, exactly opposite charge value, etc. All this is also<br />

predicted by quantum field theory, and is c<strong>on</strong>firmed by experiment.<br />

Moti<strong>on</strong> through the vacuum – and the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light<br />

Up to now, <strong>on</strong>e problem was left open: How can a particle, being a tangle <str<strong>on</strong>g>of</str<strong>on</strong>g> infinite<br />

extensi<strong>on</strong>, move through the web <str<strong>on</strong>g>of</str<strong>on</strong>g> strands that makes up the vacuum? An old trick,<br />

known already in France in the nineteenth century, can help preparing for the idea <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particle moti<strong>on</strong> in space. Figure 106 shows a special chain that is most easily made with a<br />

few dozen key rings. If the ring B is grabbed and the ring A released, this latter ring seems<br />

to fall down al<strong>on</strong>g the whole chain in a helical path, as shown in the film <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 200.<br />

If you have never seen the trick, try it yourself; the effect is ast<strong>on</strong>ishing. In reality, this is<br />

an optical illusi<strong>on</strong>. No ring is actually falling, but the sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> rings moves in a way<br />

that creates the impressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ring moti<strong>on</strong>. And this old trick helps us to solve a number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> issues about particle moti<strong>on</strong> that we swept under the carpet so far.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> main idea <strong>on</strong> particle moti<strong>on</strong> in the strand model is the following:<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


352 11 the particle spectrum deduced from strands<br />

⊳ Translati<strong>on</strong>al particle moti<strong>on</strong> is also due to strand substituti<strong>on</strong>, or ‘strand<br />

hopping’.<br />

A schematic illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> translati<strong>on</strong>al moti<strong>on</strong> is given in Figure 108. In the strand<br />

model, c<strong>on</strong>trary to the impressi<strong>on</strong> given so far, a tangle does not always need to move<br />

as a whole al<strong>on</strong>g the strand. This is seen most easily in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> a phot<strong>on</strong>. It is easy to<br />

picture that the tangle structure corresp<strong>on</strong>ding to a phot<strong>on</strong> can also hop from strand to<br />

strand. At any stage, the structure is a phot<strong>on</strong>; but the involved strand is never the same.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> idea <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> through strand hopping also works for massive particles. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a massive particle, such as an electr<strong>on</strong>, is shown schematically in Figure 108.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> figure shows that through a tail unbraiding, the structure that describes an electr<strong>on</strong><br />

can get rid <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e strand and grab a new <strong>on</strong>e. This process has a low probability, <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

course. In the strand model, this is <strong>on</strong>e reas<strong>on</strong> that massive particles move more slowly<br />

than light, even if the first approximati<strong>on</strong> yields a zero mass value.<br />

We note that this explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> is important also for the mapping from strand<br />

diagrams to Feynman diagrams. For many such diagrams, for example for the annihilati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> particles and antiparticles in QED, strand hopping and tail unbraiding play a role.<br />

Without them, the mapping from strands to quantum field theory would not be possible.<br />

In summary, tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> massive particles can move through the vacuum using hopping<br />

– via tail unbraiding – and this naturally happens more slowly than the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phot<strong>on</strong>s, which do not need any process at the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space to hop. <str<strong>on</strong>g>The</str<strong>on</strong>g> speed <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phot<strong>on</strong>s is thus a limit speed for massive particles; special relativity is thus recovered.<br />

“<str<strong>on</strong>g>The</str<strong>on</strong>g> ground <str<strong>on</strong>g>of</str<strong>on</strong>g> science was littered with the<br />

corpses <str<strong>on</strong>g>of</str<strong>on</strong>g> dead unified theories.<br />

Freeman Dys<strong>on</strong>”<br />

summary <strong>on</strong> millennium issues about particles and<br />

the vacuum<br />

We have discovered that the strand model makes a str<strong>on</strong>g statement: elementary particles<br />

can <strong>on</strong>ly be made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e, two or three tangled strands. Each massive elementary particle<br />

is represented by an infinite family <str<strong>on</strong>g>of</str<strong>on</strong>g> rati<strong>on</strong>al tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> fixed strand number. <str<strong>on</strong>g>The</str<strong>on</strong>g> family<br />

members differ by the added number <str<strong>on</strong>g>of</str<strong>on</strong>g> braids made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands with 6 crossings,<br />

i.e., by the different numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> virtual Higgs bos<strong>on</strong>s.<br />

For <strong>on</strong>e-stranded particles, the strand model shows that the phot<strong>on</strong> is the <strong>on</strong>ly possibility.<br />

For two-stranded particles, the strand model shows that there are precisely three<br />

generati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> two massive quarks. For three-stranded elementary particles, the strand<br />

model shows that there is a Higgs bos<strong>on</strong>, 8 glu<strong>on</strong>s, the W, the Z, and three generati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lept<strong>on</strong>s. Neutrinos and antineutrinos differ and are massive Dirac particles. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand<br />

model thus predicts that the neutrino-less double-beta decay will not be observed. Glueballs<br />

most probably do not exist.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model uses the tangle assignments <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 110 and Figure 111 to explain<br />

the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> all quantum numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> the observed elementary particles. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

strand model reproduces the quark model, including all the allowed and all the forbidden<br />

hadr<strong>on</strong> states. For mes<strong>on</strong>s and bary<strong>on</strong>s, the strand model predicts the correct mass<br />

sequences and quantum numbers. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, we have also completed the argument that<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


summary <strong>on</strong> millennium issues about particles and the vacuum 353<br />

Elementary (real) bos<strong>on</strong>s are simple<br />

c<strong>on</strong>figurati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 1, 2 or 3 strands:<br />

1 strand: phot<strong>on</strong><br />

wavelength<br />

Spin<br />

S = 1<br />

Bos<strong>on</strong>s<br />

(virtual):<br />

Weak vector bos<strong>on</strong>s after<br />

SU(2) symmetry breaking<br />

(<strong>on</strong>ly the simplest family<br />

members) with each triple <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

strands lying flat in a plane:<br />

Observati<strong>on</strong><br />

2 strands:<br />

W 1 , W 2 (before symmetry breaking)<br />

W bos<strong>on</strong><br />

S = 1<br />

wavelength<br />

W 3 (before symmetry breaking)<br />

3 strands:<br />

eight glu<strong>on</strong>s<br />

Higgs bos<strong>on</strong><br />

Page 155<br />

Page 330<br />

Page 164<br />

wavelength<br />

wavelength<br />

S = 1<br />

S = 1<br />

S = 0<br />

Z bos<strong>on</strong><br />

F I G U R E 110 <str<strong>on</strong>g>The</str<strong>on</strong>g> tangle models for the elementary bos<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>se tangles determine the spin values,<br />

the corresp<strong>on</strong>ding propagators, and ensure that the massless phot<strong>on</strong>s and glu<strong>on</strong>s move with the speed<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> light. No additi<strong>on</strong>al elementary bos<strong>on</strong>s appear to be possible.<br />

all observables in nature are due to crossing switches. Tetraquarks are predicted to exist.<br />

A way to calculate hadr<strong>on</strong> form factors is proposed.<br />

In the strand model, all tangles are mapped to known particles. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model<br />

predicts that no elementary particles outside the standard model exist, because no tangles<br />

are left over. For example, there are no axi<strong>on</strong>s, no leptoquarks and no supersymmetric<br />

particles in nature. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also predicts the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> other gauge bos<strong>on</strong>s and<br />

other interacti<strong>on</strong>s. In particular, the strand model – corrected in 2012 – reproduces the<br />

existence <str<strong>on</strong>g>of</str<strong>on</strong>g> exactly <strong>on</strong>e Higgs bos<strong>on</strong>. In fact, any new elementary particle found in the<br />

future would c<strong>on</strong>tradict and invalidate the strand model.<br />

In simple words, the strand model explains why the known elementary particles exist<br />

and why others do not. We have thus settled two further items from the millennium list<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> open issues. In fact, the deducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the elementary particle spectrum given here is,<br />

the first and, at present, also the <strong>on</strong>ly such deducti<strong>on</strong> in the research literature.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


354 11 the particle spectrum deduced from strands<br />

Quarks - `tetrahedral' tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands (<strong>on</strong>ly simplest family members)<br />

Parity P = +1, bary<strong>on</strong> number B = +1/3, spin S = 1/2<br />

charge Q = –1/3<br />

Q = +2/3<br />

d quark<br />

below paper plane<br />

u quark<br />

above plane<br />

in plane<br />

below paper plane<br />

below<br />

above<br />

below<br />

Observati<strong>on</strong><br />

s quark<br />

in plane<br />

below<br />

above<br />

below<br />

c quark<br />

below<br />

above<br />

below<br />

b quark<br />

Lept<strong>on</strong>s - `cubic' tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands (<strong>on</strong>ly simplest family members)<br />

electr<strong>on</strong> neutrino<br />

Q = 0, S = 1/2<br />

above paper plane<br />

below<br />

mu<strong>on</strong> neutrino<br />

Q = 0, S = 1/2<br />

above paper plane<br />

below<br />

tau neutrino<br />

Q = 0, S = 1/2<br />

below<br />

in plane<br />

above<br />

above<br />

above paper plane<br />

above<br />

below<br />

paper<br />

plane<br />

below<br />

paper<br />

plane<br />

below<br />

paper<br />

plane<br />

above<br />

below<br />

above<br />

below<br />

above<br />

below<br />

below<br />

above<br />

below<br />

t quark<br />

electr<strong>on</strong><br />

Q = –1, S = 1/2<br />

below paper plane<br />

above<br />

mu<strong>on</strong><br />

Q = –1, S = 1/2<br />

above<br />

tau<br />

Q = –1, S = 1/2<br />

below<br />

below paper plane<br />

above<br />

below<br />

below paper plane<br />

below<br />

above<br />

paper<br />

plane<br />

above<br />

paper<br />

plane<br />

above<br />

paper<br />

plane<br />

below<br />

above<br />

below<br />

below<br />

above<br />

below<br />

above<br />

below<br />

above<br />

F I G U R E 111 Elementary fermi<strong>on</strong>s are described by rati<strong>on</strong>al, i.e., unknotted tangles. <str<strong>on</strong>g>The</str<strong>on</strong>g>ir structures lead<br />

to coupling to the Higgs, as illustrated in Figure 130, produce positive mass values, and limit the<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> generati<strong>on</strong>s to 3. <str<strong>on</strong>g>The</str<strong>on</strong>g> tangles determine the specific fermi<strong>on</strong> propagators. <str<strong>on</strong>g>The</str<strong>on</strong>g> tethers <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

quark tangles follow the axes <str<strong>on</strong>g>of</str<strong>on</strong>g> a tetrahedr<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> neutrino cores are simpler when seen in three<br />

dimensi<strong>on</strong>s: they are simply twisted triples <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. <str<strong>on</strong>g>The</str<strong>on</strong>g> tethers <str<strong>on</strong>g>of</str<strong>on</strong>g> all lept<strong>on</strong> tangles approach the<br />

three coordinate axes at large distances from the core. No additi<strong>on</strong>al elementary fermi<strong>on</strong>s appear to be<br />

possible.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


summary <strong>on</strong> millennium issues about particles and the vacuum 355<br />

Page 209<br />

Page 164<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> omnipresent number 3<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model shows that the number 3 that appears so regularly in the standard<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics – 3 generati<strong>on</strong>s, 3 interacti<strong>on</strong>s, charge values e/3 and 2e/3<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> quarks (as shown below), 3 colours and SU(3) – is, in each case, a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the three-dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> space. In fact, the strand model adds a further, but related<br />

number 3 to this list, namely the maximum number <str<strong>on</strong>g>of</str<strong>on</strong>g> strands that make up elementary<br />

particles.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> three-dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> space is, as we saw already above, a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the existence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> strand tangles: <strong>on</strong>ly three dimensi<strong>on</strong>s allow tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. In short, all numbers<br />

3 that appear in fundamental physics are explained by strands.<br />

Predicti<strong>on</strong>s about dark matter and searches for new physics<br />

Following the vast majority <str<strong>on</strong>g>of</str<strong>on</strong>g> scholars, astrophysical observati<strong>on</strong>s imply that galaxies<br />

and galaxy clusters are surrounded by large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> matter that does not radiate.<br />

This unknown type <str<strong>on</strong>g>of</str<strong>on</strong>g> matter is called dark matter.<br />

In the strand model, the known elementary particles are the <strong>on</strong>ly possible <strong>on</strong>es.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>refore,<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts that dark matter, if it exists, is a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particles <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard model and black holes.<br />

This statement settles a further item from the millennium list <str<strong>on</strong>g>of</str<strong>on</strong>g> open issues.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> predicti<strong>on</strong> from 2008 <str<strong>on</strong>g>of</str<strong>on</strong>g> a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> new elementary particles in dark matter is at<br />

odds with the most favoured present measurement interpretati<strong>on</strong>s, but cannot yet be<br />

ruled out. <str<strong>on</strong>g>The</str<strong>on</strong>g> detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> black hole mergers in 2015 can even be seen as a partial<br />

c<strong>on</strong>firmati<strong>on</strong>. However, the issue is obviously not yet settled. In fact, the predicti<strong>on</strong><br />

provides another hard test <str<strong>on</strong>g>of</str<strong>on</strong>g> the model: if dark matter is found to be made <str<strong>on</strong>g>of</str<strong>on</strong>g> yet unknown<br />

particles, the strand model is in trouble.<br />

We can c<strong>on</strong>dense all the results <strong>on</strong> particle physics found so far in the following statement:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g>re is nothing to be discovered about nature outside general relativity and<br />

the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics.<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s predict that there is no hidden aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> nature left. In particular, the strand<br />

model predicts a so-called high-energy desert: it predicts the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> any additi<strong>on</strong>al elementary<br />

particle. Equivalently, the strand model predicts that apart from the Planck<br />

scale, there is no further energy scale in particle physics. Some researchers call this beautiful<br />

result the nightmare scenario.<br />

In other words, there is no room for discoveries bey<strong>on</strong>d the Higgs bos<strong>on</strong> at the Large<br />

Hadr<strong>on</strong> Collider in Geneva, nor at the various dark matter searches across the world. If<br />

any new elementary particle is discovered, the strand model is wr<strong>on</strong>g. More precisely, if<br />

any new elementary particle that c<strong>on</strong>tradicts the strand model is discovered, the strand<br />

model is wr<strong>on</strong>g. That some unknown elementary particle has been missed in the present<br />

explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle classes is still a logical possibility, however.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


356 11 the particle spectrum deduced from strands<br />

Because the strand model c<strong>on</strong>firms the standard model and general relativity, a further<br />

predicti<strong>on</strong> can be made: the vacuum is unique and stable. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is no room for other<br />

opti<strong>on</strong>s. For example, there are no domains walls between different vacuum states and<br />

the universe will not decay or change in any drastic manner.<br />

In summary, the strand model predicts a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> any kind <str<strong>on</strong>g>of</str<strong>on</strong>g> science ficti<strong>on</strong> in modern<br />

physics.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


Chapter12<br />

PARTICLE PROPERTIES DEDUCED<br />

FROM STRANDS<br />

“Tutto quel che vedete, lo devo agli spaghetti.**<br />

”<br />

Sophia Loren<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Planck units, via strands and the fundamental principle, explain almost all<br />

hat is known about moti<strong>on</strong>: strands explain what moves and how it moves. But<br />

he strand model is <strong>on</strong>ly correct if it also explains every measured property <str<strong>on</strong>g>of</str<strong>on</strong>g> every<br />

elementary particle. So far, we <strong>on</strong>ly deduced the spectrum and the quantum numbers<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the elementary particles. Three kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> particle properties from the millennium list<br />

remain open: the masses, themixing angles and the couplings. <str<strong>on</strong>g>The</str<strong>on</strong>g>se measured particle<br />

properties are important, because they determine the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> change – or physical<br />

acti<strong>on</strong> – induced by the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each elementary particle.<br />

So far, the strand model has answered all open questi<strong>on</strong>s <strong>on</strong> moti<strong>on</strong> that we explored.<br />

In particular, the strand model has explained why quantum field theory, the interacti<strong>on</strong>s,<br />

the particle spectrum, general relativity and cosmology are what they are. But as l<strong>on</strong>g as<br />

we do not understand the measured properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the elementary particles, we do not<br />

understand moti<strong>on</strong> completely.<br />

In short, the next step is to find a way to calculate these particle properties – and<br />

obviously, to show that the calculati<strong>on</strong>s agree with the measurements. <str<strong>on</strong>g>The</str<strong>on</strong>g> step is particularly<br />

interesting; so far, no other unified model in the research literature has ever<br />

achieved such calculati<strong>on</strong>s – not even calculati<strong>on</strong>s that disagree with measurements.<br />

Because the strand model makes no experimental predicti<strong>on</strong>s that go bey<strong>on</strong>d general<br />

relativity and the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics, explaining the properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

elementary particles is the <strong>on</strong>ly way to c<strong>on</strong>firm the strand model. Many ways to test or<br />

to refute the strand model are possible; but <strong>on</strong>ly a calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the measured particle<br />

properties can c<strong>on</strong>firm it.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> ideas in this chapter are more speculative than those <str<strong>on</strong>g>of</str<strong>on</strong>g> the past chapters, because<br />

the reas<strong>on</strong>ing depends <strong>on</strong> the way that specific tangles are assigned to specific particles.<br />

Such assignments are never completely certain. We c<strong>on</strong>tinue keeping this in mind.<br />

** ‘Everything you see, I owe it to spaghetti.’ S<str<strong>on</strong>g>of</str<strong>on</strong>g>ia Villani Scicol<strong>on</strong>e is an Italian actress and Hollywood<br />

star.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


358 12 particle properties deduced from strands<br />

TABLE 14 <str<strong>on</strong>g>The</str<strong>on</strong>g> measured elementary particle masses, as given by the Particle Data Group in 2016.<br />

Elementary particle<br />

Mass value<br />

Electr<strong>on</strong> neutrino


the masses <str<strong>on</strong>g>of</str<strong>on</strong>g> the elementary particles 359<br />

Page 282<br />

Page 373<br />

tial mass is determined by the frequency and the wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> the helix drawn by the<br />

rotating phase vector. <str<strong>on</strong>g>The</str<strong>on</strong>g>se quantities in turn are influenced by the type <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle, by<br />

the fluctuati<strong>on</strong>s induced by the particle charges, by the topology changes induced by the<br />

weak interacti<strong>on</strong>, and, in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong>s, by the average frequency and size <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

belt (and possibly leather) trick. All these processes are due to strand shape fluctuati<strong>on</strong>s.<br />

In short, both gravitati<strong>on</strong>al and inertial particle mass are due to strand fluctuati<strong>on</strong>s.<br />

More specifically, the mass seems mainly due to the fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the tails <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle<br />

tangle: gravitati<strong>on</strong>al and inertial mass are due to the belt trick. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus<br />

suggests that gravitati<strong>on</strong>al and inertial mass are automatically equal. In particular, the<br />

strand model suggests that every mass is surrounded by fluctuating tails with crossing<br />

switches whose density decreases with distance and is proporti<strong>on</strong>al to the mass itself. As<br />

discussed above, this idea leads to universal gravity.<br />

General properties <str<strong>on</strong>g>of</str<strong>on</strong>g> particle mass values<br />

So far, our adventure allows us to deduce several results <strong>on</strong> the mass values <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary<br />

particles:<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model implies that the masses <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles are not free parameters,<br />

but that they are determined by the specific topology, or tangledness, <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

underlying tangles and their tangle families. Particle masses are thus fixed and discrete<br />

inthestrandmodel–asisobserved.Ofcourse,wehavetotakeintoaccountall<br />

the members in each tangle family.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model implies that masses are always positive numbers.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model implies that the more complex atangleis,thehigher its mass value<br />

is. This follows from the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle tail fluctuati<strong>on</strong>s around the tangle core.<br />

— Because particle masses are due to strand fluctuati<strong>on</strong>s, the strand model also implies<br />

that all elementary particle masses are much smaller than the Planck mass, asisobserved.<br />

Also this result follows from the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle tail fluctuati<strong>on</strong>s around<br />

thetanglecore.<br />

— Because particle masses are due to strand fluctuati<strong>on</strong>s, particle and antiparticle<br />

masses – their tangles are mirrors <str<strong>on</strong>g>of</str<strong>on</strong>g> each other – are always equal,asisobserved.<br />

— Because particle masses are due to strand fluctuati<strong>on</strong>s, particle masses do not depend<br />

<strong>on</strong> the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe, nor <strong>on</strong> their positi<strong>on</strong> in the universe, nor <strong>on</strong> any other state<br />

variable: <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts that particle masses are c<strong>on</strong>stant and invariant,<br />

as is observed.<br />

— Because particle masses are due to strand fluctuati<strong>on</strong>s, and the fluctuati<strong>on</strong>s differ<br />

somewhat for tight and loose tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> the same shape and topology, the strand<br />

model predicts that particle masses change – or run –withenergy,asisobserved.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> general properties <str<strong>on</strong>g>of</str<strong>on</strong>g> particle masses are thus reproduced by the strand model.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>refore, c<strong>on</strong>tinuing our explorati<strong>on</strong> makes sense. We start by looking for ways to<br />

determine the mass values from the tangle structures. We discuss each particle class<br />

separately, first looking at mass ratios, then at absolute mass values.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


360 12 particle properties deduced from strands<br />

Tight W bos<strong>on</strong> tangle candidate<br />

Tight Z bos<strong>on</strong> tangle candidate<br />

Tight Higgs tangle candidate<br />

F I G U R E 112 Tight tangle candidates (<str<strong>on</strong>g>of</str<strong>on</strong>g> 2015/2016) for the simplest tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> the W, the Z and the<br />

Higgs bos<strong>on</strong>s. In c<strong>on</strong>trast to the pictures, the W and Z tails lie in a plane.<br />

Bos<strong>on</strong> masses<br />

Three elementary particles <str<strong>on</strong>g>of</str<strong>on</strong>g> integer spin have n<strong>on</strong>-vanishing mass: the W bos<strong>on</strong>, the Z<br />

bos<strong>on</strong> and the Higgs bos<strong>on</strong>. Mass calculati<strong>on</strong>s are especially simple for bos<strong>on</strong>s, because<br />

in the strand model, they are clean systems: each bos<strong>on</strong> is described by a relatively simple<br />

tangle family; furthermore, bos<strong>on</strong>s do not need the belt trick to rotate c<strong>on</strong>tinuously.<br />

We expect that the induced curvature, and thus the gravitati<strong>on</strong>al mass, <str<strong>on</strong>g>of</str<strong>on</strong>g> an elementary<br />

bos<strong>on</strong> is due to the disturbance it introduces into the vacuum. At Planck energy,<br />

this disturbance will be, to a large extent, a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the ropelength introduced by the<br />

corresp<strong>on</strong>ding tight tangle. Let us clarify these c<strong>on</strong>cepts.<br />

Tight or ideal tangles or knots are those tangles or knots that appear if we imagine<br />

strands as being made <str<strong>on</strong>g>of</str<strong>on</strong>g> a rope <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stant diameter that is infinitely flexible, infinitely<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the masses <str<strong>on</strong>g>of</str<strong>on</strong>g> the elementary particles 361<br />

Page 359<br />

Ref. 244<br />

Page 360<br />

Ref. 246<br />

Ref. 233<br />

slippery and pulled as tight as possible. Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> tight tangles are shown in Figure 112.<br />

With physical ropes from everyday life, tight knots and tangles can <strong>on</strong>ly be approximated,<br />

because they are not infinitely flexible and slippery; tight tangles are mathematical<br />

idealizati<strong>on</strong>s. But tight tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> strands are <str<strong>on</strong>g>of</str<strong>on</strong>g> special interest: if we recall that each<br />

strand has an effective diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e Planck length, tight tangles realize the Planck<br />

limit <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> ropelength <str<strong>on</strong>g>of</str<strong>on</strong>g> a tight closed knot is the length <str<strong>on</strong>g>of</str<strong>on</strong>g> a perfectly flexible and slippery<br />

rope <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stant diameter required to tie the tight knot. In other words, the<br />

ropelength is the smallest amount <str<strong>on</strong>g>of</str<strong>on</strong>g> idealized rope needed to tie a knot.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g>ropelength <str<strong>on</strong>g>of</str<strong>on</strong>g> a tight open knot is the length by which a very l<strong>on</strong>g rope tied into a<br />

tight knot is shortened.<br />

— With a bit <str<strong>on</strong>g>of</str<strong>on</strong>g> care, the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> ropelength can be also be defined for tangles <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

several strands.<br />

In the following, the ropelength is assumed to be measured in units <str<strong>on</strong>g>of</str<strong>on</strong>g> the rope diameter.<br />

Measuring ropelength in units <str<strong>on</strong>g>of</str<strong>on</strong>g> the rope radius is less comm<strong>on</strong>.<br />

In the strand model, the ropelength measures, to a large extent, the amount by which<br />

a tight knot or tangle disturbs the vacuum around it. <str<strong>on</strong>g>The</str<strong>on</strong>g> ropelength fulfils all the properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> particle mass menti<strong>on</strong>ed above: the ropelength is discrete, positive, increases with<br />

tangle complexity, is equal for particles and antiparticles, and is a c<strong>on</strong>stant and invariant<br />

quantity. <str<strong>on</strong>g>The</str<strong>on</strong>g> ropelength will thus play an important role in any estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle<br />

mass.<br />

It is known from quantum field theory that the masses <str<strong>on</strong>g>of</str<strong>on</strong>g> W and Z bos<strong>on</strong>s do not<br />

change much between Planck energy and everyday energy, whatever renormalizati<strong>on</strong><br />

scheme is used. This allows us, with a good approximati<strong>on</strong>, to approximate the weak<br />

bos<strong>on</strong> masses at low, everyday energy with their mass values at Planck energy. Thus we<br />

can use tight tangles to estimate bos<strong>on</strong> masses.<br />

In the strand model, the gravitati<strong>on</strong>al mass <str<strong>on</strong>g>of</str<strong>on</strong>g> a spin 1 bos<strong>on</strong> is proporti<strong>on</strong>al to the<br />

radius <str<strong>on</strong>g>of</str<strong>on</strong>g> the disturbance that it induces in the vacuum. For a bos<strong>on</strong>, this radius, and<br />

thus the mass, scales as the third root <str<strong>on</strong>g>of</str<strong>on</strong>g> the ropelength <str<strong>on</strong>g>of</str<strong>on</strong>g> the corresp<strong>on</strong>ding tight tangle.<br />

W/Z bos<strong>on</strong> mass ratio and mixing angle (in the 2016 tangle model)<br />

Candidates for the simplest tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> the W bos<strong>on</strong> and <str<strong>on</strong>g>of</str<strong>on</strong>g> the Z bos<strong>on</strong> families are shown<br />

in Figure 112. <str<strong>on</strong>g>The</str<strong>on</strong>g> corresp<strong>on</strong>ding ropelength values for tight tangles, determined numerically,<br />

are L W =4.28and L Z =7.25rope diameters. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model estimates the W/Z<br />

mass ratio by the cube root <str<strong>on</strong>g>of</str<strong>on</strong>g> the ropelength ratio:<br />

m W<br />

m Z<br />

≈( L 1/3<br />

W<br />

) =0.84. (196)<br />

L Z<br />

This value has to be compared with the experimental ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 80.4 GeV/91.2 GeV=0.88.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> agreement between experiment and strand model is not good. But the result is acceptable.<br />

First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, the strand model reproduces the higher value <str<strong>on</strong>g>of</str<strong>on</strong>g> the neutral Z bos<strong>on</strong>’s<br />

mass: a tangle with spatial symmetry is more complex than <strong>on</strong>e without. Finally,<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


362 12 particle properties deduced from strands<br />

Page 253<br />

Challenge 204 ny<br />

Page 196, page 215<br />

Ref. 163<br />

it is also clear why the calculated mass ratio does not match the experimental result.<br />

First, the simple tangles represent and approximate W and Z bos<strong>on</strong>s <strong>on</strong>ly to the first<br />

order. As menti<strong>on</strong>ed above, in the strand model, every massive particle is represented<br />

by an infinite family <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus also predicts that the match<br />

between the calculated and the measured ratio m W /m Z should improve when higherorder<br />

Feynman diagrams, and thus more complicated tangle topologies, are taken into<br />

account. Improving the calculati<strong>on</strong> is still a subject <str<strong>on</strong>g>of</str<strong>on</strong>g> research. Sec<strong>on</strong>dly, approximating<br />

the tight knot effects with an effective radius, thus just using the ropelength to determine<br />

the mass, implies neglecting the actual shape, and effectively approximating their shape<br />

by a sphere. Thirdly, as already menti<strong>on</strong>ed, this calculati<strong>on</strong> assumes that the low energy<br />

mass ratio and the mass ratio at Planck energy are equal.<br />

Despitetheusedapproximati<strong>on</strong>s,thetighttangleestimatefortheW/Zmassratio<br />

gives an acceptable agreement with experiment. <str<strong>on</strong>g>The</str<strong>on</strong>g> main reas<strong>on</strong> is that we expect the<br />

strand fluctuati<strong>on</strong>s from the various family members to be similar for particles with the<br />

same number <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. For these mass ratios, the tail braiding processes cancel out.<br />

Also the other two approximati<strong>on</strong>s are expected to be roughly similar for the two weak<br />

bos<strong>on</strong>s. This similarity explains why determining the W/Z bos<strong>on</strong> mass ratio is possible<br />

with acceptable accuracy.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> W/Z mass ratio also determines the weak mixing angle θ w <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong><br />

Lagrangian, through the relati<strong>on</strong> cos θ w =m W /m Z . <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus predicts the<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak mixing angle to the same accuracy as it predicts the W/Z mass ratio.<br />

This argument leads to a puzzle: Can you deduce from the strand model how the W/Z<br />

mass ratio changes with energy?<br />

Also the inertial masses <str<strong>on</strong>g>of</str<strong>on</strong>g> the W and Z bos<strong>on</strong>s can be compared. In quantum theory,<br />

the inertial mass relates the wavelength and the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> the wave functi<strong>on</strong>. In<br />

the strand model, a quantum particle that moves through vacuum is a tangle core that<br />

rotates while advancing. <str<strong>on</strong>g>The</str<strong>on</strong>g> frequency and the wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> the helix thus generated<br />

determine the inertial mass. <str<strong>on</strong>g>The</str<strong>on</strong>g> process is analogous to the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a body moving<br />

at c<strong>on</strong>stant speed in a viscous fluid at small Reynolds numbers. Despite the appearance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fricti<strong>on</strong>, the analogy is possible. If a small body <str<strong>on</strong>g>of</str<strong>on</strong>g> general shape is pulled through a<br />

viscous fluid by a c<strong>on</strong>stant force, such as gravity, it follows a helical path. This analogy<br />

implies that, for spin 1 particles, the frequency and the wavelength are above all determined<br />

by the effective radius <str<strong>on</strong>g>of</str<strong>on</strong>g> the small body. This radius is the main influence <strong>on</strong> the<br />

frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt trick. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus suggests that the inertial mass – inversely<br />

proporti<strong>on</strong>al to the path frequency and the path wavelength squared – <str<strong>on</strong>g>of</str<strong>on</strong>g> the W<br />

or the Z bos<strong>on</strong> is approximately proporti<strong>on</strong>al to its tight knot radius. This radius is given<br />

by the cube root <str<strong>on</strong>g>of</str<strong>on</strong>g> the ropelength. We thus get the same result as for the gravitati<strong>on</strong>al<br />

mass.<br />

Also the inertial mass is not exactly proporti<strong>on</strong>al to the average tight knot radius;<br />

the precise shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the tight knot and the other tangle family members play a role. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

strand model thus predicts that a more accurate mass calculati<strong>on</strong> has to take into account<br />

these effects.<br />

In summary, the strand model predicts, from the belt trick, a W/Z mass ratio and<br />

thus a weak mixing angle close to the observed ratio, and explains the deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

approximati<strong>on</strong> from the measured value – provided that the tangle assignments are correct.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the masses <str<strong>on</strong>g>of</str<strong>on</strong>g> the elementary particles 363<br />

Ref. 233<br />

Ref. 245<br />

Page 331<br />

Page 360<br />

Ref. 246<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> g-factor<str<strong>on</strong>g>of</str<strong>on</strong>g> the W bos<strong>on</strong><br />

Experiments show that the W bos<strong>on</strong> has a g-factor with the value g W = 2.2(2). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

limited accuracy does not yet allow to detect any anomalous magnetic moment, which<br />

would be especially interesting. Nevertheless, the results can be compared to the predicti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model makes a simple predicti<strong>on</strong> for charged elementary particles: because<br />

mass rotati<strong>on</strong> and charge rotati<strong>on</strong> are both due to the rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle core,<br />

the g-factor <str<strong>on</strong>g>of</str<strong>on</strong>g> all such particles is 2 – in the approximati<strong>on</strong> that neglects Feynman diagrams<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> higher order, i.e., that neglect anomalous effects. In particular, the g-factor <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the W bos<strong>on</strong> is predicted to be 2 in this approximati<strong>on</strong>. Also this predicti<strong>on</strong> thus agrees<br />

both with experiment and with the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Higgs/Z bos<strong>on</strong> mass ratio<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> observed mass value <str<strong>on</strong>g>of</str<strong>on</strong>g> the Higgs bos<strong>on</strong> is 125(1) GeV. <str<strong>on</strong>g>The</str<strong>on</strong>g> observed mass value for<br />

the Z bos<strong>on</strong> is 91.2(1) GeV. Like for the other bos<strong>on</strong>s, the strand model suggests using<br />

the ropelength to estimate the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the Higgs bos<strong>on</strong> tangle. <str<strong>on</strong>g>The</str<strong>on</strong>g> candidate tangle<br />

for the Higgs bos<strong>on</strong> was illustrated above in Figure 96, and its tight versi<strong>on</strong> is shown in<br />

Figure 112.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> ropelength <str<strong>on</strong>g>of</str<strong>on</strong>g> the tight Higgs tangle turns out to be 17.1 diameters, determined by<br />

Eric Rawd<strong>on</strong> with a computer approximati<strong>on</strong>. This value yields a naive mass estimate for<br />

the Higgs bos<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (17.1/7.25) 1/3 ⋅ 91.2 GeV, i.e.,<br />

m Higgs ≈ 121 GeV . (197)<br />

Starting with the W bos<strong>on</strong> yields an estimate for the Higgs mass <str<strong>on</strong>g>of</str<strong>on</strong>g> 128 GeV. Both estimates<br />

are not good but acceptable, given that the n<strong>on</strong>-sphericity <str<strong>on</strong>g>of</str<strong>on</strong>g> the W, Z and Higgs<br />

bos<strong>on</strong> tangles have not been taken into account. (<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model suggests that for a<br />

str<strong>on</strong>gly n<strong>on</strong>-spherical shape – such as the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the W, Z and Higgs tangle – the effective<br />

mass is higher than the value deduced from ropelength al<strong>on</strong>e.) Deducing better<br />

mass ratio estimates for the W, Z and Higgs tangles is still a subject <str<strong>on</strong>g>of</str<strong>on</strong>g> research.<br />

In summary, the strand model predicts Higgs/Z, Higgs/W and W/Z mass ratios close<br />

to the observed values; and the model suggests explanati<strong>on</strong>s for the deviati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

approximati<strong>on</strong> from the observed value – provided that the tangle assignments for the<br />

three bos<strong>on</strong>s are correct.<br />

A first approximati<strong>on</strong> for absolute bos<strong>on</strong> mass values<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> tangles for the W, Z and Higgs bos<strong>on</strong>s also provide a first approximati<strong>on</strong> for their<br />

absolute mass values. <str<strong>on</strong>g>The</str<strong>on</strong>g> tangles are rati<strong>on</strong>al; in particular, each tangle is made <str<strong>on</strong>g>of</str<strong>on</strong>g> strands<br />

that can be pulled straight. This implies, for each strand separately, that a c<strong>on</strong>figurati<strong>on</strong><br />

with no extra strand length and no net core rotati<strong>on</strong> is possible. As a result, in the first<br />

approximati<strong>on</strong>, the gravitati<strong>on</strong>al mass and the inertial mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the elementary bos<strong>on</strong>s<br />

both vanish.<br />

A better approximati<strong>on</strong> for mass values requires to determine, for each bos<strong>on</strong>, the<br />

probability <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches in and around its tangle core. This probability depends<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


364 12 particle properties deduced from strands<br />

Quarks :<br />

Parity P = +1, B = 1/3, spin S = 1/2<br />

Q = –1/3 Q = +2/3<br />

Antiquarks :<br />

P = –1, B = –1/3, S = 1/2<br />

Q = +1/3 Q = –2/3<br />

d<br />

u<br />

d<br />

u<br />

5.0 ± 1.6 MeV 2.5 ± 1.1 MeV<br />

5.0 ± 1.6 MeV 2.5 ± 1.1 MeV<br />

s<br />

c<br />

s<br />

c<br />

105 ± 35 MeV<br />

b<br />

4.20 ± 0.17 GeV<br />

s<br />

1.27 ± 0.11 GeV<br />

t<br />

171.3 ± 2.3 GeV<br />

105 ± 35 MeV<br />

b<br />

4.20 ± 0.17 GeV<br />

s<br />

1.27 ± 0.11 GeV<br />

t<br />

171.3 ± 2.3 GeV<br />

Seen from a larger distance, the tails follow (<strong>on</strong> average) the skelet<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a tetrahedr<strong>on</strong> :<br />

F I G U R E 113 <str<strong>on</strong>g>The</str<strong>on</strong>g> simplest tangles assigned to the quarks and antiquarks. <str<strong>on</strong>g>The</str<strong>on</strong>g> experimental mass values<br />

are also given. Calculated mass values are still a topic <str<strong>on</strong>g>of</str<strong>on</strong>g> research.<br />

<strong>on</strong> the probabilities for tail braiding and for core rotati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>se probabilities are low,<br />

because, sloppily speaking, the corresp<strong>on</strong>ding strand fluctuati<strong>on</strong>s are rare. <str<strong>on</strong>g>The</str<strong>on</strong>g> rarity is<br />

a due to the specific tangle type: tangles whose strands can be pulled straight have low<br />

crossing switch probabilities at their core or at their tails when they propagate.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus predicts that elementary bos<strong>on</strong> masses, like all other elementary<br />

particle masses, are much smaller than the Planck mass, though not exactly zero.<br />

This predicti<strong>on</strong> agrees with observati<strong>on</strong>: experimentally, the mass values for the W, Z<br />

and Higgs are <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 −17 Planck masses. We will search for more precise mass<br />

estimates below.<br />

Quark mass ratios<br />

Quarks are fermi<strong>on</strong>s. In the strand model, mass estimates for fermi<strong>on</strong>s are more difficult<br />

than for bos<strong>on</strong>s, because their shapes and their tails are less symmetric. Still, using<br />

Figure 113, the strand model allows two predicti<strong>on</strong>s about the relati<strong>on</strong>s between quark<br />

masses.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> quark masses are predicted to be the same for every possible colour charge. This<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the masses <str<strong>on</strong>g>of</str<strong>on</strong>g> the elementary particles 365<br />

Page 321<br />

Page 376<br />

Ref. 247<br />

Ref. 248<br />

is observed.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> progressi<strong>on</strong> in ropelength <str<strong>on</strong>g>of</str<strong>on</strong>g> the tight basic tangles for the six quarks suggests a<br />

progressi<strong>on</strong> in their masses. This is observed, though with the excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the up<br />

quark mass. For this excepti<strong>on</strong>al case, effects due to tail braiding, to the Higgs bos<strong>on</strong>,<br />

and to quark mixing are expected to play a role, as argued below.<br />

Let us try to extract numerical values for the quark mass ratios. We start by exploring<br />

the tight quark tangles, thus Planck-scale mass values. For each quark number q, the<br />

quark mass will be the weighted average over the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> its family tangles with q, q+6,<br />

q+12, ... crossings, where the period 6 is due to the Higgs bos<strong>on</strong>. Each tight tangle<br />

has a certain ropelength. <str<strong>on</strong>g>The</str<strong>on</strong>g> mass <str<strong>on</strong>g>of</str<strong>on</strong>g> each tangle will be determined by the frequency<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing changes at the core, including those due to the belt trick. <str<strong>on</strong>g>The</str<strong>on</strong>g> quark mass<br />

then is the average over all family tangles; it will be determined by the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> tail<br />

braiding and <str<strong>on</strong>g>of</str<strong>on</strong>g> all other fluctuati<strong>on</strong>s that generate crossing switches.<br />

For determining mass ratios, the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> the crossing switches at the core are<br />

the most important. Given that the particles are fermi<strong>on</strong>s, not bos<strong>on</strong>s, this frequency<br />

is expected to be an exp<strong>on</strong>ential <str<strong>on</strong>g>of</str<strong>on</strong>g> the ropelength L. Am<strong>on</strong>gquarks,wethusexpecta<br />

general mass dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the type<br />

m∼e aL (198)<br />

where a is an unknown number <str<strong>on</strong>g>of</str<strong>on</strong>g> order 1. We note directly that such a relati<strong>on</strong> promises<br />

general agreement with the observed quark mass ratios. Nevertheless, the exp<strong>on</strong>ential<br />

dependence must not be seen as more than an educated guess.<br />

Actual ropelength calculati<strong>on</strong>s by Eric Rawd<strong>on</strong> and Maria Fisher show that the<br />

ropelength <str<strong>on</strong>g>of</str<strong>on</strong>g> quark tangles increases roughly linearly with q, as expected from general<br />

knot theoretic arguments. <str<strong>on</strong>g>The</str<strong>on</strong>g>ir results are given in Table 15. Comparing these calculated<br />

ropelength differences with the known low-energy quark masses c<strong>on</strong>firms that the<br />

number a has an effective value in the range between 0.4 and 0.9, and thus indeed is <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

order <strong>on</strong>e.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> Table 15 suggest that the top quark should be particularly heavy – as<br />

is observed. <str<strong>on</strong>g>The</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> Table 15 also suggest that something special is going <strong>on</strong> for<br />

the u-d quark pair, which is out <str<strong>on</strong>g>of</str<strong>on</strong>g> sequence with the other quarks. Indeed, the strand<br />

model predicts a very small mass, – at the Planck scale – for the down quark. However,<br />

in nature, the down mass is observed to be larger than the up mass. (We note that despite<br />

this issue, mes<strong>on</strong> mass sequences are predicted correctly.)<br />

It could well be that the large symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> the simplest down quark tangle is the<br />

reas<strong>on</strong> for the excepti<strong>on</strong>al mass ordering. <str<strong>on</strong>g>The</str<strong>on</strong>g> large symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> the down tangle should<br />

lead to easier, i.e., more frequent interacti<strong>on</strong>s with the Higgs bos<strong>on</strong>. In other words, the<br />

braiding, i.e., the mixing with the more massive family members, appears to be higher<br />

for the down quark than that for the up quark, and this would explain the higher mass<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the down quark. Maybe this explanati<strong>on</strong> can be checked with data.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> experimental values for the quark masses are given in Table 16;thetablealso<br />

includes the values extrapolated to Planck energy for the pure standard model. <str<strong>on</strong>g>The</str<strong>on</strong>g> calculati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model does not agree with the data. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>on</strong>ly encouraging aspect<br />

is that the ropelength approximati<strong>on</strong> provides an approximati<strong>on</strong> for older speculati<strong>on</strong>s<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


366 12 particle properties deduced from strands<br />

Ref. 249<br />

TABLE 15 Calculated ropelengths, in units <str<strong>on</strong>g>of</str<strong>on</strong>g> the rope diameter, <str<strong>on</strong>g>of</str<strong>on</strong>g> tight quark tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 86<br />

(Page 320) with tails oriented al<strong>on</strong>g the skelet<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a tetrahedr<strong>on</strong>.<br />

Tangle Length Ropelength Difference<br />

skelet<strong>on</strong> (vacuum) 138.564065 base value<br />

simplest d 139.919533 1.355468 1.355468<br />

simplest u 142.627837 4.063773 2.708305<br />

simplest s 146.175507 7.611443 3.547670<br />

simplest c 149.695643 11.131578 3.520136<br />

simplest b 153.250364 14.686299 3.554721<br />

simplest t 157.163826 18.599761 3.913462<br />

TABLE 16 For comparis<strong>on</strong>: the quark masses at Planck energy,, calculated from the measured quark<br />

masses using the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics – assuming that it is correct up to Planck energy.<br />

Quark<br />

Low energy<br />

mass<br />

Planck energy<br />

mass<br />

u (q = 2/3e) 2.5(1.1) MeV 0.45(0.16) MeV<br />

d (q = −1/3e) 5.0(1.6) MeV 0.97(0.10) MeV<br />

s (q = −1/3e) 105(35) MeV 19.4(1.2) MeV<br />

c (q = 2/3e) 1270(110) MeV 213(8) MeV<br />

b (q = −1/3e) 4200(170) MeV 883(10) MeV<br />

t (q = 2/3e) 171300(2300) MeV 66993(880) MeV<br />

<strong>on</strong> approximately fixed mass ratios between the up-type quarks u, c, t and fixed mass ratios<br />

between down-type quarks d, s, b. <str<strong>on</strong>g>The</str<strong>on</strong>g> attempted strand model estimate shows that<br />

ropelength al<strong>on</strong>e is not sufficient to understand quark mass ratios. Research has yet to<br />

determine which tangle shape aspect has to be included to improve the corresp<strong>on</strong>dence<br />

with experiment.<br />

In fact, the strand model predicts that everyday quark masses result from a combinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> three effects: the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> ropelength and <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle core shape <strong>on</strong> rotati<strong>on</strong> and<br />

the belt trick, the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> sixfold tail braiding, and the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the energy dependence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mass between Planck energy and everyday energy, due to core loosening.<br />

In short, an analytic calculati<strong>on</strong> for quark masses seems difficult, due to their el<strong>on</strong>gated<br />

shape. Better analytical approximati<strong>on</strong>s should be possible, though. And with sufficient<br />

computer power, it will also be possible to determine the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> core shape<br />

deformati<strong>on</strong>s and core rotati<strong>on</strong>s, including the belt trick. It will also be possible to determine<br />

the energy dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the quark masses, and the probability for tail braiding.<br />

More research is needed <strong>on</strong> all these points; in the end, it will allow to calculate quark<br />

masses.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the masses <str<strong>on</strong>g>of</str<strong>on</strong>g> the elementary particles 367<br />

Lept<strong>on</strong> tangles, all with spin S = 1/2 , parity P = +1 , lept<strong>on</strong> number L’ = 1 and bary<strong>on</strong> number B = 0 :<br />

e μ τ<br />

all three with<br />

Q = –1<br />

0.5 MeV<br />

105 MeV<br />

1.77 GeV<br />

ν e<br />

1±1 eV<br />

ν μ<br />

1±1 eV<br />

ν τ<br />

1±1 eV<br />

all three with<br />

Q = 0<br />

Seen from a larger distance, the tails follow (<strong>on</strong> average) the x, y and z axes <str<strong>on</strong>g>of</str<strong>on</strong>g> a coordinate system.<br />

F I G U R E 114 Simple – wr<strong>on</strong>g – candidate tangles for the lept<strong>on</strong>s. Antilept<strong>on</strong>s are mirror tangles. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

experimental mass values are also given. <str<strong>on</strong>g>The</str<strong>on</strong>g>se wr<strong>on</strong>g tangles yield the wr<strong>on</strong>g mass sequence.<br />

Lept<strong>on</strong> mass ratios<br />

Mass calculati<strong>on</strong>s for lept<strong>on</strong>s are as involved as for quarks. Each lept<strong>on</strong>, being a fermi<strong>on</strong>,<br />

has a large family <str<strong>on</strong>g>of</str<strong>on</strong>g> associated tangles: there is a simplest tangle and there are the tangles<br />

that appear through repeated applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tail braiding. Despite this large tangle family,<br />

some results can be deduced from the simplest lept<strong>on</strong> tangles al<strong>on</strong>e, disregarding the<br />

higher-order family members.<br />

Mass calculati<strong>on</strong>s require first to find the correct lept<strong>on</strong> tangles. This is not straightforward.<br />

A c<strong>on</strong>sistent proposal appears when the set <str<strong>on</strong>g>of</str<strong>on</strong>g> lept<strong>on</strong> tangles reproduces all<br />

Feynman diagrams. This proposal is shown in Figure 115.<br />

Both for neutrinos and for charged lept<strong>on</strong>s, the progressi<strong>on</strong> in ropelength <str<strong>on</strong>g>of</str<strong>on</strong>g> the tight<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


368 12 particle properties deduced from strands<br />

Lept<strong>on</strong>s - `cubic' tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands (<strong>on</strong>ly simplest family members)<br />

Observati<strong>on</strong><br />

electr<strong>on</strong> neutrino<br />

Q = 0, S = 1/2<br />

above paper plane<br />

below<br />

paper<br />

plane<br />

electr<strong>on</strong><br />

Q = –1, S = 1/2<br />

below paper plane<br />

above<br />

paper<br />

plane<br />

above<br />

below<br />

below<br />

below<br />

above<br />

above<br />

below<br />

above<br />

mu<strong>on</strong> neutrino<br />

Q = 0, S = 1/2<br />

above paper plane<br />

below<br />

tau neutrino<br />

Q = 0, S = 1/2<br />

above<br />

above paper plane<br />

below<br />

above<br />

below<br />

paper<br />

plane<br />

below<br />

paper<br />

plane<br />

above<br />

below<br />

above<br />

below<br />

mu<strong>on</strong><br />

Q = –1, S = 1/2<br />

below paper plane<br />

above<br />

tau<br />

Q = –1, S = 1/2<br />

below<br />

below paper plane<br />

above<br />

below<br />

above<br />

paper<br />

plane<br />

above<br />

paper<br />

plane<br />

below<br />

above<br />

below<br />

above<br />

F I G U R E 115 Presently proposed tangles for the lept<strong>on</strong>s. Antilept<strong>on</strong>s are mirror tangles. Feynman<br />

diagrams are reproduced correctly. <str<strong>on</strong>g>The</str<strong>on</strong>g> handedness <str<strong>on</strong>g>of</str<strong>on</strong>g> neutrinos is apparent. Mass sequences are as<br />

observed. <str<strong>on</strong>g>The</str<strong>on</strong>g> experimental mass values are also listed. At present, estimated mass values are within a<br />

few orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude.<br />

versi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the basic tangles predicts a progressi<strong>on</strong> in their masses. This is indeed observed.<br />

In additi<strong>on</strong>, the tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> Figure 115 imply that the neutrinos are much less<br />

massive than the charged lept<strong>on</strong>s. Spin 1/2 arises. Also the electric charge quantum<br />

number arises, as l<strong>on</strong>g as charge is related to topological chirality. And the handedness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> neutrinos is evident. <str<strong>on</strong>g>The</str<strong>on</strong>g>se tangle assignments are thus promising.<br />

For each lept<strong>on</strong> tangle with l crossings, knot theory predicts a ropelength L that increases<br />

roughly proporti<strong>on</strong>ally to the crossing number: L∼l. Each lept<strong>on</strong> mass value<br />

will again be given by the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches due to rotati<strong>on</strong>s, including the<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the masses <str<strong>on</strong>g>of</str<strong>on</strong>g> the elementary particles 369<br />

Page 330<br />

Ref. 250<br />

belt trick, and <str<strong>on</strong>g>of</str<strong>on</strong>g> tail braiding. We thus expect a general relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the type<br />

m l ∼ e bL l<br />

(199)<br />

where b is a number <str<strong>on</strong>g>of</str<strong>on</strong>g> order 1 that takes into account the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle core. Such<br />

a relati<strong>on</strong> is in general agreement with the observed ratios between lept<strong>on</strong> masses.<br />

We note that the lept<strong>on</strong> mass generati<strong>on</strong> mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model differs from<br />

other proposals in the research literature. It agrees with the Higgs mechanism but goes<br />

bey<strong>on</strong>d it. For neutrinos, the mechanism c<strong>on</strong>tradicts the see-saw mechanism but c<strong>on</strong>firms<br />

the Yukawa mechanism directly. From a distance, the mass mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

strand model also somewhat resembles c<strong>on</strong>formal symmetry breaking.<br />

In sort, research <strong>on</strong> lept<strong>on</strong> masses is <strong>on</strong>going; calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ropelengths and other<br />

geometric properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the lept<strong>on</strong> tangles will allow a more detailed analysis. <str<strong>on</strong>g>The</str<strong>on</strong>g> main<br />

challenge remains to estimate the neutrino masses before experiments – such as KATRIN<br />

– determine them.<br />

On the absolute values <str<strong>on</strong>g>of</str<strong>on</strong>g> particle masses<br />

In nature, the masses <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles are observed to be much lower than the<br />

Planck mass: the observed values lie between about 10 −30 for neutrinos and 10 −17 for the<br />

top quark. Particle masses are c<strong>on</strong>stant over space and time. Antiparticles have the same<br />

mass as particles. Gravitati<strong>on</strong>al and inertial masses are the same. Following the standard<br />

model, particle masses are due to the Higgs mechanism. Finally, elementary particles<br />

masses run with energy.<br />

All qualitative observati<strong>on</strong>s about particle mass are reproduced by the strand model.<br />

However, the explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the numerical values is still lacking.<br />

In the strand model, the gravitati<strong>on</strong>al mass <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles is due to disturbance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum, in particular to the disturbance <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum fluctuati<strong>on</strong>s. Larger<br />

masses are due to more complex tangles. Since rest mass is localized energy, rest mass is<br />

due to crossing switches per time. Larger masses have more crossing switches per time<br />

than lower masses.<br />

In the strand model, the inertial mass <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles is their reluctance to<br />

rotate. Inertial mass describes the relati<strong>on</strong> between rotati<strong>on</strong> frequency and wavelength;<br />

in other terms, inertial mass described the steepness <str<strong>on</strong>g>of</str<strong>on</strong>g> the helix drawn by the rotating<br />

phase arrow <str<strong>on</strong>g>of</str<strong>on</strong>g> a propagating particle. Larger masses have low steepness, smaller masses<br />

have higher steepness. Larger masses are due to more complex tangles.<br />

As we just saw, the strand model predicts mass sequences and ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary<br />

particle masses that corroborate or at least do not c<strong>on</strong>tradict observati<strong>on</strong>s too much.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> next step is to determine absolute mass values from the strand model. So far we<br />

<strong>on</strong>ly found that elementary particle masses are much smaller than a Planck mass. But to<br />

validate the strand model, we need more precise statements.<br />

To determine gravitati<strong>on</strong>al mass values, we need to count those crossing switches that<br />

occur at rest; to determine inertial mass values, we need to look for crossing switches in<br />

the case <str<strong>on</strong>g>of</str<strong>on</strong>g> a moving particle – or, if we prefer, to understand the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the steepness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the helix drawn by the phase arrow. All these methods should first lead to mass value<br />

estimates and then to mass value calculati<strong>on</strong>s.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


370 12 particle properties deduced from strands<br />

Ref. 250, Ref. 251<br />

Page 330<br />

In general, the strand model reduces mass determinati<strong>on</strong> to the calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

details <str<strong>on</strong>g>of</str<strong>on</strong>g> a process: How <str<strong>on</strong>g>of</str<strong>on</strong>g>ten do the fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> strands lead to crossing switches?<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re are various candidates for the crossing switches that lead to particle mass.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> first candidate for mass-producing crossings is tail switching. In general however,<br />

tail switching leads to different particle types. Only for the Higgs process, i.e., the additi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a full Higgs braid to a particle, is this process expected to be relevant. We can also<br />

say that tail braid additi<strong>on</strong> are the strand model’s versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Yukawa coupling terms.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> next candidate for mass-producing crossings is the belt trick. <str<strong>on</strong>g>The</str<strong>on</strong>g> belt trick emits<br />

twisted tether pairs, thus virtual gravit<strong>on</strong>s, and is a good candidate to understand gravitati<strong>on</strong>al<br />

mass. <str<strong>on</strong>g>The</str<strong>on</strong>g> belt trick also leads to core rotati<strong>on</strong> and core displacement, which is<br />

the essence <str<strong>on</strong>g>of</str<strong>on</strong>g> inertial mass. Determining probabilities for the belt trick thus promises<br />

to allow mass calculati<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> third candidate for mass-producing crossings could appear when particles shed<br />

<strong>on</strong>e strand and grab a new <strong>on</strong>e. <str<strong>on</strong>g>The</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> this process is not clear yet.<br />

A fourth candidate for mass-producing crossings is the leather trick. However, the<br />

leather trick cannot be realized for strands that reach spatial infinity; therefore it is expected<br />

that it plays no role. In fact, the supposed effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the leather tricks in an early<br />

phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model have now become effects due to the Higgs absorpti<strong>on</strong> and<br />

emissi<strong>on</strong>.<br />

A fifth candidate for mass-producing crossings are those crossings that occur above<br />

or around the core, similar to the crossing that occur above the horiz<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a black hole.<br />

This candidate group includes the belt trick, includes the Higgs mechanism, and thus is<br />

equivalent to the set <str<strong>on</strong>g>of</str<strong>on</strong>g> previous candidates.<br />

It might be that some other mass-producing switching processes are being overlooked,<br />

but this seems unlikely. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, in the following we explore the fifth candidate<br />

group in more detail, namely the crossings around agiventanglecore.<br />

Before looking for estimates, we note that in the past, various researchers have reached<br />

the c<strong>on</strong>clusi<strong>on</strong> that all elementary particle masses should be due to a comm<strong>on</strong> process<br />

or energy scale. Am<strong>on</strong>g theoretical physicists, the breaking <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>formal symmetry has<br />

always been a candidate for such a process. Am<strong>on</strong>g experimental physicists, the Higgs<br />

mechanism – now c<strong>on</strong>firmed by experiment – is the favourite explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all elementary<br />

particle masses. In the strand model, crossing switches around tangles are related to<br />

the Higgs bos<strong>on</strong>. At the same time we can also argue that tangles break the c<strong>on</strong>formal<br />

symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum. With a bit <str<strong>on</strong>g>of</str<strong>on</strong>g> distance, we can thus say that the strand model agrees<br />

with both research expectati<strong>on</strong>s.<br />

Let us c<strong>on</strong>tinue with the quest for absolute mass estimates. In the strand model, absolute<br />

mass values are not purely geometric quantities that can be deduced directly from<br />

the shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle knots. Particle masses are due to dynamical processes. Absolute<br />

mass values are due to strand fluctuati<strong>on</strong>s; and these fluctuati<strong>on</strong>s are influenced by the<br />

core topology, the core shape, the core ropelength and core tightness.<br />

To determine absolute particle mass values, we need to determine the ratio between<br />

the particle mass and the Planck mass. This means to determine the ratio between the<br />

crossing switch probability for a given particle and the crossing switch probability for a<br />

Planck mass, namely <strong>on</strong>e switch per Planck time.*<br />

* What is a Planck mass? In the strand model, a Planck mass corresp<strong>on</strong>ds to a structure that produces <strong>on</strong>e<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the masses <str<strong>on</strong>g>of</str<strong>on</strong>g> the elementary particles 371<br />

Page 359<br />

Energy is acti<strong>on</strong> per time. Mass is localized energy. In other words, the absolute mass<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a particle is given by the average number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches it induces per time:<br />

⊳ Mass is crossing switch rate.<br />

More precisely, the crossing switch rate <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle at rest is its gravitati<strong>on</strong>al mass, and<br />

the crossing switch rate induced by propagati<strong>on</strong> is its inertial mass. Let us explore the<br />

relati<strong>on</strong>s.<br />

Given that mass is determined by the crossing switch rate, we deduce that particle<br />

mass values are determined by tangle topology, are fixed, are discrete, are positive, increase<br />

with tangle core complexity, are identical for particle and antiparticles, are c<strong>on</strong>stant<br />

over time, and are much smaller than the Planck mass. Because all these properties<br />

match observati<strong>on</strong>s, the local crossing switch rate indeed realizes all qualitative requirements<br />

for absolute particle mass values. We can thus proceed with the hope to learn<br />

more. In order to calculate absolute particle masses, we just need to determine the number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches per time that every particle tangle induces.<br />

One general way to perform a particle mass calculati<strong>on</strong> is to use a computer, insert<br />

a strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluctuating vacuum plus the strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle under<br />

investigati<strong>on</strong>, and count the number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches per time. <str<strong>on</strong>g>The</str<strong>on</strong>g> basis for <strong>on</strong>e such<br />

approach, using the analogy <str<strong>on</strong>g>of</str<strong>on</strong>g> the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a polymer in liquid soluti<strong>on</strong>, is shown in<br />

Figure 116. In c<strong>on</strong>trast to polymers, also the change <str<strong>on</strong>g>of</str<strong>on</strong>g> strand length has to be taken into<br />

account. By determining, for a given core topology, the average frequency with which<br />

crossing switches appear for a tethered core, we can estimate the masses <str<strong>on</strong>g>of</str<strong>on</strong>g> the lept<strong>on</strong>s,<br />

quarks and bos<strong>on</strong>s. In such a mass calculati<strong>on</strong>, the mass scale is set indirectly, through<br />

the time scale <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluctuati<strong>on</strong> spectrum. This is tricky but feasible. One would first<br />

need to find the parameter space and the fluctuati<strong>on</strong> spectrum for which the polymer<br />

tangle follows the Schrödinger equati<strong>on</strong>. Calculati<strong>on</strong>s with different tangles should then<br />

yield the different mass values. Such a simulati<strong>on</strong> would also <str<strong>on</strong>g>of</str<strong>on</strong>g> interest for exploring the<br />

strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum mechanics.<br />

A more precise computer simulati<strong>on</strong> would also model the vacuum itself with strands.<br />

This approach would even allow to explore gravitati<strong>on</strong>al and inertial mass separately. In<br />

such a simulati<strong>on</strong>, the particle mass appears when the helical moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a tangle moving<br />

through a strand vacuum is observed. <str<strong>on</strong>g>The</str<strong>on</strong>g> required effort can be reduced by using the<br />

most appropriate computer libraries.<br />

A further general way to determine particle masses is to search for analytical approximati<strong>on</strong>s.<br />

This is a fascinating c<strong>on</strong>ceptual and mathematical challenge. <str<strong>on</strong>g>The</str<strong>on</strong>g> main issue is<br />

to clarify which crossing switches c<strong>on</strong>tribute most to particle mass.<br />

crossing switch for every Planck time, c<strong>on</strong>stantly, without interrupti<strong>on</strong>. But the strand model predicts that<br />

such structures do not appear as localized particles, because every localized particle – i.e., every tangle –<br />

has, by c<strong>on</strong>structi<strong>on</strong>, a much smaller number <str<strong>on</strong>g>of</str<strong>on</strong>g> induced crossing switches per time. Following the strand<br />

model, elementary particles with Planck mass do not exist. This c<strong>on</strong>clusi<strong>on</strong> agrees with observati<strong>on</strong>. But<br />

the strand model also implies that black holes with a Planck mass do not exist. Indeed, such Planck-scale<br />

black holes, apart from being extremely short-lived, have no simple strand structure. We can state that a<br />

Planck mass is never localized. Given these results, we cannot use a model <str<strong>on</strong>g>of</str<strong>on</strong>g> a localized Planck mass as a<br />

unit or a benchmark to determine particle masses.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> impossibility <str<strong>on</strong>g>of</str<strong>on</strong>g> using Planck mass as a unit is also encountered in everyday life: no mass measurement<br />

in any laboratory is performed by using this unit as a standard.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


372 12 particle properties deduced from strands<br />

three polymer strands<br />

m<strong>on</strong>omers<br />

with<br />

Planck length<br />

diameter<br />

Challenge 205 r<br />

R<br />

liquid soluti<strong>on</strong><br />

tangled<br />

core<br />

regi<strong>on</strong><br />

tails<br />

Analytical estimates forparticle masses<br />

F I G U R E 116 Determining lept<strong>on</strong><br />

mass values with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

polymer analogy <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. After<br />

rescaling, the probability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

crossing switches around the<br />

tangle core yields an estimate for<br />

the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> the elementary<br />

particle with that tangle.<br />

A first analytical attempt is the following. We assume that the inertial mass for a moving<br />

fermi<strong>on</strong> is proporti<strong>on</strong>al to the fluctuati<strong>on</strong>-induced appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt trick. If the<br />

tight core has a diameter <str<strong>on</strong>g>of</str<strong>on</strong>g>, say, three Planck lengths – and thus a circumference <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

around 9 Planck lengths – then the probability p <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt trick for a particle with six<br />

tails will be in the range<br />

p≈(e −9 ) 6 ≈10 −24 . (200)<br />

This value would be the order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude for the mass estimate, in Planck units. Such<br />

an estimate is <strong>on</strong>ly very rough, and the exp<strong>on</strong>ent can be quite different. Nevertheless, we<br />

do get an explanati<strong>on</strong> for the large difference between the Planck mass and the typical<br />

fermi<strong>on</strong> mass. A more precise analytical approximati<strong>on</strong> for the belt trick probability –<br />

not an impossible feat – will therefore solve the so-called mass hierarchy problem. We<br />

thus want to know:<br />

⊳ What is the numerical probability <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt trick for a tethered core <str<strong>on</strong>g>of</str<strong>on</strong>g> given<br />

topology with fluctuating tails?<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the masses <str<strong>on</strong>g>of</str<strong>on</strong>g> the elementary particles 373<br />

So far, several experts <strong>on</strong> polymer evoluti<strong>on</strong> have failed to provide even the crudest estimate<br />

for the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt trick in a polymer-tethered ball. Can you provide<br />

<strong>on</strong>e?<br />

A sec<strong>on</strong>d analytical approach starts from the following questi<strong>on</strong>:<br />

Challenge 206 r<br />

Ref. 252<br />

Challenge 207 e<br />

Challenge 208 s<br />

Challenge 209 s<br />

Challenge 210 s<br />

⊳ How <str<strong>on</strong>g>of</str<strong>on</strong>g>ten does a tail cross above the tangle core?<br />

This questi<strong>on</strong> is loosely related to the previous <strong>on</strong>e; in additi<strong>on</strong>, this approach illustrates<br />

why complex cores have larger mass. <str<strong>on</strong>g>The</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> such crossings, when squared,<br />

would be an estimate for the crossing switch rate, and thus for the particle mass. (<str<strong>on</strong>g>The</str<strong>on</strong>g>re<br />

are additi<strong>on</strong>al details to the calculati<strong>on</strong>.) We note directly that the number <str<strong>on</strong>g>of</str<strong>on</strong>g> tails will<br />

have a smaller impact <strong>on</strong> mass than the complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle. So far, a reliable estimate<br />

for the crossing number, as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle core properties, is still missing<br />

– even a crude <strong>on</strong>e. Can you find <strong>on</strong>e? May be the roughly linear relati<strong>on</strong> observed<br />

between ropelength and (average) crossing number can be <str<strong>on</strong>g>of</str<strong>on</strong>g> help.<br />

Open issues about mass calculati<strong>on</strong>s<br />

Calculatingabsoluteparticlemassesfromtanglefluctuati<strong>on</strong>s,eithernumericallyorwith<br />

an analytical approximati<strong>on</strong>, will allow the final check <str<strong>on</strong>g>of</str<strong>on</strong>g> the statements in this secti<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts that the resulting values will match experiments. For these<br />

calculati<strong>on</strong>s, it is essential that the tangle assignment for each elementary particle is correct.<br />

Finally, in 2019, the tangles for the W tangle and for the lept<strong>on</strong> tangles seem settled.<br />

∗∗<br />

Because the strand model predicts a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> new physics bey<strong>on</strong>d the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particle physics, the calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> neutrino masses, and thus their mass sequence, is <strong>on</strong>e<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the few possible predicti<strong>on</strong>s –inc<strong>on</strong>trasttoretrodicti<strong>on</strong>s–thatareleftoverinthe<br />

strand model.<br />

∗∗<br />

Is the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> a tangle related to the vacuum density <str<strong>on</strong>g>of</str<strong>on</strong>g> strands?<br />

∗∗<br />

Do particle masses depend <strong>on</strong> the cosmological c<strong>on</strong>stant?<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> mass <str<strong>on</strong>g>of</str<strong>on</strong>g> an elementary particle does not depend <strong>on</strong> the spin directi<strong>on</strong>. In particular,<br />

the W and Z bos<strong>on</strong>s have equal l<strong>on</strong>gitudinal and transversal mass. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model<br />

does not allow an influence <str<strong>on</strong>g>of</str<strong>on</strong>g> spin orientati<strong>on</strong> <strong>on</strong> mass.<br />

∗∗<br />

Can the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> total curvature <str<strong>on</strong>g>of</str<strong>on</strong>g> a tangle help to calculate particle masses?<br />

∗∗<br />

Does the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> tail braiding c<strong>on</strong>firm the c<strong>on</strong>jecture that every experiment is described<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


374 12 particle properties deduced from strands<br />

Challenge 211 d<br />

Page 166<br />

Page 371<br />

by a small energy scale, determining the resoluti<strong>on</strong> or precisi<strong>on</strong>, and a large energy scale,<br />

less obvious, that determines the accuracy?<br />

∗∗<br />

If tail braiding is due to the weak interacti<strong>on</strong>, and if the Higgs is a tail-braided vacuum,<br />

can we deduce that the Higgs interacti<strong>on</strong> is a higher order effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong>?<br />

Can we deduce a c<strong>on</strong>crete experimental predicti<strong>on</strong> from this relati<strong>on</strong>?<br />

On fine-tuning and naturalness<br />

It has become fashi<strong>on</strong>able, since about a decade, to state that the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary<br />

particle physics is ‘fine-tuned’. <str<strong>on</strong>g>The</str<strong>on</strong>g> term expresses several ideas. First <str<strong>on</strong>g>of</str<strong>on</strong>g> all,<br />

the extremely low value <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum energy is not obvious when all the zero-point<br />

field c<strong>on</strong>tributi<strong>on</strong>s from the various elementary particles <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard model are included.<br />

A low vacuum energy seems <strong>on</strong>ly possible if the masses and the particle types<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the standard model are somehow interrelated. In other words, the term ‘fine tuning’<br />

expresses, above all, the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the masses, mixings and<br />

coupling c<strong>on</strong>stants <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> term ‘fine tuning’ is also used to state that the universe would be very different<br />

if the fundamental c<strong>on</strong>stants would be different. But this statement lacks deep truth.<br />

In this usage, the term ‘fine tuning’ states that particle masses are not parameters that<br />

can be varied at will. In comm<strong>on</strong> usage, ‘parameters’ are variable c<strong>on</strong>stants; but the low<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum energy – as well as many other observati<strong>on</strong>s – shows that the masses<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles cannot be varied without destroying the validity <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics.<br />

Some people suggest that ‘fine-tuning’ implies that the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle<br />

physics is ‘unnatural’, whatever this might mean in detail. Some even suggest that the<br />

parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard model lack any explanati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model – but also<br />

comm<strong>on</strong> sense – show that this suggesti<strong>on</strong> is false.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model naturally has a low vacuum energy, because the unknotted strands<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> flat space naturally have a zero energy density, and the particle masses, mixings and<br />

coupling c<strong>on</strong>stants are not variable or random, but naturally unique and fixed in value.<br />

Any correct descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature must be ‘fine-tuned’. If the standard model would not<br />

be ‘fine-tuned’, it would not describe nature.<br />

In short, the fashi<strong>on</strong>able term ‘fine-tuned’ is equivalent to the terms ‘unmodifiable’<br />

and ‘hard to vary’ that were discussed above. All these terms highlight the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> alternatives<br />

to the world as we observe it, the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> explanati<strong>on</strong>s for the processes<br />

around us, and our ability to discover and grasp them. This is part <str<strong>on</strong>g>of</str<strong>on</strong>g> the w<strong>on</strong>ders <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nature. And the strand model makes those w<strong>on</strong>ders apparent at the Planck scale.<br />

Summary <strong>on</strong> elementary particle masses and millennium issues<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model implies that masses are dynamic quantities fixed by processes due to<br />

the geometric and topological properties <str<strong>on</strong>g>of</str<strong>on</strong>g> specific tangle families. As a result, strands<br />

explain why the masses <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles are not free parameters, but fixed and<br />

unique c<strong>on</strong>stants, and why they are much smaller than the Planck mass by many orders<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s also reproduce all known qualitative properties <str<strong>on</strong>g>of</str<strong>on</strong>g> particle masses.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


the masses <str<strong>on</strong>g>of</str<strong>on</strong>g> the elementary particles 375<br />

Page 164<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s provide estimates for a number <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particle mass ratios, suchas<br />

m W /m Z and m Higgs /m W . Most quark and lept<strong>on</strong> mass sequences and first rough estimates<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mass ratios appear to agree with experimental data. All hadr<strong>on</strong> mass sequences<br />

are predicted correctly.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also promises to calculate absolute mass values, including their<br />

change or ‘running’ with energy. Particle masses are in the range <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 −20 times the<br />

Planck mass, near the observed mass values. In the future, more precise calculati<strong>on</strong>s will<br />

allow either improving the match with observati<strong>on</strong>s or refuting the strand model.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> results are encouraging for two reas<strong>on</strong>s. First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, no other unified model that<br />

agrees with experiment explains the qualitative properties <str<strong>on</strong>g>of</str<strong>on</strong>g> mass and mass sequences.<br />

Sec<strong>on</strong>dly, no research <strong>on</strong> statistical rati<strong>on</strong>al tangles exists; an understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> the parameters<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nature might be lacking because results in this research field are lacking.<br />

In the millennium list <str<strong>on</strong>g>of</str<strong>on</strong>g> open issues we have thus caught a glimpse <str<strong>on</strong>g>of</str<strong>on</strong>g> how to settle<br />

the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> particle masses – though we have not calculated them yet. Because further<br />

interesting challenges are awaiting us, we c<strong>on</strong>tinue nevertheless. In the next leg, we<br />

investigate how elementary particle states mix.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


376 12 particle properties deduced from strands<br />

A quark mass eigenstate :<br />

A quark weak eigenstate :<br />

s<br />

two tails<br />

above, <strong>on</strong>e tail<br />

below paper plane<br />

s‘<br />

all three tails<br />

in paper plane<br />

magnified core<br />

F I G U R E 117 Tail shifting leads to quark mixing: mass eigenstates and weak eigenstates differ.<br />

Ref. 233<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. V, page 251<br />

Ref. 233<br />

mixing angles<br />

In nature, the mass eigenstates for fermi<strong>on</strong>s differ from their weak eigenstates: quarks<br />

mix am<strong>on</strong>g themselves, and so do neutrinos. Quarks also show CP violati<strong>on</strong>; for neutrinos,<br />

the issue is still open. <str<strong>on</strong>g>The</str<strong>on</strong>g>se effects are described by two so-called mixing matrices.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> two mixing matrices c<strong>on</strong>tain fundamental c<strong>on</strong>stants <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. For the strand model<br />

to be correct, it must allow calculating the measured values <str<strong>on</strong>g>of</str<strong>on</strong>g> all comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the two<br />

mixing matrices.<br />

Quark mixing – the experimental data<br />

In nature, the quark mass eigenstates and their weak eigenstates differ. This difference<br />

was discovered in 1963 by Nicola Cabibbo and is called quark mixing. <str<strong>on</strong>g>The</str<strong>on</strong>g>values<str<strong>on</strong>g>of</str<strong>on</strong>g>the<br />

elements <str<strong>on</strong>g>of</str<strong>on</strong>g> the quark mixing matrix have been measured in many experiments, and<br />

more experiments aiming to increase the measurement precisi<strong>on</strong> are under way.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> quark mixing matrix, also called CKM mixing matrix, is defined by<br />

d d<br />

( s )=(V ij )( s) . (201)<br />

b b<br />

where, by c<strong>on</strong>venti<strong>on</strong>, the states <str<strong>on</strong>g>of</str<strong>on</strong>g> the +2/3 quarks u, c and t are unmixed. Unprimed<br />

quarks names represent str<strong>on</strong>g (and electromagnetic) eigenstates, primed quark names<br />

represent weak eigenstates. In its standard parametrizati<strong>on</strong>, the mixing matrix reads<br />

c 12 c 13 s 12 c 13 s 13 e −iδ<br />

V=( −s 12 c 23 −c 12 s 23 s 13 e iδ c 12 c 23 −s 12 s 23 s 13 e iδ s 23 c 13<br />

) (202)<br />

s 12 s 23 −c 12 c 23 s 13 e iδ −c 12 s 23 −s 12 c 23 s 13 e iδ c 23 c 13<br />

where c ij = cos θ ij , s ij = sin θ ij and i and j label the generati<strong>on</strong> (1 ⩽i,j⩽3). <str<strong>on</strong>g>The</str<strong>on</strong>g> mixing<br />

matrix thus c<strong>on</strong>tains three mixing angles, θ 12 , θ 23 and θ 13 ,and<strong>on</strong>ephase,δ. Inthelimit<br />

θ 23 = θ 13 =0, i.e., when <strong>on</strong>ly two generati<strong>on</strong>s mix, the <strong>on</strong>ly remaining parameter is<br />

the angle θ 12 , called the Cabibbo angle; this angle is Cabibbo’s original discovery. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


mixing angles 377<br />

Challenge 212 e<br />

Ref. 233<br />

last parameter, the so-called CP-violating phase δ, by definiti<strong>on</strong> between 0 and 2π, is<br />

measured to be different from zero; it expresses the observati<strong>on</strong> that CP invariance is<br />

violated in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> CP-violating phase <strong>on</strong>ly appears in<br />

the third column <str<strong>on</strong>g>of</str<strong>on</strong>g> the matrix; therefore CP violati<strong>on</strong> requires the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> (at least)<br />

three generati<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> present 90 % c<strong>on</strong>fidence values for the measured magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the complex quark<br />

mixing matrix elements are<br />

Page 330<br />

Page 253<br />

0.97427(14) 0.22536(61) 0.00355(15)<br />

|V| = ( 0.22522(61) 0.97343(15) 0.0414(12) ) . (203)<br />

0.00886(33) 0.0405(12) 0.99914(5)<br />

All these numbers are unexplained c<strong>on</strong>stants <str<strong>on</strong>g>of</str<strong>on</strong>g> nature, like the particle masses. Within<br />

experimental errors, the matrix V is unitary.<br />

A huge amount <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental work lies behind this short summary. <str<strong>on</strong>g>The</str<strong>on</strong>g> data have<br />

been collected over many years, in numerous scattering and decay experiments, by thousands<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> researchers. Nevertheless, this short summary represents all the data that any<br />

unified descripti<strong>on</strong> has to reproduce about quark mixing.<br />

Quark mixing – explanati<strong>on</strong>s<br />

In the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics, the quark mixing matrix is usually seen as due<br />

to the coupling between the vacuum expectati<strong>on</strong> value <str<strong>on</strong>g>of</str<strong>on</strong>g> the Higgs field and the lefthanded<br />

quark doublets or the right handed quark singlets. However, this descripti<strong>on</strong><br />

does not lead to a numerical predicti<strong>on</strong>.<br />

A slightly different descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quark mixing is given in the strand model. In the<br />

strand model, the Higgs field and its role as mass generator and unitarity maintainer is<br />

a special case <str<strong>on</strong>g>of</str<strong>on</strong>g> the process <str<strong>on</strong>g>of</str<strong>on</strong>g> tail braiding. And braiding is related to the weak interacti<strong>on</strong>.<br />

Because the various quarks are differently tangled rati<strong>on</strong>al tangles, tail braiding<br />

can reduce or increase the crossings in a quark tangle, and thus change quark flavours.<br />

We thus deduce from the strand model that quark mixing is an automatic result <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

strand model and related to the weak interacti<strong>on</strong>. We also deduce that quark mixing is<br />

due to the same process that generates quark masses, as expected. But we can say more.<br />

In the strand model, the mass eigenstate – and colour eigenstate – is the tangle shape<br />

in which colour symmetry is manifest and in which particle positi<strong>on</strong> is defined. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

mass eigenstates <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks corresp<strong>on</strong>d to tangles whose three colour-tails point in three<br />

directi<strong>on</strong>s that are equally distributed in space. <str<strong>on</strong>g>The</str<strong>on</strong>g> shape in which the tails point in<br />

three, equally spaced directi<strong>on</strong>s is the shape that makes the SU(3) representati<strong>on</strong> under<br />

core slides manifest.<br />

In c<strong>on</strong>trast, the weak eigenstates are those shapes that makes the SU(2) behaviour<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> core pokes manifest. For a quark, the weak eigenstate appears to be that shape <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

tangle for which all tails lie in a plane; for such plane c<strong>on</strong>figurati<strong>on</strong>, the tails and the core<br />

mimic a belt and its buckle, the structure that generates SU(2) behaviour. <str<strong>on</strong>g>The</str<strong>on</strong>g> two types<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> eigenstates are illustrated in Figure 117.<br />

In the strand model, masses are dynamical effects related to tangle shape. In the case<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> quarks, the two c<strong>on</strong>figurati<strong>on</strong>s just menti<strong>on</strong>ed will thus behave differently. We call<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


378 12 particle properties deduced from strands<br />

Page 210<br />

Ref. 233<br />

Ref. 253<br />

Challenge 213 r<br />

Ref. 233<br />

Page 338<br />

Page 335<br />

the transformati<strong>on</strong> from a mass eigenstate to a weak eigenstate or back tail shifting. Tail<br />

shifting is a deformati<strong>on</strong>: the tails as a whole are rotated and shifted. On the other hand,<br />

tail shifting can also lead to untangling <str<strong>on</strong>g>of</str<strong>on</strong>g> a quark tangle; in other words, tail shifting<br />

can lead to tail braiding and thus can transform quark flavours. <str<strong>on</strong>g>The</str<strong>on</strong>g> process <str<strong>on</strong>g>of</str<strong>on</strong>g> tail shifting<br />

can thus explain quark mixing. (Tail shifting also explains the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> neutrino<br />

mixing, and the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> mixing for the weak bos<strong>on</strong>s.)<br />

Tail shifting can thus be seen as a partial tail braiding; as such, it is due to the weak<br />

interacti<strong>on</strong>. This c<strong>on</strong>necti<strong>on</strong> yields the following predicti<strong>on</strong>s:<br />

— Tail shifting, both with or without tail braiding at the border <str<strong>on</strong>g>of</str<strong>on</strong>g> space, is a generalized<br />

deformati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, it is described by a unitary operator. <str<strong>on</strong>g>The</str<strong>on</strong>g> first result from the<br />

strand model is thus that the quark mixing matrix is unitary. This is indeed observed.<br />

— For quarks, tail braiding is a process with small probability. As a c<strong>on</strong>sequence, the<br />

quark mixing matrix will have its highest elements <strong>on</strong> the diag<strong>on</strong>al. This is indeed<br />

observed.<br />

— Tail shifting also naturally predicts that quark mixing will be higher between neighbouring<br />

generati<strong>on</strong>s, such as 1 and 2, than between distant generati<strong>on</strong>s, such as 1 and<br />

3.Thisisalsoobserved.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>necti<strong>on</strong> between mixing and mass also implies that the 1–2 mixing is str<strong>on</strong>ger<br />

than the 2–3 mixing, as is observed.<br />

— Finally, tail shifting predicts that the numerical values in the quark mixing matrix can<br />

be deduced from the difference between the shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> the two kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles shown<br />

in Figure 117. In particular, tail shifting also predicts that the quark mixing angles<br />

change, or run, with energy. In additi<strong>on</strong>, the effect is predicted to be small. On the<br />

other hand, so far there is no reliable experimental data <strong>on</strong> the effect.<br />

Performing a precise calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mixing angles and their running with energy is still<br />

a subject <str<strong>on</strong>g>of</str<strong>on</strong>g> research.<br />

A challenge<br />

Can you deduce the approximate expressi<strong>on</strong><br />

for the mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> the up quark from the strand model?<br />

tan θ umix = √ m u<br />

m c<br />

(204)<br />

CP violati<strong>on</strong> in quarks<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> CP violating phase δ for quarks is usually expressed with the Jarlskog invariant,<br />

defined as J=sin θ 12 sin θ 13 sin θ 2 23 cos θ 12 cos θ 13 cos θ 23 sin δ. This involved expressi<strong>on</strong><br />

is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the phase angles and was discovered by Cecilia Jarlskog,<br />

an important Swedish particle physicist. Its measured value is J = 3.06(21) ⋅ 10 −5 .<br />

Because the strand model predicts three quark generati<strong>on</strong>s, the quark model implies<br />

the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> CP violati<strong>on</strong>. In the secti<strong>on</strong> <strong>on</strong> mes<strong>on</strong>s we have seen that the strand<br />

model actually predicts the existence CP violati<strong>on</strong>. In particular, Figure 99 shows that<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


mixing angles 379<br />

A neutrino mass eigenstate : A neutrino weak eigenstate :<br />

ν e ν e ’<br />

each set <str<strong>on</strong>g>of</str<strong>on</strong>g> three tails<br />

follows three mutually<br />

perpendicular directi<strong>on</strong>s<br />

all tails lie in <strong>on</strong>e plane<br />

Ref. 254<br />

Ref. 233<br />

F I G U R E 118 Tail shifting leads to neutrino mixing: mass eigenstates and weak eigenstates differ.<br />

with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> tail shifting, K 0 and K 0 mes<strong>on</strong>s mix, and that the same happens with<br />

certain other neutral mes<strong>on</strong>s. Figure 100 shows a further example. As just menti<strong>on</strong>ed,<br />

the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> tail shifting implies that CP violati<strong>on</strong> is small, but n<strong>on</strong>-negligible – as<br />

is observed.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus predicts that the quark mixing matrix has a n<strong>on</strong>-vanishing CPviolating<br />

phase. <str<strong>on</strong>g>The</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> this phase is predicted to follow from the geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

quark tangles, as so<strong>on</strong> as their shape fluctuati<strong>on</strong>s are properly accounted for. This topic<br />

is still a subject <str<strong>on</strong>g>of</str<strong>on</strong>g> research.<br />

Neutrino mixing<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> observati<strong>on</strong>, in 1998, <str<strong>on</strong>g>of</str<strong>on</strong>g> neutrino mixing is comparably recent in the history <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particle physics, even though the important physicist Bruno P<strong>on</strong>tecorvo predicted the<br />

effect already in 1957. Again, the observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> neutrino mixing implies that also for<br />

neutrinos the mass eigenstates and the weak eigenstates differ. <str<strong>on</strong>g>The</str<strong>on</strong>g> values <str<strong>on</strong>g>of</str<strong>on</strong>g> the mixing<br />

matrix elements are <strong>on</strong>ly known with limited accuracy so far, because the extremely<br />

small neutrino mass makes experiments very difficult. Experimental progress across the<br />

world is summarized <strong>on</strong> the website www.nu-fit.org.<str<strong>on</strong>g>The</str<strong>on</strong>g>absolutevalue<str<strong>on</strong>g>of</str<strong>on</strong>g>theso-called<br />

PMNS mixing matrix U is<br />

0.82(1) 0.54(2) −0.15(3)<br />

|U| = ( −0.35(6) 0.70(6) 0.62(6) ) . (205)<br />

0.44(6) −0.45(6) 0.77(6)<br />

Again, these numbers are unexplained fundamental c<strong>on</strong>stants <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. Within experimental<br />

errors, the matrix U is unitary. <str<strong>on</strong>g>The</str<strong>on</strong>g> mixing am<strong>on</strong>g the three neutrino states is<br />

str<strong>on</strong>g, in c<strong>on</strong>trast to the situati<strong>on</strong> for quarks. Neutrino masses are known to be positive;<br />

however, present measurements are not precise and <strong>on</strong>ly yield values <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

1±1eV.<br />

In the strand model, the lept<strong>on</strong> mass eigenstates corresp<strong>on</strong>d to tangles whose tails<br />

point al<strong>on</strong>g the three coordinate axes. In c<strong>on</strong>trast, the weak eigenstates again corresp<strong>on</strong>d<br />

to tangles whose tails lie in a plane. <str<strong>on</strong>g>The</str<strong>on</strong>g> two kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> eigenstates are illustrated<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


380 12 particle properties deduced from strands<br />

Ref. 255<br />

Ref. 256<br />

Challenge 214 ny<br />

in Figure 118. Again, the transiti<strong>on</strong> between the two eigenstates is due to tail shifting, a<br />

special kind <str<strong>on</strong>g>of</str<strong>on</strong>g> strand deformati<strong>on</strong>.<br />

We thus deduce that neutrino mixing, like quark mixing, is an automatic result <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

strand model and is related to the weak interacti<strong>on</strong>. Given that the neutrino masses are<br />

small and similar, and that neutrinos do not form composites, the strand model predicts<br />

that the mixing values are large. This is a direct c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> tail shifting, which in<br />

the case <str<strong>on</strong>g>of</str<strong>on</strong>g> similar masses, mixes neutrino tangles leads to large mixings between all<br />

generati<strong>on</strong>s, and not <strong>on</strong>ly between neighbouring generati<strong>on</strong>s. In the strand model, the<br />

large degree <str<strong>on</strong>g>of</str<strong>on</strong>g> neutrino mixing is thus seen as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> their low and similar<br />

masses, <str<strong>on</strong>g>of</str<strong>on</strong>g> their tangle structure, and <str<strong>on</strong>g>of</str<strong>on</strong>g> their existence as free particles.<br />

Like for quarks, the strand model predicts a unitary mixing matrix for neutrinos. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

strand model also predicts that the geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> the neutrino tangles and their fluctuati<strong>on</strong>s<br />

will allow us to calculate the mixing angles. More precise predicti<strong>on</strong>s are still<br />

subject <str<strong>on</strong>g>of</str<strong>on</strong>g> research.<br />

CP violati<strong>on</strong> in neutrinos<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts that the three neutrinos are massive Dirac particles, not Majorana<br />

particles. This has not yet been c<strong>on</strong>firmed by experiment. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus<br />

predicts that the neutrino mixing matrix has <strong>on</strong>ly <strong>on</strong>e CP-violating phase. (It would have<br />

three such phases if neutrinos were Majorana particles.) <str<strong>on</strong>g>The</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> this phase is predicted<br />

to follow from the neutrino tangles and a proper accounting <str<strong>on</strong>g>of</str<strong>on</strong>g> their fluctuati<strong>on</strong>s.<br />

Also this calculati<strong>on</strong> is still a subject <str<strong>on</strong>g>of</str<strong>on</strong>g> research.<br />

On the <strong>on</strong>e hand, the strand model suggests the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> CP violati<strong>on</strong> in neutrinos.<br />

On the other hand, it is unclear when the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the CP-violating phase will<br />

ever be measured with sufficient precisi<strong>on</strong>. This is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the hardest open challenge <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experimental particle physics.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> CP violati<strong>on</strong> has important c<strong>on</strong>sequences in cosmology, in particular<br />

for the matter–antimatter asymmetry. Since the strand model predicts the absence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the see-saw mechanism, the strand model rules out leptogenesis, an idea invented<br />

to explain the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> antimatter in the universe. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model is more <strong>on</strong> the<br />

line with electroweak baryogenesis.<br />

Open challenge: calculate mixing angles and phases ab initio<br />

Calculating the mixing angles and phases ab initio, using the statistical distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

strand fluctuati<strong>on</strong>s, is possible in various ways. In particular, it is interesting to find the<br />

relati<strong>on</strong> between the probability for a tail shift and for a tail braiding. This will allow<br />

checking the statements <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong>.<br />

Because the strand model predicts a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> new physics bey<strong>on</strong>d the standard model<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics, the calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> neutrino mixing angles is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the few possible<br />

predicti<strong>on</strong>s that are left over in fundamental physics. Since the lept<strong>on</strong> tangles are still<br />

tentative, a careful investigati<strong>on</strong> is necessary.<br />

One possibility is that <strong>on</strong>ly the electr<strong>on</strong> neutrino tangle given above is correct, and<br />

that the other two neutrinos are similar to it, just with more built-in torsi<strong>on</strong>. Figure 119 illustrates<br />

this possibility. If this assignment were correct, two <str<strong>on</strong>g>of</str<strong>on</strong>g> the mixing angles should<br />

be large (and maybe have the zero-order value <str<strong>on</strong>g>of</str<strong>on</strong>g> 120°/3=40°). In additi<strong>on</strong>, very low mass<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


mixing angles 381<br />

Page 164<br />

F I G U R E 119 An alternative candidate assignment for the three neutrino tangles that generates large<br />

mixing between neighbouring generati<strong>on</strong>s and str<strong>on</strong>g preference for <strong>on</strong>e handedness.<br />

values would arise naturally, in normal ordering. This tangle assignment would also explain<br />

the difficulty <str<strong>on</strong>g>of</str<strong>on</strong>g> observing neutrinos <str<strong>on</strong>g>of</str<strong>on</strong>g> opposite handedness: neutrinos would have<br />

an extremely high preference for <strong>on</strong>e handedness (belt-trick); the mirror images <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

tangles in Figure 119 would corresp<strong>on</strong>d to antineutrinos. Despite these appealing aspects,<br />

this tentative assignment has <strong>on</strong>e unclear issue: explaining the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> a fourth neutrino<br />

generati<strong>on</strong> is not straightforward.<br />

Summary <strong>on</strong> mixing angles and the millennium list<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model implies that mixing angles for quarks and neutrinos are properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

their tangle families. <str<strong>on</strong>g>The</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> mixing is due to the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles and their<br />

fluctuati<strong>on</strong>s. As a result, strands explain why mixing angles are not free parameters, but<br />

discrete and unique c<strong>on</strong>stants <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also predicts that mixing<br />

angles are c<strong>on</strong>stant during the evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe.<br />

We have shown that tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> strands predict n<strong>on</strong>-zero mixing angles for quarks and<br />

neutrinos, as well as CP-violati<strong>on</strong> in both cases. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also predicts that<br />

the mixing angles <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks and neutrinos can be calculated from strand fluctuati<strong>on</strong>s.<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s predict that mixing matrices are unitary and that they run with energy. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s<br />

also predict a specific sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitudes am<strong>on</strong>g matrix elements; the few predicti<strong>on</strong>s<br />

so far agree with the experimental data. Finally, the strand model rules out leptogenesis.<br />

We have thus partly settled four further items from the millennium list <str<strong>on</strong>g>of</str<strong>on</strong>g> open issues.<br />

All qualitative aspects and some sequences are reproduced correctly, but no hard quantities<br />

were deduced yet. <str<strong>on</strong>g>The</str<strong>on</strong>g> result is somewhat disappointing, but it is also encouraging.<br />

At present, no other explanati<strong>on</strong> for quark and neutrino mixing is known. Future calculati<strong>on</strong>s<br />

will allow either improving the checks or refuting the strand model. We leave this<br />

topic unfinished and proceed to the most interesting topic that is left: understanding the<br />

coupling c<strong>on</strong>stants.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


382 12 particle properties deduced from strands<br />

Ref. 5<br />

weaker<br />

str<strong>on</strong>ger<br />

1/α i<br />

Data<br />

60<br />

1/α 1<br />

50<br />

40<br />

30<br />

20<br />

10<br />

by the standard<br />

model<br />

Predicti<strong>on</strong><br />

1/α 2<br />

1/α 3<br />

0<br />

0 5 10 15<br />

10 10 10 10<br />

Q / GeV<br />

10 19<br />

electromagnetism<br />

θ w<br />

√α<br />

√α 2 weak<br />

interacti<strong>on</strong><br />

√3 α 1 /5 weak<br />

hypercharge<br />

F I G U R E 120 Left: How the three coupling c<strong>on</strong>stants (squared) change with energy, as predicted by the<br />

standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics; the graph shows the c<strong>on</strong>stant α 1 = 5 3 α/ cos2 θ W for the weak<br />

hypercharge coupling (related to the electromagnetic fine structure c<strong>on</strong>stant α through the weak<br />

mixing angle θ W and a historical factor 5/3 that is useful in grand unificati<strong>on</strong>), the coupling c<strong>on</strong>stant<br />

α 2 =α w =α/sin 2 θ W for the weak interacti<strong>on</strong>, and the coupling c<strong>on</strong>stant α 3 =α s for the str<strong>on</strong>g<br />

interacti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> three black points are measurement points; at lower and slightly higher energies, data<br />

and calculati<strong>on</strong> match within experimental errors. (Courtesy Wim de Boer) Right: <str<strong>on</strong>g>The</str<strong>on</strong>g> relati<strong>on</strong> between<br />

the coupling c<strong>on</strong>stants α for the electromagnetic U(1) EM , α 2 =α w for the weak SU(2), α 1 for the weak<br />

hypercharge U(1) Y gauge groups and the weak mixing angle θ W .<br />

coupling c<strong>on</strong>stants and unificati<strong>on</strong><br />

In nature, electric, weak and str<strong>on</strong>g charge are quantized. No experiment has ever found<br />

even the smallest deviati<strong>on</strong> from charge quantizati<strong>on</strong>. All charges in nature are integer<br />

multiples <str<strong>on</strong>g>of</str<strong>on</strong>g> a smallest charge unit. Specifically, the electric charge <str<strong>on</strong>g>of</str<strong>on</strong>g> every free particle<br />

is observed to be an integer multiple <str<strong>on</strong>g>of</str<strong>on</strong>g> the positr<strong>on</strong> electric charge. We call the integer<br />

the electric charge quantum number.<br />

In nature, the strength <str<strong>on</strong>g>of</str<strong>on</strong>g> a gauge interacti<strong>on</strong> for a unit charge is described by its coupling<br />

c<strong>on</strong>stant. <str<strong>on</strong>g>The</str<strong>on</strong>g> coupling c<strong>on</strong>stant gives the probability with which a unit charge emits<br />

a virtual gauge bos<strong>on</strong>, or, equivalently, the average phase change produced by the absorpti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a gauge bos<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are three charge types and three coupling c<strong>on</strong>stants: for the<br />

electromagnetic, for the weak and for the str<strong>on</strong>g interacti<strong>on</strong>. All particles with a given<br />

charge type and value share the same coupling c<strong>on</strong>stant, even if their masses differ. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

three coupling c<strong>on</strong>stants depend <strong>on</strong> energy. <str<strong>on</strong>g>The</str<strong>on</strong>g> known data and the change with energy<br />

predicted by the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics are shown in Figure 120.<br />

In nature, the fine structure c<strong>on</strong>stant α, i.e., the electromagnetic coupling c<strong>on</strong>stant, at<br />

the lowest possible energy, 0.511 MeV, has the well-known measured value<br />

α = 1/137.035 999 139(31) . (206)<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


coupling c<strong>on</strong>stants and unificati<strong>on</strong> 383<br />

Equivalently, the electromagnetic coupling <str<strong>on</strong>g>of</str<strong>on</strong>g> the positr<strong>on</strong> can also be described by the<br />

equivalent number<br />

√α = 1/11.706 237 6167(13) = 0.085424543114(10) , (207)<br />

which is also called the electric charge unit (at low energy). Quantum electrodynamics<br />

predicts the precise change with energy <str<strong>on</strong>g>of</str<strong>on</strong>g> this charge unit; the experiments performed so<br />

far, up to over 100 GeV, agree with this predicti<strong>on</strong>. Quantum electrodynamics also predicts<br />

that the charge unit, when extrapolated right up to the Planck energy, would have a<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> 1/10.2(1). <str<strong>on</strong>g>The</str<strong>on</strong>g>se predicti<strong>on</strong>s are shown, in a comm<strong>on</strong>, but somewhat scrambled<br />

way, in Figure 120.<br />

Explaining the value <str<strong>on</strong>g>of</str<strong>on</strong>g> α, which determines all colours and all material properties<br />

in nature, is the most famous millennium issue. If the strand model cannot reproduce<br />

every observati<strong>on</strong> about α and the other coupling c<strong>on</strong>stants, it is wr<strong>on</strong>g. In particular,<br />

we thus need to understand, using the strand model, the quantizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> charges <strong>on</strong> the<br />

<strong>on</strong>e hand, and the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the mysterious value <str<strong>on</strong>g>of</str<strong>on</strong>g> the charge unit – either at low energy<br />

or at Planck energy – <strong>on</strong> the other hand.<br />

Interacti<strong>on</strong> strengths and strands<br />

In the strand model, all three gauge interacti<strong>on</strong>s are due to shape changes <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle cores.<br />

We first classify the possible shape changes. Given a tangle core, the following shape<br />

changes can occur:<br />

— Small changes <str<strong>on</strong>g>of</str<strong>on</strong>g> core shape do not produce any crossing switch. Small shape changes<br />

thus have no physical significance: for a given observer, they leave all observables<br />

unchanged.<br />

— Twist shape changes <str<strong>on</strong>g>of</str<strong>on</strong>g> a strand segment in the core produce an electric field, ifthe<br />

particle is charged. More precisely, the electric field around a particle is the difference<br />

between the average number p tr <str<strong>on</strong>g>of</str<strong>on</strong>g> right twists and the average number p tl <str<strong>on</strong>g>of</str<strong>on</strong>g> inverse,<br />

left twists that a particle tangle produces per unit time.<br />

— Poke shape changes <str<strong>on</strong>g>of</str<strong>on</strong>g> a strand segment in the core produce a weak interacti<strong>on</strong> field.<br />

More precisely, the weak field is the asymmetry am<strong>on</strong>g the probabilities p px , p py and<br />

p pz for the three fundamental poke types and their inverses.<br />

— Slide shape changes <str<strong>on</strong>g>of</str<strong>on</strong>g> a strand segment in the core produce a colour field, ifthe<br />

particle has colour. More precisely, the colour field is the asymmetry am<strong>on</strong>g the probabilities<br />

p s1 to p s8 for the eight fundamental slide types and their inverses.<br />

— A combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these moves can also appear.<br />

In the strand model, the fluctuati<strong>on</strong> probabilities for each Reidemeister move – twist,<br />

poke or slide – determine the coupling c<strong>on</strong>stants. We thus need to determine these<br />

probability values. We can directly deduce a number <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>clusi<strong>on</strong>s, without any detailed<br />

calculati<strong>on</strong>:<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> coupling c<strong>on</strong>stants are not free parameters, but are specified by the geometric,<br />

three-dimensi<strong>on</strong>al shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle tangles.<br />

— By relating coupling c<strong>on</strong>stants to shape fluctuati<strong>on</strong> probabilities, the strand model<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


384 12 particle properties deduced from strands<br />

predicts that coupling c<strong>on</strong>stants are positive numbers and smaller than 1 for all energies.<br />

⊳ α < 1,<br />

⊳ α w


coupling c<strong>on</strong>stants and unificati<strong>on</strong> 385<br />

Page 277<br />

Challenge 215 e<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s imply unificati<strong>on</strong><br />

In fact, <strong>on</strong>e new point is made by the strand model. Each gauge interacti<strong>on</strong> is due to a<br />

different Reidemeister move. However, given a specific tangle core deformati<strong>on</strong>, different<br />

observers will classify the deformati<strong>on</strong> as a different Reidemeister move. Indeed, every<br />

Reidemeister move can be realized by the same deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a single strand: for each<br />

Reidemeister move, it is sufficient to add a curved secti<strong>on</strong> to a straight strand segment.<br />

Such a deformati<strong>on</strong> can look like a type I Reidemeister move for <strong>on</strong>e observer, like a type<br />

II move for another, and like a type III move for a third <strong>on</strong>e.<br />

Because all interacti<strong>on</strong>s follow from the same kind <str<strong>on</strong>g>of</str<strong>on</strong>g> strand deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle<br />

cores, the strand model thus provides unificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the interacti<strong>on</strong>s. This result is new: in<br />

fact, this kind <str<strong>on</strong>g>of</str<strong>on</strong>g> strand unificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the interacti<strong>on</strong>s differs completely from any other<br />

approach ever proposed. And in c<strong>on</strong>trast to several other approaches, strand unificati<strong>on</strong><br />

does not require that the three coupling c<strong>on</strong>stants have the same value at high energy.<br />

A given shape deformati<strong>on</strong> thus has five probabilities associated to it: the probabilities<br />

describe what percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> observers sees this deformati<strong>on</strong> as a type I move, as a<br />

type II move, as a type III move, as a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such moves, or as no move at all,<br />

i.e., as a small move without any crossing switch. On the other hand, at energies measurable<br />

in the laboratory, the moves can almost always be distinguished, because for a given<br />

reacti<strong>on</strong>, usually all probabilities but <strong>on</strong>e practically vanish, due to the time averaging<br />

and spatial scales involved.* In short, at energies measurable in the laboratory, the three<br />

gauge interacti<strong>on</strong>s almost always differ.<br />

Calculating coupling c<strong>on</strong>stants<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts that the calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the three coupling c<strong>on</strong>stants is a problem<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tangle geometry and fluctuati<strong>on</strong> statistics. Thus it can be approached, at each<br />

energy scale, either analytically or with computer calculati<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> calculati<strong>on</strong>s need to<br />

determine the probabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> the corresp<strong>on</strong>ding Reidemeister moves. If the results do<br />

not agree with the experimental values, the strand model is false. We note that there is<br />

no freedom to tweak the calculati<strong>on</strong>s towards the known experimental results.<br />

In particular, in the strand model, <strong>on</strong>e way to proceed is the following. <str<strong>on</strong>g>The</str<strong>on</strong>g> (square<br />

root <str<strong>on</strong>g>of</str<strong>on</strong>g> the) fine structure c<strong>on</strong>stant is the probability for the emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> twists by a fluctuating<br />

chiral tangle.<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts that the fine structure c<strong>on</strong>stant can be calculated<br />

by determining the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> twists, i.e., Reidemeister I moves, in the<br />

fluctuating tangle shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> a given particle with n<strong>on</strong>zero electrical charge.<br />

In other words, the strand model must show that the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> the first Reidemeister<br />

move in chiral particle tangles is quantized. This probability must be an integer multiple<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a unit that is comm<strong>on</strong> to all tangles; and this coupling unit must be the fine structure<br />

* <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus appears to predict that at extremely high energy, meaning near the Planck energy,<br />

for each gauge interacti<strong>on</strong>, also particles with zero charge can interact. At Planck energy, when horiz<strong>on</strong>s<br />

form, the time averaging is not perfect, and interacti<strong>on</strong>s become possible even with zero charge. But then<br />

the particle c<strong>on</strong>cept make little sense at those energies.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


386 12 particle properties deduced from strands<br />

Challenge 216 r<br />

Page 382<br />

Ref. 229<br />

Page 330<br />

c<strong>on</strong>stant. Any check for the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a coupling unit requires the calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> twist<br />

appearance probabilities for each chiral particle tangle. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model is <strong>on</strong>ly correct<br />

if all particles with the same electric charge yield the same twist emissi<strong>on</strong> probability.<br />

Instead <str<strong>on</strong>g>of</str<strong>on</strong>g> emissi<strong>on</strong>, also absorpti<strong>on</strong> can be used to calculate the fine structure c<strong>on</strong>stant:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts that the fine structure c<strong>on</strong>stant can be calculated<br />

from the average angle that a tangle core rotates when absorbing a phot<strong>on</strong>.<br />

We will pursue this alternative shortly.<br />

So far, there do not seem to exist any analytical tool that permits the calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

shape deformati<strong>on</strong> probabilities. Thus, at present, computer calculati<strong>on</strong>s seem to be the<br />

<strong>on</strong>ly possible choice. Of all existing s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware programs, the most adapted to calculating<br />

fluctuati<strong>on</strong> probabilities are the programs that simulate the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> tangled polymers;<br />

but also the programs that simulate the dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> cosmic strings or the dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> helium vortices are candidates. <str<strong>on</strong>g>The</str<strong>on</strong>g> main issue, apart from a large computer time, is<br />

the correct and self-c<strong>on</strong>sistent specificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the shape fluctuati<strong>on</strong> distributi<strong>on</strong> at each<br />

energy scale.<br />

In summary, using the strand model we expect to be able to calculate the electromagnetic<br />

coupling c<strong>on</strong>stant and to understand its validity across all elementary particles. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

same expectati<strong>on</strong> obviously also holds for the two nuclear interacti<strong>on</strong>s. If any <str<strong>on</strong>g>of</str<strong>on</strong>g> the expectati<strong>on</strong>s<br />

<strong>on</strong> tangle interacti<strong>on</strong>s are found to be incorrect, the strand model is false. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

strand model must yield quantized tangle equivalence classes for the electromagnetic, weak<br />

and colour charge. Even though the calculati<strong>on</strong> issues are still subject <str<strong>on</strong>g>of</str<strong>on</strong>g> research, there<br />

are encouraging hints that these expectati<strong>on</strong>s will be validated.<br />

First hint: the energy dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> physical quantities<br />

In nature, all effective charges, i.e., the coupling c<strong>on</strong>stants, change with energy. One also<br />

says that they run with energy. Figure 120 shows the details. Running also occurs for<br />

masses and mixing angles. All other intrinsic particle properties, such as spin, parities<br />

and all other quantum numbers, are found not to change with energy. For the coupling<br />

c<strong>on</strong>stants, the measured changes between everyday energy and about 100 GeV agree<br />

with the predicti<strong>on</strong> from quantum field theory.*<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts<br />

⊳ Coupling c<strong>on</strong>stants, masses and mixing angles change with energy because<br />

they are quantities that depend <strong>on</strong> the average geometrical details, and in<br />

particular, <strong>on</strong> the scale <str<strong>on</strong>g>of</str<strong>on</strong>g> the underlying particle tangles.<br />

* In the standardmodel <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics, the running <str<strong>on</strong>g>of</str<strong>on</strong>g> the electromagnetic and weak couplingc<strong>on</strong>stants<br />

–theslopeinFigure 120 – depends <strong>on</strong> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> existing Higgs bos<strong>on</strong> types. <str<strong>on</strong>g>The</str<strong>on</strong>g> (corrected) strand<br />

model predicts that this number is <strong>on</strong>e. Measuring the running <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>stants thus allows checking the<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> Higgs bos<strong>on</strong>s. Unfortunately, the difference is small; for the electromagnetic coupling, the slope<br />

changes by around 2 % if the Higgs number changes by <strong>on</strong>e. But in future, such a measurement accuracy<br />

might be possible.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


coupling c<strong>on</strong>stants and unificati<strong>on</strong> 387<br />

Page 382<br />

Page 332<br />

More precisely, the running quantities depend <strong>on</strong> the fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the geometric tangle<br />

shapes, and these fluctuati<strong>on</strong>s depend somewhat <strong>on</strong> the spatial and thus the energy scale<br />

under c<strong>on</strong>siderati<strong>on</strong>. We note that the strand model predicts a running <strong>on</strong>ly for these<br />

three types <str<strong>on</strong>g>of</str<strong>on</strong>g> observables; all the other observables – spin, parities or other quantum<br />

numbers – are predicted to depend <strong>on</strong> the topology <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle tangles, and thus to be<br />

independent <str<strong>on</strong>g>of</str<strong>on</strong>g> energy. This predicti<strong>on</strong> agrees with observati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, we can now<br />

explore the details <str<strong>on</strong>g>of</str<strong>on</strong>g> the running.<br />

Sec<strong>on</strong>d hint: the running <str<strong>on</strong>g>of</str<strong>on</strong>g> the coupling c<strong>on</strong>stants at low<br />

energy<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model proposes a new view <strong>on</strong> the screening and antiscreening effects that<br />

are part <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum field theory. In the strand model, screening effects are c<strong>on</strong>sequences<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> shape deformati<strong>on</strong>s for loose tangle cores that are embedded into the<br />

strands that form the vacuum. Since these statistical effects can in principle be calculated,<br />

it is expected that such calculati<strong>on</strong>s can be compared with the predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum<br />

field theory shown in Figure 120. This check is in progress. A few results, however, can<br />

be deduced without any calculati<strong>on</strong>s at all.<br />

In the strand model, the electromagnetic interacti<strong>on</strong> is due to the first Reidemeister<br />

move, the twist. For a charged particle – thus <strong>on</strong>e with a chiral tangle core – the average<br />

difference in the occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> right and left twists determines the effective charge. It is<br />

expected that this difference decreases when the strand core is loose, because the loose<br />

strands are more similar to those <str<strong>on</strong>g>of</str<strong>on</strong>g> the surrounding vacuum, so that the differences<br />

due to the chirality <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle will be washed out. In the language <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum field<br />

theory, the virtual particle-antiparticle pairs – created by the fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum<br />

strands – screen the central, naked charge. <str<strong>on</strong>g>The</str<strong>on</strong>g> screening is reduced when the energy<br />

is increased, and thus when the scales are reduced. In other words, the strand model<br />

predicts that the electromagnetic coupling increases with energy, asisobserved:<br />

⊳ dα<br />

dE >0.<br />

Also for the two nuclear interacti<strong>on</strong>s, the washing out effect for loose tangle cores<br />

by the vacuum does occur as predicted by quantum field theory. In the weak interacti<strong>on</strong>,<br />

the antiscreening <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak charge appears in this way. In the str<strong>on</strong>g interacti<strong>on</strong>,<br />

both virtual quark–antiquark pairs and virtual glu<strong>on</strong> pairs can appear from the strands<br />

that make up the vacuum. Virtual quark–antiquark pairs lead to screening, as virtual<br />

electr<strong>on</strong>–antielectr<strong>on</strong> pairs do for the electromagnetic interacti<strong>on</strong>. In additi<strong>on</strong>, however,<br />

we have seen that the strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> mes<strong>on</strong>s implies that virtual glu<strong>on</strong> pairs lead to<br />

antiscreening. (In c<strong>on</strong>trast, virtual phot<strong>on</strong> pairs do not lead to such an effect.) Because<br />

the strand model fixes the number <str<strong>on</strong>g>of</str<strong>on</strong>g> quark and glu<strong>on</strong>s, the strand model is c<strong>on</strong>sistent<br />

with the result that the screening <str<strong>on</strong>g>of</str<strong>on</strong>g> the colour charge by quark pairs is overcompensated<br />

by the antiscreening <str<strong>on</strong>g>of</str<strong>on</strong>g> the virtual glu<strong>on</strong> pairs.<br />

In other words, the strand model reproduces the observed signs for the slopes <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

coupling c<strong>on</strong>stants in Figure 120, for the same reas<strong>on</strong> that it reproduces the quantum field<br />

theoretic descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the three gauge interacti<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> predicted running could also<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


388 12 particle properties deduced from strands<br />

Page 382<br />

be checked quantitatively, by taking statistical averages <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> varying<br />

dimensi<strong>on</strong>. This is a challenge for future research.<br />

Third hint: further predicti<strong>on</strong>s at low energy<br />

As we just saw, the complete explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the running <str<strong>on</strong>g>of</str<strong>on</strong>g> the couplings depends <strong>on</strong><br />

the explicit bos<strong>on</strong> and fermi<strong>on</strong> c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> nature and <strong>on</strong> the fact that the strand model<br />

reproduces quantum field theory. Interestingly, the strand model also proposes a simpler,<br />

though less precise explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the running.<br />

At energies much smaller than the Planck energy, such as everyday energies, the<br />

strand model implies that the average size <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle core is <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> the positi<strong>on</strong><br />

uncertainty <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle. In other words, any thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> the strands – real or effective<br />

– can be neglected at low energies. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, at low energies, the average strand length<br />

within a particle tangle core is also <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> the de Broglie wavelength. Low, everyday<br />

energy thus implies large, loose and spherical/ellipsoidal tangle cores.<br />

At low energies, shape fluctuati<strong>on</strong>s can lead to any <str<strong>on</strong>g>of</str<strong>on</strong>g> the three Reidemeister moves.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> probabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> such shape deformati<strong>on</strong>s will scale with some power <str<strong>on</strong>g>of</str<strong>on</strong>g> the average<br />

strand length within the tangle core. In other words, coupling c<strong>on</strong>stants depend <strong>on</strong><br />

energy. But how exactly?<br />

We note directly that higher Reidemeister moves, which involve larger numbers <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

strand segments, will scale with larger power values. In particular, the l<strong>on</strong>ger the strand<br />

in the core – i.e., the lower the energy – the more the relative probability for the higher<br />

Reidemeister moves will increase.<br />

In summary, the strand model predicts that when a tangle is loose and l<strong>on</strong>g, i.e., when<br />

energies are low, the str<strong>on</strong>g nuclear interacti<strong>on</strong>, due to the third Reidemeister move,<br />

is the str<strong>on</strong>gest gauge interacti<strong>on</strong>, followed by the weak nuclear interacti<strong>on</strong>, due to the<br />

sec<strong>on</strong>d Reidemeister move, in turn followed by the electromagnetic interacti<strong>on</strong>:<br />

⊳ α em


coupling c<strong>on</strong>stants and unificati<strong>on</strong> 389<br />

Ref. 258<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. V, page 151<br />

Ref. 259<br />

Another calculati<strong>on</strong> might seem more promising: to calculate the coupling c<strong>on</strong>stants<br />

near Planck energy. It could be argued that the approach to calculate the low-energy<br />

coupling c<strong>on</strong>stants from Planck-energy values seems unsatisfactory, due to the approximati<strong>on</strong>s<br />

and extrapolati<strong>on</strong>s involved. But it is possible if we are c<strong>on</strong>vinced that quantum<br />

field theory is correct up to Planck energy. And this is just what the strand model predicts.<br />

Such a Planck-scale calculati<strong>on</strong> might then allow us to estimate the low-energy<br />

coupling c<strong>on</strong>stants from their Planck energy values. However, so far, also this approach<br />

hasnotledtosuccess,despiteanumber<str<strong>on</strong>g>of</str<strong>on</strong>g>attempts.<str<strong>on</strong>g>The</str<strong>on</strong>g>challengeseemstobetounderstand<br />

core deformati<strong>on</strong> for case <str<strong>on</strong>g>of</str<strong>on</strong>g> tight tangle cores. We keep this opti<strong>on</strong> in mind.<br />

Limits for the fine structure c<strong>on</strong>stant do not provide<br />

explanati<strong>on</strong>s<br />

When searching for ways to determine the fine structure c<strong>on</strong>stant, we need to be careful.<br />

Here is an example that explains why.<br />

Numerous observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> nature imply a limit <strong>on</strong> the fine structure c<strong>on</strong>stant. A pretty<br />

<strong>on</strong>e appeared in a post <strong>on</strong> the internet in 2017. <str<strong>on</strong>g>The</str<strong>on</strong>g> electrostatic repulsi<strong>on</strong> between two<br />

electr<strong>on</strong>s at a given distance must be larger than the radiati<strong>on</strong> force between to small<br />

neutral black holes at that same distance. In other words,<br />

e 2 1<br />

4πε 0 r 2 > L bh<br />

c<br />

πR 2 bh<br />

4πr 2 . (209)<br />

Here it is assumed that thermal radiati<strong>on</strong> from <strong>on</strong>e black hole acts <strong>on</strong> the cross secti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the other black hole by pushing it away. Multiplying both sides by r 2 /ħc and inserting<br />

the expressi<strong>on</strong>s for the black hole luminosity L bh and the black hole radius R bh gives<br />

α><br />

1<br />

15 320 π . (210)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> bound is not tight, but is obviously correct.<br />

Various researchers are looking for observati<strong>on</strong>s that give the best possible bound for<br />

α. Such a search can indeed yield much better bounds. However, such a search cannot<br />

explain the value <str<strong>on</strong>g>of</str<strong>on</strong>g> α. We can indeed use thermodynamics, gravity or other observed<br />

properties to deduce observati<strong>on</strong>al limits <strong>on</strong> α. Many formulae <str<strong>on</strong>g>of</str<strong>on</strong>g> physics c<strong>on</strong>tain α in a<br />

more or less obvious way. Maybe, <strong>on</strong>e day, known physics will be able to yield very tight<br />

upper and lower bounds for α. Still, the explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the value <str<strong>on</strong>g>of</str<strong>on</strong>g> α would still lack.<br />

To explain the fine structure c<strong>on</strong>stant α, we need an approach based <strong>on</strong> the complete<br />

theory, not <strong>on</strong>e based <strong>on</strong> known, millennium physics, such as expressi<strong>on</strong> (209).<br />

Millennium physics can measure α, butcannot explain it. To explain the fine structure<br />

c<strong>on</strong>stant, a unified theory is needed. In our case, we need to check whether we can calculate<br />

α withstrands.<str<strong>on</strong>g>The</str<strong>on</strong>g>refore,wenowexploretangletopology,tangleshapesandtangle<br />

moti<strong>on</strong> with this aim in mind.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


390 12 particle properties deduced from strands<br />

Page 320<br />

Page 326<br />

Challenge 217 e<br />

Charge quantizati<strong>on</strong> and topological writhe<br />

In the strand model, electric charge is related to the chirality <str<strong>on</strong>g>of</str<strong>on</strong>g> a tangle. Only chiral<br />

tangles are electrically charged. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model thus implies that a topological quantity<br />

for tangles – defined for each tangle in the tangle family corresp<strong>on</strong>ding to a specific<br />

elementary particle – must represent electric charge. Which quantity could this be?<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> first candidate for charge in the strand model is provided by knot theory:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> usual topological quantity to determine chirality <str<strong>on</strong>g>of</str<strong>on</strong>g> knots and tangles is<br />

the topological writhe.<br />

To determine its value, we draw a minimal projecti<strong>on</strong>, i.e., a two-dimensi<strong>on</strong>al knot or<br />

tangle diagram with the smallest number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings possible. We then count the righthanded<br />

crossings and subtract the number <str<strong>on</strong>g>of</str<strong>on</strong>g> left-handed crossings. This difference, an<br />

integer, is the topological writhe. Topological writhe is thus a two-dimensi<strong>on</strong>al c<strong>on</strong>cept<br />

and does not depend <strong>on</strong> the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> a knot or tangle. We note:<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> topological writhe <str<strong>on</strong>g>of</str<strong>on</strong>g> the W bos<strong>on</strong> tangles is +3 or −3, depending <strong>on</strong> which mirror<br />

image we look at; the topological writhe <str<strong>on</strong>g>of</str<strong>on</strong>g> the Z bos<strong>on</strong> and Higgs bos<strong>on</strong> tangles<br />

vanishes. <str<strong>on</strong>g>The</str<strong>on</strong>g> topological writhe <str<strong>on</strong>g>of</str<strong>on</strong>g> any unknotted strand also vanishes. In this way, if<br />

we define the electric charge quantum number as <strong>on</strong>e third <str<strong>on</strong>g>of</str<strong>on</strong>g> the topological writhe,<br />

we recover the correct electric charge quantum number <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak and all other<br />

gauge bos<strong>on</strong>s. We note that the Higgs bos<strong>on</strong> does not change this result, so that all<br />

family members <str<strong>on</strong>g>of</str<strong>on</strong>g> a particle share the same topological writhe.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g>tangles<str<strong>on</strong>g>of</str<strong>on</strong>g>thequarksshow that if we define the electric charge quantum number<br />

as <strong>on</strong>e third <str<strong>on</strong>g>of</str<strong>on</strong>g> the topological writhe, we recover the correct electric charge quantum<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> all quarks. Adding Higgs bos<strong>on</strong>s has no effect <strong>on</strong> this definiti<strong>on</strong>.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> the lept<strong>on</strong>s show that if we define the electric charge quantum number<br />

as the topological writhe <str<strong>on</strong>g>of</str<strong>on</strong>g> the centre regi<strong>on</strong> <strong>on</strong>ly, we recover the correct electric<br />

charge quantum number <str<strong>on</strong>g>of</str<strong>on</strong>g> all lept<strong>on</strong>s. Again, adding Higgs bos<strong>on</strong>s does not change<br />

this result.<br />

In other terms, the electric charge quantum number can be reproduced with the help <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

topological writhe. And indeed, the electric charge <str<strong>on</strong>g>of</str<strong>on</strong>g> massless bos<strong>on</strong>s, i.e., phot<strong>on</strong>s and<br />

gravit<strong>on</strong>s, vanishes.<br />

Let us sum up. In nature, electric charge is quantized. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model describes<br />

charged particles with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuating alternating tangles, and charge quantizati<strong>on</strong><br />

is a topological effect that results because all particles are made <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. In particular,<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> electric charge quantum number behaves similarly to topological writhe<br />

(times <strong>on</strong>e third or times <strong>on</strong>e): it is quantized, has two possible signs, vanishes<br />

for achiral tangles, is a topological invariant – and thus is c<strong>on</strong>served.<br />

In short, a topological quantity, namely topological writhe, reproduces the electric charge<br />

quantum number in the strand model. Three issues remain. First, given that every<br />

particle is described by a tangle family with an infinite number <str<strong>on</strong>g>of</str<strong>on</strong>g> members, how is<br />

the electric charge, i.e., the topological writhe <str<strong>on</strong>g>of</str<strong>on</strong>g> the other tangle family members ac-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


coupling c<strong>on</strong>stants and unificati<strong>on</strong> 391<br />

Challenge 218 ny<br />

Ref. 5<br />

counted for? It is not hard to see that family members do not change topological<br />

writhe. <str<strong>on</strong>g>The</str<strong>on</strong>g>sec<strong>on</strong>dissueismorethorny: whyisthechargedefiniti<strong>on</strong>differentfor<br />

lept<strong>on</strong>s? We skip this problem for the time being. <str<strong>on</strong>g>The</str<strong>on</strong>g> third issue is the central <strong>on</strong>e:<br />

What is the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the peculiar value <str<strong>on</strong>g>of</str<strong>on</strong>g> the charge unit, whose square has the value<br />

α = 1/137.035 999 139(31) at low energy?<br />

Charge quantizati<strong>on</strong> and linking number<br />

An alternative c<strong>on</strong>jecture for charge quantizati<strong>on</strong> is the following:<br />

Challenge 219 e<br />

⊳ Electric charge, i.e., twist emissi<strong>on</strong> probability, might be proporti<strong>on</strong>al to the<br />

linking number <str<strong>on</strong>g>of</str<strong>on</strong>g> ribb<strong>on</strong>s formed by strand pairs.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> following arguments speak in favour <str<strong>on</strong>g>of</str<strong>on</strong>g> this c<strong>on</strong>jecture.<br />

— In knot theory, a ribb<strong>on</strong> is the strip associated to and limited by two strands.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g>linking number <str<strong>on</strong>g>of</str<strong>on</strong>g> a ribb<strong>on</strong> is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> times that the two edges <str<strong>on</strong>g>of</str<strong>on</strong>g> a ribb<strong>on</strong><br />

wind around each other. <str<strong>on</strong>g>The</str<strong>on</strong>g> linking number is a topological invariant and an integer.<br />

— In particle tangles, <strong>on</strong>ly wound up, i.e., linked ribb<strong>on</strong>s should lead to (net) bos<strong>on</strong><br />

emissi<strong>on</strong>. For tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands, we define a total linking number as the<br />

sum <str<strong>on</strong>g>of</str<strong>on</strong>g> all three possible linking numbers.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g> linking number <str<strong>on</strong>g>of</str<strong>on</strong>g> the Higgs bos<strong>on</strong> strand pairs is zero; that <str<strong>on</strong>g>of</str<strong>on</strong>g> the Z bos<strong>on</strong> strand<br />

pairs is the sum <str<strong>on</strong>g>of</str<strong>on</strong>g> 1, 0 and -1, thus also zero. <str<strong>on</strong>g>The</str<strong>on</strong>g> linking number for the W bos<strong>on</strong> is<br />

3 or -3, that <str<strong>on</strong>g>of</str<strong>on</strong>g> the quarks is 1, -1, 2 or -2. We thus c<strong>on</strong>jecture that the charge quantum<br />

number is <strong>on</strong>e third <str<strong>on</strong>g>of</str<strong>on</strong>g> the total linking number.<br />

— Massless bos<strong>on</strong>s, i.e., phot<strong>on</strong>s, glu<strong>on</strong>s and gravit<strong>on</strong>s, have no electric charge.<br />

In short, linking number, an integer, might be a better topological quantity to explain<br />

electric charge quantizati<strong>on</strong> than topological writhe. On the other hand, it might well be<br />

that linking number, being a quantity that depends <strong>on</strong> two strands, is related to the weak<br />

charge rather than to the electric charge.<br />

If the c<strong>on</strong>jectured relati<strong>on</strong> between linking number and electric or weak charge is<br />

correct, it might lead to a calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the corresp<strong>on</strong>ding coupling c<strong>on</strong>stant, <strong>on</strong>ce the<br />

tangle shape or, better, <strong>on</strong>ce the tangle dynamics is included in the proper way. For example,<br />

the phot<strong>on</strong> emissi<strong>on</strong> probability could depend <strong>on</strong> the writhe or <strong>on</strong> the twist <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the (averaged) ribb<strong>on</strong>s. Both these properties might lead to virtual phot<strong>on</strong> emissi<strong>on</strong>.<br />

(<str<strong>on</strong>g>The</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> writhe and twist <str<strong>on</strong>g>of</str<strong>on</strong>g> a ribb<strong>on</strong> is given by the linking number, as explained by<br />

Calugareanu’s theorem.)<br />

In this and any topological definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electric charge, we face two slight hurdles:<br />

First, we have to watch out for the gravit<strong>on</strong>: it is uncharged. Sec<strong>on</strong>dly, we have to explain<br />

why the strand model for the simplest family member <str<strong>on</strong>g>of</str<strong>on</strong>g> the d quark is not chiral. Both<br />

hurdles can be overcome.<br />

If the linking <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands is c<strong>on</strong>nected to weak charge, it might well be that a similar<br />

quantity defined for three strands is related to colour charge. All these possibilities are<br />

topic <str<strong>on</strong>g>of</str<strong>on</strong>g> research.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


392 12 particle properties deduced from strands<br />

How to calculate coupling c<strong>on</strong>stants<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model suggests that crossing number and linking number somehow define<br />

electric and weak charge. In simple words, the model suggests that quantizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

charge types is a topological effect; quantizati<strong>on</strong> is due to the multiple ways in which<br />

strands cross inside tangles.<br />

Coupling c<strong>on</strong>stants describe the probability <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong> with gauge bos<strong>on</strong>s. Experiments<br />

show that these quantities are slightly scale-dependent, since they run with energy.<br />

But in the strand model, coupling c<strong>on</strong>stants are not really shape-dependent: electr<strong>on</strong>s,<br />

mu<strong>on</strong>s and antiprot<strong>on</strong>s have the same electric charge and fine structure c<strong>on</strong>stant values<br />

despite being described by different tangles. Coupling c<strong>on</strong>stants do not depend <strong>on</strong> the<br />

kind <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle. Experiments show that they just depend somewhat <strong>on</strong> its size. In short,<br />

⊳ We need a definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each coupling c<strong>on</strong>stant that is tangle-independent<br />

and shape-independent, and <strong>on</strong>ly depends <strong>on</strong> a topological invariant <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tangles.<br />

In fact, this c<strong>on</strong>clusi<strong>on</strong> eliminates many speculati<strong>on</strong>s, including a number <str<strong>on</strong>g>of</str<strong>on</strong>g> calculati<strong>on</strong><br />

approaches that were included in this chapter in previous editi<strong>on</strong>s. We are left with just<br />

a few opti<strong>on</strong>s. To explore them, we start with an overview.<br />

Coupling c<strong>on</strong>stants in the strand model<br />

In experiments, there are the following gauge interacti<strong>on</strong>s with their charges:<br />

1. <str<strong>on</strong>g>The</str<strong>on</strong>g> electromagnetic interacti<strong>on</strong> with electric charge and U(1) symmetry.<br />

2. <str<strong>on</strong>g>The</str<strong>on</strong>g> weak interacti<strong>on</strong> with weak isospin and SU(2) symmetry.<br />

3. <str<strong>on</strong>g>The</str<strong>on</strong>g> str<strong>on</strong>g interacti<strong>on</strong> with colour and SU(3) symmetry.<br />

In the strand model, the gauge interacti<strong>on</strong>s are modelled as transfers <str<strong>on</strong>g>of</str<strong>on</strong>g> Reidemeister<br />

moves:<br />

1. <str<strong>on</strong>g>The</str<strong>on</strong>g> electromagnetic interacti<strong>on</strong> is twist transfer and the electric charge is preferred<br />

twist transfer to or from a massive particle. Twists can be added abd form a circle:<br />

they form a U(1) Lie group. <str<strong>on</strong>g>The</str<strong>on</strong>g>y change the tangle phase by exchanging <strong>on</strong>e observable<br />

crossing.<br />

2. <str<strong>on</strong>g>The</str<strong>on</strong>g> weak interacti<strong>on</strong> is poke transfer and the weak isospin is preferred poke transfer<br />

to or from a massive particle. Pokes exist in three linearly independent directi<strong>on</strong>s<br />

and their generators behave like the belt trick: they generate an SU(2) Lie group.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>y change the tangle phase by exchanging two observable crossings.<br />

3. <str<strong>on</strong>g>The</str<strong>on</strong>g> str<strong>on</strong>g interacti<strong>on</strong> is slide transfer and the colour charge is preferred slide transfer<br />

to or from a massive particle. Slides can be added, its generators have a Z 3 symmetry<br />

and they form an SU(3) Lie group. <str<strong>on</strong>g>The</str<strong>on</strong>g>y change the tangle phase by exchanging two<br />

or three? crossings.<br />

In the strand model, neutral particles are those that cannot receive Reidemeister moves<br />

or that receive them all in equal way:<br />

1. Electromagnetism: Neutral ‘tangles’ are made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e strand (e.g., the phot<strong>on</strong>) or are<br />

topologically achiral (the Z and the neutrinos).<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


coupling c<strong>on</strong>stants and unificati<strong>on</strong> 393<br />

Page 234<br />

Page 229<br />

2. Weak interacti<strong>on</strong>: Neutral tangles are made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e strand (e.g., the phot<strong>on</strong>) or <str<strong>on</strong>g>of</str<strong>on</strong>g> two<br />

straight or unpokeable strand pairs (the Z, the right-handed lept<strong>on</strong>s and quarks).<br />

3. Str<strong>on</strong>g interacti<strong>on</strong>: Neutral tangles are made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e strand or <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands.<br />

In the strand model, charged particles are specific tangles:<br />

1. Electric charge is due to the observability <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings during phot<strong>on</strong> emissi<strong>on</strong> or<br />

absorpti<strong>on</strong>, i.e., when twists are applied. Particles with electric charge, i.e., with preferred<br />

twist transfer, have a global asymmetry, global twistedness, namely topological<br />

chirality. Locally, electrically charged particles have crossings; electric charge is positive<br />

or negative. Charge is 1/3 <str<strong>on</strong>g>of</str<strong>on</strong>g> the signed crossing number. Examples are the<br />

charged lept<strong>on</strong>s, the quarks and the W bos<strong>on</strong>.<br />

2. Weak charge is thus due to the observability <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings during W or Z emissi<strong>on</strong> or<br />

absorpti<strong>on</strong>, i.e., when pokes are applied. Particles with weak isospin, i.e., with preferred<br />

poke transfer, have a global asymmetry that prevents all pokes to act equally<br />

effectively: For fermi<strong>on</strong>s, such an asymmetry arises when tangle twistedness and the<br />

belt trick have the same sign; thus all left-handed fermi<strong>on</strong>s and right-handed antifermi<strong>on</strong>s<br />

have weak isospin. Locally, weakly charged fermi<strong>on</strong>s behave like a belt buckle<br />

that rotates in the appropriate directi<strong>on</strong>. Due to their tangle topology, some fermi<strong>on</strong>s<br />

have positive, others negative weak isospin. For the W bos<strong>on</strong>, the asymmetry is built<br />

into the tangle; due to the tangle structure, the W and its antiparticle have plus or<br />

minus twice the weak isospin <str<strong>on</strong>g>of</str<strong>on</strong>g> fermi<strong>on</strong>s.<br />

3. Colour, str<strong>on</strong>g charge, is due to the observability <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings during glu<strong>on</strong> emissi<strong>on</strong><br />

or absorpti<strong>on</strong>, i.e., when slides are applied. Particles with colour charge, i.e., with preferred<br />

slide transfer, have a global asymmetry that prevents all slides to act equally effectively:<br />

Coloured particles are made <str<strong>on</strong>g>of</str<strong>on</strong>g> exactly two strands with tails in tetrahedr<strong>on</strong><br />

skelet<strong>on</strong> directi<strong>on</strong>s. Only two-stranded tangles allow certain slides and prevent others.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>refore <strong>on</strong>ly quarks have colour charge. Locally, red, blue and green colours<br />

corresp<strong>on</strong>d to three directi<strong>on</strong>s in <strong>on</strong>e plane that differ by an angle <str<strong>on</strong>g>of</str<strong>on</strong>g> 2π/3.<br />

Coupling strength is the ease <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing rotati<strong>on</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g> poke creati<strong>on</strong>, and <str<strong>on</strong>g>of</str<strong>on</strong>g> slide inducti<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se c<strong>on</strong>necti<strong>on</strong>s allow calculating the coupling strength values.<br />

Deducing α from precessi<strong>on</strong><br />

In nature, magnetic fields rotate charged particles. In the strand model, as shown in<br />

Figure 53, magnetic fields are made <str<strong>on</strong>g>of</str<strong>on</strong>g> moving twists. In fact, from the strand definiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the electromagnetic interacti<strong>on</strong> and the electric charge and from the drawing in<br />

Figure 50, we deduce:<br />

⊳ Moving twists rotate crossings.<br />

We note that this descripti<strong>on</strong> differs slightly from a pure twist transfer. But this formulati<strong>on</strong><br />

is the key to calculating α.<br />

We assume that the typical, average crossing is lying in the paper plane, as in the drawing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental principle. For an average crossing, the two strands lie al<strong>on</strong>g the x<br />

and y axes. When a phot<strong>on</strong>, i.e., a twist, arrives al<strong>on</strong>g the diag<strong>on</strong>al in the first quadrant,<br />

it rotates the crossing completely, by <strong>on</strong>e turn. If the twist arrives at a different angle, its<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


394 12 particle properties deduced from strands<br />

effect is lowered. We approximate this angle effect with simple trig<strong>on</strong>ometry: we assume<br />

that the angular projecti<strong>on</strong> describes the reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the effect with the incoming angle<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the twist.<br />

For the incident phot<strong>on</strong>, we call γ the angle from the y-axis and β the angle out <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the paper plane. <str<strong>on</strong>g>The</str<strong>on</strong>g> average rotati<strong>on</strong> angle induced by an absorbed phot<strong>on</strong> or twist <strong>on</strong><br />

a charged particle with three crossings, corresp<strong>on</strong>ding to <strong>on</strong>e elementary charge, can be<br />

calculated. We include sin γ for the volume element in spherical coordinates and average<br />

overthepossibleanglevaluesδ between the strands at the crossing. Further terms arise<br />

from the trig<strong>on</strong>ometric approximati<strong>on</strong>. In particular, a sec<strong>on</strong>d power arises from the two<br />

tails, and a further squaring is required to get probabilities. Nevertheless, the expressi<strong>on</strong><br />

remains open to dispute:<br />

√α calc = 3<br />

2π 2 ∫ π<br />

δ=0<br />

δ/2<br />

∫<br />

γ=−δ/2<br />

π/2<br />

∫ cos β(sin δ) 2 (cos(γπ/δ) cos β) 4 dβ dγ dδ = 0.15 .<br />

β=−π/2<br />

(211)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> resulting value <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.15 is not an acceptable approximati<strong>on</strong> to reality, in which √α =<br />

0.08542454311(1) at low energy and √α = 0.10(1) at Planck energy. Neither is the value<br />

a good approximati<strong>on</strong> to the hypercharge coupling, which changes from √α 1 = 0.10(1)<br />

at 100 GeV to √α 1 = 0.13(1) at Planck energy. We need a better approximati<strong>on</strong> for the<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> the electromagnetic coupling strength.<br />

Deducing the weak coupling<br />

Weak fields deform strand (crossing) pairs by adding or transferring generalized pokes.<br />

Weak fields are collecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> pokes; pokes represent virtual weak bos<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> weak<br />

isospin, the weak charge, is related to the orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand pairs. <str<strong>on</strong>g>The</str<strong>on</strong>g> weak interacti<strong>on</strong><br />

occurs through an incoming poke that deforms a strand pair:<br />

⊳ A moving poke rotates a pair <str<strong>on</strong>g>of</str<strong>on</strong>g> strands.<br />

This process is the key to calculating α w . We note that there is a certain similarity to the<br />

setting used for calculating the electromagnetic coupling: in both cases, the incoming<br />

bos<strong>on</strong> acts <strong>on</strong> a target c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands. This similarity is the reas<strong>on</strong> for electroweak<br />

mixing.<br />

We calculate the coupling c<strong>on</strong>stant for a single belt buckle, assuming parallel strands.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> average rotati<strong>on</strong> angle induced by <strong>on</strong>e incoming weak (unbroken) bos<strong>on</strong> (out <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the three possible cases) is <strong>on</strong>e full turn when the impact is perpendicular to the two<br />

strands and to the plane defined by them. For a general incidence angle the induced<br />

rotati<strong>on</strong> angle is lower. We again use trig<strong>on</strong>ometrical projecti<strong>on</strong> to approximate the induced<br />

crossing rotati<strong>on</strong> angle in the general case, with the same issues as in the previous<br />

case. We call γ the angle from ideal incidence, and β the l<strong>on</strong>gitude. <str<strong>on</strong>g>The</str<strong>on</strong>g> average angle is<br />

then given by<br />

π/2<br />

√α wcalc =∫<br />

γ=0<br />

2π<br />

∫ sin γ(cos 2 γ cos 2 β) 4 dγ dβ ≈ 0.19 . (212)<br />

β=0<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


coupling c<strong>on</strong>stants and unificati<strong>on</strong> 395<br />

If we need to average over the different angles between the strands that make up the pair<br />

experiencing the poke, we get a different value.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> calculated value <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak coupling is not an acceptable approximati<strong>on</strong> to reality,<br />

in which √α w =0.18at the (low) energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 GeV and √α w =0.14at Planck<br />

energy. We need a better approximati<strong>on</strong>.<br />

Deducing the str<strong>on</strong>g coupling<br />

Str<strong>on</strong>g fields deform specific three-strand c<strong>on</strong>figurati<strong>on</strong>s by adding generalized slides.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> generalized slides are due to glu<strong>on</strong>s. Str<strong>on</strong>g colour is related to the order and orientati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the strands in these specific three-strand c<strong>on</strong>figurati<strong>on</strong>s. In short:<br />

Challenge 220 r<br />

Page 352<br />

⊳ Incoming, moving slides deform three-strand c<strong>on</strong>figurati<strong>on</strong>s.<br />

Thisisthekeytocalculatingα s .<br />

We assume that <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> eight possible glu<strong>on</strong>s is incident. In an average triple strand<br />

c<strong>on</strong>figurati<strong>on</strong>, the three strands are oriented in a way that in the paper plane they look<br />

like three symmetrically arranged rays. One ray lies al<strong>on</strong>g the y axis. When a glu<strong>on</strong><br />

arrives, it performs a slide. For an incident glu<strong>on</strong>, we call γ the angle from the y-axis to<br />

the next strand and β the angle out <str<strong>on</strong>g>of</str<strong>on</strong>g> the paper. In the trig<strong>on</strong>ometric approximati<strong>on</strong>,<br />

the average slide angle induced <strong>on</strong> a coloured particle is given by<br />

π/2<br />

√α scalc =∫<br />

γ=0<br />

2π<br />

∫ sin γ(cos 3 γ cos 3 β) 4 dβ dγ ≈ 0.11 . (213)<br />

β=0<br />

This is not an acceptable approximati<strong>on</strong> to reality, in which √α s =0.7(1)at the (low)<br />

energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 GeV and √α s = 0.13(1) at Planck energy. We need a better approximati<strong>on</strong><br />

for the str<strong>on</strong>g coupling.<br />

Open challenge: calculate coupling c<strong>on</strong>stants with precisi<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> approximati<strong>on</strong>s used above for estimating the coupling c<strong>on</strong>stants can be dismissed<br />

as mere educated guesses. Despite this objecti<strong>on</strong>, these guesses show that a determinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the coupling c<strong>on</strong>stants from the strand model is within reach, and that it can be<br />

realized with limited effort. It is sufficient to improve the three approximati<strong>on</strong>s; this is<br />

can be realized by using computer simulati<strong>on</strong>s for the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> Reidemeister moves or<br />

by finding an improved analytical model.<br />

Calculating all three coupling c<strong>on</strong>stants ab initio with high precisi<strong>on</strong> will allow checking<br />

the statements <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong> in an independent manner and, above all, will allow<br />

testing the strand model. <str<strong>on</strong>g>The</str<strong>on</strong>g> calculati<strong>on</strong>s should be performed at different energies,<br />

to c<strong>on</strong>firm the energy dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the couplings. Also the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> the effective<br />

strand diameter <strong>on</strong> the fine structure c<strong>on</strong>stant should be explored.<br />

In order to reach highest precisi<strong>on</strong>, the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> the various tangle family members<br />

might have to be taken into account, because in the strand model, each particle is described<br />

by a family <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles. On the other hand, the strand model predicts that family<br />

members have a small effect <strong>on</strong> the coupling c<strong>on</strong>stant, so that the family issue can be<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


396 12 particle properties deduced from strands<br />

Ref. 260<br />

Ref. 261<br />

neglected in the beginning.<br />

In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> the nuclear coupling c<strong>on</strong>stants, Arnold’s results <strong>on</strong> plane curves may<br />

help in the estimati<strong>on</strong>s and calculati<strong>on</strong>s.<br />

Electric dipole moments<br />

Experimental physicists are searching for electric dipole moments <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary<br />

particles. No n<strong>on</strong>-zero value has been detected yet. <str<strong>on</strong>g>The</str<strong>on</strong>g> idea <str<strong>on</strong>g>of</str<strong>on</strong>g> electric dipole moment<br />

is based <strong>on</strong> a n<strong>on</strong>-spherical distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electric charge in space.<br />

In the strand model, particles are tangles. As a c<strong>on</strong>sequence, the electric charge distributi<strong>on</strong><br />

– the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the crossings in a tangle – is intrinsically a slightly n<strong>on</strong>spherical<br />

quantity, thus a quantity unequally distributed in space. However, it is <strong>on</strong>ly<br />

n<strong>on</strong>-local <strong>on</strong> a scale <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> a Planck length. In other terms, the electric dipole<br />

moment d <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles is predicted to be<br />

⊳ d = fel Pl ,<br />

where the factor f arises from averaging the tangle and is <str<strong>on</strong>g>of</str<strong>on</strong>g> order <strong>on</strong>e. Similar values are<br />

predicted by the standard model in the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> supersymmetry and grand unificati<strong>on</strong>.<br />

However, the sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> measurements has not reached these values yet, by several<br />

orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude.<br />

We note that the strand model predicts that the dipole moment changes, or ‘runs’,<br />

with energy. This follows from the shape-dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the dipole moment. Such a<br />

dependence is also predicted by quantum field theory.<br />

Insummary,weexpectthatuptoaregi<strong>on</strong>closetoaPlancklength,thestrand model<br />

should not yield dipole moments that differ in order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude from those predicted<br />

by the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics. In the future, more precise calculati<strong>on</strong>s and<br />

measurements could allow testing the strand model using dipole moments.*<br />

Five key challenges about coupling strengths<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re are many ways to evaluate candidates for unified models. A c<strong>on</strong>crete evaluati<strong>on</strong><br />

focuses <strong>on</strong> four key challenges about coupling c<strong>on</strong>stants. <str<strong>on</strong>g>The</str<strong>on</strong>g>se challenges must be resolved<br />

by any candidate model in order to be <str<strong>on</strong>g>of</str<strong>on</strong>g> interest.<br />

1. So far, we explained particle charges with topological properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle models<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the particles, and we explained coupling strengths with the transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings,<br />

pokes and slides. This allowed deducing a rough approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coupling c<strong>on</strong>stants.<br />

By doing so, we have settled a first key challenge:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model explains why the fine structure c<strong>on</strong>stant, or equivalently,<br />

the electric charge, is the same for electr<strong>on</strong>s and prot<strong>on</strong>s.<br />

Deducing this equality is a key challenge for any unified model. In fact, all coupling<br />

c<strong>on</strong>stants must be independent <str<strong>on</strong>g>of</str<strong>on</strong>g> particle type. This is indeed the case in the strand<br />

* It might even be that s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware packages allowing to do this already exist. <str<strong>on</strong>g>The</str<strong>on</strong>g> package <str<strong>on</strong>g>of</str<strong>on</strong>g> Christian Beck<br />

that he used in arxiv.org/abs/hep-th/0702082 might be an example. Others might also exist.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


coupling c<strong>on</strong>stants and unificati<strong>on</strong> 397<br />

model.<br />

2. <str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d key challenge was the energy-dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> the coupling c<strong>on</strong>stants.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model predicts that coupling c<strong>on</strong>stants run with energy in exactly the way that<br />

is predicted by QED, QCD and electroweak theory. We could also argue that this is not a<br />

real challenge for any unified model that reproduces these theories. In the strand model,<br />

the running <str<strong>on</strong>g>of</str<strong>on</strong>g> the electromagnetic coupling c<strong>on</strong>stant can be seen as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the gradual tightening <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles with energy. For a typical electrically charged particle<br />

at low energy, the tangle is very loose; therefore:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> Planck scale number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings is shielded by an additi<strong>on</strong>al cloud <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

crossings created by the loose strands <str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle.<br />

In this way, the strand model explains the running <str<strong>on</strong>g>of</str<strong>on</strong>g> the fine structure c<strong>on</strong>stant in exactlythesamewayasQED.<br />

3. <str<strong>on</strong>g>The</str<strong>on</strong>g> third key challenge has <strong>on</strong>ly been touched up<strong>on</strong> very briefly:<br />

⊳ Any unified model needs to clarify the relati<strong>on</strong> between the hypercharge,<br />

the electric charge and the weak isospin (the ‘weak charge’).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model explains electromagnetism as acting <strong>on</strong> crossings and the weak interacti<strong>on</strong><br />

as acting <strong>on</strong> parallel strands. This general statement c<strong>on</strong>tains the required explanati<strong>on</strong>;<br />

but the details still need to be worked out. It is expected that in electromagnetism,<br />

a single crossing is rotated, mainly by rotating <strong>on</strong>e strand around the other. In c<strong>on</strong>trast,<br />

in the weak interacti<strong>on</strong>, two strands are rotated together, producing ar switching two<br />

crossings. <str<strong>on</strong>g>The</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings differs between electromagnetism and the weak interacti<strong>on</strong>,<br />

but the total number <str<strong>on</strong>g>of</str<strong>on</strong>g> involved strands is tow in both cases. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

similarity, the two interacti<strong>on</strong>s mix. <str<strong>on</strong>g>The</str<strong>on</strong>g> final explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electroweak mixing might<br />

even allow to deduce a intuitive geometric meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> θ w , the weak mixing angle or<br />

Weinberg angle.<br />

4. <str<strong>on</strong>g>The</str<strong>on</strong>g> fourth key challenge, related to the previous <strong>on</strong>e, still needs to be explored in<br />

more detail:<br />

⊳ Any unified model must explain why the mass ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the intermediate<br />

weak vector bos<strong>on</strong>s is related to the coupling ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> the weak and the electromagnetic<br />

interacti<strong>on</strong> as<br />

( m 2<br />

W<br />

) + α =1. (214)<br />

m Z α w<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model str<strong>on</strong>gly suggests that it can explain the relati<strong>on</strong>, but the detailed argument<br />

must yet be provided. Using more drastic language, we can repeat what many<br />

have said already in the past: explaining the electroweak mixing expressi<strong>on</strong> (214) isthe<br />

key challenge for any unified model.<br />

In the strand model, the two electroweak coupling c<strong>on</strong>stants are measures for interac-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


398 12 particle properties deduced from strands<br />

ti<strong>on</strong> probabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings with twists and with pokes. In c<strong>on</strong>trast, masses are interacti<strong>on</strong><br />

probabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings with spatial curvature. Why are they related by expressi<strong>on</strong><br />

(214)? Here is a short brainstorm <strong>on</strong> the issue.<br />

In the strand model, mass appears by tail braiding. Tail braiding adds crossings, and<br />

in this way adds mass. Added crossings also imply added weak and sometimes electric<br />

charges. <str<strong>on</strong>g>The</str<strong>on</strong>g> Z bos<strong>on</strong> arises from vacuum by different tail braidings than the W. <str<strong>on</strong>g>The</str<strong>on</strong>g> W<br />

arises by the braiding <str<strong>on</strong>g>of</str<strong>on</strong>g> two tail pairs at 90 degrees; the Z arises by braiding <strong>on</strong>e tail pair<br />

at 90 degrees.<br />

In case <str<strong>on</strong>g>of</str<strong>on</strong>g> the W and the Z bos<strong>on</strong>s, the Z tangle produces a larger disturbance <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

vacuum than the W; therefore it is more massive than the W.<br />

At which angle does a clasp start to form a ‘‘enclosed space in between’’? Surprisingly,<br />

this happens for any angled strand pair, even if the angle is near π. Howdoesthis<br />

enclosed space change with scale, given that scale might change the clasp angle? This<br />

questi<strong>on</strong> might be related to the running <str<strong>on</strong>g>of</str<strong>on</strong>g> masses, mixing angles or coupling c<strong>on</strong>stants.<br />

In particular, we should answer the following questi<strong>on</strong>: Which physical observable does<br />

this enclosed space influence? Mass, couplings, or mixings? Is mass more related to<br />

ropelength or more related to the enclosed space?<br />

5. <str<strong>on</strong>g>The</str<strong>on</strong>g> fifth key challenge is, <str<strong>on</strong>g>of</str<strong>on</strong>g> course, the precise calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the coupling c<strong>on</strong>stants.<br />

Summary <strong>on</strong> coupling c<strong>on</strong>stants<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model implies that coupling c<strong>on</strong>stants are geometric properties <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle families<br />

that corresp<strong>on</strong>d to charged particles. As a c<strong>on</strong>sequence, strands explain why the<br />

coupling c<strong>on</strong>stants are not free parameters in nature, but fixed c<strong>on</strong>stants. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s predict<br />

that coupling c<strong>on</strong>stants are the same for particles with the same charge, and that coupling<br />

c<strong>on</strong>stants are c<strong>on</strong>stant during the macroscopic evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s predict<br />

small electric dipole moments for elementary particles, compatible with and lower than<br />

present measurement limits. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s also predict the correct sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the coupling<br />

c<strong>on</strong>stants at low energy and the correct sign <str<strong>on</strong>g>of</str<strong>on</strong>g> their running with energy. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s thus<br />

reproduce all observed qualitative properties <str<strong>on</strong>g>of</str<strong>on</strong>g> coupling c<strong>on</strong>stants. No other unified<br />

modelachievesthisyet.<br />

Using tangle shapes, the strand model proposes several ways to calculate coupling<br />

c<strong>on</strong>stants ab initio. First estimates based <strong>on</strong> the new tangled particle models yield results<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> the observed <strong>on</strong>es; nevertheless, the errors due to the approximati<strong>on</strong>s<br />

are still larger than the measurement errors. In 2019, a first publicati<strong>on</strong> has appeared<br />

Improved calculati<strong>on</strong>s are <strong>on</strong>going and will allow either to c<strong>on</strong>firm or to refute the strand<br />

model.<br />

Ref. 262 .<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


Chapter13<br />

A PICTORIAL SUMMARY OF THE<br />

STRAND MODEL<br />

“La forma universal di questo nodo<br />

credo ch’i’ vidi, ... **<br />

Dante, La Divina Commedia,<br />

XXXIII, 91-92.<br />

Paradiso,”<br />

Deducing all <str<strong>on</strong>g>of</str<strong>on</strong>g> modern physics from simple pictures is possible! Indeed,<br />

escribing observati<strong>on</strong>s with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuating strands agrees with all<br />

ata and all experiments – without excepti<strong>on</strong>. More precisely, in the strand<br />

model or strand c<strong>on</strong>jecture, all properties <str<strong>on</strong>g>of</str<strong>on</strong>g> nature follow by assigning the Planck units<br />

to fundamental events. This fundamental principle is illustrated in Figure 121: every<br />

fundamental event is a strand crossing switch occurring at the Planck scale. With this<br />

descripti<strong>on</strong>, the strand model visualizes and explains quantum theory, the standard<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics, general relativity and cosmology.<br />

Quantum theory, inclusive wave functi<strong>on</strong>s and spin 1/2, is illustrated in Figure 122,<br />

Figure 123 and Figure 124. Gauge interacti<strong>on</strong>s and the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> gauge couplings are illustrated<br />

in Figure 125 and Figure 126. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model proposes a tangle structure for each<br />

elementary particle; they are given in Figure 127 and Figure 128. <str<strong>on</strong>g>The</str<strong>on</strong>g>tanglesdetermine<br />

masses and mixing angles. No modificati<strong>on</strong> or extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the particle spectrum arises.<br />

With all the assigned particle tangles, Figure 129 and Figure 130 show that the strand<br />

model reproduces all Feynman diagrams <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard model. No additi<strong>on</strong>al Feynman<br />

diagram is possible. In short: No modificati<strong>on</strong> or extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard model<br />

arises.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also yields a tangle structure for flat vacuum, curved vacuum, gravit<strong>on</strong>s,<br />

everyday gravity, and black hole horiz<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are shown in Figure 131, Figure 132,<br />

Figure 133, Figure 134 and Figure 135. <str<strong>on</strong>g>The</str<strong>on</strong>g>sefiguresimplythatstrands reproduce gravity<br />

and general relativity, without extensi<strong>on</strong> or modificati<strong>on</strong> at sub-galactic scales.<br />

Finally, the strand model proposes a tangle structure for the universe, from the origin<br />

to the present, as illustrated in Figure 136 and Figure 137. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s predict a single universe<br />

with an expanding horiz<strong>on</strong>, trivial topology and a matter density close to the critical<br />

value. <str<strong>on</strong>g>The</str<strong>on</strong>g> cosmological implicati<strong>on</strong>s are still subject <str<strong>on</strong>g>of</str<strong>on</strong>g> research.<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s fluctuating at the Planck scale thus explain the colours <str<strong>on</strong>g>of</str<strong>on</strong>g> flowers, the moti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> butterflies, and the sight <str<strong>on</strong>g>of</str<strong>on</strong>g> the sky at night.<br />

** ‘<str<strong>on</strong>g>The</str<strong>on</strong>g> universal form <str<strong>on</strong>g>of</str<strong>on</strong>g> that knot, I think I saw, ...’<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


400 13a pictorial summary<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture<br />

1. Planck<br />

units are<br />

limit values<br />

W⩾ħ<br />

F⩽c 4 /4G<br />

v⩽c<br />

S⩾k<br />

2. Tethers<br />

explain<br />

spin 1/2<br />

3. Extensi<strong>on</strong><br />

explains<br />

black hole<br />

entropy<br />

and space<br />

microstructure<br />

4. Ur or<br />

qubit<br />

as<br />

fundamental<br />

c<strong>on</strong>stituent<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental Planck-scale principle <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g> c<strong>on</strong>jecture<br />

t<br />

Predicti<strong>on</strong>s:<br />

Events, observati<strong>on</strong>s and measurements are due to crossing switches.<br />

All measurements are electromagnetic.<br />

t+Δt<br />

W=ħ/2<br />

Δl ⩾ 2√ħG/c 3<br />

Δt ⩾ 2√ħG/c 5<br />

S=k/2<br />

Observati<strong>on</strong><br />

A fundamental<br />

event localized<br />

in space<br />

F I G U R E 121 Many arguments lead to a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature with extended c<strong>on</strong>stituents at the Planck<br />

scale. <str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental principle <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture defines the simplest observati<strong>on</strong> in nature,<br />

the almost point-like fundamental event. Every event results from a skew strand crossing switch, ata<br />

given positi<strong>on</strong> in three-dimensi<strong>on</strong>al space. <str<strong>on</strong>g>The</str<strong>on</strong>g> strands themselves are not observable; they are<br />

impenetrable and best imagined with Planck radius. <str<strong>on</strong>g>The</str<strong>on</strong>g> crossing switch all fundamental c<strong>on</strong>stants. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

double Planck length limit and the double Planck time limit arise, respectively, from the smallest and<br />

from the fastest crossing switch possible.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


13a pictorial summary 401<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g> crossings have the same properties as wave functi<strong>on</strong>s<br />

orientati<strong>on</strong><br />

phase<br />

shortest distance<br />

defines and determines positi<strong>on</strong>, density and orientati<strong>on</strong><br />

F I G U R E 122 <str<strong>on</strong>g>The</str<strong>on</strong>g> geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> a (skew) strand crossing suggests a relati<strong>on</strong> to wave functi<strong>on</strong>s. In both<br />

cases, absolute phase around the orientati<strong>on</strong> axis can be chosen freely. In c<strong>on</strong>trast, phase differences<br />

due to rotati<strong>on</strong>s around that axis are always uniquely defined.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand c<strong>on</strong>jecture for a fermi<strong>on</strong><br />

tether<br />

tangle<br />

core<br />

crossing<br />

spin<br />

phase<br />

time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches<br />

Observati<strong>on</strong><br />

probability<br />

density<br />

spin<br />

phase<br />

Predicti<strong>on</strong>s<br />

Dirac equati<strong>on</strong> and<br />

Fermi<strong>on</strong> propagator<br />

valid at all energies<br />

Particle spectrum<br />

as observed<br />

U(1), SU(2) and SU(3)<br />

gauge interacti<strong>on</strong>s<br />

Masses, mixings and<br />

couplings calculable<br />

F I G U R E 123 In the strand c<strong>on</strong>jecture, the wave functi<strong>on</strong> and the probability density are due,<br />

respectively, to crossings and to crossing switches at the Planck scale. <str<strong>on</strong>g>The</str<strong>on</strong>g> wave functi<strong>on</strong> arises as time<br />

average <str<strong>on</strong>g>of</str<strong>on</strong>g> crossings in fluctuating tangled strands; a Hilbert space also arises. <str<strong>on</strong>g>The</str<strong>on</strong>g> probability density<br />

arises as time average <str<strong>on</strong>g>of</str<strong>on</strong>g> the crossing switches in a tangle. <str<strong>on</strong>g>The</str<strong>on</strong>g> tethers – c<strong>on</strong>necti<strong>on</strong>s that c<strong>on</strong>tinue up<br />

to large spatial distances – generate spin 1/2 behaviour under rotati<strong>on</strong>s and fermi<strong>on</strong> behaviour under<br />

particle exchange. <str<strong>on</strong>g>The</str<strong>on</strong>g> tangle model ensures that fermi<strong>on</strong>s are massive and move slower than light.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


402 13a pictorial summary<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> belt trick or string trick:<br />

double tethered rotati<strong>on</strong> is no rotati<strong>on</strong><br />

rotate<br />

particle<br />

twice<br />

move<br />

tethers<br />

sideways<br />

move<br />

upper<br />

tethers<br />

move<br />

lower<br />

tethers<br />

move<br />

all<br />

tethers<br />

like<br />

start<br />

particle,<br />

i.e.,<br />

tangle<br />

or belt<br />

buckle<br />

Observati<strong>on</strong>:<br />

probability density and phase for unobservable tethers with observable crossings<br />

phase<br />

F I G U R E 124 <str<strong>on</strong>g>The</str<strong>on</strong>g> belt trick or string trick: a rotati<strong>on</strong> by 4π <str<strong>on</strong>g>of</str<strong>on</strong>g> a tethered particle, such as a belt buckle or<br />

a tangle, is equivalent to no rotati<strong>on</strong> – when the tethers are allowed to fluctuate and untangle as<br />

shown. This equivalence allows the tethered particle to rotate forever. Untangling is impossible after a<br />

rotati<strong>on</strong> by 2π <strong>on</strong>ly. This illustrates spin 1/2.<br />

In additi<strong>on</strong> (not shown), when two tethered particles are interchanged twice, all tethers can be<br />

untangled. Untangling is impossible after a single interchange <strong>on</strong>ly. This illustrates fermi<strong>on</strong> statistics.<br />

Both equivalences work for any number <str<strong>on</strong>g>of</str<strong>on</strong>g> tethers and assume that tethers are not observable, but<br />

crossing switches are.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> probability for the sp<strong>on</strong>taneous occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt trick depends <strong>on</strong> the complexity and details<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the tangle core. This sp<strong>on</strong>taneous process, together with Higgs emissi<strong>on</strong> and absorpti<strong>on</strong>, leads to<br />

the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles.


13a pictorial summary 403<br />

Reidemeister move I<br />

or twist<br />

Electromagnetic interacti<strong>on</strong> is twist transfer<br />

twists have<br />

<strong>on</strong>e generator<br />

that generates<br />

U(1)<br />

virtual<br />

phot<strong>on</strong><br />

vacuum<br />

fermi<strong>on</strong><br />

Reidemeister move II<br />

or poke<br />

Weak interacti<strong>on</strong> is poke transfer<br />

pokes have<br />

3 generators<br />

that generate<br />

SU(2)<br />

fermi<strong>on</strong><br />

virtual<br />

weak<br />

bos<strong>on</strong><br />

vacuum<br />

Reidemeister move III<br />

or slide<br />

Str<strong>on</strong>g interacti<strong>on</strong> is slide transfer<br />

slides have<br />

9 - 1 = 8<br />

generators<br />

that generate<br />

SU(3)<br />

virtual<br />

glu<strong>on</strong><br />

vacuum<br />

fermi<strong>on</strong><br />

F I G U R E 125 <str<strong>on</strong>g>The</str<strong>on</strong>g> three Reidemeister moves, i.e., the three possible deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle cores,<br />

determine the generators <str<strong>on</strong>g>of</str<strong>on</strong>g> the observed gauge interacti<strong>on</strong>s and thus determine their generator<br />

algebra. <str<strong>on</strong>g>The</str<strong>on</strong>g> generators rotate the regi<strong>on</strong>s enclosed by dotted circles by π. <str<strong>on</strong>g>The</str<strong>on</strong>g> full gauge groups arise<br />

by generalizing these rotati<strong>on</strong>s to c<strong>on</strong>tinuous angles. Also the gauge coupling strengths arise.


404 13a pictorial summary<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand c<strong>on</strong>jecture for QED<br />

t<br />

t+Δt<br />

symmetry axis<br />

<br />

<br />

phot<strong>on</strong><br />

Observati<strong>on</strong> in space<br />

phot<strong>on</strong><br />

Observati<strong>on</strong> in space-time<br />

<br />

crossing<br />

inside a<br />

charged<br />

particle tangle<br />

space<br />

t<br />

charged<br />

particle<br />

t<br />

phase<br />

time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches<br />

vacuum<br />

phase<br />

t+Δt<br />

time<br />

switched<br />

crossing<br />

t+Δt<br />

charged<br />

particle<br />

F I G U R E 126 <str<strong>on</strong>g>The</str<strong>on</strong>g> geometric details <str<strong>on</strong>g>of</str<strong>on</strong>g> the basic process <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum electrodynamics (QED). Top: the<br />

absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a phot<strong>on</strong> by a tangle regi<strong>on</strong> carrying the charge e/3, viewed al<strong>on</strong>g the shortest distance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the crossing. Centre: the corresp<strong>on</strong>ding observati<strong>on</strong> at usual experimental scales. Bottom: the basic<br />

Feynman diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> QED. In short: twist transfer generates minimal coupling and determines the<br />

electromagnetic gauge coupling strength, thus the fine structure c<strong>on</strong>stant.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


13a pictorial summary 405<br />

Elementary (real) bos<strong>on</strong>s are simple<br />

c<strong>on</strong>figurati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 1, 2 or 3 strands:<br />

1 strand: phot<strong>on</strong><br />

wavelength<br />

Spin<br />

S = 1<br />

Bos<strong>on</strong>s<br />

(virtual):<br />

Weak vector bos<strong>on</strong>s after<br />

SU(2) symmetry breaking<br />

(<strong>on</strong>ly the simplest family<br />

members) with each triple <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

strands lying flat in a plane:<br />

Observati<strong>on</strong><br />

2 strands:<br />

W 1 , W 2 (before symmetry breaking)<br />

W bos<strong>on</strong><br />

S = 1<br />

wavelength<br />

W 3 (before symmetry breaking)<br />

S = 1<br />

Z bos<strong>on</strong><br />

3 strands:<br />

eight glu<strong>on</strong>s<br />

wavelength<br />

S = 1<br />

Higgs bos<strong>on</strong><br />

wavelength<br />

S = 0<br />

F I G U R E 127 <str<strong>on</strong>g>The</str<strong>on</strong>g> tangle models for the elementary bos<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>se tangles determine the spin values,<br />

the corresp<strong>on</strong>ding propagators, and ensure that the massless phot<strong>on</strong>s and glu<strong>on</strong>s move with the speed<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> light. Apart from the gravit<strong>on</strong>, no additi<strong>on</strong>al elementary bos<strong>on</strong> appears to be possible. <str<strong>on</strong>g>The</str<strong>on</strong>g> tangle<br />

structure determines masses and the weak mixing angle.


406 13a pictorial summary<br />

Quarks - `tetrahedral' tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands (<strong>on</strong>ly simplest family members)<br />

Parity P = +1, bary<strong>on</strong> number B = +1/3, spin S = 1/2<br />

charge Q = –1/3<br />

Q = +2/3<br />

d quark<br />

below paper plane<br />

u quark<br />

above plane<br />

in plane<br />

below paper plane<br />

below<br />

above<br />

below<br />

Observati<strong>on</strong><br />

s quark<br />

in plane<br />

below<br />

above<br />

below<br />

c quark<br />

below<br />

above<br />

below<br />

b quark<br />

in plane<br />

below<br />

above<br />

below<br />

t quark<br />

below<br />

above<br />

below<br />

Lept<strong>on</strong>s - `cubic' tangles made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands (<strong>on</strong>ly simplest family members)<br />

electr<strong>on</strong> neutrino<br />

Q = 0, S = 1/2<br />

above paper plane<br />

below<br />

paper<br />

plane<br />

electr<strong>on</strong><br />

Q = –1, S = 1/2<br />

below paper plane<br />

above<br />

paper<br />

plane<br />

above<br />

below<br />

below<br />

below<br />

above<br />

above<br />

below<br />

above<br />

mu<strong>on</strong> neutrino<br />

Q = 0, S = 1/2<br />

above paper plane<br />

below<br />

paper<br />

plane<br />

mu<strong>on</strong><br />

Q = –1, S = 1/2<br />

below paper plane<br />

above<br />

paper<br />

plane<br />

above<br />

below<br />

below<br />

below<br />

above<br />

above<br />

below<br />

above<br />

tau neutrino<br />

Q = 0, S = 1/2<br />

above paper plane<br />

below<br />

paper<br />

plane<br />

tau<br />

Q = –1, S = 1/2<br />

below paper plane<br />

above<br />

paper<br />

plane<br />

above<br />

below<br />

below<br />

below<br />

above<br />

above<br />

below<br />

above<br />

F I G U R E 128 <str<strong>on</strong>g>The</str<strong>on</strong>g> simplest tangle models for the elementary fermi<strong>on</strong>s. Elementary fermi<strong>on</strong>s are<br />

described by rati<strong>on</strong>al, i.e., unknotted tangles. <str<strong>on</strong>g>The</str<strong>on</strong>g>ir structures lead to coupling to the Higgs, as<br />

illustrated in Figure 130, produce positive mass values, and limit the number <str<strong>on</strong>g>of</str<strong>on</strong>g> generati<strong>on</strong>s to 3. Each<br />

fermi<strong>on</strong> is represented by a tangle family, c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> the simplest member and <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles with added<br />

Higgs braids. <str<strong>on</strong>g>The</str<strong>on</strong>g> tangles determine the specific fermi<strong>on</strong> propagators, including the values <str<strong>on</strong>g>of</str<strong>on</strong>g> masses<br />

and mixing angles. <str<strong>on</strong>g>The</str<strong>on</strong>g> tethers <str<strong>on</strong>g>of</str<strong>on</strong>g> the quark tangles follow the axes <str<strong>on</strong>g>of</str<strong>on</strong>g> a tetrahedr<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> neutrino<br />

cores are simpler when seen in three dimensi<strong>on</strong>s: they are twisted triples <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. <str<strong>on</strong>g>The</str<strong>on</strong>g> tethers <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

lept<strong>on</strong> tangles approach the three coordinate axes at large distances from the core. No additi<strong>on</strong>al<br />

elementary fermi<strong>on</strong>s appear to be possible.


13a pictorial summary 407<br />

Tangle model<br />

time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches<br />

Observed<br />

Feynman diagram<br />

s quark Z<br />

s quark Z<br />

Tangle model<br />

time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches<br />

Observed<br />

Feynman diagram<br />

mu<strong>on</strong> Z<br />

mu<strong>on</strong> Z<br />

t2<br />

t2<br />

s quark<br />

t1<br />

time<br />

s quark<br />

t1<br />

time<br />

mu<strong>on</strong><br />

mu<strong>on</strong><br />

c quark<br />

W<br />

c quark<br />

W<br />

mu<strong>on</strong> neutrino<br />

W<br />

mu<strong>on</strong> neutrino<br />

W<br />

t2<br />

t2<br />

t1<br />

t1<br />

s quark<br />

time<br />

s quark<br />

mu<strong>on</strong><br />

time<br />

mu<strong>on</strong><br />

phot<strong>on</strong><br />

phot<strong>on</strong><br />

phot<strong>on</strong><br />

phot<strong>on</strong><br />

t2<br />

t2<br />

W<br />

W<br />

W<br />

W<br />

t1<br />

time<br />

W<br />

W<br />

t1<br />

time<br />

W<br />

W<br />

Z<br />

Z<br />

Discs indicate a pair <str<strong>on</strong>g>of</str<strong>on</strong>g> tethers<br />

Z<br />

gamma<br />

Z<br />

phot<strong>on</strong><br />

t2<br />

t2<br />

W<br />

W<br />

t1<br />

W<br />

W<br />

t1<br />

time<br />

W<br />

W<br />

time<br />

W<br />

W<br />

W<br />

W<br />

W<br />

W<br />

W<br />

W<br />

t2<br />

W<br />

W<br />

t2<br />

W<br />

W<br />

t1<br />

time<br />

W<br />

W<br />

t1<br />

Z Z<br />

time<br />

Z Z<br />

F I G U R E 129 <str<strong>on</strong>g>The</str<strong>on</strong>g> vertices in Feynman diagrams allowed by the topology <str<strong>on</strong>g>of</str<strong>on</strong>g> the fermi<strong>on</strong> and bos<strong>on</strong><br />

tangles (part <strong>on</strong>e).


408 13a pictorial summary<br />

s quark<br />

Tangle model<br />

Higgs<br />

time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches<br />

fermi<strong>on</strong><br />

Observed<br />

Feynman diagram<br />

Higgs<br />

Tangle model<br />

time average<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing<br />

switches<br />

Observed<br />

Feynman diagram<br />

Higgs<br />

t2<br />

t2<br />

s quark<br />

t1<br />

t1<br />

time<br />

fermi<strong>on</strong><br />

Z<br />

Z<br />

time<br />

Z<br />

Z<br />

Higgs<br />

Higgs<br />

Higgs<br />

Higgs<br />

Higgs<br />

t2<br />

t2<br />

t1<br />

time<br />

W<br />

W<br />

Z<br />

Z<br />

t1<br />

time<br />

Z<br />

Z<br />

Higgs<br />

Higgs<br />

Higgs<br />

Higgs<br />

Higgs<br />

Higgs<br />

Higgs<br />

Higgs<br />

t2<br />

t2<br />

t1<br />

time<br />

W<br />

W<br />

Higgs<br />

t1<br />

time<br />

Higgs<br />

Higgs<br />

Higgs<br />

Higgs<br />

Higgs<br />

t2<br />

t2<br />

t1<br />

time<br />

Higgs<br />

Higgs<br />

t1<br />

time<br />

Higgs<br />

Higgs<br />

quark<br />

glu<strong>on</strong><br />

quark<br />

glu<strong>on</strong><br />

t2<br />

the quark core is<br />

rotated by<br />

2 π/3 around<br />

the horiz<strong>on</strong>tal axis<br />

t2<br />

t1<br />

time<br />

Discs indicate a pair <str<strong>on</strong>g>of</str<strong>on</strong>g> tethers<br />

F I G U R E 130 <str<strong>on</strong>g>The</str<strong>on</strong>g> vertices in Feynman diagrams allowed by the topology <str<strong>on</strong>g>of</str<strong>on</strong>g> the fermi<strong>on</strong> and bos<strong>on</strong><br />

tangles (part two).<br />

quark<br />

t1<br />

time<br />

quark


13a pictorial summary 409<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand c<strong>on</strong>jecture for the vacuum<br />

Observati<strong>on</strong><br />

Nothing<br />

(for l<strong>on</strong>g<br />

observati<strong>on</strong><br />

times)<br />

Virtual pairs<br />

(for short<br />

observati<strong>on</strong><br />

times)<br />

Predicti<strong>on</strong>s<br />

Vanishing energy<br />

Emergent,<br />

Lorentz-invariant,<br />

and unique<br />

vacuum<br />

F I G U R E 131 An illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture for a flat vacuum: for sufficiently l<strong>on</strong>g time scales,<br />

the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches leads to a vanishing energy density; for short time scales,<br />

particle–antiparticle pairs, i.e., rati<strong>on</strong>al tangle–antitangle pairs, arise.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand c<strong>on</strong>jecture for curved space<br />

Observati<strong>on</strong><br />

Curved space<br />

N<strong>on</strong>-trivial metric<br />

Black holes<br />

Predicti<strong>on</strong>s<br />

Black hole entropy<br />

Pure general relativity<br />

P < c 5 /4G , F < c 4 /4G<br />

Gravit<strong>on</strong>s hard<br />

to detect<br />

F I G U R E 132 An illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand c<strong>on</strong>jecture for a curved vacuum. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand c<strong>on</strong>figurati<strong>on</strong> is<br />

half way between that <str<strong>on</strong>g>of</str<strong>on</strong>g> a horiz<strong>on</strong> and that <str<strong>on</strong>g>of</str<strong>on</strong>g> a flat vacuum. <str<strong>on</strong>g>The</str<strong>on</strong>g> black strands differ in their<br />

c<strong>on</strong>figurati<strong>on</strong> from those in a flat vacuum.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand c<strong>on</strong>jecture for the gravit<strong>on</strong><br />

wavelength<br />

F I G U R E 133 <str<strong>on</strong>g>The</str<strong>on</strong>g> strand c<strong>on</strong>jecture for the gravit<strong>on</strong>: a twisted pair <str<strong>on</strong>g>of</str<strong>on</strong>g> strands has spin 2, bos<strong>on</strong><br />

behaviour and vanishing mass.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


410 13a pictorial summary<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand c<strong>on</strong>jecture for universal 1/r² gravity<br />

distance r<br />

first mass<br />

~ r<br />

sec<strong>on</strong>d mass<br />

~ r<br />

virtual<br />

gravit<strong>on</strong>s<br />

gravitati<strong>on</strong>al<br />

interacti<strong>on</strong><br />

~ 1 / r 2<br />

F I G U R E 134 Gravitati<strong>on</strong>al attracti<strong>on</strong> results from strands. For low speeds and negligible curvature,<br />

twisted tether pairs (virtual gravit<strong>on</strong>s) from a mass lead to a 1/r 2 attracti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> average length <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

twisted tether pairs scales with r and yields a 1/r 3 decay <str<strong>on</strong>g>of</str<strong>on</strong>g> curvature. <str<strong>on</strong>g>The</str<strong>on</strong>g>se c<strong>on</strong>clusi<strong>on</strong>s are valid for<br />

infinite space without cosmological horiz<strong>on</strong>.<br />

Side view <str<strong>on</strong>g>of</str<strong>on</strong>g> a black hole horiz<strong>on</strong><br />

horiz<strong>on</strong><br />

ring<br />

Pl<br />

neighbouring strand<br />

leading to<br />

additi<strong>on</strong>al<br />

crossing<br />

additi<strong>on</strong>al<br />

crossing<br />

smallest area<br />

(4 A Pl ) under<br />

c<strong>on</strong>siderati<strong>on</strong><br />

n 2 l Pl<br />

Top view<br />

F I G U R E 135 <str<strong>on</strong>g>The</str<strong>on</strong>g> strand c<strong>on</strong>jecture for a Schwarzschild black hole: the black hole horiz<strong>on</strong> is a cloudy or<br />

fuzzy surface produced by the crossing switches <str<strong>on</strong>g>of</str<strong>on</strong>g> the strands woven into it. Due to the additi<strong>on</strong>al<br />

crossings <strong>on</strong> the side <str<strong>on</strong>g>of</str<strong>on</strong>g> the observer, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> micro-states per smallest area is larger than 2.<br />

ring<br />

~ r<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


13a pictorial summary 411<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand c<strong>on</strong>jecture for the present universe<br />

Cosmological<br />

horiz<strong>on</strong><br />

or `border<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> space'<br />

Universal<br />

tangle<br />

Physical space<br />

or vacuum (white):<br />

curved, observable<br />

Particle<br />

tangle<br />

Background<br />

space (grey):<br />

not physical,<br />

not observable<br />

F I G U R E 136 In the strand c<strong>on</strong>jecture, the universe is limited by a cosmological (particle) horiz<strong>on</strong>, as<br />

schematically illustrated here. Physical space (white) matches background space (grey) <strong>on</strong>ly inside the<br />

horiz<strong>on</strong>. Physical space thus <strong>on</strong>ly exists inside the cosmic horiz<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand c<strong>on</strong>jecture for the early universe<br />

horiz<strong>on</strong><br />

time<br />

Predicti<strong>on</strong>s<br />

Horiz<strong>on</strong> appears<br />

One expanding<br />

universe with<br />

matter and<br />

radiati<strong>on</strong><br />

No inflati<strong>on</strong><br />

F I G U R E 137 In the strand c<strong>on</strong>jecture for the early universe, the universe increases in complexity over<br />

time and thereby forms a boundary: the cosmological horiz<strong>on</strong>.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


Chapter14<br />

EXPERIMENTAL PREDICTIONS OF<br />

THE STRAND MODEL<br />

“Es gibt viele <str<strong>on</strong>g>The</str<strong>on</strong>g>orien,<br />

die sich jedem Test entziehen.<br />

Diese aber kann man checken,<br />

elend wird sie dann verrecken.**<br />

An<strong>on</strong>ymous”<br />

Around the world, numerous researchers are involved in experiments that<br />

re searching for new effects. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are searching for new observati<strong>on</strong>s that<br />

re unexplained by the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics or by the c<strong>on</strong>venti<strong>on</strong>al<br />

view <str<strong>on</strong>g>of</str<strong>on</strong>g> cosmology. At the same time, all these experiments are testing the strand<br />

model presented here. In fact, most people working <strong>on</strong> these experiments have not<br />

heard about the strand model, so that there is not even the danger <str<strong>on</strong>g>of</str<strong>on</strong>g> unc<strong>on</strong>scious bias.<br />

To simplify the check with experiments, the most important predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand<br />

model that we deduced in our adventure are listed in Table 17.<br />

TABLE 17 <str<strong>on</strong>g>The</str<strong>on</strong>g> main predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model that follow from the fundamental principle. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

typeface distinguishes predicti<strong>on</strong>s that are unsurprising, that are unc<strong>on</strong>firmed or unique to the strand<br />

model, and those that are both unc<strong>on</strong>firmed and unique.<br />

Experiment<br />

Predicti<strong>on</strong> (most<br />

from 2008/2009)<br />

Status (2019)<br />

Page 37 Planck units (c, ħ, k, c 4 /4G)<br />

arelimitvalues. N<strong>on</strong>e has been<br />

exceeded, but more<br />

checks are possible.<br />

Page 330 Higgs bos<strong>on</strong> 2012: does exist. Verified.<br />

Page 386 Running <str<strong>on</strong>g>of</str<strong>on</strong>g> the coupling c<strong>on</strong>stants 2012: implies <strong>on</strong>e Higgs. Correct so far.<br />

Page 328 L<strong>on</strong>gitudinal W and Z bos<strong>on</strong> scattering 2012: show no n<strong>on</strong>-local N<strong>on</strong>e found yet.<br />

Page 330<br />

effects at the Large Hadr<strong>on</strong><br />

Collider.<br />

Page 328 L<strong>on</strong>gitudinal W and Z bos<strong>on</strong> scattering is unitary at the LHC. Obvious.<br />

W bos<strong>on</strong> g-factor is near to 2. Is observed.<br />

Page 352 Unknown fermi<strong>on</strong>s (supersymmetric do not exist.<br />

N<strong>on</strong>e found yet.<br />

particles, magnetic m<strong>on</strong>opoles, dy<strong>on</strong>s,<br />

heavy neutrinos etc.)<br />

** No adequate translati<strong>on</strong> is possible <str<strong>on</strong>g>of</str<strong>on</strong>g> this rhyme, inspired by Wilhelm Busch, claiming that any theory<br />

that can be tested is bound to die miserably.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


<str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model 413<br />

TABLE 17 (C<strong>on</strong>tinued) <str<strong>on</strong>g>The</str<strong>on</strong>g> main predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model that follow from the fundamental<br />

principle. <str<strong>on</strong>g>The</str<strong>on</strong>g> typeface distinguishes predicti<strong>on</strong>s that are unsurprising, that are unc<strong>on</strong>firmed or unique to<br />

the strand model, and those that are both unc<strong>on</strong>firmed and unique.<br />

Page 314<br />

Page 278, page 318<br />

Page 313<br />

Experiment<br />

Unknown bos<strong>on</strong>s (other gauge bos<strong>on</strong>s,<br />

supersymmetric particles, axi<strong>on</strong>s etc.)<br />

Unknown interacti<strong>on</strong>s, energy scales and<br />

symmetries (grand unificati<strong>on</strong>,<br />

supersymmetry, quantum groups,<br />

technicolour etc.)<br />

Particle masses, mixing angles and<br />

coupling c<strong>on</strong>stants<br />

Predicti<strong>on</strong> (most<br />

from 2008/2009)<br />

do not exist.<br />

do not exist.<br />

are calculable by modifying<br />

existing s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware packages.<br />

Status (2019)<br />

N<strong>on</strong>e found yet.<br />

N<strong>on</strong>e found yet.<br />

Most not yet<br />

calculated;<br />

approximati<strong>on</strong>s very<br />

encouraging.<br />

Is observed.<br />

Page 313 Particle masses, mixing angles and<br />

coupling c<strong>on</strong>stants<br />

are c<strong>on</strong>stant in time and<br />

space.<br />

Particle masses, mixing angles, coupling are identical for antimatter. Is observed.<br />

c<strong>on</strong>stants and g-factors<br />

Page 376 Mixing matrix for quarks is unitary. Is observed.<br />

Page 379 Mixing matrix for neutrinos is unitary. No data yet.<br />

Page 339 Neutrinos<br />

are Dirac particles. No data yet.<br />

Page 380 Neutrinos<br />

violate CP symmetry. No data yet.<br />

Page 327 Neutrino-less double beta decay does not exist. Not yet found.<br />

Page 278, page 327 Electric dipole moments <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary have extremely small, No interesting data<br />

particles, magnetic dipole moment <str<strong>on</strong>g>of</str<strong>on</strong>g> calculable values.<br />

yet.<br />

neutrinos<br />

Page 342 Tetraquarks<br />

exist.<br />

Likely.<br />

Page 344, page 339 Glueballs<br />

probably do not exist; if they Not yet observed.<br />

do, the spectrum can be<br />

compared to the strand<br />

model.<br />

Page 278, page 327 Prot<strong>on</strong> decay and other rare decays, occur at extremely small, Not yet observed.<br />

neutr<strong>on</strong>-antineutr<strong>on</strong> oscillati<strong>on</strong>s standard model rates.<br />

Page 340 Neutr<strong>on</strong> decay<br />

follows the standard model. No deviati<strong>on</strong>s found.<br />

Page 340 Neutr<strong>on</strong> charge<br />

vanishes.<br />

N<strong>on</strong>e observed.<br />

Page 336 Hadr<strong>on</strong> masses and form factors can be calculated ab initio. Not yet calculated;<br />

value sequences and<br />

signs correct.<br />

Page 355 Dark matter<br />

is c<strong>on</strong>venti<strong>on</strong>al matter plus Partly c<strong>on</strong>firmed by<br />

black holes.<br />

black hole mergers<br />

and lack <str<strong>on</strong>g>of</str<strong>on</strong>g> other<br />

results.<br />

Standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics 2012: is correct for all<br />

measurable energies.<br />

All data agrees.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


414 14 experimental predicti<strong>on</strong>s<br />

TABLE 17 (C<strong>on</strong>tinued) <str<strong>on</strong>g>The</str<strong>on</strong>g> main predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model that follow from the fundamental<br />

principle. <str<strong>on</strong>g>The</str<strong>on</strong>g> typeface distinguishes predicti<strong>on</strong>s that are unsurprising, that are unc<strong>on</strong>firmed or unique to<br />

the strand model, and those that are both unc<strong>on</strong>firmed and unique.<br />

Experiment<br />

Predicti<strong>on</strong> (most<br />

from 2008/2009)<br />

Status (2019)<br />

Page 148 Additi<strong>on</strong>al dimensi<strong>on</strong>s<br />

do not exist. Not observed.<br />

Page 148 N<strong>on</strong>-commutative space-time does not exist. Not observed.<br />

Page 295 General relativity<br />

is correct at all accessible No deviati<strong>on</strong> found.<br />

energies.<br />

Page 295 Short-distance deviati<strong>on</strong>s from universal do not exist. All data agrees.<br />

gravitati<strong>on</strong> and modified gravity<br />

Page 293 Space-time singularities, cosmic strings, do not exist. N<strong>on</strong>e observed.<br />

wormholes, time-like loops, negative<br />

energy regi<strong>on</strong>s, domain walls<br />

Page 299, page 279 Quantum gravity effects<br />

will not be found. N<strong>on</strong>e observed yet.<br />

Page 306 Behind a horiz<strong>on</strong><br />

nothing exists. Nothing observed.<br />

Page 309 Cosmic inflati<strong>on</strong><br />

did not occur. Data not in c<strong>on</strong>trast.<br />

Page 380 Leptogenesis<br />

did not occur. Data are inc<strong>on</strong>clusive.<br />

Page 310 Cosmic topology<br />

is trivial. As observed.<br />

Page 356 Vacuum<br />

is stable and unique. As observed.<br />

In summary: all moti<strong>on</strong> results from strands. Not yet falsified.<br />

In this list, the most interesting predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model are the numerical<br />

predicti<strong>on</strong>s <strong>on</strong> the various mass ratios and mass sequences – including the Z/W and<br />

Higgs/W mass ratios – and the relative strength <str<strong>on</strong>g>of</str<strong>on</strong>g> the three gauge interacti<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is<br />

the clear opti<strong>on</strong> to calculate all fundamental c<strong>on</strong>stants in the foreseeable future.<br />

In additi<strong>on</strong>, the strand model reproduces the quark model, gauge theory, wave functi<strong>on</strong>s<br />

and general relativity; at the same time, the model predicts the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> measurable<br />

deviati<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model solves c<strong>on</strong>ceptual problems such as the dark matter problem,<br />

inflati<strong>on</strong>, c<strong>on</strong>finement, the str<strong>on</strong>g CP problem and the anomaly issue; by doing so,<br />

the strand model predicts the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> unknown effects in these domains.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model deduces all its experimental predicti<strong>on</strong>s from a single and simple<br />

fundamental principle: events and Planck units are due to crossing switches <str<strong>on</strong>g>of</str<strong>on</strong>g> strands.<br />

Provided there are no errors <str<strong>on</strong>g>of</str<strong>on</strong>g> reas<strong>on</strong>ing, there is no way to change the predicti<strong>on</strong>s<br />

summarized here. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model is both simple and unmodifiable.<br />

Naturally, errors <str<strong>on</strong>g>of</str<strong>on</strong>g> reas<strong>on</strong>ing in the preceding chapters are well possible. A few have<br />

occurred in the past. <str<strong>on</strong>g>The</str<strong>on</strong>g> explorati<strong>on</strong> was performed at high speed – possibly too high. If<br />

any experiment ever c<strong>on</strong>tradicts a predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model, the model is doomed.<br />

When the above experimental predicti<strong>on</strong>s were first deduced in 2008 and 2009, they were<br />

quite unpopular. Practically all other attempts at unificati<strong>on</strong> predicted the existence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

yet undiscovered particles and effects. However, so far, experiment does not c<strong>on</strong>firm<br />

these other attempts; in fact, no predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model has been falsified yet.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se predicti<strong>on</strong>s are not intellectual speculati<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> author is prepared to take bets<br />

<strong>on</strong> each predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the above table – and has taken a few already.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


final summary about the millennium issues 415<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental principle <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g> model : Observati<strong>on</strong> :<br />

W=ħ/2<br />

Some<br />

Δl = l Pl<br />

deformati<strong>on</strong>,<br />

Δt = t Pl<br />

but no<br />

t passing<br />

S=k/2<br />

1 through<br />

t 2<br />

F I G U R E 138 <str<strong>on</strong>g>The</str<strong>on</strong>g> fundamental principle <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model: Planck units are defined by a crossing<br />

switch in three spatial dimensi<strong>on</strong>s. With this principle, as shown in the previous chapters, the<br />

fundamental principle implies general relativity and the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics.<br />

final summary about the millennium issues<br />

In our adventure, we have argued that Planck’s natural units should be modelled with the<br />

fundamental principle for strands, which is shown again in Figure 138. Aswediscovered,<br />

the fundamental principle explains the following measured properties <str<strong>on</strong>g>of</str<strong>on</strong>g> nature:<br />

— <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s explain the principle <str<strong>on</strong>g>of</str<strong>on</strong>g> least acti<strong>on</strong> and the invariance <str<strong>on</strong>g>of</str<strong>on</strong>g> c, ħ, G and k.<br />

— <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s explain the three dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> space, the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> gravitati<strong>on</strong>, curvature<br />

and horiz<strong>on</strong>s, the equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity, the value <str<strong>on</strong>g>of</str<strong>on</strong>g> black hole entropy and<br />

the observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> modern cosmology.<br />

— <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s explain all the c<strong>on</strong>cepts used in the Lagrangian <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particle physics, including wave functi<strong>on</strong>s, the Dirac equati<strong>on</strong> and the finite, discrete<br />

and small mass <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles.<br />

— <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s explain the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> electromagnetism and <str<strong>on</strong>g>of</str<strong>on</strong>g> the two nuclear interacti<strong>on</strong>s,<br />

with their gauge groups and all their other observed properties.<br />

— <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s describe the observed gauge and Higgs bos<strong>on</strong>s, their charges, their quantum<br />

numbers and their mass mass ranges.<br />

— <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s explain the three generati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks and lept<strong>on</strong>s, their charges and<br />

quantum numbers, their mixing, their mass sequences, as well as their c<strong>on</strong>finement<br />

properties.<br />

— <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s explain the quark model <str<strong>on</strong>g>of</str<strong>on</strong>g> hadr<strong>on</strong>s, including CP violati<strong>on</strong>, mass sequences,<br />

signs <str<strong>on</strong>g>of</str<strong>on</strong>g> quadrupole moments, the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> unobserved hadr<strong>on</strong>s, comm<strong>on</strong> Regge<br />

slopes and the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> tetraquarks.<br />

— <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s do not allow arbitrary values for masses, coupling c<strong>on</strong>stants, mixing angles<br />

and CP violating phases.<br />

— <str<strong>on</strong>g>Strand</str<strong>on</strong>g>senable calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> particle masses, their coupling c<strong>on</strong>stants, their mixing<br />

angles and the CP violating phases. First rough estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> these values agree with<br />

the (much more precise) experimental data. Computer calculati<strong>on</strong>s will allow us to<br />

improve these checks in the near future.<br />

— <str<strong>on</strong>g>Strand</str<strong>on</strong>g>spredict the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> unknown dark matter and <str<strong>on</strong>g>of</str<strong>on</strong>g> unknown inflati<strong>on</strong> mechan-<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


416 14 experimental predicti<strong>on</strong>s<br />

Page 19<br />

Page 22<br />

isms.<br />

— Finally, strands predict that nature does not hide any unknown elementary particle,<br />

fundamental interacti<strong>on</strong>, fundamental symmetry or additi<strong>on</strong>al dimensi<strong>on</strong>. In particular,<br />

strands predict that no additi<strong>on</strong>al mathematical or physical c<strong>on</strong>cepts are required<br />

for a unified theory.<br />

All these results translate to specific statements <strong>on</strong> experimental observati<strong>on</strong>s. So far,<br />

there is no c<strong>on</strong>tradicti<strong>on</strong> between the strand model and experiments. <str<strong>on</strong>g>The</str<strong>on</strong>g>se results allow<br />

us to sum up our adventure in three statements:<br />

1. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s solve all open issues. With <strong>on</strong>e simple fundamental principle, the strand<br />

model solves or at least proposes a way to solve all issues from the millennium list <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

open issues in fundamental physics. All fundamental c<strong>on</strong>stants can be calculated.<br />

2. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s agree with all observati<strong>on</strong>s. In particular, the strand model implies that general<br />

relativity, quantum theory and the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles are a<br />

precise descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> for all practical purposes.<br />

3. Nothing new will be discovered in fundamental physics. Unexpectedly but c<strong>on</strong>vincingly,<br />

strands predict that general relativity, quantum theory and the standard model<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> elementary particles are a complete descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> for all practical purposes.<br />

We have not yet literally reached the top <str<strong>on</strong>g>of</str<strong>on</strong>g> Moti<strong>on</strong> Mountain – because certain numerical<br />

predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental c<strong>on</strong>stants are not yet precise enough – but if no cloud<br />

has played a trick <strong>on</strong> us, we have seen the top from nearby. In particular, we finally know<br />

the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> colours.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> last leg, the accurate calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>stants <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle<br />

physics, is still under way. <str<strong>on</strong>g>The</str<strong>on</strong>g> drive for simplicity and the spirit <str<strong>on</strong>g>of</str<strong>on</strong>g> playfulness that we<br />

invoked at the start have been good guides.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


Chapter15<br />

THE TOP OF MOTION MOUNTAIN<br />

“All things are full <str<strong>on</strong>g>of</str<strong>on</strong>g> gods.<br />

Thales**”<br />

Who am I? Where do I come from? What shall I do next? Where does the<br />

orld come from? Can the whole world really come to a sudden end? What<br />

ill happen in the future? What is beauty? All these questi<strong>on</strong>s have a comm<strong>on</strong><br />

aspect: they are questi<strong>on</strong>s about moti<strong>on</strong>. But what is moti<strong>on</strong>? Our search for an answer<br />

led us to study moti<strong>on</strong> in all its details. In this quest, every increase in the precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

our descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> was a step towards the peak <str<strong>on</strong>g>of</str<strong>on</strong>g> Moti<strong>on</strong> Mountain. Now that<br />

we arrived there, we can savour what we have achieved and recall the emoti<strong>on</strong>s that we<br />

have experienced.<br />

In our ascent, we have learned how we move, how we experience our envir<strong>on</strong>ment,<br />

how we grow, what parts we are made <str<strong>on</strong>g>of</str<strong>on</strong>g>, and how our acti<strong>on</strong>s and our c<strong>on</strong>victi<strong>on</strong>s about<br />

them can be understood. We have learned a lot about the history and a bit about the<br />

future <str<strong>on</strong>g>of</str<strong>on</strong>g> matter, <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong> and <str<strong>on</strong>g>of</str<strong>on</strong>g> space. We have experienced and understood the<br />

many ways in which beauty appears in nature: as colours, as shapes, as rhythms and<br />

most <str<strong>on</strong>g>of</str<strong>on</strong>g> all: as simplicity.<br />

Savouring our achievement means that first <str<strong>on</strong>g>of</str<strong>on</strong>g> all, we now can look back to where we<br />

came from. <str<strong>on</strong>g>The</str<strong>on</strong>g>n we enjoy the view we are <str<strong>on</strong>g>of</str<strong>on</strong>g>fered and look out for what we could not<br />

see before. After that, we search for what is still hidden from our sight. And finally, we<br />

take a different path back down to where we live.<br />

our path to the top<br />

“<str<strong>on</strong>g>The</str<strong>on</strong>g> labour we delight in physics pain.<br />

William Shakespeare, Macbeth.”<br />

Our walk had a simple aim: to talk accurately about all moti<strong>on</strong>. This 2500 year old quest<br />

drove us to the top <str<strong>on</strong>g>of</str<strong>on</strong>g> this mountain. We can summarize our path in three legs: everyday<br />

life, general relativity plus quantum theory, and unificati<strong>on</strong>.<br />

** Thales <str<strong>on</strong>g>of</str<strong>on</strong>g> Miletus (c. 624 – c. 546 bce) was the first known philosopher, mathematician and scientist.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


418 15 the top <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> mountain<br />

Ref. 1, Ref. 3<br />

Ref. 2, Ref. 4<br />

Ref. 263<br />

Everyday life: the rule <str<strong>on</strong>g>of</str<strong>on</strong>g> infinity<br />

Galilean physics is the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> everyday life. We all learned Galilean physics before<br />

sec<strong>on</strong>dary school. Galilean physics is the explorati<strong>on</strong> and descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

st<strong>on</strong>es, water, trees, heat, the weather, electricity and light. To achieve this descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

our envir<strong>on</strong>ment, our first and main act in life is to partiti<strong>on</strong> experience into experiences.<br />

In other words, our first intellectual act is the inventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parts; weinventedtheplural.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> act <str<strong>on</strong>g>of</str<strong>on</strong>g> partiti<strong>on</strong>ing allows us to define sequences am<strong>on</strong>g our experiences, and thus<br />

to define the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> time. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> space arises similarly by our possibility to<br />

distinguish observati<strong>on</strong>s that occur at the same time. By comparing parts with other<br />

parts, we define measurement. Using all <str<strong>on</strong>g>of</str<strong>on</strong>g> this, we become able to define velocity, mass<br />

and electric charge, am<strong>on</strong>g others. <str<strong>on</strong>g>The</str<strong>on</strong>g>se allow us to introduce acti<strong>on</strong>, the quantity that<br />

quantifies change.<br />

For a simple descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>s, we assume that divisi<strong>on</strong> is possible without<br />

end: thus we introduce the infinitely small. We also assume that widening our scope<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>observati<strong>on</strong>ispossiblewithoutend.Thusweintroducetheinfinitelylarge.Defining<br />

parts thus leads us to introduce infinity.<br />

Using parts and, with them, the infinitely small and the infinitely large, we found,<br />

in volumes I and III, that everyday moti<strong>on</strong> has six main properties: it is c<strong>on</strong>tinuous,<br />

c<strong>on</strong>served, relative, reversible, mirror-invariant and lazy. Moti<strong>on</strong> is lazy – or efficient –<br />

because it produces as little change as possible.<br />

Nature minimizes change. This is Galilean physics, the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> everyday moti<strong>on</strong>,<br />

in <strong>on</strong>e statement. It allows us to describe all our everyday experiences with st<strong>on</strong>es, fluids,<br />

stars, electric current, heat and light. <str<strong>on</strong>g>The</str<strong>on</strong>g> idea <str<strong>on</strong>g>of</str<strong>on</strong>g> change-minimizing moti<strong>on</strong> is based <strong>on</strong><br />

a c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> that is c<strong>on</strong>tinuous and predictable, and a c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> nature that<br />

c<strong>on</strong>tains the infinitely small and the infinitely large in every observable.<br />

Relativity and quantum theory: the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> infinity<br />

“Vorhinhabenwirgesehen,daßinderWirklichkeit<br />

das Unendliche nirgends zu finden ist, was für<br />

Erfahrungen und Beobachtungen und welcherlei<br />

Wissenschaft wir auch heranziehen.*<br />

David<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> idea that nature <str<strong>on</strong>g>of</str<strong>on</strong>g>fers an infinite range <str<strong>on</strong>g>of</str<strong>on</strong>g> possibilities is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten voiced with<br />

Hilbert”<br />

deep<br />

pers<strong>on</strong>al c<strong>on</strong>victi<strong>on</strong>. However, the results <str<strong>on</strong>g>of</str<strong>on</strong>g> relativity and quantum theory show the<br />

opposite. In nature, speeds, forces, sizes, ages and acti<strong>on</strong>s are limited. No quantity in<br />

nature is infinitely large or infinitely small. No quantity in nature is defined with infinite<br />

precisi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g>re never are infinitely many examples <str<strong>on</strong>g>of</str<strong>on</strong>g> a situati<strong>on</strong>; the number <str<strong>on</strong>g>of</str<strong>on</strong>g> possibilities<br />

is always finite. <str<strong>on</strong>g>The</str<strong>on</strong>g> world around us is not infinite; neither its size, nor its age,<br />

nor its c<strong>on</strong>tent. Nature is not infinite. This is general relativity and quantum theory in<br />

<strong>on</strong>e statement.<br />

Relativity and quantum theory show that the idea <str<strong>on</strong>g>of</str<strong>on</strong>g> infinity appears <strong>on</strong>ly in approximate<br />

descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> nature; it disappears when talking with precisi<strong>on</strong>. Nothing in nature<br />

* ‘Above we have seen that in the real world, the infinite is nowhere to be found, whatever experiences and<br />

observati<strong>on</strong>s and whatever knowledge we appeal to.’<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


our path to the top 419<br />

Ref. 4<br />

Challenge 221 e<br />

is infinite. For example, we found in volume II that the sky is dark at night (also) because<br />

space is not infinite. And we found, in volumes IV and V, that quantum theory c<strong>on</strong>tains<br />

probabilities because there is a smallest acti<strong>on</strong> value in nature. In fact, the statement that<br />

a quantity is infinitely large or infinitely small cannot be c<strong>on</strong>firmed or reproduced by<br />

any experiment. Worse, such a statement is falsified by every measurement. In short, we<br />

found that infinity is a fantasy <str<strong>on</strong>g>of</str<strong>on</strong>g> the human mind. In nature, it does not appear. Infinity<br />

about nature is always a lie.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> particles, their possible positi<strong>on</strong>s, the states they can have, our brain,<br />

our creativity, our possible thoughts: all this is not infinite. Nevertheless, quantum theory<br />

and relativity changed the world: they allowed building ultrasound imaging, magnetic<br />

res<strong>on</strong>ance imaging, lasers, satellite navigati<strong>on</strong> systems, music players and the internet.<br />

Despite the vast progress due to modern physics and the related technologies, <strong>on</strong>e<br />

result remains: nothing in our envir<strong>on</strong>ment is infinite – neither our life, nor our experiences,<br />

nor our memories, not even our dreams or our fantasies. Neither the informati<strong>on</strong><br />

necessary to describe the universe, nor the paper to write down the formulae, nor the<br />

necessary ink, nor the time necessary to understand the formulae is infinite. Nature is<br />

not infinite. On the other hand, we also know that the illusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> infinity<br />

in nature is <strong>on</strong>e the most persistent prejudices and myths ever c<strong>on</strong>ceived. Why did we<br />

use it in the first place?<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> habit to use infinity to describe the world has many emoti<strong>on</strong>al reas<strong>on</strong>s. For some,<br />

it reflects the deep-rooted experience <str<strong>on</strong>g>of</str<strong>on</strong>g> smallness that we carry within us as a remnant<br />

our pers<strong>on</strong>al history, when the world seemed so large and powerful. For others, the idea<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> our smallness allows us to deny somehow the resp<strong>on</strong>sibility for our acti<strong>on</strong>s or the<br />

existence <str<strong>on</strong>g>of</str<strong>on</strong>g> death. For others again, the idea <str<strong>on</strong>g>of</str<strong>on</strong>g> a finite universe <str<strong>on</strong>g>of</str<strong>on</strong>g>ten, at a first glance,<br />

produces decepti<strong>on</strong>, disbelief and discouragement. <str<strong>on</strong>g>The</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> infinity means that<br />

we cannot achieve everything we want, and that our dreams and our possibilities are<br />

limited. Clinging to the idea <str<strong>on</strong>g>of</str<strong>on</strong>g> infinity is a way to avoid c<strong>on</strong>fr<strong>on</strong>ting this reality.<br />

However, <strong>on</strong>ce we face and accept the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> infinity, we make a powerful experience.<br />

We gain in strength. We are freed from the power <str<strong>on</strong>g>of</str<strong>on</strong>g> those who use this myth<br />

to put themselves above others. It is an illuminating experience to reread all those sentences<br />

<strong>on</strong> nature, <strong>on</strong> the world and <strong>on</strong> the universe c<strong>on</strong>taining the term ‘infinite’, knowing<br />

that they are incorrect, and then clearly experience the manipulati<strong>on</strong>s behind them.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> desire to make others bow to what is called the infinite is a comm<strong>on</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g> human<br />

violence.<br />

At first, the demise <str<strong>on</strong>g>of</str<strong>on</strong>g> infinity might also bring panic fear, because it can appear as a<br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> guidance. But at closer inspecti<strong>on</strong>, the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> infinity brings strength. Indeed,<br />

the eliminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infinity takes from people <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the deepest fears: the fear <str<strong>on</strong>g>of</str<strong>on</strong>g> being<br />

weak and insignificant.<br />

Moreover,<strong>on</strong>cewefacethelimits<str<strong>on</strong>g>of</str<strong>on</strong>g>nature,wereactlikeinallthosesituati<strong>on</strong>sin<br />

which we encounter a boundary: the limit becomes a challenge. For example, the experience<br />

that all bodies unavoidably fall makes parachuting so thrilling. <str<strong>on</strong>g>The</str<strong>on</strong>g> recogniti<strong>on</strong><br />

that our life is finite produces the fire to live it to the full. <str<strong>on</strong>g>The</str<strong>on</strong>g> knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> death gives<br />

meaning to our acti<strong>on</strong>s. In an infinite life, every act could be postp<strong>on</strong>ed without any<br />

c<strong>on</strong>sequence. <str<strong>on</strong>g>The</str<strong>on</strong>g> disappearance <str<strong>on</strong>g>of</str<strong>on</strong>g> infinity generates creativity. A world without limits<br />

is discouraging and depressing. Infinity is empty; limits are a source <str<strong>on</strong>g>of</str<strong>on</strong>g> strength and<br />

pour passi<strong>on</strong> into our life. Only the limits <str<strong>on</strong>g>of</str<strong>on</strong>g> the world ensure that every additi<strong>on</strong>al step<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


420 15 the top <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> mountain<br />

Page 129<br />

in life brings us forward. Only in a limited universe is progress possible and sensible.<br />

Who is wiser, the <strong>on</strong>e who denies limits, or the <strong>on</strong>e who accepts them? And who lives<br />

more intensely?<br />

Unificati<strong>on</strong>: the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> finitude<br />

“Pray be always in moti<strong>on</strong>. Early in the morning go<br />

and see things; and the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the day go and see<br />

people. If you stay but a week at a place, and that an<br />

insignificant <strong>on</strong>e, see, however, all that is to be seen<br />

there; know as many people, and get into as many<br />

houses as ever you can.<br />

Philip Stanhope,* Letters to his S<strong>on</strong> <strong>on</strong> the Fine Art<br />

Becoming a Man <str<strong>on</strong>g>of</str<strong>on</strong>g> the World and a Gentleman.<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>”<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> last part <str<strong>on</strong>g>of</str<strong>on</strong>g> our adventure, described in this volume, produced an unexpected result.<br />

Not <strong>on</strong>ly is nature not infinite; nature is not finite either. N<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantities which<br />

were supposed to be finite turn out to be so. Finitude turns out to be an approximati<strong>on</strong>,<br />

or better, an illusi<strong>on</strong>, though a subtle <strong>on</strong>e. Nature is not finite. Thisistheunificati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g><br />

physics in <strong>on</strong>e statement.<br />

Precise observati<strong>on</strong> shows that nothing in nature can be counted. If nature were finite<br />

it would have to be (described by) a set. However, the explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Planck scales shows<br />

that such a descripti<strong>on</strong> is intrinsically incomplete and inaccurate. Indeed, a descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nature by a set can never explain the number <str<strong>on</strong>g>of</str<strong>on</strong>g> its elements, and thus cannot explain<br />

finitude itself. In other words, any approach that tries to describe nature as finite is a<br />

belief, and is never correct. Finitude is a lie.<br />

We thus lost our security <str<strong>on</strong>g>of</str<strong>on</strong>g> thought a sec<strong>on</strong>d time. Nature is neither infinite nor finite.<br />

We explored the possibilities left over and found that <strong>on</strong>ly <strong>on</strong>e opti<strong>on</strong> is left: Nature is<br />

indivisible. In other words, all parts that we experience are approximati<strong>on</strong>s. Both finitude<br />

and infinity are approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. All distincti<strong>on</strong>s are approximate. This central<br />

c<strong>on</strong>clusi<strong>on</strong> solved the remaining open issues about moti<strong>on</strong>. Nature has no parts.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> impossibility to count and the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> parts imply that nature is not a computer,<br />

not an automat<strong>on</strong>, nor a physical system. Nature is not discrete.<br />

Recognizing all distincti<strong>on</strong>s as being approximate abolishes the distincti<strong>on</strong> between<br />

the permanent aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> nature (‘objects’, described by mass, charge, spin, etc.) and the<br />

changing aspects (‘states’, described by positi<strong>on</strong>, momentum, energy). Taking all distincti<strong>on</strong>s<br />

as approximate introduces extended c<strong>on</strong>stituents: fluctuating strands. Looking<br />

even closer, these extended c<strong>on</strong>stituents are all the same <strong>on</strong>e. Space, formally <strong>on</strong>ly used to<br />

describe states, also acquires changing aspects: it is made from fluctuating strands. Also<br />

properties like mass or charge, which formally were seen as static, become aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

ever changing interplay between these fundamental c<strong>on</strong>stituents. Describing nature as<br />

<strong>on</strong>e fluctuating strand allows us to avoid finitude and to answer all questi<strong>on</strong>s left open<br />

by quantum theory and general relativity.<br />

In a sense, the merging <str<strong>on</strong>g>of</str<strong>on</strong>g> objects and states is a resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>trasting views<br />

<strong>on</strong> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Greek thinkers Parmenides – ‘there is no moti<strong>on</strong>’, i.e., in physical<br />

language, ‘there are no states, there is <strong>on</strong>ly permanence’ – and Heraclitus – ‘everything<br />

* Philip D. Stanhope (b. 1694 L<strong>on</strong>d<strong>on</strong>, d. 1773 L<strong>on</strong>d<strong>on</strong>) was a statesman and writer.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


new sights 421<br />

moves’, i.e., in physical language ‘there is no permanence, there are <strong>on</strong>ly states’. Both<br />

turn out to be right.<br />

We can thus sum up the progress during our adventure <str<strong>on</strong>g>of</str<strong>on</strong>g> physics in the following<br />

table:<br />

TABLE 18 <str<strong>on</strong>g>The</str<strong>on</strong>g> progress <str<strong>on</strong>g>of</str<strong>on</strong>g> physics.<br />

Step 1 Galilean <str<strong>on</strong>g>Physics</str<strong>on</strong>g> Nature is c<strong>on</strong>tinuous. We live in Galilean space.<br />

Step 2 Relativity Nature has no infinitely<br />

large.<br />

We live in Riemannian<br />

space.<br />

Step 3 Quantum field theory Nature has no infinitely<br />

small.<br />

We live in a Hilbert/Fock<br />

space.<br />

Step 4 Unificati<strong>on</strong> Nature is not finite.<br />

Nature has no parts.<br />

We do not live in any space;<br />

we are space.<br />

In summary, we are made <str<strong>on</strong>g>of</str<strong>on</strong>g> space. More precisely, we are made <str<strong>on</strong>g>of</str<strong>on</strong>g> the same c<strong>on</strong>stituents<br />

as space. In fact, the fascinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this result goes further than that.<br />

new sights<br />

“Nel suo pr<str<strong>on</strong>g>of</str<strong>on</strong>g><strong>on</strong>do vidi che s’interna,<br />

legato c<strong>on</strong> amore in un volume,<br />

ciò che per l’universo si squaderna:<br />

sustanze e accidenti e lor costume<br />

quasi c<strong>on</strong>flati insieme, per tal modo<br />

che ciò ch’i’ dico è un semplice lume.<br />

La forma universal di questo nodo<br />

credo ch’i’ vidi, perché più di largo,<br />

dicendo questo, mi sento ch’i’ godo.*<br />

Dante, La Divina Commedia,<br />

XXXIII, 85-93.<br />

Paradiso,”<br />

<str<strong>on</strong>g>Model</str<strong>on</strong>g>ling nature as a complicated web <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuating strands allowed us to describe at<br />

the same time empty space, matter, radiati<strong>on</strong>, horiz<strong>on</strong>s, kefir, stars, children and all our<br />

other observati<strong>on</strong>s. All everyday experiences are c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> everything in nature<br />

being made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e c<strong>on</strong>nected strand. This result literally widens our horiz<strong>on</strong>.<br />

* ‘In its depthI saw gathered, bound with love into <strong>on</strong>e volume, that which unfolds throughout the universe:<br />

substances and accidents and their relati<strong>on</strong>s almost joined together, in such a manner that what I say is <strong>on</strong>ly<br />

a simple image. <str<strong>on</strong>g>The</str<strong>on</strong>g> universal form <str<strong>on</strong>g>of</str<strong>on</strong>g> that knot, I think I saw, because, while I am telling about it, I feel deep<br />

joy.’ This is, in nine lines, Dante’s poetic descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> his deepest mystical experience: the visi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> god.<br />

For Dante, god, at the depth <str<strong>on</strong>g>of</str<strong>on</strong>g> the light it emanates, is a knot. That knot spreads throughout the universe,<br />

and substances and accidents – physicists would say: particles and states – are aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> that knot. Dante<br />

Alighieri (b. 1265 Florence, d. 1321 Ravenna) was <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the founders and the most important poet <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Italian language. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the Divine Comedy, his magnum opus, was written in exile, after 1302, the year<br />

when he had been c<strong>on</strong>demned to death in Florence.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


422 15 the top <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> mountain<br />

Page 166<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> beauty <str<strong>on</strong>g>of</str<strong>on</strong>g> strands<br />

“Someday, surely, we will see the principle underlying<br />

existence itself as so simple, so beautiful, so obvious,<br />

that we will all say to each other, “Oh, how could we<br />

all have been so blind, so l<strong>on</strong>g.”<br />

John Wheeler, A Journey Into Gravity And Spacetime.”<br />

Describing everything as c<strong>on</strong>nected does not come natural to us humans. After all, in<br />

our life, we perform <strong>on</strong>ly <strong>on</strong>e act: to partiti<strong>on</strong>. We define pluralities. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is no way we<br />

can avoid doing this. To observe, to think, to talk, to take a decisi<strong>on</strong>, to move, to suffer,<br />

to love or to enjoy life is impossible without partiti<strong>on</strong>ing.<br />

Our walk showed us that there are limits to the ability to distinguish. Any kind <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

partiti<strong>on</strong>ing is always approximate. In fact, most people can summarize their pers<strong>on</strong>al<br />

experience by saying that they learned to make finer and finer distincti<strong>on</strong>s. However,<br />

talking with highest precisi<strong>on</strong> about a part <str<strong>on</strong>g>of</str<strong>on</strong>g> the world inevitably leads to talk about the<br />

whole universe. <str<strong>on</strong>g>The</str<strong>on</strong>g> situati<strong>on</strong> resembles a pers<strong>on</strong> who gets a piece <str<strong>on</strong>g>of</str<strong>on</strong>g> rope in his hand,<br />

and by following it, discovers a large net. He c<strong>on</strong>tinues to pull and finally discovers that<br />

everything, including himself, is part <str<strong>on</strong>g>of</str<strong>on</strong>g> the net.<br />

For the strand model, the term ‘theory <str<strong>on</strong>g>of</str<strong>on</strong>g> everything’ is therefore not acceptable.<br />

Nature cannot be divided into ‘things’. In nature, things are never separable. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is no<br />

way to speak <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘every’ thing; there are no sets, no elements and no parts in nature. A<br />

theory describing all <str<strong>on</strong>g>of</str<strong>on</strong>g> nature cannot be <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘everything’, as ‘things’ are <strong>on</strong>ly approximate<br />

entities: properly speaking, they do not exist. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model is not a theory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

everything; it is a complete theory.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model shows that nature is not made <str<strong>on</strong>g>of</str<strong>on</strong>g> related parts. Nature is made <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

relati<strong>on</strong>s <strong>on</strong>ly. Parts <strong>on</strong>ly exist approximately. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also shows: being in<br />

moti<strong>on</strong> is intrinsic to being a part. Parts, being approximate, are always in moti<strong>on</strong>. As<br />

so<strong>on</strong> as we divide, we observe moti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> act <str<strong>on</strong>g>of</str<strong>on</strong>g> dividing, <str<strong>on</strong>g>of</str<strong>on</strong>g> partiti<strong>on</strong>ing, <str<strong>on</strong>g>of</str<strong>on</strong>g> defining<br />

parts is the very <strong>on</strong>e which produces order out <str<strong>on</strong>g>of</str<strong>on</strong>g> chaos. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s force us to rethink this<br />

habit.<br />

Despite being so tough to grasp, strands yield a precise descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> that<br />

unifies quantum field theory and general relativity. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model for the unificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> is both simple and powerful. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are no free parameters. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are no<br />

questi<strong>on</strong>s left. Our view from the top <str<strong>on</strong>g>of</str<strong>on</strong>g> the mountain is thus complete. No uncertainty,<br />

no darkness, no fear and no insecurity are left over. Only w<strong>on</strong>der remains.<br />

Can the strand model be generalized?<br />

“Die Natur kann besser Physik als der beste<br />

Carl Ramsauer<br />

Physiker.*”<br />

As menti<strong>on</strong>ed above, mathematical physicists are f<strong>on</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> generalizing models. Despite<br />

this f<strong>on</strong>dness, we required that any complete, unified descripti<strong>on</strong> must be unique: any<br />

complete, unified descripti<strong>on</strong> must be impossible to reduce, to modify or to generalize.<br />

* ‘Nature knows physics better than the best physicist.’ Carl Ramsauer (b. 1879 Oldenburg, d. 1955 Berlin),<br />

influential physicist, discovered that electr<strong>on</strong>s behave as waves.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


new sights 423<br />

Page 172<br />

Challenge 222 r<br />

Ref. 156<br />

Ref. 264<br />

In particular, a unified theory must neither be a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics nor <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

general relativity. Let us check this.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model is not a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity: the definiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

curvature, <str<strong>on</strong>g>of</str<strong>on</strong>g> gravit<strong>on</strong>s and <str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong>s differ radically from general relativity’s approach.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model is also not a generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics: the definiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particle and <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s differ radically from the c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum field theory.<br />

Indeed, we have shown that quantum field theory and general relativity are approximati<strong>on</strong>s<br />

to the strand model; they are neither special cases nor reducti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand<br />

model.<br />

But what about the other requirements for a unified theory? Can the strand model<br />

be modified or generalized? We have seen that the model does not work in more spatial<br />

dimensi<strong>on</strong>s, does not work with more families <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks, does not work with more<br />

interacti<strong>on</strong>s, and does not work with other evoluti<strong>on</strong> equati<strong>on</strong>s in general relativity or<br />

particle physics. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model does not work with other fundamental c<strong>on</strong>stituents,<br />

such as bifurcating entities, membranes, bands, or networks. (Though it does work with<br />

the equivalent funnels, as explained earlier <strong>on</strong>, but that descripti<strong>on</strong> is equivalent to the<br />

<strong>on</strong>e with strands.) <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model does not work with any modified fundamental principle.<br />

Obviously, exploring all possible variati<strong>on</strong>s and modificati<strong>on</strong>s remains a challenge<br />

for the years to come. If an actual modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model can be found, the<br />

strand model instantly loses its value: in that case, it would need to be shelved as a failure.<br />

Only a unique unified model can be correct.<br />

In summary, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the beautiful aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model is its radical departure<br />

from twentieth-century physics in its basic c<strong>on</strong>cepts, combined with its almost incredible<br />

uniqueness. No generalizati<strong>on</strong>, no specializati<strong>on</strong> and no modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand<br />

model seems possible. In short, the strand model qualifies as a unified, complete theory.<br />

What is a requirement to <strong>on</strong>e pers<strong>on</strong>, is a criticism to another. A number <str<strong>on</strong>g>of</str<strong>on</strong>g> researchers<br />

deeply dislike the strand model precisely because it doesn’t generalize previous theories<br />

and because it cannot be generalized. This attitude deserves respect, as it is born<br />

from the admirati<strong>on</strong> for several ancient masters <str<strong>on</strong>g>of</str<strong>on</strong>g> physics. However, the strand model<br />

points into a different directi<strong>on</strong>.<br />

What is nature?<br />

“Nature is what is whole in each <str<strong>on</strong>g>of</str<strong>on</strong>g> its parts.<br />

Hermes Trismegistos, Book <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Philosophers.<br />

Twenty-four”<br />

At the end <str<strong>on</strong>g>of</str<strong>on</strong>g> our l<strong>on</strong>g adventure, we discovered that nature is not a set: everything is<br />

c<strong>on</strong>nected. Nature is <strong>on</strong>ly approximately aset. <str<strong>on</strong>g>The</str<strong>on</strong>g>universehasnotopology,because<br />

space-time is not a manifold. Nevertheless, the approximate topology <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe is<br />

that <str<strong>on</strong>g>of</str<strong>on</strong>g> an open Riemannian space. <str<strong>on</strong>g>The</str<strong>on</strong>g> universe has no definite particle number, because<br />

the universe is not a c<strong>on</strong>tainer; the universe is made <str<strong>on</strong>g>of</str<strong>on</strong>g> the same stuff <str<strong>on</strong>g>of</str<strong>on</strong>g> which particles<br />

are made. Nevertheless, the approximate particle density in the universe can be deduced.<br />

In nature, everything is c<strong>on</strong>nected. This observati<strong>on</strong> is reflected in the c<strong>on</strong>jecture that<br />

all <str<strong>on</strong>g>of</str<strong>on</strong>g> nature is described by a single strand.<br />

We thus arrive at the (slightly edited) summary given around the year 1200 by the<br />

author who wrote under the pen name Hermes Trismegistos: Nature is what is whole in<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


424 15 the top <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> mountain<br />

Page 8<br />

each <str<strong>on</strong>g>of</str<strong>on</strong>g> its parts. Butinc<strong>on</strong>trasttothatauthor,wenowalsoknowhowtodrawtestable<br />

c<strong>on</strong>clusi<strong>on</strong>s from the statement.<br />

Quantum theory and the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> matter and vacuum<br />

“In everything there is something <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Anaxagoras <str<strong>on</strong>g>of</str<strong>on</strong>g> Clazimenes (500<br />

–428 bce Lampsacus)<br />

everything.”<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model shows that as so<strong>on</strong> as we separate the universe into space-time and<br />

the rest, i.e., as so<strong>on</strong> as we introduce the coordinates x and t, quantum mechanics appears<br />

automatically. More precisely, quantum effects are effects <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong>. Quantum<br />

theory appears when we realize that observati<strong>on</strong>s are composed <str<strong>on</strong>g>of</str<strong>on</strong>g> smallest events due<br />

to crossing switches, each with a change given by the quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong>. All events and<br />

observati<strong>on</strong>s appear through the fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand that composes nature.<br />

We found that matter is made <str<strong>on</strong>g>of</str<strong>on</strong>g> tangled strands. In fact, the correct way would be to<br />

say: matter is made <str<strong>on</strong>g>of</str<strong>on</strong>g> tangled strand segments. This c<strong>on</strong>necti<strong>on</strong> leads to Schrödinger’s<br />

equati<strong>on</strong> and to Dirac’s equati<strong>on</strong>.<br />

Ins<str<strong>on</strong>g>of</str<strong>on</strong>g>ar as matter is <str<strong>on</strong>g>of</str<strong>on</strong>g> the same fabric as the vacuum, we can rightly say that everything<br />

is made <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum and that matter is made <str<strong>on</strong>g>of</str<strong>on</strong>g> nothing. But the most appropriate definiti<strong>on</strong><br />

arises when we realize that matter is not made from something, but that matter is<br />

a certain aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> the whole <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. Unificati<strong>on</strong> showed that every single elementary<br />

particle results from an arrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> strands that involves the whole <str<strong>on</strong>g>of</str<strong>on</strong>g> nature, or,<br />

if we prefer, the entire universe. In other words, we can equally say: matter is made <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

everything.<br />

We can also turn the equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> matter and vacuum around. Doing so, we arrive<br />

at the almost absurd statement: vacuum is made <str<strong>on</strong>g>of</str<strong>on</strong>g> everything.<br />

“Der heutigen Physik liegt die Frage nicht mehr<br />

ferne, ob nicht etwa alles, was ist, aus dem Äther<br />

geschaffen sei. Diese Dinge sind die äußersten<br />

Ziele unserer Wissenschaft, der Physik.*<br />

Heinrich Hertz”<br />

Cosmology<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also showed us how to deduce general relativity. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model<br />

clarified the fabric <str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong>s and explained the three dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> space. Most fascinating<br />

is the idea <str<strong>on</strong>g>of</str<strong>on</strong>g> a universe as the product <str<strong>on</strong>g>of</str<strong>on</strong>g> a single strand. A single strand implies<br />

that there was nothing before the big bang, and that there is nothing outside the night<br />

sky. For example, the strand model implies that there is no ‘multiverse’ and that there<br />

are no hidden worlds <str<strong>on</strong>g>of</str<strong>on</strong>g> any kind. And the fluctuating strand explains all observati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> our universe.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> cosmological c<strong>on</strong>stant is not c<strong>on</strong>stant; it <strong>on</strong>ly measures the present age and size <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the universe. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, the c<strong>on</strong>stant does not need to appear in Figure 1. In other words,<br />

the cosmological c<strong>on</strong>stant simply measures the time from the big bang to the present.<br />

* ‘Modern physics is not far from the questi<strong>on</strong> whether everything that exists could possibly be made from<br />

aether. <str<strong>on</strong>g>The</str<strong>on</strong>g>se things are the extreme goals <str<strong>on</strong>g>of</str<strong>on</strong>g> our science, physics.’ Hertz said this in a well-known speech<br />

he gave in 1889. If we recall that ‘aether’ was the term <str<strong>on</strong>g>of</str<strong>on</strong>g> the time for ‘vacuum’, the citati<strong>on</strong> is particularly<br />

striking.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


new sights 425<br />

Ref. 265<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> ‘big bang’ is the name for what we observe if we try to make observati<strong>on</strong>s approaching<br />

the limits <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. <str<strong>on</strong>g>The</str<strong>on</strong>g> ‘big bang’ appears automatically from the strand<br />

model whenever we observe nature at the most distant times, the largest distances or at<br />

the largest energies: ‘big bang’ is the name for Planck scale physics.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> universe c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a single strand. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are many particles in nature, because<br />

the strand is tangled up in complicated ways. What we call the ‘horiz<strong>on</strong>’ <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe<br />

is the place where new tangles appear.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> belief that the big bang or the horiz<strong>on</strong> are examples <str<strong>on</strong>g>of</str<strong>on</strong>g> creati<strong>on</strong> is incorrect. What<br />

happened at the big bang still happens at the horiz<strong>on</strong> today. Both the black sky at night<br />

and the big bang are nature’s way to tell us: ‘Galilean physics is approximate! Quantum<br />

theory is approximate! General relativity is approximate!’<br />

Musings about unificati<strong>on</strong> and strands<br />

“C<strong>on</strong>tinuing moti<strong>on</strong> masters coldness.<br />

C<strong>on</strong>tinuing rest masters heat.<br />

Moti<strong>on</strong> based <strong>on</strong> rest:<br />

Measure <str<strong>on</strong>g>of</str<strong>on</strong>g> the all-happening for the single <strong>on</strong>e.<br />

Lao Tse,* Tao Te King, XXXXV.”<br />

All is made from <strong>on</strong>e sort <str<strong>on</strong>g>of</str<strong>on</strong>g> thing: all is <strong>on</strong>e substance. This idea, m<strong>on</strong>ism, sounds<br />

a lot like what the influential philosopher Baruch Spinoza (b. 1632 Amsterdam,<br />

d. 1677 <str<strong>on</strong>g>The</str<strong>on</strong>g> Hague) held as c<strong>on</strong>victi<strong>on</strong>. M<strong>on</strong>ism, though mixed up with the idea <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

god, is also the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the philosophical ideas that Gottfried Wilhelm Leibniz (b. 1646<br />

Leipzig, d. 1716 Hannover) presents in his text La M<strong>on</strong>adologie.<br />

∗∗<br />

Any complete theory <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>, also the strand model, is built <strong>on</strong> a single statement<br />

about nature: <str<strong>on</strong>g>The</str<strong>on</strong>g> many exists <strong>on</strong>ly approximately. Nature is approximately multiple.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> etymological meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> the term ‘multiple’ is ‘it has many folds’; in a very specific<br />

sense, nature thus has many folds.<br />

∗∗<br />

Any precise descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature is free <str<strong>on</strong>g>of</str<strong>on</strong>g> arbitrary choices, because the divisi<strong>on</strong>s that<br />

we have to make in order to think are all comm<strong>on</strong> to everybody, and logically inescapable.<br />

Because physics is a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> this divisi<strong>on</strong>, it is also ‘theory-free’ and<br />

‘interpretati<strong>on</strong>-free’. This c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the complete theory will drive most philosophers<br />

up the wall.<br />

∗∗<br />

For over a century, physics students have been bombarded with the statement:<br />

‘Symmetries are beautiful.’ Every expert <strong>on</strong> beauty, be it a painter, an architect, a<br />

sculptor, a musician, a photographer or a designer, fully and completely disagrees, and<br />

rightly so. Beauty has no relati<strong>on</strong> to symmetry. Whoever says the c<strong>on</strong>trary is blocking<br />

out his experiences <str<strong>on</strong>g>of</str<strong>on</strong>g> a beautiful landscape, <str<strong>on</strong>g>of</str<strong>on</strong>g> a beautiful human figure or <str<strong>on</strong>g>of</str<strong>on</strong>g> a beautiful<br />

work <str<strong>on</strong>g>of</str<strong>on</strong>g> art.<br />

* Lao Tse (sixth century bce) was an influential philosopher and sage.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


426 15 the top <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> mountain<br />

Ref. 266<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. III, page 280<br />

Page 22<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> correct statement is: ‘Symmetries simplify descripti<strong>on</strong>s.’ Symmetries simplify<br />

physical theories. That is the background for the statement <str<strong>on</strong>g>of</str<strong>on</strong>g> Werner Heisenberg: ‘In<br />

the beginning there was symmetry.’ On the other hand, the strand model shows that<br />

even this statement is incorrect. In fact, neither the search for beauty nor the search<br />

for symmetry were the right paths to advance towards unificati<strong>on</strong>. Such statements have<br />

always been empty marketing phrases. In reality, the progress <str<strong>on</strong>g>of</str<strong>on</strong>g> fundamental theoretical<br />

physics was always driven by the search for simplicity.<br />

∗∗<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s unify physics. In particular, strands extend our views <strong>on</strong> quantum theory and<br />

mathematical physics, <strong>on</strong> particle physics and field theory, <strong>on</strong> axiomatic physics and algebraic<br />

physics, <strong>on</strong> polymer physics and gauge theory, <strong>on</strong> general relativity and cosmology.<br />

It will take several years before all these extensi<strong>on</strong>s will have been explored.<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature with strands is surprisingly simple, mainly because it uses so<br />

few basic c<strong>on</strong>cepts. Is this result ast<strong>on</strong>ishing? In our daily life, we describe our experiences<br />

with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> a few thousand words, e.g. taking them from the roughly 350 000<br />

words which make up the English language, or from a similar number from another<br />

language. This set is sufficient to talk about everything, from love to suffering, from<br />

beauty to happiness. And these terms are c<strong>on</strong>structed from no more than about 35 basic<br />

c<strong>on</strong>cepts, as we have seen already. We should not be too surprised that we can in fact<br />

talk about the whole universe using <strong>on</strong>ly a few basic c<strong>on</strong>cepts: the act and the results <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

(approximate) distincti<strong>on</strong>, or more specifically, a basic event – the crossing switch – and<br />

its observati<strong>on</strong>.<br />

∗∗<br />

Almost all discoveries in physics were made at least 30 years too late. <str<strong>on</strong>g>The</str<strong>on</strong>g> same is true for<br />

the strand model. If we compare the strand model with what many physicists believed<br />

in the twentieth century, we can see why: researchers had too many wr<strong>on</strong>g ideas about<br />

unificati<strong>on</strong>. All these wr<strong>on</strong>g ideas can be summarized in the following statement:<br />

— ‘Unificati<strong>on</strong> requires generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> existing theories.’<br />

This statement is subtle: it was rarely expressed explicitly but widely believed. But the<br />

statement is wr<strong>on</strong>g, and it led many astray. On the other hand, the development <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

strand model also followed a specific guiding idea, namely:<br />

— ‘Unificati<strong>on</strong> requires simplificati<strong>on</strong>.’<br />

Hopefully this guiding idea will not become a dogma itself: in many domains <str<strong>on</strong>g>of</str<strong>on</strong>g> life,<br />

simplificati<strong>on</strong> means not to pay attenti<strong>on</strong> to the details. This attitude does a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> harm.<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model shows that achieving unificati<strong>on</strong> is not a feat requiring difficult abstracti<strong>on</strong>.<br />

Unificati<strong>on</strong> was not hidden in some almost inaccessible place that can reached <strong>on</strong>ly<br />

by a few select, well-trained research scientists. No, unificati<strong>on</strong> is accessible to every<strong>on</strong>e<br />

who has a basic knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> nature and <str<strong>on</strong>g>of</str<strong>on</strong>g> physics. No Ph.D. in theoretical physics is<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


new sights 427<br />

Page 85<br />

F I G U R E 139 Moti<strong>on</strong> Mountain does not resemble Cerro Torre, but a gentle hill (© Davide Brighenti,<br />

Myriam70)<br />

needed to understand or to enjoy it. <str<strong>on</strong>g>The</str<strong>on</strong>g> knowledge presented in the previous volumes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this series is sufficient.<br />

When Andrew Wiles first proved Fermat’s last theorem after three centuries <str<strong>on</strong>g>of</str<strong>on</strong>g> attempts<br />

by the brightest and the best mathematicians, he explained that his search for a<br />

pro<str<strong>on</strong>g>of</str<strong>on</strong>g> was like the explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a dark mansi<strong>on</strong>. And seen the c<strong>on</strong>ceptual difficulties he<br />

had to overcome, the analogy was fitting. Recalling how many more people have already<br />

searched for unificati<strong>on</strong> without success, the first reacti<strong>on</strong> is to compare the search for<br />

unificati<strong>on</strong> to the explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> something even bigger, such as a complex dark cave<br />

system. But that analogy was not helpful. In c<strong>on</strong>trast to the pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Fermat’s theorem,<br />

the goal <str<strong>on</strong>g>of</str<strong>on</strong>g> the quest for unificati<strong>on</strong> turned out to be simple and lying out in the open.<br />

Researchers had simply overlooked it, because they were c<strong>on</strong>vinced that the goal was<br />

complex, hidden in the dark and hard to reach. It was not.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> adventure <str<strong>on</strong>g>of</str<strong>on</strong>g> climbing Moti<strong>on</strong> Mountain is thus not comparable to climbing<br />

Cerro Torre, which might be the toughest and most spectacular challenge that nature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>fers to mountain climbers. Figure 139 gives an impressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the peak. Moti<strong>on</strong> Mountain<br />

does not resemble this peak at all. Neither does Moti<strong>on</strong> Mountain resemble the<br />

Langtang Lirung peak in the Nepalese Himalayas shown <strong>on</strong> the cover <str<strong>on</strong>g>of</str<strong>on</strong>g> this volume.<br />

Climbing Moti<strong>on</strong> Mountain is more like walking up a gentle green hill, al<strong>on</strong>e, with a<br />

serene mind, <strong>on</strong> a sunny day, while enjoying the surrounding beauty <str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model settles all questi<strong>on</strong>s about determinism. Quantum theory and general<br />

relativity are deterministic. Nevertheless, when both descripti<strong>on</strong>s are combined, time<br />

turns out to be an approximate, low-energy c<strong>on</strong>cept. <str<strong>on</strong>g>The</str<strong>on</strong>g> same applies to determinism.<br />

Even though nature is deterministic for all practical purposes and shows no surprises,<br />

determinism shares the fate <str<strong>on</strong>g>of</str<strong>on</strong>g> all its c<strong>on</strong>ceivable opposites, such as fundamental randomness,<br />

indeterminism <str<strong>on</strong>g>of</str<strong>on</strong>g> all kinds, existence <str<strong>on</strong>g>of</str<strong>on</strong>g> w<strong>on</strong>ders, creati<strong>on</strong> out <str<strong>on</strong>g>of</str<strong>on</strong>g> nothing, or<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


428 15 the top <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> mountain<br />

Challenge 223 e<br />

Ref. 267<br />

Page 8<br />

Page 330<br />

divine interventi<strong>on</strong>: determinism is an incorrect descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature at the Planck scale<br />

–likeallitsalternatives.<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also settles most so-called really big questi<strong>on</strong>s that John Wheeler used<br />

to ask: Why the quantum? How come existence? It from bit? A "participatory universe"?<br />

What makes "meaning"? Enjoy the explorati<strong>on</strong>.<br />

∗∗<br />

Any unified model <str<strong>on</strong>g>of</str<strong>on</strong>g> nature encompasses a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> ideas, issues and knowledge. Due to<br />

the sheer amount <str<strong>on</strong>g>of</str<strong>on</strong>g> material, publishing it in a journal will be challenging.<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model is so simple that it fits <strong>on</strong> a tombst<strong>on</strong>e - or <strong>on</strong> a T-shirt. This would<br />

surely be god’s favourite T-shirt. It is available at www.moti<strong>on</strong>mountain.net/gfts.html.<br />

∗∗<br />

Historically, the strand model evolved from an explorati<strong>on</strong>, started in the 1990s, <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

maximum force in nature, the belt trick and the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes. After the first six<br />

chapters <str<strong>on</strong>g>of</str<strong>on</strong>g> the present volume were completed in 2002, meditating <strong>on</strong> their implicati<strong>on</strong>s<br />

led to the strand model and its fundamental principle.<br />

Above all, it was the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> the maximum<br />

force that triggered the search for a unified descripti<strong>on</strong> that was purely based <strong>on</strong> Planck<br />

units. Another essential point was the drive to search for a complete theory directly, from<br />

its requirements (‘top down’ in Figure 1), and not from the unificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory<br />

and general relativity (‘bottom up’). In the years from 2002 to 2007, most <str<strong>on</strong>g>of</str<strong>on</strong>g> the ideas<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model took shape, mainly in Munich’s underground trains, while commuting<br />

between home and work. In those years, it appeared that strands could explain the<br />

Dirac equati<strong>on</strong>, the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes, general relativity and the particle spectrum<br />

with the three particle generati<strong>on</strong>s. While walking in the woods and fields around Munich,<br />

<strong>on</strong> 13 October 2008, it appeared that interacti<strong>on</strong>s are core deformati<strong>on</strong>s; in subsequent<br />

walks during 2008 and 2009, it appeared that strands explain the three gauge<br />

interacti<strong>on</strong>s, predict the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> a Higgs bos<strong>on</strong> – a bad mistake due to faulty reas<strong>on</strong>ing,<br />

as turned out in 2012 – and <str<strong>on</strong>g>of</str<strong>on</strong>g> any new physical effects bey<strong>on</strong>d the standard model, and<br />

allow calculating the unexplained c<strong>on</strong>stants <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics. <str<strong>on</strong>g>The</str<strong>on</strong>g> model thus yielded<br />

almost all its main predicti<strong>on</strong>s before the accelerator experiments at the Large Hadr<strong>on</strong><br />

Collider at CERN in Geneva were switched <strong>on</strong> in autumn 2010. Thus much <str<strong>on</strong>g>of</str<strong>on</strong>g> the work<br />

was d<strong>on</strong>e in a haste – future will show what is <str<strong>on</strong>g>of</str<strong>on</strong>g> lasting value.<br />

In 2012, the discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> the Higgs bos<strong>on</strong>, and in 2014, the comments by Sergei<br />

Fadeev led to an improvement and simplificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model, eliminating knotted<br />

strands. From 2016 <strong>on</strong>wards, the experimental results <str<strong>on</strong>g>of</str<strong>on</strong>g> the LHC groups, <str<strong>on</strong>g>of</str<strong>on</strong>g> dark<br />

matter searches, and <str<strong>on</strong>g>of</str<strong>on</strong>g> the LIGO observatory c<strong>on</strong>firmed the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> deviati<strong>on</strong>s from the<br />

standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics and from general relativity, as predicted by the strand<br />

model.<br />

∗∗<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


new sights 429<br />

Page 87<br />

Many researchers believed during all their life that the complete theory is something<br />

useful, important and valuable. This comm<strong>on</strong> belief about the importance and seriousness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the quest has led, over the past decades, to an increasingly aggressive atmosphere<br />

am<strong>on</strong>g these researchers. This unpr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al atmosphere, combined with the dependence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> researchers <strong>on</strong> funding, has delayed the discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> the complete theory by<br />

several decades.<br />

In fact, the complete theory is not useful: it adds nothing <str<strong>on</strong>g>of</str<strong>on</strong>g> practical relevance to the<br />

combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the standard model and general relativity. <str<strong>on</strong>g>The</str<strong>on</strong>g> unified theory is also not<br />

important: it has no applicati<strong>on</strong> in everyday life or in industry and does not substantially<br />

change our view <str<strong>on</strong>g>of</str<strong>on</strong>g> the world; it just influences teaching – somewhat. Finally, the unified<br />

theory is not valuable: it does not help people in their life or make them happier. In short,<br />

the complete theory is what all fundamental theoretical research is: entertaining ideas.<br />

Even if the strand model were to be replaced by another model, the c<strong>on</strong>clusi<strong>on</strong> remains:<br />

the unified theory is not useful, not important and not valuable. Knowing about<br />

unificati<strong>on</strong> does not c<strong>on</strong>fer any special powers. But it is enjoyable, comparable to a walk<br />

through a beautiful garden.<br />

∗∗<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model will take a l<strong>on</strong>g time to get accepted. <str<strong>on</strong>g>The</str<strong>on</strong>g> first reas<strong>on</strong> is obvious: <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

strand model c<strong>on</strong>tradicts thinking habits in many research fields. Researchers working <strong>on</strong><br />

the foundati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory, <strong>on</strong> general relativity, <strong>on</strong> cosmic strings, <strong>on</strong> mathematical<br />

physics, <strong>on</strong> classical and quantum field theory, <strong>on</strong> polymer physics, <strong>on</strong> shape<br />

deformati<strong>on</strong>s, <strong>on</strong> quantum gravity, <strong>on</strong> strings, <strong>on</strong> the visualizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum mechanics,<br />

<strong>on</strong> knot theory, <strong>on</strong> higher dimensi<strong>on</strong>s, <strong>on</strong> supersymmetry, <strong>on</strong> the axiomatizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> physics, <strong>on</strong> group theory, <strong>on</strong> the foundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> physics, <strong>on</strong> quantum optics and <strong>on</strong><br />

particle physics have to give up many life-l<strong>on</strong>g thinking habits. So do all other physicists.<br />

<str<strong>on</strong>g>Strand</str<strong>on</strong>g>s supersede particles and points.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re is also a sec<strong>on</strong>d reas<strong>on</strong> for the slow acceptance <str<strong>on</strong>g>of</str<strong>on</strong>g> the model presented here:<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model, in its simplicity, is <strong>on</strong>ly a small step away from present research. Many<br />

researchersarefindingouthowclosetheyhavebeentotheideas<str<strong>on</strong>g>of</str<strong>on</strong>g>thestrandmodel,<br />

and for how l<strong>on</strong>g they were overlooking or ignoring such a simple opti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> simplicity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental principle c<strong>on</strong>trasts with the expectati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> most researchers, namely<br />

that the unified theory is complicated, difficult and hard to discover. In fact, the opposite<br />

is true. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s are based <strong>on</strong> Planck units and provide a simple, almost algebraic descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

In summary, for many researchers and for many physicists, there is a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>fusi<strong>on</strong>,<br />

anger and disappointment. It will take time before these feelings subside and are<br />

replaced by the clarity and fascinati<strong>on</strong> provided by the strand model.<br />

“Only boring people get bored.<br />

An<strong>on</strong>ymous”<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


430 15 the top <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> mountain<br />

Page 164<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> eliminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> inducti<strong>on</strong>“Cum iam pr<str<strong>on</strong>g>of</str<strong>on</strong>g>eceris tantum, ut sit tibi etiam tui<br />

reverentia, licebit dimittas pedagogum.*<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> complete theory <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> has a c<strong>on</strong>sequence worth menti<strong>on</strong>ing in detail:<br />

Seneca”<br />

its lack<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> infinity and its lack <str<strong>on</strong>g>of</str<strong>on</strong>g> finitude eliminate the necessity <str<strong>on</strong>g>of</str<strong>on</strong>g> inducti<strong>on</strong>. This c<strong>on</strong>clusi<strong>on</strong> is<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> importance for general discussi<strong>on</strong>s <strong>on</strong> man’s grasp <str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

In physics, as in the other natural sciences, there is a traditi<strong>on</strong> to state that a certain<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature – <strong>on</strong>ce c<strong>on</strong>fusingly called a ‘law’ – is valid in all cases. In these<br />

statements, ‘all’ means ‘for all values <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantities appearing’. As a c<strong>on</strong>crete example,<br />

the ‘law’ <str<strong>on</strong>g>of</str<strong>on</strong>g> universal gravitati<strong>on</strong> is always claimed to be the same here and today, as well<br />

as at all other places and times, such as <strong>on</strong> the other end <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe and in a few<br />

thousand years. <str<strong>on</strong>g>The</str<strong>on</strong>g> full list <str<strong>on</strong>g>of</str<strong>on</strong>g> such all-claims is part <str<strong>on</strong>g>of</str<strong>on</strong>g> the millennium list <str<strong>on</strong>g>of</str<strong>on</strong>g> open<br />

issues in twentieth-century physics. For many decades, the habit <str<strong>on</strong>g>of</str<strong>on</strong>g> claiming general<br />

validity from a limited and finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> experiences, also called inducti<strong>on</strong>, has been<br />

seen, and rightly so, as a logically dubious manoeuvre, tolerated <strong>on</strong>ly because it works.<br />

But the developments described in this text show that this method is indeed justified.<br />

First<str<strong>on</strong>g>of</str<strong>on</strong>g>all,aclaim<str<strong>on</strong>g>of</str<strong>on</strong>g>generalityisnotthatenormousasitmayseem,becausethe<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> events that can be distinguished in nature is finite, not infinite. <str<strong>on</strong>g>The</str<strong>on</strong>g> preceding<br />

secti<strong>on</strong>s showed that the maximal number N <str<strong>on</strong>g>of</str<strong>on</strong>g> events that can be distinguished in the<br />

universe is <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> N=(T 0 /t Pl ) 4 =10 244±2 , T 0 being the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe and<br />

t Pl the Planck time. This is a big, but certainly finite number.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> unified descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature has thus first reduced the various all-claims from<br />

an apparently infinite to a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> cases, though still involving astr<strong>on</strong>omically<br />

large numbers. This reducti<strong>on</strong> results from the recogniti<strong>on</strong> that infinities do not appear<br />

in the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. We now know that when talking about nature, ‘all’ cases<br />

never means an infinite number.<br />

A sec<strong>on</strong>d, important result is achieved by the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature with strands. In<br />

any all-claim about fundamental moti<strong>on</strong>, the checking <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>of</str<strong>on</strong>g> the large number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

possibilities is not necessary any more, because all events result from a single entity, in<br />

which we introduce distincti<strong>on</strong>s with our senses and our brain. And the distincti<strong>on</strong>s<br />

we introduce imply automatically that the symmetries <str<strong>on</strong>g>of</str<strong>on</strong>g> nature – the ‘all-claims’ or<br />

‘inducti<strong>on</strong>s’ – that are used in the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> are correct. Nature does not<br />

c<strong>on</strong>tain separate parts. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, there is no way that separate parts can behave differently.<br />

Inducti<strong>on</strong> is a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the unity <str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

Ultimately, the possibility to verify statements <str<strong>on</strong>g>of</str<strong>on</strong>g> nature is due to the fact that all the<br />

aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> our experience are related. Complete separati<strong>on</strong> is impossible in nature. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

verificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all-claims is possible because the strand model achieves the full descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> how all ‘parts’ <str<strong>on</strong>g>of</str<strong>on</strong>g> nature are related.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model shows that we can talk and think about nature because we are a part<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> it. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand model also shows that inducti<strong>on</strong> works because everything in nature is<br />

related to everything else: nature is <strong>on</strong>e.<br />

* ‘When you have pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ited so much that you respect yourself you may let go your tutor.’ Seneca, the influential<br />

Roman poet and philosopher, writes this in his Epistulae morales ad Lucilium,XXV,6.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


a return path: je rêve, d<strong>on</strong>c je suis 431<br />

Challenge 224 s<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. I, page 16<br />

Ref. 268<br />

What is still hidden?<br />

“That which eludes curiosity can be grasped in<br />

Traditi<strong>on</strong>al saying.<br />

acti<strong>on</strong>.”<br />

Wheredowecomefrom? Wheredoestheworldcomefrom?Whatwillfuturebring?<br />

What is death? All these questi<strong>on</strong>s are questi<strong>on</strong>s about moti<strong>on</strong> – and its meaning. To<br />

all such questi<strong>on</strong>s, the strand model does not provide answers. We are a collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tangled strands. We are everything and nothing. <str<strong>on</strong>g>The</str<strong>on</strong>g> strand(s) we are made <str<strong>on</strong>g>of</str<strong>on</strong>g> will c<strong>on</strong>tinue<br />

to fluctuate. Birth, life and death are aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> tangled strands. <str<strong>on</strong>g>The</str<strong>on</strong>g> universe is a<br />

folded strand that grows in complexity.<br />

Obviously, abstract statements about tangles do not help in any human quest. Indeed,<br />

we aimed at achieving a precise descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moving particles and bending space.<br />

Studying them was a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> riddles; but solving these riddles does not provide<br />

meaning, not even at the top <str<strong>on</strong>g>of</str<strong>on</strong>g> Moti<strong>on</strong> Mountain. From the top we cannot see the<br />

evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> complicated systems; in particular, we cannot see or describe the evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> life, the biological evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species, or the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> a human beings. Nor can we<br />

understand why we are climbing at all.<br />

In short, from the top <str<strong>on</strong>g>of</str<strong>on</strong>g> Moti<strong>on</strong> Mountain we cannot see the details down in the<br />

valleys <str<strong>on</strong>g>of</str<strong>on</strong>g> human relati<strong>on</strong>s or experience; strands do not provide advice or meaning. Remaining<br />

too l<strong>on</strong>g <strong>on</strong> the top is <str<strong>on</strong>g>of</str<strong>on</strong>g> no use. To find meaning, we have to descend back<br />

down to real life.<br />

a return path: je rêve, d<strong>on</strong>c je suis<br />

“I hate reality. But it is the <strong>on</strong>ly place where <strong>on</strong>e can<br />

get a good steak.<br />

Woody Allen”<br />

Enjoying life and giving it meaning requires to descend from the top <str<strong>on</strong>g>of</str<strong>on</strong>g> Moti<strong>on</strong> Mountain.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> return path can take various different directi<strong>on</strong>s. From a mountain, the most<br />

beautiful and direct descent might be the use <str<strong>on</strong>g>of</str<strong>on</strong>g> a paraglider. After our adventure, we<br />

take an equally beautiful way: we leave reality.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> usual trail to study moti<strong>on</strong>, also the <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> this text, starts from our ability to talk<br />

about nature to somebody else. From this ability we deduced our descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature,<br />

starting from Galilean physics and ending with the strand model. <str<strong>on</strong>g>The</str<strong>on</strong>g> same results can<br />

be found by requiring to be able to talk about nature to ourselves. Talking to <strong>on</strong>eself<br />

is an example <str<strong>on</strong>g>of</str<strong>on</strong>g> thinking. We should therefore be able to derive all physics from René<br />

Descartes’ sentence ‘je pense, d<strong>on</strong>c je suis’ – which he translated into Latin as ‘cogito<br />

ergo sum’. Descartes stressed that this is the <strong>on</strong>ly statement <str<strong>on</strong>g>of</str<strong>on</strong>g> which he is completely<br />

sure, in oppositi<strong>on</strong> to his observati<strong>on</strong>s, <str<strong>on</strong>g>of</str<strong>on</strong>g> which he is not. He had collected numerous<br />

examples in which the senses provide unreliable informati<strong>on</strong>.<br />

However, when talking to ourselves, we can make more mistakes than when asking<br />

for checks from others. Let us approach this issue in a radically different way. We directly<br />

proceed to that situati<strong>on</strong> in which the highest freedom is available and the largest number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mistakes are possible: the world <str<strong>on</strong>g>of</str<strong>on</strong>g> dreams. If nature would <strong>on</strong>ly be a dream, could we<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


432 15 the top <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> mountain<br />

Ref. 269<br />

Challenge 225 s<br />

deduce from it the complete set <str<strong>on</strong>g>of</str<strong>on</strong>g> physical knowledge? Let us explore the issue.<br />

— Dreaming implies the use <str<strong>on</strong>g>of</str<strong>on</strong>g> distincti<strong>on</strong>s, <str<strong>on</strong>g>of</str<strong>on</strong>g> memory and <str<strong>on</strong>g>of</str<strong>on</strong>g> sight. Dreams c<strong>on</strong>tain<br />

parts and moti<strong>on</strong>.<br />

— Independently <strong>on</strong> whether dreams are due to previous observati<strong>on</strong>s or to fantasies,<br />

through memory we can define a sequence am<strong>on</strong>g them. <str<strong>on</strong>g>The</str<strong>on</strong>g> order relati<strong>on</strong> is called<br />

time. <str<strong>on</strong>g>The</str<strong>on</strong>g> dream aspects being ordered are called events. <str<strong>on</strong>g>The</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> all (dream) events<br />

forms the (dream) world.<br />

— In a dream we can have several independent experiences at the same time, e.g. about<br />

thirst and about hunger. Sequences thus do not provide a complete classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experiences. We call the necessary additi<strong>on</strong>al distincti<strong>on</strong> space. Dream space has<br />

three dimensi<strong>on</strong>s.* Dreaming thus means to use space and time.<br />

— We can distinguish between dream c<strong>on</strong>tents. Distinguishing means that we can<br />

count items in dreams. Counting means that we have a way to define measurements.<br />

Dreams are thus characterized by something which we can call ‘observables’. Dream<br />

experiences at a given instant <str<strong>on</strong>g>of</str<strong>on</strong>g> time are characterized by a state.<br />

— Because we can describe dreams, the dream c<strong>on</strong>tents exist independently <str<strong>on</strong>g>of</str<strong>on</strong>g> dream<br />

time. We can also imagine the same dream c<strong>on</strong>tents at different places and different<br />

times in the dream space. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is thus an invariance <str<strong>on</strong>g>of</str<strong>on</strong>g> dream c<strong>on</strong>cepts in space and<br />

time. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are thus symmetries in dream space.<br />

— Dream c<strong>on</strong>tents can interact. Dreams appear to vary without end. Dreams seem to<br />

be infinite.<br />

In other words, a large part <str<strong>on</strong>g>of</str<strong>on</strong>g> the world <str<strong>on</strong>g>of</str<strong>on</strong>g> dreams is described by a modified form<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Galilean physics. We note that the biggest difference between dreams and nature is<br />

the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong>. In dreams, observati<strong>on</strong>s can appear, disappear, start and stop.<br />

We also note that instead <str<strong>on</strong>g>of</str<strong>on</strong>g> dreams, we could equally explore cinema films. Films, like<br />

dreams, are described by a modified form <str<strong>on</strong>g>of</str<strong>on</strong>g> Galilean physics. And films, like dreams,<br />

do not follow c<strong>on</strong>servati<strong>on</strong> laws. But dreams teach us much more.<br />

— Dreams show that space can warp.<br />

— Dream moti<strong>on</strong>, as you may want to check, shows a maximum speed.<br />

— Dreams show a strange limit in distance. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a boundary to our field <str<strong>on</strong>g>of</str<strong>on</strong>g> visi<strong>on</strong>,<br />

even though we do not manage to see it.<br />

P<strong>on</strong>dering these issues shows that there are limits to dreams. In summary, the world <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dreams has a maximum size, a maximum speed and three dimensi<strong>on</strong>s that can warp.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> world <str<strong>on</strong>g>of</str<strong>on</strong>g> dreams and <str<strong>on</strong>g>of</str<strong>on</strong>g> films is described by a simple form <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity.<br />

— Both the number <str<strong>on</strong>g>of</str<strong>on</strong>g> items we can dream <str<strong>on</strong>g>of</str<strong>on</strong>g> at the same time and the memory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

previous dreams is finite.<br />

— Dreamshave colours.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g>re are pixels in dreams, though we do not experience them directly. But we can<br />

do so indirectly: <str<strong>on</strong>g>The</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a highest number <str<strong>on</strong>g>of</str<strong>on</strong>g> things we can dream <str<strong>on</strong>g>of</str<strong>on</strong>g> at the<br />

same time implies that dream space has a smallest scale.<br />

* Though a few mathematicians state that they can think in more than three spatial dimensi<strong>on</strong>s, all <str<strong>on</strong>g>of</str<strong>on</strong>g> them<br />

dream in three dimensi<strong>on</strong>s.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


what is the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> colours? 433<br />

Challenge 226 s<br />

Ref. 5<br />

In summary, the world <str<strong>on</strong>g>of</str<strong>on</strong>g> dreams has something similar to a minimum change. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

world <str<strong>on</strong>g>of</str<strong>on</strong>g> dreams and that <str<strong>on</strong>g>of</str<strong>on</strong>g> films is described by a simple form <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

difference with nature is that in dreams and films, space is discrete from the outset. But<br />

there is still more to say about dreams.<br />

— <str<strong>on</strong>g>The</str<strong>on</strong>g>re is no way to say that dream images are made <str<strong>on</strong>g>of</str<strong>on</strong>g> mathematical points, as there<br />

is nothing smaller than pixels.<br />

— In dreams, we cannot clearly distinguish objects (‘matter’) and envir<strong>on</strong>ment<br />

(‘space’); they <str<strong>on</strong>g>of</str<strong>on</strong>g>ten mix.<br />

— In dreams, fluctuati<strong>on</strong>s appear both for images as well as for the background.<br />

— In dreams, sharp distincti<strong>on</strong>s are impossible. Dream space-time cannot be a set.<br />

— Dream moti<strong>on</strong> appears when approximate c<strong>on</strong>servati<strong>on</strong> (over time) is observed.<br />

— In dreams, dimensi<strong>on</strong>ality at small distances is not clear; two and three dimensi<strong>on</strong>s<br />

are mixed up there.<br />

In summary, the world <str<strong>on</strong>g>of</str<strong>on</strong>g> dreams seems to behave as if points and point particles do not<br />

exist; and since quantum theory and general relativity hold, the world <str<strong>on</strong>g>of</str<strong>on</strong>g> dreams seems<br />

to be described by extended c<strong>on</strong>stituents! We thus c<strong>on</strong>clude this short explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the physics <str<strong>on</strong>g>of</str<strong>on</strong>g> dreams with a fascinating c<strong>on</strong>jecture: evenifnaturewouldbeadream,an<br />

illusi<strong>on</strong> or a fantasy, we might still get most <str<strong>on</strong>g>of</str<strong>on</strong>g> the results that we discovered in our ascent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Moti<strong>on</strong> Mountain. (What differences with modern physics would be left?) Speaking<br />

with t<strong>on</strong>gue in cheek, the fear <str<strong>on</strong>g>of</str<strong>on</strong>g> our own faults <str<strong>on</strong>g>of</str<strong>on</strong>g> judgement, so rightly underlined by<br />

Descartes and many others after him, might not apply to fundamental physics.<br />

what is the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> colours?<br />

All colours around us are determined by the fine structure c<strong>on</strong>stant α –thecoupling<br />

c<strong>on</strong>stant for the electromagnetic interacti<strong>on</strong> at low energy – with its measured value<br />

1/137.035 999 139(31). <str<strong>on</strong>g>The</str<strong>on</strong>g> fine structure c<strong>on</strong>stant is also essential to describe most<br />

everyday devices and machines, as well as all human thoughts and movements. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

c<strong>on</strong>stant is an aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> every electric charge in nature.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model showed us that electrical charge is a property <str<strong>on</strong>g>of</str<strong>on</strong>g> tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> strands.<br />

In particular, the strand model showed:<br />

⊳ <str<strong>on</strong>g>The</str<strong>on</strong>g> fine structure c<strong>on</strong>stant describes the probability that a fluctuati<strong>on</strong> adds<br />

a twist to the chiral tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> electrically charged particles.<br />

We have not yet deduced an accurate value for the fine structure c<strong>on</strong>stant, but we seem<br />

Ref. 262 to have found out how to do so. In short, we seem to glimpse the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> all colours –<br />

and thus <str<strong>on</strong>g>of</str<strong>on</strong>g> all beauty around us. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s provide a beautiful explanati<strong>on</strong> for beauty.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


434 15 the top <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> mountain<br />

summary: what is moti<strong>on</strong>?<br />

“Deep rest is moti<strong>on</strong> in itself. Its moti<strong>on</strong> rests in<br />

Lao Tse, Tao Te King, <str<strong>on</strong>g>VI</str<strong>on</strong>g>, as translated by Walter<br />

Jerven.<br />

itself.”<br />

We can now answer the questi<strong>on</strong> that drove us through our adventure:<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. I, page 15<br />

⊳ Moti<strong>on</strong> is the observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>on</strong>e, unobservable,<br />

tangled and fluctuating strand that describes all <str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

Nature’s strand forms particles, horiz<strong>on</strong>s and space-time: these are the parts <str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

Particles are tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> strands; horiz<strong>on</strong>s and space-time are weaves <str<strong>on</strong>g>of</str<strong>on</strong>g> strands. <str<strong>on</strong>g>The</str<strong>on</strong>g> parts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nature move. <str<strong>on</strong>g>The</str<strong>on</strong>g> parts move because their strands fluctuate.<br />

Moti<strong>on</strong> appears because all parts in nature are approximate. Indeed, the observati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing switches and the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> strand segments fluctuating in a background<br />

space result and are possible because we approximate from the <strong>on</strong>e strand that makes up<br />

nature to the many parts inside nature. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>on</strong>e strand (approximately) forms the many<br />

elementary particles inside us. <str<strong>on</strong>g>Strand</str<strong>on</strong>g> segments and particles (approximately) lead us<br />

to introduce background space, matter and radiati<strong>on</strong>. Introducing background space<br />

implies observing moti<strong>on</strong>. Moti<strong>on</strong> thus appears automatically when approximate parts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nature, such as humans, animals or machines, describe other approximate parts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nature, such as other bodies or systems.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> is due to our introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the plural. Moti<strong>on</strong> results from<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> our forced use <str<strong>on</strong>g>of</str<strong>on</strong>g> many (approximate) parts to describe the unity <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. <str<strong>on</strong>g>The</str<strong>on</strong>g> observati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> results from approximati<strong>on</strong>s. All these approximate distincti<strong>on</strong>s are<br />

unavoidable and are due to the limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> our experience.<br />

Moti<strong>on</strong> appears as so<strong>on</strong> as we divide the world into parts and then follow these parts.<br />

Dividing nature into parts is not a c<strong>on</strong>scious act; our human nature – our senses and<br />

our brain – force us to perform it. And whenever we experience or talk about parts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the universe, we find moti<strong>on</strong>. Our senses and our brain are made to distinguish and to<br />

divide – and cannot do otherwise. We need to distinguish in order to survive, to think<br />

and to enjoy life. In a sense, we can say that moti<strong>on</strong> appears as a logical c<strong>on</strong>sequence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> our limitati<strong>on</strong>s; the fundamental limitati<strong>on</strong> is the <strong>on</strong>e that makes us distinguish and<br />

introduce parts, including points and sets.<br />

Moti<strong>on</strong> is an ‘artefact’ <str<strong>on</strong>g>of</str<strong>on</strong>g> locality. Locality is an approximati<strong>on</strong> and is due to our human<br />

nature. Distincti<strong>on</strong>, localizati<strong>on</strong> and moti<strong>on</strong> are inextricably linked.<br />

Moti<strong>on</strong> is low energy c<strong>on</strong>cept. Moti<strong>on</strong> does not exist at Planck scales, i.e., at the limits<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

Moti<strong>on</strong> is an artefact due to our limitati<strong>on</strong>s. This c<strong>on</strong>clusi<strong>on</strong> resembles what Zeno <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Elea stated 2500 years ago, that moti<strong>on</strong> is an illusi<strong>on</strong>. But in c<strong>on</strong>trast to Zeno’s pessimistic<br />

view, we now have a fascinating spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> results and tools at our dispositi<strong>on</strong>:<br />

they allow us to describe moti<strong>on</strong> and nature with high precisi<strong>on</strong>. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> all, these tools<br />

allow us to change ourselves and our envir<strong>on</strong>ment for the better.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


summary: what is moti<strong>on</strong>? 435<br />

Ref. 270<br />

“All the great things that have happened in the world first took place in a<br />

pers<strong>on</strong>’s imaginati<strong>on</strong>, and how tomorrow’s world will look like will largely<br />

depend <strong>on</strong> the power <str<strong>on</strong>g>of</str<strong>on</strong>g> imaginati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> those who are just learning to read right<br />

now.<br />

Astrid Lindgren*”<br />

* Astrid Lindgren (b. 1907 Näs, d. 2002 Stockholm) was a beloved writer <str<strong>on</strong>g>of</str<strong>on</strong>g> children books.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


POSTFACE<br />

Perhaps <strong>on</strong>ce you will read Plato’s Phaedrus, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the beautiful philosophical Greek<br />

texts. In it, Socrates is made to say that he almost never left the city walls because to him,<br />

as a ‘lover <str<strong>on</strong>g>of</str<strong>on</strong>g> learning, trees and the open country do not teach anything, whereas men<br />

in the town do.’ This is a veiled critique <str<strong>on</strong>g>of</str<strong>on</strong>g> Democritus, the most important and famous<br />

philosopher in Greece during Plato’s time. Democritus was the natural philosopher par<br />

excellence, and arguably had learned from nature – with its trees and open country –<br />

more than anybody else after him.<br />

After this adventure you can decide for yourself which <str<strong>on</strong>g>of</str<strong>on</strong>g> these two approaches is<br />

more c<strong>on</strong>genial to you. It might be useful to know that Aristotle, Plato’s pupil and the<br />

most influential Greek thinker, refused to choose and cultivated them both. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is no<br />

alternative in life to following <strong>on</strong>e’s own mind, and to enjoy doing so. If you enjoyed this<br />

particular trip, show it to your friends. For yourself, after this walk, sense intensively the<br />

pleasure <str<strong>on</strong>g>of</str<strong>on</strong>g> having accomplished something important. Many before you did not have<br />

the occasi<strong>on</strong>. Enjoy the beauty <str<strong>on</strong>g>of</str<strong>on</strong>g> the view <str<strong>on</strong>g>of</str<strong>on</strong>g>fered. Enjoy the vastness <str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong> it<br />

provides. Enjoy the impressi<strong>on</strong>s that it creates inside you. Collect them and rest. You<br />

will have a treasure that will be useful in many occasi<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g>n, when you feel the desire<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> going further, get ready for another <str<strong>on</strong>g>of</str<strong>on</strong>g> the adventures life has to <str<strong>on</strong>g>of</str<strong>on</strong>g>fer.<br />

Plato’s Phaedrus, written around 380 bce, is available in many pocket editi<strong>on</strong>s. Do not waste<br />

your time learning ancient Greek to read it; the translated versi<strong>on</strong>s are as beautiful as the original.<br />

Plato’s lifel<strong>on</strong>g avoidance <str<strong>on</strong>g>of</str<strong>on</strong>g> the natural sciences had two reas<strong>on</strong>s. First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, he was jealous<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Democritus. Plato never even cites Democritus in his texts. Democritus was the most prolific,<br />

daring, admired and successful philosopher <str<strong>on</strong>g>of</str<strong>on</strong>g> his time (and maybe <str<strong>on</strong>g>of</str<strong>on</strong>g> all times). Democritus<br />

was a keen student <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. His written works did not survive, because his studies were not<br />

c<strong>on</strong>genial to the followers <str<strong>on</strong>g>of</str<strong>on</strong>g> christianity, and thus they were not copied by the m<strong>on</strong>ks in the<br />

Middle Ages. <str<strong>on</strong>g>The</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> these texts is related to the sec<strong>on</strong>d reas<strong>on</strong> that kept Plato away from<br />

the natural sciences: he wanted to save his life. Plato had learned <strong>on</strong>e thing from men in the<br />

town: talking about nature is dangerous. Starting around his lifetime, for over 2000 years people<br />

practising the natural sciences were regularly c<strong>on</strong>demned to exile or to death for impiety. Fortunately,<br />

this is <strong>on</strong>ly rarely the case today. But such violence still occurs, and we can h<strong>on</strong>our the<br />

dangers that those preceding us had to overcome in order to allow us enjoying this adventure.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


Appendix A<br />

KNOT AND TANGLE GEOMETRY<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> following table provides a terse summary <str<strong>on</strong>g>of</str<strong>on</strong>g> the mathematics <str<strong>on</strong>g>of</str<strong>on</strong>g> knot shapes.<br />

TABLE 19 Important properties <str<strong>on</strong>g>of</str<strong>on</strong>g> knot, links and tangles.<br />

C<strong>on</strong>cept Defining property Other properties<br />

Knot / link / tangle<br />

Ideal knot, link,<br />

tangle (shape)<br />

Ribb<strong>on</strong> or framing<br />

Curvature <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

curve<br />

Normal vector or<br />

curvature vector<br />

Binormal vector<br />

Torsi<strong>on</strong><br />

Frenet frame at a<br />

curve point<br />

<strong>on</strong>e closed / several closed / <strong>on</strong>e or<br />

several open curves, all in 3d and<br />

without intersecti<strong>on</strong>s<br />

tightest possible knot, link or tangle<br />

(shape) assuming a rope <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stant<br />

diameter that is infinitely flexible and<br />

infinitely slippery<br />

short perpendicular (or n<strong>on</strong>-tangent)<br />

vector attached at each point <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

curve<br />

inverse curvature radius <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘touching’<br />

circle<br />

local vector normal to the curve, in<br />

directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the centre <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

‘touching’ circle, with length given by<br />

the curvature<br />

localunitvectornormaltothe<br />

tangent and to the normal/curvature<br />

vector<br />

local speed <str<strong>on</strong>g>of</str<strong>on</strong>g> rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

binormal vector; positive (negative)<br />

for right-handed (left-handed) helix<br />

‘natural’ local orthog<strong>on</strong>al frame <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

reference defined by unit tangent, unit<br />

normal/curvature and binormal<br />

vector<br />

ropelength is integral <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

arclength; ropelength is<br />

shape-dependent.<br />

at present, all n<strong>on</strong>-trivial ideal<br />

shapes are <strong>on</strong>ly known<br />

approximately; most ideal knots<br />

(almost surely) have kinks.<br />

measures departure from<br />

straightness, i.e., local bending <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

acurve.<br />

is given by the sec<strong>on</strong>d and first<br />

derivatives <str<strong>on</strong>g>of</str<strong>on</strong>g> the curve.<br />

measures departure from<br />

flatness, i.e., local twisting or<br />

local handedness <str<strong>on</strong>g>of</str<strong>on</strong>g> a curve;<br />

essentially a third derivative <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the curve.<br />

the Frenet frame differs at each<br />

curve point, the Frenet frame is<br />

not uniquely defined if the curve<br />

is locally straight.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


438 a knot geometry<br />

TABLE 19 (C<strong>on</strong>tinued) Important properties <str<strong>on</strong>g>of</str<strong>on</strong>g> knot, links and tangles.<br />

C<strong>on</strong>cept Defining property Other properties<br />

‘Natural’ framing<br />

or Frenet ribb<strong>on</strong><br />

defined by the local normal, i.e., local<br />

curvature vector<br />

for a closed curve, it is always<br />

closed and two-sided, and thus<br />

never a Moebius band.<br />

Linking number<br />

between two closed<br />

curves<br />

Linking number<br />

for a closed<br />

two-sided ribb<strong>on</strong><br />

Self-linking number<br />

or ‘natural’ linking<br />

number for a knot<br />

Link integral for an<br />

open curve<br />

Twist <str<strong>on</strong>g>of</str<strong>on</strong>g> a ribb<strong>on</strong>,<br />

open or closed<br />

Twist <str<strong>on</strong>g>of</str<strong>on</strong>g> a curve or<br />

knot<br />

Signed crossing<br />

number<br />

2d-writhe <str<strong>on</strong>g>of</str<strong>on</strong>g> a knot,<br />

or topological<br />

writhe,orTait<br />

number<br />

sloppily, number <str<strong>on</strong>g>of</str<strong>on</strong>g> times that two<br />

curves wind around each other, or,<br />

equivalently, half the number <str<strong>on</strong>g>of</str<strong>on</strong>g> times<br />

that the curves ‘swap’ positi<strong>on</strong><br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> times that the edges wind<br />

around each other<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> times that the edges <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

natural/Frenet ribb<strong>on</strong> wind around<br />

each other<br />

generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the linking number<br />

for knots to open curves<br />

Tw(R) is the total angle, in units <str<strong>on</strong>g>of</str<strong>on</strong>g> 2π,<br />

by which the ribb<strong>on</strong> rotates around<br />

the central axis <str<strong>on</strong>g>of</str<strong>on</strong>g> the ribb<strong>on</strong>; sloppily<br />

said, it measures the local helicity; this<br />

type <str<strong>on</strong>g>of</str<strong>on</strong>g> twist has no relati<strong>on</strong> to the<br />

first Reidemeister move<br />

Tw(K) is the total angle, in units <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

2π, by which the Frenet frame rotates<br />

around the tangent directi<strong>on</strong>, or<br />

equivalently, (total) twist <str<strong>on</strong>g>of</str<strong>on</strong>g> the Frenet<br />

ribb<strong>on</strong>, also called the total torsi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the curve; this type <str<strong>on</strong>g>of</str<strong>on</strong>g> twist has no<br />

relati<strong>on</strong> to the first Reidemeister move<br />

sum <str<strong>on</strong>g>of</str<strong>on</strong>g> positive minus sum <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

negative crossings in a given oriented<br />

2d projecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a curve or knot<br />

(sometimes called ‘2d-writhe’)<br />

signed crossing number for a minimal<br />

crossing number diagram/projecti<strong>on</strong><br />

(sometimes the term ‘2d-writhe’ is<br />

used for the signed crossing number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> any c<strong>on</strong>figurati<strong>on</strong>)<br />

topological invariant, i.e.,<br />

shape-independent;<br />

Lk(K1, K2) =<br />

1<br />

4π ∮ K2 ∮ K1<br />

r 12 (dr 1 ×dr 2 )<br />

r 3 12<br />

topological invariant, i.e.,<br />

shape-independent; always an<br />

integer.<br />

not a topological invariant,<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> inflecti<strong>on</strong><br />

points.<br />

usually not an integer.<br />

vanishes for ribb<strong>on</strong>s that are<br />

everywhere flat.<br />

not an integer even in case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

knots; depends <strong>on</strong> curve/knot<br />

shape; is different from zero for<br />

chiral curves/knots; is zero for<br />

achiral curves/knots that have a<br />

rigid reflective symmetry; twist<br />

and torsi<strong>on</strong> are <strong>on</strong>ly equal if the<br />

twist is defined with the Frenet<br />

ribb<strong>on</strong> – with other framings<br />

they differ.<br />

always an integer; depends <strong>on</strong><br />

shape.<br />

is shape-invariant; is always an<br />

integer; differs from 0 for all<br />

chiral knots; has the value 3 for<br />

the trefoil, 0 for the figure-eight<br />

knot, 5 for the 5 1 and 5 2 knots, 2<br />

for the 6 1 knot, 7 for the 7 1 and<br />

7 2 knots, 4 for the 8 1 knot, and 9<br />

for the 9 2 knot.<br />

.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


knot geometry 439<br />

TABLE 19 (C<strong>on</strong>tinued) Important properties <str<strong>on</strong>g>of</str<strong>on</strong>g> knot, links and tangles.<br />

C<strong>on</strong>cept Defining property Other properties<br />

Writhing number or<br />

3d-writhe <str<strong>on</strong>g>of</str<strong>on</strong>g> a knot<br />

Writhe <str<strong>on</strong>g>of</str<strong>on</strong>g> ideal,<br />

alternating knots<br />

and <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

odd-comp<strong>on</strong>ent<br />

links<br />

Writhe <str<strong>on</strong>g>of</str<strong>on</strong>g> ideal,<br />

alternating<br />

even-comp<strong>on</strong>ent<br />

links<br />

Writhe <str<strong>on</strong>g>of</str<strong>on</strong>g> a ribb<strong>on</strong><br />

Writhe <str<strong>on</strong>g>of</str<strong>on</strong>g> an open<br />

curve<br />

Calugareanu’s<br />

theorem<br />

Wr(K) is the average, over all<br />

projecti<strong>on</strong> directi<strong>on</strong>s, <str<strong>on</strong>g>of</str<strong>on</strong>g> the signed<br />

crossing number; sloppily said, it<br />

measures how wrapped, coiled and<br />

chiral a knot is, i.e., it measures the<br />

global helicity<br />

the value is quasi-quantized for<br />

alternating knots with small crossing<br />

numbers (< 11)invaluesthatdiffer<br />

from m4/7 by <strong>on</strong>ly a few per cent<br />

the value is quasi-quantized for<br />

alternating links with small crossing<br />

numbers (< 11)invaluesthatdiffer<br />

from 2/7 + m4/7 by <strong>on</strong>ly a few per<br />

cent<br />

sloppily said, measures how wrapped,<br />

coiled and chiral a ribb<strong>on</strong> is, i.e.,<br />

measures its global helicity<br />

for any knot K and any ribb<strong>on</strong> G<br />

attached to it,<br />

Lk(K, G) = Tw(K, G) + Wr(K)<br />

depends <strong>on</strong> knot shape; usually<br />

is not an integer; is different<br />

from zero for chiral knots; is<br />

zero for achiral knots that have a<br />

rigid reflective symmetry;<br />

Wr(K) = 1<br />

4π ∮ K ∮ K<br />

r 12 (dr 1 ×dr 2 )<br />

r 3 12<br />

uses no ribb<strong>on</strong> and thus is<br />

independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the ribb<strong>on</strong> shape<br />

attached to the knot.<br />

is additive under knot additi<strong>on</strong><br />

for knots with small crossing<br />

numbers (< 11) within less than<br />

1%.<br />

vanishes for plane curves.<br />

for applying the theorem to open<br />

curves, a (standardized) closing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> curves is required.<br />

;<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


CHALLENGE HINTS AND SOLUTIONS<br />

Page 281<br />

Challenge 2, page29: TakeΔf Δt ⩾ 1 and substitute Δl = c/Δf and Δa= c/Δt.<br />

Challenge 16, page44: Yes. But we can also argue its opposite, namely that matter appears when<br />

space is compressed too much. Both viewpoints are correct.<br />

Challenge 22, page47: <str<strong>on</strong>g>The</str<strong>on</strong>g> strictest upper limits are those with the smallest exp<strong>on</strong>ent for length,<br />

and the strictest lower limits are those with the largest exp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> length.<br />

Challenge 24, page49: To my knowledge, no such limits have been published. Do it yourself!<br />

Challenge 25, page49: <str<strong>on</strong>g>The</str<strong>on</strong>g> system limits cannot be chosen in other ways; after the limits have<br />

been corrected, the limits given here should still apply.<br />

Challenge 28, page50: Just insert numbers to check this.<br />

Challenge 30, page51: No.<br />

Challenge 32, page53: If you ever write such a table, publish it and send me a copy. I will include<br />

it in the text.<br />

Challenge 35, page66: Sloppily speaking, such a clock is not able to move its hands in a way that<br />

guarantees precise time reading.<br />

Challenge 39, page83: <str<strong>on</strong>g>The</str<strong>on</strong>g> final energy E produced by a prot<strong>on</strong> accelerator increases with its<br />

radius R roughly as E∼R 1.2 ;asanexample,CERN’s LHC achieved about 13 TeV for a radius <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

4.3 km. Thus we would get a radius <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 100 light years for a Planck energy accelerator.<br />

Building an accelerator achieving Planck energy is impossible.<br />

Nature has no accelerator <str<strong>on</strong>g>of</str<strong>on</strong>g> this power, but gets near it. <str<strong>on</strong>g>The</str<strong>on</strong>g> maximum measured value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cosmic rays, 10 22 eV, is about <strong>on</strong>e milli<strong>on</strong>th <str<strong>on</strong>g>of</str<strong>on</strong>g> the Planck energy. <str<strong>on</strong>g>The</str<strong>on</strong>g> mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> accelerati<strong>on</strong><br />

is still obscure. Neither black holes nor the cosmic horiz<strong>on</strong> seem to be sources, for some yet<br />

unclear reas<strong>on</strong>s. This issue is still a topic <str<strong>on</strong>g>of</str<strong>on</strong>g> research.<br />

Challenge 40, page84: <str<strong>on</strong>g>The</str<strong>on</strong>g> Planck energy is E Pl = √ħc 5 /G =2.0GJ. Car fuel delivers about<br />

43 MJ/kg. Thus the Planck energy corresp<strong>on</strong>ds to the energy <str<strong>on</strong>g>of</str<strong>on</strong>g> 47 kg <str<strong>on</strong>g>of</str<strong>on</strong>g> car fuel, about a tankful.<br />

Challenge 41, page84: Not really, as the mass error is equal to the mass <strong>on</strong>ly in the Planck case.<br />

Challenge 42, page84: It is improbable that such deviati<strong>on</strong>s can be found, as they are masked by<br />

the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum gravity effects. However, if you do think that you have a predicti<strong>on</strong><br />

for a deviati<strong>on</strong>, publish it, and send the author an email.<br />

Challenge 43, page84: <str<strong>on</strong>g>The</str<strong>on</strong>g> minimum measurable distance is the same for single particles and<br />

systems <str<strong>on</strong>g>of</str<strong>on</strong>g> particles.<br />

Challenge 44, page85: <str<strong>on</strong>g>The</str<strong>on</strong>g>re is no gravitati<strong>on</strong> at those energies and there are no particles. <str<strong>on</strong>g>The</str<strong>on</strong>g>re<br />

is thus no paradox.<br />

Challenge 45, page85: <str<strong>on</strong>g>The</str<strong>on</strong>g> issue is still being debated; a good candidate for a minimum momentum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a single particle is given by ħ/R,whereR is the radius <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe. Is this answer<br />

satisfying?<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


challenge hints and soluti<strong>on</strong>s 441<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. I, page 260<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 258<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. III, page 324<br />

Challenge 46, page86: All menti<strong>on</strong>ed opti<strong>on</strong>s could be valid at the same time. <str<strong>on</strong>g>The</str<strong>on</strong>g> issue is not<br />

closed and clear thinking about it is not easy.<br />

Challenge 47, page86: <str<strong>on</strong>g>The</str<strong>on</strong>g> precise energy scale is not clear. <str<strong>on</strong>g>The</str<strong>on</strong>g> scale is either the Planck energy<br />

or within a few orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude from it; the lowest possible energy is thus around a<br />

thousandth <str<strong>on</strong>g>of</str<strong>on</strong>g> the Planck energy.<br />

Challenge 49, page88: If you can think <str<strong>on</strong>g>of</str<strong>on</strong>g> an experiment, publish the proposal, and send the<br />

author an email.<br />

Challenge 50, page91: <str<strong>on</strong>g>The</str<strong>on</strong>g> table <str<strong>on</strong>g>of</str<strong>on</strong>g> aggregates shows this clearly.<br />

Challenge 51, page92: <str<strong>on</strong>g>The</str<strong>on</strong>g> cosmic background radiati<strong>on</strong> is a clock in the widest sense <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

term.<br />

Challenge 52, page93: <str<strong>on</strong>g>The</str<strong>on</strong>g> way to deduce cosmological limits is presented in detail in the secti<strong>on</strong><br />

starting <strong>on</strong> page 46.<br />

Challenge 63, page101: Also measurement errors at Planck scales prevent the determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

topology at those scales.<br />

Challenge 65, page103: <str<strong>on</strong>g>The</str<strong>on</strong>g> measurement error is as large as the measurement result.<br />

Challenge 69, page105: You will not find <strong>on</strong>e.<br />

Challenge 71, page106: If you find <strong>on</strong>e, publish it, and send the author an email.<br />

Challenge 73, page107: For the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nature this is a c<strong>on</strong>tradicti<strong>on</strong>. Nevertheless, the<br />

term ‘universe’, ‘set <str<strong>on</strong>g>of</str<strong>on</strong>g> all sets’ and other mathematical terms, as well as many religious c<strong>on</strong>cepts<br />

are <str<strong>on</strong>g>of</str<strong>on</strong>g> this type.<br />

Challenge 74, page109: No, for the reas<strong>on</strong>s menti<strong>on</strong>ed earlier <strong>on</strong>: fundamental measurement<br />

errors for horiz<strong>on</strong> measurements, as well as many other effects, prevent this. <str<strong>on</strong>g>The</str<strong>on</strong>g> speculati<strong>on</strong> is<br />

another example <str<strong>on</strong>g>of</str<strong>on</strong>g> misguided fantasy about extremal identity.<br />

Challenge 75, page109: <str<strong>on</strong>g>The</str<strong>on</strong>g> physical c<strong>on</strong>cepts most related to ‘m<strong>on</strong>ad’ are ‘strand’ and<br />

‘universe’,asshowninthesec<strong>on</strong>dhalf<str<strong>on</strong>g>of</str<strong>on</strong>g>thistext.<br />

Challenge 76, page109: <str<strong>on</strong>g>The</str<strong>on</strong>g> macroscopic c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe may be observer-dependent.<br />

But to speak about many universes (Many ‘everythings’?) or a ‘multiverse’ (What is more than<br />

everything? Why <strong>on</strong>ly <strong>on</strong>e multiverse?) is pure n<strong>on</strong>sense.<br />

Challenge 79, page109: True <strong>on</strong>ly if it were possible to do this. Because particles and space are<br />

indistinguishable, removing particles means to remove everything. (<str<strong>on</strong>g>The</str<strong>on</strong>g> strand model visualizes<br />

this c<strong>on</strong>necti<strong>on</strong> most clearly.)<br />

Challenge 81, page109: True. Existence is the ability to interact. If the ability disappears, existence<br />

disappears. In other words, ‘existence’ is a low-energy c<strong>on</strong>cept.<br />

Challenge 82, page111: If you find a sensible statement about the universe, publish it! And send<br />

it to the author as well. <str<strong>on</strong>g>The</str<strong>on</strong>g> next challenge shows <strong>on</strong>e reas<strong>on</strong> why this issue is interesting. In<br />

additi<strong>on</strong>, such a statement would c<strong>on</strong>tradict the c<strong>on</strong>clusi<strong>on</strong>s <strong>on</strong> the combined effects <str<strong>on</strong>g>of</str<strong>on</strong>g> general<br />

relativity and quantum theory.<br />

Challenge 83, page111: PlotinusintheEnneads has defined ‘god’ in exactly this way. Later,<br />

Augustine in De Trinitate and in several other texts, and many subsequent theologians have taken<br />

up this view. (See also Thomas Aquinas, Summa c<strong>on</strong>tra gentiles,1,30.)<str<strong>on</strong>g>The</str<strong>on</strong>g>ideatheyproposeis<br />

simple: it is possible to clearly say what ‘god’ is not, but it is impossible to say what ‘god’ is.<br />

This statement is also part <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>of</str<strong>on</strong>g>ficial Roman Catholic Catechism: see part <strong>on</strong>e, secti<strong>on</strong> <strong>on</strong>e,<br />

chapter<strong>on</strong>e,IV,43,foundatwww.vatican.va/archive/ENG0015/__PC.HTM. Similar statements<br />

are found in Judaism, Hinduism and Buddhism.<br />

In other terms, theologians admit that ‘god’ cannot be defined, that the term has no properties<br />

or c<strong>on</strong>tent, and that therefore the term cannot be used in any positive sentence. <str<strong>on</strong>g>The</str<strong>on</strong>g> aspects<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


442 challenge hints and soluti<strong>on</strong>s<br />

Challenge 227 e<br />

Challenge 228 e<br />

comm<strong>on</strong> to ‘universe’ and to ‘god’ suggest the c<strong>on</strong>clusi<strong>on</strong> that both are the same. Indeed, the<br />

analogy between the two c<strong>on</strong>cepts can be expanded to a pro<str<strong>on</strong>g>of</str<strong>on</strong>g>: both c<strong>on</strong>cepts have the same<br />

c<strong>on</strong>tent, the same boundary, and the same domain <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>. (This is an intriguing and<br />

fascinating exercise.) In fact, this might be the most interesting <str<strong>on</strong>g>of</str<strong>on</strong>g> all pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the existence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

‘god’, as it lacks all the problems that the more comm<strong>on</strong> ‘pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s’ have. Despite its interest, this<br />

pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence is not found in any book <strong>on</strong> the topic yet. <str<strong>on</strong>g>The</str<strong>on</strong>g> reas<strong>on</strong> is tw<str<strong>on</strong>g>of</str<strong>on</strong>g>old. First, the<br />

results <str<strong>on</strong>g>of</str<strong>on</strong>g> modern physics – showing that the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> universe has all these strange properties<br />

– are not comm<strong>on</strong> knowledge yet. Sec<strong>on</strong>dly, the result <str<strong>on</strong>g>of</str<strong>on</strong>g> the pro<str<strong>on</strong>g>of</str<strong>on</strong>g>, the identity <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘god’ and<br />

‘universe’ – also called pantheism – is a heresy for most religi<strong>on</strong>s. It is an ir<strong>on</strong>y that the catholic<br />

catechism, together with modern physics, can be used to show that pantheism is correct, because<br />

any catholic who defends pantheism (or other heresies following from modern physics) incurs<br />

automatic excommunicati<strong>on</strong>, latae sententiae, without any need for a formal procedure.<br />

If <strong>on</strong>e is ready to explore the identity <str<strong>on</strong>g>of</str<strong>on</strong>g> universe and ‘god’, <strong>on</strong>e finds that a statement like<br />

‘god created the universe’ translates as ‘the universe implies the universe’. <str<strong>on</strong>g>The</str<strong>on</strong>g> original statement<br />

is thus not a lie any more, but is promoted to a tautology. Similar changes appear for many<br />

other – but not all – statements using the term ‘god’. (<str<strong>on</strong>g>The</str<strong>on</strong>g> problems with the expressi<strong>on</strong> ‘in the<br />

beginning’ remain, though.) In fact, <strong>on</strong>e can argue that statements about ‘god’ are <strong>on</strong>ly sensible<br />

and true if they remain sensible and true after the term has been exchanged with ‘universe’.<br />

Enjoy the explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such statements.<br />

Challenge 85, page114: If you find <strong>on</strong>e, publish it and send it also to me. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>jecture is that<br />

no such effects exist.<br />

Challenge 87, page114: In fact, no length below the Planck length itself plays any role in nature.<br />

Challenge 89, page115: You need quantum humour, because the result obviously c<strong>on</strong>tradicts a<br />

previous <strong>on</strong>e given <strong>on</strong> page 94 that includes general relativity.<br />

Challenge 92, page124: <str<strong>on</strong>g>The</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial dimensi<strong>on</strong>s must be given first, in order to talk<br />

about spheres.<br />

Challenge 93, page128: This is a challenge to you to find out. It is fun, it may yield a result in<br />

c<strong>on</strong>tradicti<strong>on</strong> with the arguments given so far (publish it in this case), or it may yield an independent<br />

check <str<strong>on</strong>g>of</str<strong>on</strong>g> the results <str<strong>on</strong>g>of</str<strong>on</strong>g> the secti<strong>on</strong>.<br />

Challenge 95, page132: This issue is open and still a subject <str<strong>on</strong>g>of</str<strong>on</strong>g> research. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>jecture <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

author is that the answer is negative. If you find an alternative, publish it, and send the author<br />

an email.<br />

Challenge 97, page137: <str<strong>on</strong>g>The</str<strong>on</strong>g> lid <str<strong>on</strong>g>of</str<strong>on</strong>g> a box must obey the indeterminacy relati<strong>on</strong>. It cannot be at<br />

perfect rest with respect to the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the box.<br />

Challenge 99, page138: No, because the cosmic background is not a Planck scale effect, but an<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> much lower energy.<br />

Challenge 100, page138: Yes, at Planck scales all interacti<strong>on</strong>s are strand deformati<strong>on</strong>s; therefore<br />

collisi<strong>on</strong>s and gravity are indistinguishable there.<br />

Challenge 101, page138: No. Time is c<strong>on</strong>tinuous <strong>on</strong>ly if either quantum theory and point<br />

particles or general relativity and point masses are assumed. <str<strong>on</strong>g>The</str<strong>on</strong>g> argument shows that <strong>on</strong>ly the<br />

combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both theories with c<strong>on</strong>tinuity is impossible.<br />

Challenge 102, page138: You should, because at Planck scales nature’s inherent measurement<br />

errors cannot clearly distinguish between different measurement results.<br />

Challenge 103, page138: Westillhavethechancet<str<strong>on</strong>g>of</str<strong>on</strong>g>indthebestapproximatec<strong>on</strong>ceptspossible.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re is no reas<strong>on</strong> to give up.<br />

Challenge 104, page138: Here are a few thoughts. A beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> the big bang does not exist;<br />

something similar is given by that piece <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous entity which is encountered when going<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


challenge hints and soluti<strong>on</strong>s 443<br />

Page 369<br />

backwards in time as much as possible. This has several implicati<strong>on</strong>s.<br />

— Going backwards in time as far as possible – towards the ‘beginning’ <str<strong>on</strong>g>of</str<strong>on</strong>g> time – is the same as<br />

zooming to smallest distances: we find a single strand <str<strong>on</strong>g>of</str<strong>on</strong>g> the amoeba.<br />

— In other words, we speculate that the whole world is <strong>on</strong>e single piece, fluctuating, and possibly<br />

tangled, knotted or branched.<br />

— Going far away into space – to the border <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe – is like taking a snapshot with a<br />

short shutter time: strands everywhere.<br />

— Whenever we sloppily say that extended entities are ‘infinite’ in size, we <strong>on</strong>ly mean that they<br />

reach the horiz<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe.<br />

In summary, no starting point <str<strong>on</strong>g>of</str<strong>on</strong>g> the big bang exists, because time does not exist there. For the<br />

same reas<strong>on</strong>, no initial c<strong>on</strong>diti<strong>on</strong>s for particles or space-time exist. In additi<strong>on</strong>, this shows that<br />

the big bang involved no creati<strong>on</strong>, because without time and without possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> choice, the<br />

term ‘creati<strong>on</strong>’ makes no sense.<br />

Challenge 105, page138: <str<strong>on</strong>g>The</str<strong>on</strong>g> equivalence follows from the fact that all these processes require<br />

Planck energy, Planck measurement precisi<strong>on</strong>, Planck curvature, and Planck shutter time.<br />

Challenge 106, page138: No, as explained later <strong>on</strong> in the text.<br />

Challenge 107, page139: Probably there is nothing wr<strong>on</strong>g with the argument. For example, in<br />

the strand model, all observables are composed <str<strong>on</strong>g>of</str<strong>on</strong>g> fundamental events, and so, in some way, all<br />

observables are fundamentally indistinguishable.<br />

Challenge 108, page139: If not, force yourself. Brainstorming is important in life, as is the subsequent<br />

step: the checking <str<strong>on</strong>g>of</str<strong>on</strong>g> the speculati<strong>on</strong>s.<br />

Challenge 113, page151: <str<strong>on</strong>g>The</str<strong>on</strong>g> author would like to receive a mail <strong>on</strong> your reas<strong>on</strong>s for disagreement.<br />

Challenge 114, page153: Let the author know if you succeed. And publish the results.<br />

Challenge 115, page153: Energy is acti<strong>on</strong> per time. Now, the Planck c<strong>on</strong>stant is the unit <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong>,<br />

and is defined by a crossing switch. A system that c<strong>on</strong>tinuously produces a crossing switch<br />

for every Planck time running by thus has Planck energy. An example would be a tangle that is<br />

rotating extremely rapidly, <strong>on</strong>ce per Planck time, producing a crossing switch for every turn.<br />

Momentum is acti<strong>on</strong> per length. A system that c<strong>on</strong>tinuously produces a crossing switch<br />

whenever it advances by a Planck length has Planck momentum. An example would be a tangle<br />

c<strong>on</strong>figurati<strong>on</strong> that lets a switch hop from <strong>on</strong>e strand to the next under tight strand packing.<br />

Force is acti<strong>on</strong> per length and time. A system that c<strong>on</strong>tinuously produces a crossing switch<br />

for every Planck time that passes by and for every Planck length it advances through exerts a<br />

Planck force. A tangle with the structure <str<strong>on</strong>g>of</str<strong>on</strong>g> a screw that rotates and advances with sufficient<br />

speed would be an example.<br />

Challenge 119, page163: Yes; the appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> a crossing does not depend <strong>on</strong> distance or <strong>on</strong><br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> strands in between.<br />

Challenge 120, page163: No; more than three dimensi<strong>on</strong>s do not allow us to define a crossing<br />

switch.<br />

Challenge 121, page163: If so, let the author know. If the generalizati<strong>on</strong> is genuine, the strand<br />

model is not correct.<br />

Challenge 133, page190: <str<strong>on</strong>g>The</str<strong>on</strong>g> magnitude at a point should be related to the vectorial sum <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

inverse shortest crossing distances at that point.<br />

Challenge 139, page201: This algebraic transformati<strong>on</strong> is shown in all textbooks that treat the<br />

Pauli equati<strong>on</strong>. It can also be checked by writing the two equati<strong>on</strong>s out comp<strong>on</strong>ent by comp<strong>on</strong>ent.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


444 challenge hints and soluti<strong>on</strong>s<br />

Challenge 143, page222: Yes, as can easily be checked by rereading the definiti<strong>on</strong>s with the<br />

spinor tangle descripti<strong>on</strong> in mind.<br />

Challenge 146, page222: No c<strong>on</strong>tradicti<strong>on</strong> is known.<br />

Challenge 147, page222: In the relativistic case, local space curvature is also taken into account.<br />

Challenge 149, page222: Find out, publish the result, and let the author know.<br />

Challenge 150, page223: If the strand interpenetrati<strong>on</strong> is allowed generally, quantum theory is<br />

impossible to derive, as the spinor behaviour would not be possible. If strand interpenetrati<strong>on</strong><br />

were allowed <strong>on</strong>ly under certain c<strong>on</strong>diti<strong>on</strong>s (such as <strong>on</strong>ly for a strand with itself, but not am<strong>on</strong>g<br />

two different strands), quantum theory might still possible. A similar process lies at the basis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mass generati<strong>on</strong>, as shown in the secti<strong>on</strong> <strong>on</strong> the weak interacti<strong>on</strong>.<br />

Challenge 152, page223: <str<strong>on</strong>g>The</str<strong>on</strong>g> belt trick would imply that a wheel rolls over its own blood supply<br />

at every sec<strong>on</strong>d rotati<strong>on</strong>.<br />

Challenge 161, page245: <str<strong>on</strong>g>The</str<strong>on</strong>g> author bets that you cannot find a deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model<br />

from QED. Ifyoufind<strong>on</strong>e,publishit!<br />

Challenge 172, page274: No slide is possible, thus no crossing change appears; thus the situati<strong>on</strong><br />

has no observable effects. If we deform <strong>on</strong>e slide before the slide – which is possible – we<br />

get back the situati<strong>on</strong> already discussed above.<br />

Challenge 177, page275: For the Wightman axioms, this seems to be the case; however, a formal<br />

pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is still missing. <str<strong>on</strong>g>The</str<strong>on</strong>g> same is expected for the Haag–Kastler axioms.<br />

Challenge 187, page303: A black hole has at least <strong>on</strong>e crossing, thus at least a Planck mass.<br />

Challenge 193, page324: <str<strong>on</strong>g>The</str<strong>on</strong>g>se tangles are not rati<strong>on</strong>al. In the renewed strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> 2015,<br />

they cannot form; they are not allowed and do not represent any particle.<br />

Challenge 195, page339: Such a tangle is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> several gravit<strong>on</strong>s.<br />

Challenge 196, page346: Tail braiding leads to tangledness, which in turn is the basis for core<br />

rotati<strong>on</strong>. And core rotati<strong>on</strong> is kinetic energy, not rest mass.<br />

Challenge 198, page346: <str<strong>on</strong>g>The</str<strong>on</strong>g> issue is topic <str<strong>on</strong>g>of</str<strong>on</strong>g> research; for symmetry reas<strong>on</strong>s it seems that a<br />

state in which each <str<strong>on</strong>g>of</str<strong>on</strong>g> the six quarks has the same bound to the other five quarks cannot exist.<br />

Challenge 205, page372: If you find such an estimate, publish it and send it to the author. A<br />

really good estimate also answers the following questi<strong>on</strong>: why does particle mass increase with<br />

core complexity? A tangle with a complex core, i.e., with a core <str<strong>on</strong>g>of</str<strong>on</strong>g> large ropelength, has a large<br />

mass value. Any correct estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> the mass must yield this property. But a more complex knot<br />

will have a smaller probability for the belt trick. We seem to be forced to c<strong>on</strong>clude that particle<br />

mass is not due to the belt trick al<strong>on</strong>e.<br />

Challenge 206, page373: If you find such an estimate, publish it and send it to the author.<br />

Challenge 208, page373: Probably not.<br />

Challenge 209, page373: Probably not.<br />

Challenge 210, page373: Probably not.<br />

Challenge 211, page374: Findout–andlettheauthorknow.<br />

Challenge 213, page378: This would be an interesting result worth a publicati<strong>on</strong>.<br />

Challenge 216, page386: If you plan such a calculati<strong>on</strong>, the author would be delighted to help.<br />

Challenge 220, page395: Take up the challenge!<br />

Challenge 222, page423: <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a good chance, however, that such alternatives can be eliminated<br />

rather quickly. If you cannot do so, do publish the argument, and let the author know.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


challenge hints and soluti<strong>on</strong>s 445<br />

Challenge 224, page431: Nobody can really answer ‘why’-questi<strong>on</strong>s about human acti<strong>on</strong>s.<br />

Climbing, like every other passi<strong>on</strong>, is also a symbolic activity. Climbing can be a search for<br />

adventure, for meaning, for our mother or father, for ourselves, for happiness, or for peace.<br />

Challenge 225, page432: Also in dreams, speeds can be compared; and also in dreams, a kind<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> causality holds (though not a trivial <strong>on</strong>e). Thus there is an invariant and therefore a maximum<br />

speed.<br />

Challenge 226, page433: Probably n<strong>on</strong>e. <str<strong>on</strong>g>The</str<strong>on</strong>g> answer depends <strong>on</strong> whether the existence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

strands can be deduced from dreams. If strands can be deduced from dreams, all <str<strong>on</strong>g>of</str<strong>on</strong>g> physics<br />

follows. <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>jecture is that this deducti<strong>on</strong> is possible. If you find an argument against or in<br />

favour <str<strong>on</strong>g>of</str<strong>on</strong>g> this c<strong>on</strong>jecture, let the author know.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


BIBLIOGRAPHY<br />

“<str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>on</strong>ly end <str<strong>on</strong>g>of</str<strong>on</strong>g> writing is to enable the readers<br />

better to enjoy life, or better to endure it.<br />

Samuel Johns<strong>on</strong>*”<br />

1 See the first volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the Moti<strong>on</strong> Mountain series, Fall, Flow and Heat, available as free<br />

download at www.moti<strong>on</strong>mountain.net. Cited<strong>on</strong>pages17 and 418.<br />

2 See the sec<strong>on</strong>d volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the Moti<strong>on</strong> Mountain series, Relativity, available as free download<br />

at www.moti<strong>on</strong>mountain.net. Cited<strong>on</strong>pages17, 18, 418,and448.<br />

3 See the third volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the Moti<strong>on</strong> Mountain series, Light, Charges and Brains, available<br />

as free download at www.moti<strong>on</strong>mountain.net, aswellasthementi<strong>on</strong>edfourthandfifth<br />

volumes. Cited <strong>on</strong> pages 17 and 418.<br />

4 See the fourth and fifth volumes <str<strong>on</strong>g>of</str<strong>on</strong>g> the Moti<strong>on</strong> Mountain series, <str<strong>on</strong>g>The</str<strong>on</strong>g> Quantum <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Change and Pleasure, Technology and the Stars, available as free download at www.<br />

moti<strong>on</strong>mountain.net. Cited<strong>on</strong>pages18, 418, 419,and447.<br />

5 <str<strong>on</strong>g>The</str<strong>on</strong>g> most precise value <str<strong>on</strong>g>of</str<strong>on</strong>g> the fine structure c<strong>on</strong>stant is determined from a weighted<br />

world average <str<strong>on</strong>g>of</str<strong>on</strong>g> high-precisi<strong>on</strong> measurements by a special internati<strong>on</strong>al scientific<br />

committee called CODATA. Its website is www.codata.org/committees-and-groups/<br />

fundamental-physical-c<strong>on</strong>stants. <str<strong>on</strong>g>The</str<strong>on</strong>g> site also provides the latest <str<strong>on</strong>g>of</str<strong>on</strong>g>ficial publicati<strong>on</strong><br />

with the values <str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental c<strong>on</strong>stants. <str<strong>on</strong>g>The</str<strong>on</strong>g> most recent value <str<strong>on</strong>g>of</str<strong>on</strong>g> the fine structure<br />

c<strong>on</strong>stant is published at physics.nist.gov/cgi-bin/cuu/Value?alphinv and physics.nist.gov/<br />

cgi-bin/cuu/Value?alph. Cited<strong>on</strong>pages18, 229, 382, 391,and433.<br />

6 See for example, the book by Robert Laughlin, A Different Universe: Reinventing <str<strong>on</strong>g>Physics</str<strong>on</strong>g><br />

from the Bott<strong>on</strong> Down Basic Books, 2005. Of the numerous books that discuss the idea <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a final theory, this is the <strong>on</strong>ly <strong>on</strong>e worth reading, and the <strong>on</strong>ly <strong>on</strong>e cited in this bibliography.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> opini<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Laughlin are worth p<strong>on</strong>dering. Cited <strong>on</strong> page 21.<br />

7 Many physicists, including Steven Weinberg, regularly – and incorrectly – claim in interviews<br />

that the measurement problem is not solved yet. Cited <strong>on</strong> page 21.<br />

8 Undocumented sentences to this effect are regularly attributed to Albert Einstein. Because<br />

Einstein was a pantheist, as he <str<strong>on</strong>g>of</str<strong>on</strong>g>ten explained, his statements <strong>on</strong> the ‘mind <str<strong>on</strong>g>of</str<strong>on</strong>g> god’ are not<br />

really to be taken seriously. <str<strong>on</strong>g>The</str<strong>on</strong>g>y were all made – if at all – in a humorous t<strong>on</strong>e. Cited <strong>on</strong><br />

page 21.<br />

9 For an example for the inappropriate fear <str<strong>on</strong>g>of</str<strong>on</strong>g> unificati<strong>on</strong>, see the theatre play Die Physiker<br />

by the Swiss author Friedrich Dürrenmatt. Several other plays and novels took over<br />

this type <str<strong>on</strong>g>of</str<strong>on</strong>g> disinformati<strong>on</strong>. Cited <strong>on</strong> page 22.<br />

* This is a statement from the brilliant essay by the influential writer Samuel Johns<strong>on</strong>, Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Soame<br />

Jenyns’ “A Free Enquiry Into the Nature and Origin <str<strong>on</strong>g>of</str<strong>on</strong>g> Evil”, 1757. See www.samueljohns<strong>on</strong>.com.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


ibliography 447<br />

10 Exploring the spirit <str<strong>on</strong>g>of</str<strong>on</strong>g> play is the subject <str<strong>on</strong>g>of</str<strong>on</strong>g> research <str<strong>on</strong>g>of</str<strong>on</strong>g> the famous Nati<strong>on</strong>al Institute for<br />

Play, founded by Stuart Brown, and found at www.nifplay.org. Cited<strong>on</strong>page22.<br />

11 See e.g. the 1922 lectures by Lorentz at Caltech, published as H. A. Lorentz, Problems <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Modern <str<strong>on</strong>g>Physics</str<strong>on</strong>g>, edited by H. Bateman, Ginn and Company, 1927, page 99. Cited <strong>on</strong> page<br />

28.<br />

12 Bohr explained the indivisibilty <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> in his famous Como lecture, printed<br />

in N. Bohr, Atomtheorie und Naturbeschreibung, Springer, 1931. It was translated into<br />

English language as N. Bohr, Atomic <str<strong>on</strong>g>The</str<strong>on</strong>g>ory and the Descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nature, Cambridge<br />

University Press, 1934. More statements about the indivisibility <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong><br />

can be found in N. Bohr, Atomic <str<strong>on</strong>g>Physics</str<strong>on</strong>g> and Human Knowledge, Science Editi<strong>on</strong>s, New<br />

York, 1961. For summaries <str<strong>on</strong>g>of</str<strong>on</strong>g> Bohr’s ideas by others see Max Jammer, <str<strong>on</strong>g>The</str<strong>on</strong>g> Philosophy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Quantum Mechanics,Wiley,firstediti<strong>on</strong>,1974,pp.90–91,andJohnH<strong>on</strong>ner,<str<strong>on</strong>g>The</str<strong>on</strong>g> Descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Nature – Niels Bohr and the Philosophy <str<strong>on</strong>g>of</str<strong>on</strong>g> Quantum <str<strong>on</strong>g>Physics</str<strong>on</strong>g>, Clarend<strong>on</strong> Press,<br />

1987, p. 104. Cited <strong>on</strong> page 29.<br />

13 Foranoverview<str<strong>on</strong>g>of</str<strong>on</strong>g>thequantum<str<strong>on</strong>g>of</str<strong>on</strong>g>acti<strong>on</strong>asabasis<str<strong>on</strong>g>of</str<strong>on</strong>g>quantumtheory,seethefirstchapter<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. IV, page 15 <str<strong>on</strong>g>of</str<strong>on</strong>g> the fourth volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the Moti<strong>on</strong> Mountain series, Ref. 4. Cited <strong>on</strong> page 30.<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. IV, page 182 14 An overview <str<strong>on</strong>g>of</str<strong>on</strong>g> EBK quantizati<strong>on</strong> can be found in the volume <strong>on</strong> quantum theory. Cited<br />

<strong>on</strong> page 30.<br />

15 Minimal entropy is discussed by L. Szilard, Über die Entropieverminderung in einem<br />

thermodynamischen System bei Eingriffen intelligenter Wesen, ZeitschriftfürPhysik53,<br />

pp. 840–856, 1929. This classic paper can also be found in English translati<strong>on</strong> in his collected<br />

works. Cited <strong>on</strong> page 31.<br />

16 See for example A.E.Shalyt-Margolin & A.Ya.Tregubovich, Generalized<br />

uncertainty relati<strong>on</strong> in thermodynamics, preprint at arxiv.org/abs/gr-qc/0307018, or<br />

J. Uffink & J. van Lith-van Dis, <str<strong>on</strong>g>The</str<strong>on</strong>g>rmodynamic uncertainty relati<strong>on</strong>s, Foundati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 29, pp. 655–692, 1999. Cited <strong>on</strong> page 31.<br />

17 See also the fundamental paper by A. DiSessa, Momentum flow as an alternative perspective<br />

in elementary mechanics, 48,p.365,1980,andA.DiSessa,Erratum: “Momentum<br />

flow as an alternative perspective in elementary mechanics” [Am. J. Phys. 48, 365 (1980)], 48,<br />

p. 784, 1980. Cited <strong>on</strong> page 32.<br />

18 <str<strong>on</strong>g>The</str<strong>on</strong>g> observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes at the centre <str<strong>on</strong>g>of</str<strong>on</strong>g> galaxies and elsewhere are summarised by<br />

R. Blandford & N. Gehrels,Revisiting the black hole,<str<strong>on</strong>g>Physics</str<strong>on</strong>g>Today52, June 1999.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>ir existence is now well established. Cited <strong>on</strong> page 32.<br />

Page 57<br />

19 It seems that the first published statement <str<strong>on</strong>g>of</str<strong>on</strong>g> the maximum force as a fundamental principle<br />

was around the year 2000, in this text, in the chapter <strong>on</strong> gravitati<strong>on</strong> and relativity. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

author discovered the maximum force principle, not knowing the work <str<strong>on</strong>g>of</str<strong>on</strong>g> others, when<br />

searching for a way to derive the results <str<strong>on</strong>g>of</str<strong>on</strong>g> the last part <str<strong>on</strong>g>of</str<strong>on</strong>g> this adventure that would be so<br />

simple that it would c<strong>on</strong>vince even a sec<strong>on</strong>dary-school student. In the year 2000, the author<br />

told his friends in Berlin about his didactic approach for general relativity.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> a maximum force was first proposed, most probably, by H.-J. Treder in<br />

1985, followed by by Venzo de Sabbata and C. Sivaram in 1993. Also this physics discovery<br />

was thus made much too late. In 1995, Corrado Massa took up the idea. Independently,<br />

Ludwik Kostro in 1999, Christoph Schiller just before 2000 and Gary Gibb<strong>on</strong>s in the years<br />

before 2002 arrived at the same c<strong>on</strong>cept. Gary Gibb<strong>on</strong>s was inspired by a book by Oliver<br />

Lodge; he explains that the maximum force value follows from general relativity; he does<br />

not make a statement about the c<strong>on</strong>verse, nor do the other authors. <str<strong>on</strong>g>The</str<strong>on</strong>g> statement <str<strong>on</strong>g>of</str<strong>on</strong>g> maximum<br />

force as a fundamental principle seems original to Christoph Schiller.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


448 bibliography<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>. II, page 107<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> temporal order <str<strong>on</strong>g>of</str<strong>on</strong>g> the first papers <strong>on</strong> maximum force seems to be H. -J. Treder,<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Plancki<strong>on</strong>s as Largest Elementary Particles and as Smallest Test Bodies, Foundati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 15, pp. 161–166, 1985, followed by V. de Sabbata & C. Sivaram, On limiting<br />

field strengths in gravitati<strong>on</strong>, Foundati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Physics</str<strong>on</strong>g> Letters 6, pp. 561–570, 1993,<br />

then by C. Massa, Does the gravitati<strong>on</strong>al c<strong>on</strong>stant increase?,AstrophysicsandSpaceScience<br />

232, pp. 143–148, 1995, and by L. Kostro & B. Lange, Is c 4 /G the greatest possible<br />

force in nature?, <str<strong>on</strong>g>Physics</str<strong>on</strong>g> Essays 12, pp. 182–189, 1999. <str<strong>on</strong>g>The</str<strong>on</strong>g> next references are the paper<br />

by G.W. Gibb<strong>on</strong>s, <str<strong>on</strong>g>The</str<strong>on</strong>g> maximum tensi<strong>on</strong> principle in general relativity, Foundati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Physics</str<strong>on</strong>g> 32, pp. 1891–1901, 2002, preprint at arxiv.org/abs/hep-th/0210109 –thoughhedeveloped<br />

the ideas before that date – and the older versi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the present text, i.e., Christoph<br />

Schiller,Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Adventure</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Physics</str<strong>on</strong>g>,afreepdfavailableatwww.<br />

moti<strong>on</strong>mountain.net. <str<strong>on</strong>g>The</str<strong>on</strong>g>n came C. Schiller, Maximum force and minimum distance:<br />

physics in limit statements, preprintatarxiv.org/abs/physics/0309118, andC.Schiller,<br />

General relativity and cosmology derived from principle <str<strong>on</strong>g>of</str<strong>on</strong>g> maximum power or force, Internati<strong>on</strong>al<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>The</str<strong>on</strong>g>oretical <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 44, pp. 1629–1647, 2005, preprint at arxiv.org/abs/<br />

physics/0607090. SeealsoR.Beig,G.W.Gibb<strong>on</strong>s&R.M.Schoen,Gravitating opposites<br />

attract, Classical and Quantum Gravity 26, p. 225013, 2009. preprint at arxiv.org/<br />

abs/0907.1193.<br />

A detailed discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> maximum force and power is given in the volume <strong>on</strong> general<br />

relativity, Ref. 2. Cited <strong>on</strong> pages 33, 43, 296,and458.<br />

20 Maximal luminosity is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten menti<strong>on</strong>ed in c<strong>on</strong>necti<strong>on</strong> with gravitati<strong>on</strong>al wave detecti<strong>on</strong>;<br />

nevertheless, the general power maximum has never been menti<strong>on</strong>ed before. See for<br />

example L. Ju, D. G. Blair & C. Zhao, Detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gravitati<strong>on</strong>al waves, Reports <strong>on</strong><br />

Progress in <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 63, pp. 1317–1427, 2000. See also C. W. Misner, K. S. Thorne &<br />

J. A. Wheeler, Gravitati<strong>on</strong>,Freeman,1973,page980.Cited<strong>on</strong>page33.<br />

21 SeeforexampleWolfgangRindler,Relativity – Special, General and Cosmological,<br />

Oxford University Press, 2001, p. 70 ss, or Ray d ’ Inverno, Introducing Einstein’s Relativity,<br />

Clarend<strong>on</strong> Press, 1992, p. 36 ss. Cited <strong>on</strong> page 34.<br />

22 T. Jacobs<strong>on</strong>, <str<strong>on</strong>g>The</str<strong>on</strong>g>rmodynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> spacetime: the Einstein equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state, PhysicalReview<br />

Letters 75, pp. 1260–1263, 1995, preprint at arxiv.org/abs/gr-qc/9504004; this deep<br />

article remains fascinating to this day. Even the author was scared to draw all the possible<br />

c<strong>on</strong>clusi<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> general c<strong>on</strong>cepts are explained, almost without formulae, in L. Smolin,<br />

On the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum fluctuati<strong>on</strong>s and their relati<strong>on</strong> to gravitati<strong>on</strong> and the principle <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

inertia, Classical and Quantum Gravity 3, pp. 347–359, 1986. Cited <strong>on</strong> pages 34 and 295.<br />

23 This relati<strong>on</strong> was pointed out by Achim Kempf. <str<strong>on</strong>g>The</str<strong>on</strong>g> story is told in A. D. Sakharov,<br />

General Relativity and Gravitati<strong>on</strong> 32, pp. 365–367, 2000, a reprint <str<strong>on</strong>g>of</str<strong>on</strong>g> his paper Doklady<br />

Akademii Nauk SSSR 177, pp. 70–71, 1967. Cited <strong>on</strong> pages 35 and 44.<br />

24 Indeterminacy relati<strong>on</strong>s in general relativity are discussed in C. A. Mead, Possible c<strong>on</strong>necti<strong>on</strong><br />

between gravitati<strong>on</strong> and fundamental length,PhysicalReviewB135, pp. 849–862, 1964.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> generalized indeterminacy relati<strong>on</strong> is implicit <strong>on</strong> page 852, but the issue is explained<br />

rather unclearly. Probably the author c<strong>on</strong>sidered the result too simple to be menti<strong>on</strong>ed explicitly.<br />

(That paper took 5 years to get published; comments <strong>on</strong> the story, written 37 years<br />

later, are found at C. A. Mead, Walking the Planck length through history,<str<strong>on</strong>g>Physics</str<strong>on</strong>g>Today<br />

54, p. 15 and p. 81, 2001, with a reply by Frank Wilczek.) See also P. K. Townsend, Smallscale<br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time as the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the gravitati<strong>on</strong>al c<strong>on</strong>stant,PhysicalReviewD15,<br />

pp. 2795–2801, 1977, or the paper by M. -T. Jaekel & S. Renaud,Gravitati<strong>on</strong>al quantum<br />

limit for length measurement, <str<strong>on</strong>g>Physics</str<strong>on</strong>g> Letters A 185, pp. 143–148, 1994. Cited <strong>on</strong> pages 36,<br />

67, 68, 69, 72,and120.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


ibliography 449<br />

25 M. Kramer& al.,Tests <str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity from timing the double pulsar,preprintatarxiv.<br />

org/abs/astro-ph/060941. Cited<strong>on</strong>page36.<br />

26 Minimal length and minimal time intervals are discussed, for example, by G. Amelino-<br />

Camelia,Limits <strong>on</strong> the measurability <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time distances in (the semiclassical approximati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>) quantum gravity, Modern <str<strong>on</strong>g>Physics</str<strong>on</strong>g> Letters A 9, pp. 3415–3422, 1994, preprint at<br />

arxiv.org/abs/gr-qc/9603014,andbyY.J.Ng&H.vanDam,Limit to space-time measurement,<br />

Modern <str<strong>on</strong>g>Physics</str<strong>on</strong>g> Letters A 9, pp. 335–340, 1994. Many other authors have explored<br />

the topic. Cited <strong>on</strong> pages 38 and 68.<br />

27 Maximal curvature, as well as area and volume quantizati<strong>on</strong>, are discussed in<br />

A. Ashtekar, Quantum geometry and gravity: recent advances, preprintatarxiv.org/<br />

abs/gr-qc/0112038 and in A. Ashtekar, Quantum geometry in acti<strong>on</strong>: big bang and black<br />

holes,preprintatarxiv.org/abs/math-ph/0202008. Cited<strong>on</strong>pages38, 76,and457.<br />

28 Maxim<strong>on</strong>s, elementary particles <str<strong>on</strong>g>of</str<strong>on</strong>g> Planck mass, are discussed by A. D. Sakharov, Vacuum<br />

quantum fluctuati<strong>on</strong>s in curved space and the theory <str<strong>on</strong>g>of</str<strong>on</strong>g> gravitati<strong>on</strong>,Soviet<str<strong>on</strong>g>Physics</str<strong>on</strong>g>–<br />

Doklady 12, pp. 1040–1041, 1968. Cited <strong>on</strong> pages 40, 79,and123.<br />

29 Wolfgang Rindler,Relativity – Special, General and Cosmological,OxfordUniversity<br />

Press, 2001, p. 230. Cited <strong>on</strong> page 42.<br />

30 Several incorrect counterclaims to the entropy limit were made in R. Bousso, <str<strong>on</strong>g>The</str<strong>on</strong>g> holographic<br />

principle, Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Modern <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 74, pp. 825–874, 2002, preprint at arxiv.org/<br />

abs/hep-th/0203101. However, this otherwise good review has some errors in its arguments,<br />

as explained <strong>on</strong> page 147 in volume V. Bousso has changed his positi<strong>on</strong> in the meantime;<br />

he now accepts the entropy limit. Cited <strong>on</strong> pages 44, 48, 455,and457.<br />

31 Gamma-ray bursts are discussed by G. Preparata, R. Ruffini & S. -S. Xue, <str<strong>on</strong>g>The</str<strong>on</strong>g> dyadosphere<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> black holes and gamma-ray bursts, Astr<strong>on</strong>omy and Astrophysics 338, pp.L87–<br />

L90, 1998, and C. L. Bianco, R. Ruffini & S. -S. Xue, <str<strong>on</strong>g>The</str<strong>on</strong>g> elementary spike produced<br />

by a pure e + e − pair-electromagnetic pulse from a black hole: the PEM pulse,Astr<strong>on</strong>omyand<br />

Astrophysics 368, pp. 377–390, 2001. Cited <strong>on</strong> page 45.<br />

32 SeeforexamplethereviewinC.W.J. Beenakker& al.,Quantum transport in semic<strong>on</strong>ductor<br />

nanostructures,pp.1–228,inH.Ehrenreich&D.Turnbulleditors,Solid<br />

State <str<strong>on</strong>g>Physics</str<strong>on</strong>g>, volume 44, Academic Press, 1991. Cited <strong>on</strong> page 45.<br />

33 A discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a different electrical indeterminacy relati<strong>on</strong>, between current and charge,<br />

can be found in Y-Q. Li & B. Chen, Quantum theory for mesoscopic electr<strong>on</strong>ic circuits and<br />

its applicati<strong>on</strong>s,preprintatarxiv.org/abs/c<strong>on</strong>d-mat/9907171. Cited<strong>on</strong>page45.<br />

34 Hans C. Ohanian& Remo Ruffini,Gravitati<strong>on</strong> and Spacetime, W.W. Nort<strong>on</strong> & Co.,<br />

1994. Cited <strong>on</strong> pages 46 and 462.<br />

35 <str<strong>on</strong>g>The</str<strong>on</strong>g> entropy limit for black holes is discussed by J. D. Bekenstein, Entropy<br />

bounds and black hole remnants, PhysicalReviewD49, pp. 1912–1921, 1994. See also<br />

J. D. Bekenstein, Universal upper bound <strong>on</strong> the entropy-to-energy ratio for bounded<br />

systems,PhysicalReviewD23, pp. 287–298, 1981. Cited <strong>on</strong> pages 48 and 133.<br />

36 <str<strong>on</strong>g>The</str<strong>on</strong>g> statement is also called the Kovtun-S<strong>on</strong>-Starinets c<strong>on</strong>jecture. Itwaspublishedas<br />

P.Kovtun, D.T.S<strong>on</strong> & A.O.Starinets,A viscosity bound c<strong>on</strong>jecture, preprintat<br />

arxiv.org/abs/hep-th/0405231.SeealsoP.Kovtun,D.T.S<strong>on</strong>&A.O.Starinets,Viscosity<br />

in str<strong>on</strong>gly interacting quantum field theories from black hole physics,PhysicalReview<br />

Letters 44, p. 111601, 2005. For an experimental verificati<strong>on</strong>, see U. Hohm, On the ratio<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the shear viscosity to the density <str<strong>on</strong>g>of</str<strong>on</strong>g> entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> the rare gases and H2, N2, CH4, and CF4,<br />

Chemical <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 444, pp. 39–42, 2014. Cited <strong>on</strong> page 49.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


450 bibliography<br />

37 Brian Greene, <str<strong>on</strong>g>The</str<strong>on</strong>g> Elegant Universe – Superstrings, Hidden Dimensi<strong>on</strong>s, and the Quest<br />

for the Ultimate <str<strong>on</strong>g>The</str<strong>on</strong>g>ory, J<strong>on</strong>athan Cape 1999. Cited <strong>on</strong> page 53.<br />

38 S. Weinberg, <str<strong>on</strong>g>The</str<strong>on</strong>g> cosmological c<strong>on</strong>stant problem, Reviews <str<strong>on</strong>g>of</str<strong>on</strong>g> Modern <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 61, pp.1–<br />

23, 1989. Cited <strong>on</strong> page 58.<br />

39 Steven Weinberg,<str<strong>on</strong>g>The</str<strong>on</strong>g> Quantum <str<strong>on</strong>g>The</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> Fields, Cambridge University Press, volumes<br />

I, 1995, and II, 1996. Cited <strong>on</strong> page 58.<br />

40 See the excellent presentati<strong>on</strong> <strong>on</strong> the cosmological c<strong>on</strong>stant in general relativity by<br />

E. Bianchi & C. Rovelli, Why all these prejudices against a c<strong>on</strong>stant?, preprintat<br />

arxiv.org/abs/1002.3966 Cited <strong>on</strong> page 58.<br />

41 <str<strong>on</strong>g>The</str<strong>on</strong>g> difficulties are summarised by B. S. DeWitt, Quantumfieldtheoryincurvedspacetime,<str<strong>on</strong>g>Physics</str<strong>on</strong>g>Reports19,<br />

pp. 295–357, 1975. Cited <strong>on</strong> page 58.<br />

42 C. W. Misner,K. S. Thorne & J. A. Wheeler,Gravitati<strong>on</strong>, Freeman, 1973. Cited <strong>on</strong><br />

pages 59, 60,and68.<br />

43 J. A. Wheeler, in Relativity, Groups and Topology, edited by C. DeWitt &<br />

B. S. DeWitt,Gord<strong>on</strong> and Breach, 1994. See also J. A. Wheeler,<str<strong>on</strong>g>Physics</str<strong>on</strong>g> at the Planck<br />

length, Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Modern <str<strong>on</strong>g>Physics</str<strong>on</strong>g> A 8, pp. 4013–4018, 1993. However, his<br />

claim that spin 1/2 requires topology change is refuted by the strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum.<br />

Cited <strong>on</strong> page 59.<br />

44 J. L. Friedman & R. D. Sorkin, Spin 1/2 from gravity, Physical Review Letters 44,<br />

pp. 1100–1103, 1980. Cited <strong>on</strong> page 59.<br />

45 A.P.Balachandran,G.Bim<strong>on</strong>te,G.Marmo&A.Sim<strong>on</strong>i,Topology change and<br />

quantum physics, Nuclear<str<strong>on</strong>g>Physics</str<strong>on</strong>g>B446, pp. 299–314, 1995, preprint at arxiv.org/abs/<br />

hep-th/9503046. Cited<strong>on</strong>page59.<br />

46 J. Ehlers, Introducti<strong>on</strong> – Survey <str<strong>on</strong>g>of</str<strong>on</strong>g> Problems, pp. 1–10, in J. Ehlers, editor, Sistemi<br />

gravitazi<strong>on</strong>ali isolati in relatività generale, Rendic<strong>on</strong>ti della scuola internazi<strong>on</strong>ale di fisica<br />

“Enrico Fermi”, LX<str<strong>on</strong>g>VI</str<strong>on</strong>g>I o corso, Società Italiana di Fisica/North Holland, 1979. Cited <strong>on</strong><br />

page 59.<br />

47 See C. Schiller, Le vide diffère-t-il de la matière? in E. Gunzig & S. Diner editors,<br />

Le Vide – Univers du tout et du rien – Des physiciens et des philosophes s’interrogent, Les<br />

Éditi<strong>on</strong>s de l’Université de Bruxelles, 1998. An older, English-language versi<strong>on</strong> is available<br />

asC. Schiller,Does matter differ from vacuum? preprintat arxiv.org/abs/gr-qc/9610066.<br />

Cited <strong>on</strong> pages 59, 120, 122, 123, 124, 135,and136.<br />

48 See for example Richard P. Feynman, Robert B. Leight<strong>on</strong> & Matthew<br />

Sands, <str<strong>on</strong>g>The</str<strong>on</strong>g>FeynmanLectures<strong>on</strong><str<strong>on</strong>g>Physics</str<strong>on</strong>g>, Addis<strong>on</strong> Wesley, 1977. Cited <strong>on</strong> page<br />

60.<br />

49 Steven Weinberg, Gravitati<strong>on</strong> and Cosmology, Wiley, 1972. Cited <strong>on</strong> pages 60, 66,<br />

and 68.<br />

50 <str<strong>on</strong>g>The</str<strong>on</strong>g> argument is given e.g. in E. P. Wigner, Relativistic invariance and quantum phenomena,<br />

Reviews <str<strong>on</strong>g>of</str<strong>on</strong>g> Modern <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 29, pp. 255–258, 1957. Cited <strong>on</strong> page 65.<br />

51 <str<strong>on</strong>g>The</str<strong>on</strong>g> starting point for the following arguments is taken from M. S chön, Operative time<br />

definiti<strong>on</strong> and principal indeterminacy,preprintatarxiv.org/abs/gr-qc/9304024,andfrom<br />

T. Padmanabhan, Limitati<strong>on</strong>s <strong>on</strong> the operati<strong>on</strong>al definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time events and<br />

quantum gravity, Classical and Quantum Gravity 4,pp.L107–L113,1987;seealsoPadmanabhan’s<br />

earlier papers referenced there. Cited <strong>on</strong> page 65.<br />

52 W. H eisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und<br />

Mechanik,ZeitschriftfürPhysik43, pp. 172–198, 1927. Cited <strong>on</strong> page 65.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


ibliography 451<br />

53 E.H. Kennard,Zur Quantenmechanik einfacher Bewegungstypen,ZeitschriftfürPhysik<br />

44, pp. 326–352, 1927. Cited <strong>on</strong> page 65.<br />

54 M.G. Raymer, Uncertainty principle for joint measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>commuting variables,<br />

American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 62, pp. 986–993, 1994. Cited <strong>on</strong> page 65.<br />

55 H. Salecker, & E. P. Wigner, Quantum limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time<br />

distances,PhysicalReview109, pp. 571–577, 1958. Cited <strong>on</strong> pages 66, 94,and115.<br />

56 E.J. Zimmerman,<str<strong>on</strong>g>The</str<strong>on</strong>g> macroscopic nature <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time, American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 30,<br />

pp. 97–105, 1962. Cited <strong>on</strong> pages 66, 94,and115.<br />

57 J. D. Bekenstein, Black holes and entropy, PhysicalReviewD7, pp. 2333–2346, 1973.<br />

Cited <strong>on</strong> pages 66, 133,and292.<br />

58 S. W. Hawking,Particle creati<strong>on</strong> by black holes, Communicati<strong>on</strong>s in Mathematical <str<strong>on</strong>g>Physics</str<strong>on</strong>g><br />

43, pp. 199–220, 1975; see also S. W. Hawking, Black hole thermodynamics, Physical<br />

Review D 13, pp. 191–197, 1976. Cited <strong>on</strong> pages 66, 133,and292.<br />

59 P. Gibbs, <str<strong>on</strong>g>The</str<strong>on</strong>g> small scale structure <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time: a bibliographical review,preprintatarxiv.<br />

org/abs/hep-th/9506171. Cited<strong>on</strong>pages66 and 85.<br />

60 <str<strong>on</strong>g>The</str<strong>on</strong>g> impossibility <str<strong>on</strong>g>of</str<strong>on</strong>g> determining temporal ordering in quantum theory is discussed by<br />

J. Oppenheimer, B. Reznik & W. G. Unruh, Temporal ordering in quantum mechanics,<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Physics</str<strong>on</strong>g> A 35, pp. 7641–7652, 2001, preprint at arxiv.org/abs/quant-ph/<br />

0003130. Cited<strong>on</strong>page67.<br />

61 M. -T. Jaekel& S. Renaud,Gravitati<strong>on</strong>al quantum limit for length measurement,<str<strong>on</strong>g>Physics</str<strong>on</strong>g><br />

Letters A 185, pp. 143–148, 1994. Cited <strong>on</strong> page 68.<br />

62 D. V. Ahluwalia,Quantum measurement, gravitati<strong>on</strong> and locality,<str<strong>on</strong>g>Physics</str<strong>on</strong>g> Letters B 339,<br />

pp. 301–303, 1994, preprint at arxiv.org/abs/gr-qc/9308007. Cited<strong>on</strong>page68.<br />

63 L. Garay,Quantum gravity and minimum length, Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Modern <str<strong>on</strong>g>Physics</str<strong>on</strong>g><br />

A 10, pp. 145–165, 1995, preprint at arxiv.org/abs/gr-qc/9403008. This paper also includes<br />

an extensive bibliography. See also R. J. Adler & D. I. Santiago,On gravity and<br />

the uncertainty principle, Modern <str<strong>on</strong>g>Physics</str<strong>on</strong>g> Letters A 14, pp. 1371–1381, 1999, preprintat arxiv.<br />

org/abs/gr-qc/9904026. Cited<strong>on</strong>page68.<br />

64 C. Rovelli & L. Smolin,Discreteness <str<strong>on</strong>g>of</str<strong>on</strong>g> area and volume in quantum gravity, Nuclear<br />

<str<strong>on</strong>g>Physics</str<strong>on</strong>g> B 442, pp. 593–619, 1995. R. Loll, <str<strong>on</strong>g>The</str<strong>on</strong>g> volume operator in discretized quantum<br />

gravity,preprintatarxiv.org/abs/gr-qc/9506014.SeealsoC. Rovelli,Notes for a brief history<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> quantum gravity,preprintatarxiv.org/abs/gr-qc/0006061. Cited<strong>on</strong>page69.<br />

65 D. Amati, M. Ciafal<strong>on</strong>i & G. Veneziano, Superstring collisi<strong>on</strong>s at Planckian energies,<br />

<str<strong>on</strong>g>Physics</str<strong>on</strong>g> Letters B 197, pp. 81–88, 1987. D. J. Gross & P. F. Mende, <str<strong>on</strong>g>The</str<strong>on</strong>g> high energy<br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> string scattering amplitudes, <str<strong>on</strong>g>Physics</str<strong>on</strong>g> Letters B 197, pp. 129–134, 1987.<br />

K. K<strong>on</strong>ishi, G. Paffuti & P. Provero,Minimum physical length and the generalized<br />

uncertainty principle, <str<strong>on</strong>g>Physics</str<strong>on</strong>g> Letters B 234, pp. 276–284, 1990. P. Aspinwall, Minimum<br />

distances in n<strong>on</strong>-trivial string target spaces,Nuclear<str<strong>on</strong>g>Physics</str<strong>on</strong>g>B431, pp. 78–96, 1994, preprint<br />

at arxiv.org/abs/hep-th/9404060. Cited<strong>on</strong>page69.<br />

66 M. Maggiore,A generalised uncertainty principle in quantum mechanics, <str<strong>on</strong>g>Physics</str<strong>on</strong>g> Letters<br />

B 304, pp.65–69,1993.Cited<strong>on</strong>page69.<br />

67 A simple approach is S. D oplicher, K. Fredenhagen & J. E. Roberts, Space-time<br />

quantizati<strong>on</strong> induced by classical gravity, <str<strong>on</strong>g>Physics</str<strong>on</strong>g> Letters B 331, pp. 39–44, 1994. Cited <strong>on</strong><br />

pages 69 and 84.<br />

68 A. Kempf, Uncertainty relati<strong>on</strong> in quantum mechanics with quantum group symmetry,<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mathematical <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 35, pp. 4483–4496, 1994. A. Kempf, Quantum groups<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


452 bibliography<br />

and quantum field theory with n<strong>on</strong>zero minimal uncertainties in positi<strong>on</strong>s and momenta,<br />

Czechoslovak Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 44, pp. 1041–1048, 1994. Cited <strong>on</strong> page 69.<br />

69 E.J. Hellund & K. Tanaka, Quantized space-time, PhysicalReview94, pp. 192–195,<br />

1954. Cited <strong>on</strong> page 70.<br />

70 This intriguing extract from a letter by Einstein was made widely known by<br />

John J. Stachel, in his paper <str<strong>on</strong>g>The</str<strong>on</strong>g> other Einstein: Einstein c<strong>on</strong>tra field theory, thatis<br />

best found in his book Einstein from ‘B’ to ‘Z’, Birkhäuser,2002.<str<strong>on</strong>g>The</str<strong>on</strong>g>Germanoriginal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the letter is found in Robert Schulmann, A. J. Knox, Michel Janssen &<br />

József Illy, <str<strong>on</strong>g>The</str<strong>on</strong>g> Collected Papers <str<strong>on</strong>g>of</str<strong>on</strong>g> Albert Einstein, <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume 8A – <str<strong>on</strong>g>The</str<strong>on</strong>g> Berlin Years: Corresp<strong>on</strong>dence,<br />

1914–1917, letter 299, Princet<strong>on</strong> University Press, 1998. Barbara Wolff helped<br />

in clarifying several details in the German original. <str<strong>on</strong>g>The</str<strong>on</strong>g> letter is now available <strong>on</strong>line, at<br />

einsteinpapers.press.princet<strong>on</strong>.edu/vol8a-doc/463. Cited<strong>on</strong>page70.<br />

71 A. Peres & N. Rosen,Quantum limitati<strong>on</strong>s <strong>on</strong> the measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> gravitati<strong>on</strong>al fields,<br />

Physical Review 118, pp. 335–336, 1960. Cited <strong>on</strong> page 72.<br />

72 It is the first definiti<strong>on</strong> in Euclid’s Elements, c. 300 bce. For an English translati<strong>on</strong> see<br />

T. Heath, <str<strong>on</strong>g>The</str<strong>on</strong>g> Thirteen Books <str<strong>on</strong>g>of</str<strong>on</strong>g> the Elements, Dover, 1969. Cited <strong>on</strong> page 73.<br />

73 A beautiful descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Banach–Tarski paradox is the <strong>on</strong>e by Ian Stewart, Paradox<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the spheres, New Scientist, 14 January 1995, pp. 28–31. Cited <strong>on</strong> page 73.<br />

74 H. S. Snyder,Quantized space-time,PhysicalReview71,pp.38–41,1947.H.S.Snyder,<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> electromagnetic field in quantized space-time, PhysicalReview72, pp. 68–74, 1947.<br />

A. Schild,Discrete space-time and integral Lorentz transformati<strong>on</strong>s,PhysicalReview73,<br />

pp. 414–415, 1948. E. L. Hill, Relativistic theory <str<strong>on</strong>g>of</str<strong>on</strong>g> discrete momentum space and discrete<br />

space-time, PhysicalReview100, pp. 1780–1783, 1950. H. T. Flint, <str<strong>on</strong>g>The</str<strong>on</strong>g> quantizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> space-time,PhysicalReview74, pp. 209–210, 1948. A. Das, Cellular space-time and<br />

quantum field theory,IlNuovoCimento18,pp.482–504,1960.Cited<strong>on</strong>page75.<br />

75 D. Finkelstein, ‘Superc<strong>on</strong>ducting’ causal nets, Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>The</str<strong>on</strong>g>oretical<br />

<str<strong>on</strong>g>Physics</str<strong>on</strong>g> 27, pp.473–519,1985.Cited<strong>on</strong>page75.<br />

76 N. H. Christ,R. Friedberg & T. D. Lee, Random lattice field theory: general formulati<strong>on</strong>,<br />

Nuclear<str<strong>on</strong>g>Physics</str<strong>on</strong>g>B202, pp. 89–125, 1982. G. ’ t Ho<str<strong>on</strong>g>of</str<strong>on</strong>g>t, Quantum field theory for<br />

elementary particles – is quantum field theory a theory?,<str<strong>on</strong>g>Physics</str<strong>on</strong>g>Reports104, pp.129–142,<br />

1984. Cited <strong>on</strong> page 75.<br />

77 For a discussi<strong>on</strong>, see R. S orabji, Time, Creati<strong>on</strong> and the C<strong>on</strong>tinuum: <str<strong>on</strong>g>The</str<strong>on</strong>g>ories in Antiquity<br />

and the Early Middle Ages,Duckworth,1983.Cited<strong>on</strong>page75.<br />

78 See, for example, L. Bombelli, J. Lee, D. Meyer & R. D. Sorkin, Space-time<br />

as a causal set, Physical Review Letters 59, pp. 521–524, 1987. G. Brightwell &<br />

R. Gregory, Structure <str<strong>on</strong>g>of</str<strong>on</strong>g> random space-time, Physical Review Letters 66, pp. 260–<br />

263, 1991. Cited <strong>on</strong> page 75.<br />

79 <str<strong>on</strong>g>The</str<strong>on</strong>g> false belief that particles like quarks or electr<strong>on</strong>sare composite is slow to die out. See for<br />

example: S. Fredrikss<strong>on</strong>, Pre<strong>on</strong> prophecies by the standard model,preprintatarxiv.org/<br />

abs/hep-ph/0309213. Pre<strong>on</strong> models gained popularity in the 1970s and 1980s, in particular<br />

through the papers by J. C. Pati & A. Salam, Lept<strong>on</strong> number as the fourth “color”,Physical<br />

Review D 10, pp. 275–289, 1974, H. Harari,A schematic model <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks and lept<strong>on</strong>s,<br />

<str<strong>on</strong>g>Physics</str<strong>on</strong>g> Letters B 86, pp.83–86,1979,M.A.Shupe,A composite model <str<strong>on</strong>g>of</str<strong>on</strong>g> lept<strong>on</strong>s and<br />

quarks, <str<strong>on</strong>g>Physics</str<strong>on</strong>g> Letters B 86, pp. 87–92, 1979, and H. Fritzsch & G. Mandelbaum,<br />

Weak interacti<strong>on</strong>s as manifestati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the substructure <str<strong>on</strong>g>of</str<strong>on</strong>g> lept<strong>on</strong>s and quarks, <str<strong>on</strong>g>Physics</str<strong>on</strong>g>Letters<br />

B 102, pp. 319–322, 1981. Cited <strong>on</strong> page 77.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


ibliography 453<br />

80 N.F. Ramsey & A. Weis, Suche nach permanenten elektrischen Dipolmomenten: ein<br />

Test der Zeitumkehrinvarianz, Physikalische Blätter 52, pp. 859–863, 1996. See also<br />

W. B ernreuther & M . S uz uki, <str<strong>on</strong>g>The</str<strong>on</strong>g> electric dipole moment <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>,Reviews<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Modern <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 63, pp. 313–340, 1991, and the musings in Hans Dehmelt, Is the electr<strong>on</strong><br />

a composite particle?, Hyperfine Interacti<strong>on</strong>s 81, pp. 1–3, 1993. Cited <strong>on</strong> page 78.<br />

81 K. Akama, T. Hattori& K. Katsuura,Naturalness bounds <strong>on</strong> dipole moments from<br />

new physics,preprintatarxiv.org/abs/hep-ph/0111238. Cited<strong>on</strong>page78.<br />

82 <str<strong>on</strong>g>The</str<strong>on</strong>g> paper by J. Bar<strong>on</strong> & al., Order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude smallerlimit <strong>on</strong> the electric dipole moment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong>,preprintatarxiv.org/abs/1310.7534 gives an upper experimental limit to the<br />

dipole moment <str<strong>on</strong>g>of</str<strong>on</strong>g> the electr<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 8.7 ⋅ 10 −31 e m. Cited<strong>on</strong>page78.<br />

83 C. Wolf, Upper limit for the mass <str<strong>on</strong>g>of</str<strong>on</strong>g> an elementary particle due to discrete time quantum<br />

mechanics,IlNuovoCimentoB109, pp. 213–218, 1994. Cited <strong>on</strong> page 80.<br />

84 W. G . Unruh, Notes <strong>on</strong> black hole evaporati<strong>on</strong>,PhysicalReviewD14, pp. 870–875, 1976.<br />

W. G . Unruh & R. M. Wa ld,What happens when an accelerating observer detects a Rindler<br />

particle,PhysicalReviewD29, pp. 1047–1056, 1984. Cited <strong>on</strong> page 82.<br />

85 <str<strong>on</strong>g>The</str<strong>on</strong>g> first example was J. Magueijo & L. Smolin, Lorentz invariance with an invariant<br />

energy scale, Physical Review Letters 88, p.190403,2002,preprintatarxiv.org/abs/hep-th/<br />

0112090. <str<strong>on</strong>g>The</str<strong>on</strong>g>y propose a modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the mass energy relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the kind<br />

E=<br />

c2 γm<br />

1+ c2 γm<br />

1+ c2 γm<br />

E Pl<br />

and p= γmv<br />

E Pl<br />

. (215)<br />

Another, similar approach <str<strong>on</strong>g>of</str<strong>on</strong>g> recent years, with a different proposal, is called ‘doubly<br />

special relativity’. A recent summary is G. Amelino-Camelia, Doubly-special relativity:<br />

first results and key open problems, Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Modern <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 11,<br />

pp.1643–1669,2002,preprintatarxiv.org/abs/gr-qc/0210063. <str<strong>on</strong>g>The</str<strong>on</strong>g> paper shows how c<strong>on</strong>ceptual<br />

problems hinder the advance <str<strong>on</strong>g>of</str<strong>on</strong>g> the field. Another such discussi<strong>on</strong> R. Aloisio,<br />

A. Galante,A.F. Grillo,E. Luzio & F. Méndez,Approaching space-time through<br />

velocity in doubly special relativity,preprintatarxiv.org/abs/gr-qc/0410020.<str<strong>on</strong>g>The</str<strong>on</strong>g> less<strong>on</strong> from<br />

these attempts is simple: special relativity cannot be modified to include a limit energy<br />

without also including general relativity and quantum theory. Cited <strong>on</strong> pages 84 and 282.<br />

86 W. Jauch, Heisenberg’s uncertainty relati<strong>on</strong> and thermal vibrati<strong>on</strong>s in crystals,American<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 61, pp. 929–932, 1993. Cited <strong>on</strong> page 84.<br />

87 H. D. Zeh,On the interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement in quantum theory, Foundati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Physics</str<strong>on</strong>g><br />

1, pp. 69–76, 1970. Cited <strong>on</strong> page 85.<br />

88 See Y. J. Ng, W. A. Christiansen & H. van Dam, Probing Planck-scale physics with<br />

extragalactic sources?,AstrophysicalJournal591, pp. L87–L90, 2003, preprint at arxiv.org/<br />

abs/astro-ph/0302372; D.H.Coule,Planck scale still safe from stellar images, Classical<br />

and Quantum Gravity 20, pp. 3107–3112, 2003, preprint at arxiv.org/abs/astro-ph/0302333.<br />

Negative experimental results (and not always correct calculati<strong>on</strong>s) are found in R. Lieu<br />

& L. Hillman, <str<strong>on</strong>g>The</str<strong>on</strong>g> phase coherence <str<strong>on</strong>g>of</str<strong>on</strong>g> light from extragalactic sources – direct evidence<br />

against first order Planck scale fluctuati<strong>on</strong>s in time and space, AstrophysicalJournal585,<br />

pp.L77–L80,2003,andR.Ragazz<strong>on</strong>i,M.Turatto&W.Gaessler,<str<strong>on</strong>g>The</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>al<br />

evidence for the quantum structure <str<strong>on</strong>g>of</str<strong>on</strong>g> spacetime at Planck scales,Astrophysical<br />

Journal 587, pp. L1–L4, 2003. Cited <strong>on</strong> page 88.<br />

89 B. E. Schaefer, Severe limits <strong>on</strong> variati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light with frequency, Physical<br />

Review Letters 82, pp. 4964–4966, 21 June 1999. Cited <strong>on</strong> page 88.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


454 bibliography<br />

90 A.A. Abdo & al., (Fermi GBM/LAT collaborati<strong>on</strong>s) Testing Einstein’s special relativity<br />

with Fermi’s short hard gamma-ray burst GRB090510,preprintatarxiv.org/0908.1832.Cited<br />

<strong>on</strong> page 88.<br />

91 G. Amelino-Camelia, J. Ellis, N. E. Mavromatos, D. V. Nanopoulos &<br />

S. Sakar, Potential sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> gamma-ray-burster observati<strong>on</strong>s to wave dispersi<strong>on</strong> in<br />

vacuo,Nature393, pp. 763–765, 1998, preprint at arxiv.org/abs/astro-ph/9712103. Cited<strong>on</strong><br />

page 88.<br />

92 G. Amelino-Camelia, Phenomenological descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time foam, preprintat<br />

arxiv.org/abs/gr-qc/0104005. <str<strong>on</strong>g>The</str<strong>on</strong>g> paper includes a clearly written overview <str<strong>on</strong>g>of</str<strong>on</strong>g> present<br />

experimental approaches to detecting quantum gravity effects. See also his update<br />

G. Amelino-Camelia, Quantum-gravity phenomenology: status and prospects, preprint<br />

at arxiv.org/abs/gr-qc/0204051. Cited<strong>on</strong>pages88 and 89.<br />

93 G. Amelino-Camelia, An interferometric gravitati<strong>on</strong>al wave detector as a quantum<br />

gravity apparatus, Nature398, pp. 216–218, 1999, preprint at arxiv.org/abs/gr-qc/9808029.<br />

Cited <strong>on</strong> page 88.<br />

94 F. Karolyhazy, Gravitati<strong>on</strong> and quantum mechanics <str<strong>on</strong>g>of</str<strong>on</strong>g> macroscopic objects,IlNuovoCimento<br />

A42, pp. 390–402, 1966. Y. J. Ng & H. van Dam,Limit to space-time measurement,<br />

Modern <str<strong>on</strong>g>Physics</str<strong>on</strong>g> Letters A 9,pp.335–340,1994.Y.J.Ng&H.vanDam,Modern<str<strong>on</strong>g>Physics</str<strong>on</strong>g><br />

Letters A Remarks <strong>on</strong> gravitati<strong>on</strong>al sources, 10, pp. 2801–2808, 1995. <str<strong>on</strong>g>The</str<strong>on</strong>g> discussi<strong>on</strong> is neatly<br />

summarised in Y. J. Ng & H. van Dam,Comment <strong>on</strong> ‘Uncertainty in measurements<str<strong>on</strong>g>of</str<strong>on</strong>g> distance’,preprintatarxiv.org/abs/gr-qc/0209021.SeealsoY.J.<br />

Ng,Spacetime foam,preprint<br />

at arxiv.org/abs/gr-qc/0201022. Cited<strong>on</strong>pages88 and 94.<br />

95 L. J. Garay, Spacetime foam as a quantum thermal bath, <str<strong>on</strong>g>Physics</str<strong>on</strong>g> Review Letters 80,<br />

pp. 2508–2511, 1998, preprint at arxiv.org/abs/gr-qc/9801024. Cited<strong>on</strong>page89.<br />

96 G. Amelino-Camelia & T. Piran,Planck-scale deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Lorentz symmetry as<br />

asoluti<strong>on</strong>totheUHECRandtheTeV-γ paradoxes,preprintatarxiv.org/astro-ph/0008107,<br />

2000. Cited <strong>on</strong> page 89.<br />

97 R.P. Woodard,How far are we from the quantum theory <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity?,preprintatarxiv.org/<br />

abs/0907.4238. For a different point <str<strong>on</strong>g>of</str<strong>on</strong>g> view, see L. Smolin,Generic predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum<br />

theories <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity,preprintatarxiv.org/abs/hep-th/0605052. Cited<strong>on</strong>pages89 and 306.<br />

98 A similar point <str<strong>on</strong>g>of</str<strong>on</strong>g> view, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten called m<strong>on</strong>ism, was proposed by Baruch Spinoza, Ethics<br />

Dem<strong>on</strong>strated in Geometrical Order, 1677, originally in Latin; an affordable French editi<strong>on</strong><br />

is Baruch Spinoza, L’Ethique, Folio-Gallimard, 1954. For a discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> his ideas,<br />

especially his m<strong>on</strong>ism, see D<strong>on</strong> Garret editor, <str<strong>on</strong>g>The</str<strong>on</strong>g> Cambridge Compani<strong>on</strong> to Spinoza,<br />

Cambridge University Press, 1996, or any general text <strong>on</strong> the history <str<strong>on</strong>g>of</str<strong>on</strong>g> philosophy. Cited<br />

<strong>on</strong> page 89.<br />

99 See the lucid discussi<strong>on</strong> by G. F. R. Ellis & T. Rothman, Lost horiz<strong>on</strong>s, American<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 61, pp. 883–893, 1993. Cited <strong>on</strong> pages 94, 98,and99.<br />

100 See, for example, the Hollywood film C<strong>on</strong>tact by Robert Zemeckis, based <strong>on</strong> the book by<br />

Carl Sagan,C<strong>on</strong>tact, Sim<strong>on</strong> & Schuster, 1985. Cited <strong>on</strong> page 100.<br />

101 See, for example, the internati<strong>on</strong>al bestseller by Stephen Hawking, ABriefHistory<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Time – From the Big Bang to Black Holes, 1988. Cited <strong>on</strong> page 102.<br />

102 L. Rosenfeld, Quantentheorie und Gravitati<strong>on</strong>, inH.-J.Treder,editor,Entstehung,<br />

Entwicklung und Perspektiven der Einsteinschen Gravitati<strong>on</strong>stheorie, Springer Verlag, 1966.<br />

Cited <strong>on</strong> page 105.<br />

103 Holography in high-energy physics is c<strong>on</strong>nected with the work <str<strong>on</strong>g>of</str<strong>on</strong>g> ’t Ho<str<strong>on</strong>g>of</str<strong>on</strong>g>t and Susskind.<br />

SeeforexampleG.’tHo<str<strong>on</strong>g>of</str<strong>on</strong>g>t,Dimensi<strong>on</strong>al reducti<strong>on</strong> in quantum gravity, pp. 284–296,<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


ibliography 455<br />

inA. Ali, J. Ellis & S. Randjbar-Daemi,Salaamfeest, 1993, or the much-cited paper<br />

by L. Susskind,<str<strong>on</strong>g>The</str<strong>on</strong>g> world as a hologram, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mathematical <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 36,pp.6377–<br />

6396, 1995, preprint at arxiv.org/abs/hep-th/9409089. A good modern overview is Ref. 30.<br />

Cited <strong>on</strong> pages 106 and 114.<br />

104 D. Bohm & B. J. Hiley, On the intuitive understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>locality as implied by<br />

quantum theory, Foundati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 5,pp.93–109,1975.Cited<strong>on</strong>page107.<br />

105 S. Lloyd, Computati<strong>on</strong>al capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe, Physical Review Letters 88, p.237901,<br />

2002. Cited <strong>on</strong> page 109.<br />

106 Gottfried Wilhelm Leibniz, La M<strong>on</strong>adologie, 1714. Written in French, it is available<br />

freely at www.uqac.uquebec.ca/z<strong>on</strong>e30/Classiques_des_sciences_sociales and in various<br />

other languages <strong>on</strong> other websites. Cited <strong>on</strong> page 109.<br />

107 See,forexample,H.Wussing&P.S.Alexandroveditors,Die Hilbertschen Probleme,<br />

Akademische Verlagsgesellschaft Geest & Portig, 1983, or Ben H. Yandell,<str<strong>on</strong>g>The</str<strong>on</strong>g> H<strong>on</strong>ours<br />

Class: Hilbert’s Problems and their Solvers, A.K. Peters, 2002. Cited <strong>on</strong> page 110.<br />

108 A large part <str<strong>on</strong>g>of</str<strong>on</strong>g> the study <str<strong>on</strong>g>of</str<strong>on</strong>g> dualities in string and M theory can be seen as investigati<strong>on</strong>s<br />

into the detailed c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> extremal identity. For a review <str<strong>on</strong>g>of</str<strong>on</strong>g> dualities, see<br />

P. C. Argyres, Dualities in supersymmetric field theories, Nuclear <str<strong>on</strong>g>Physics</str<strong>on</strong>g> Proceedings<br />

Supplement 61, pp. 149–157, 1998, preprint at arxiv.org/abs/hep-th/9705076. A classical<br />

versi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>dualityisdiscussedbyM.C.B.Abdalla,A.L.Gadelka&I.V.Vancea,<br />

Duality between coordinates and the Dirac field, preprintatarxiv.org/abs/hep-th/0002217.<br />

Cited <strong>on</strong> page 114.<br />

109 See L. Susskind & J. Uglum, Black holes, interacti<strong>on</strong>s, and strings, preprintatarxiv.<br />

org/abs/hep-th/9410074, or L. Susskind, String theory and the principle <str<strong>on</strong>g>of</str<strong>on</strong>g> black hole<br />

complementarity, Physical Review Letters 71, pp.2367–2368,1993,andM.Karliner,<br />

I. Klebanov & L. Susskind, Size and shape <str<strong>on</strong>g>of</str<strong>on</strong>g> strings, Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Modern<br />

<str<strong>on</strong>g>Physics</str<strong>on</strong>g> A 3, pp. 1981–1996, 1988, as well as L. Susskind, Structure <str<strong>on</strong>g>of</str<strong>on</strong>g> hadr<strong>on</strong>s implied<br />

by duality,PhysicalReviewD1, pp. 1182–1186, 1970. Cited <strong>on</strong> pages 119 and 134.<br />

110 M. Planck, Über irreversible Strahlungsvorgänge, Sitzungsberichte der königlichpreußischen<br />

Akademie der Wissenschaften zu Berlin pp. 440–480, 1899. Today it is<br />

comm<strong>on</strong>place to use Dirac’s ħ=h/2πinstead <str<strong>on</strong>g>of</str<strong>on</strong>g> Planck’s h, which Planck originally called<br />

b. Cited<strong>on</strong>page120.<br />

111 P. Facchi & S. Pascazio,Quantum Zeno and inverse quantum Zeno effects, pp. 147–217,<br />

in E. Wolf editor, Progress in Optics, 42, 2001. Cited <strong>on</strong> page 123.<br />

112 Aristotle, Of Generati<strong>on</strong> and Corrupti<strong>on</strong>, book I, part 2. See Jean-Paul D um<strong>on</strong>t,<br />

Les écoles présocratiques, Folio Essais, Gallimard, p. 427, 1991. Cited <strong>on</strong> page 123.<br />

113 See for example the speculative model <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum as composed <str<strong>on</strong>g>of</str<strong>on</strong>g> Planck-size spheres proposed<br />

by F. Winterberg, Zeitschrift für Naturforschung 52a,p.183,1997.Cited<strong>on</strong>page<br />

124.<br />

114 <str<strong>on</strong>g>The</str<strong>on</strong>g> Greeksalt-and-water argument and the fish argument are given by Lucrece, in full Titus<br />

Lucretius Carus, De natura rerum, c. 60 bce. Cited <strong>on</strong> pages 125 and 140.<br />

115 J. H. Schwarz, <str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d superstring revoluti<strong>on</strong>, Colloquium-level lecture presented at<br />

the Sakharov C<strong>on</strong>ference in Moscow, May 1996, preprint at arxiv.org/abs/hep-th/9607067.<br />

Cited <strong>on</strong> pages 126 and 128.<br />

116 Simplicius,Commentary <strong>on</strong> the <str<strong>on</strong>g>Physics</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Aristotle, 140, 34. This text is cited in Jean-<br />

Paul Dum<strong>on</strong>t, Les écoles présocratiques, Folio Essais, Gallimard, p. 379, 1991. Cited <strong>on</strong><br />

page 127.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


456 bibliography<br />

117 D. Olive & C. M<strong>on</strong>t<strong>on</strong>en,Magnetic m<strong>on</strong>opoles as gauge particles, <str<strong>on</strong>g>Physics</str<strong>on</strong>g> Letters 72B,<br />

pp. 117–120, 1977. Cited <strong>on</strong> page 128.<br />

118 A famous fragment from Diogenes Laërtius (IX 72) quotes Democritus as follows:<br />

‘By c<strong>on</strong>venti<strong>on</strong> hot, by c<strong>on</strong>venti<strong>on</strong> cold, but in reality, atoms and void; and also in reality<br />

we know nothing, since truth is at the bottom.’ Cited <strong>on</strong> page 129.<br />

119 This famous statement is found at the beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> chapter XI, ‘<str<strong>on</strong>g>The</str<strong>on</strong>g> Physical Universe’,<br />

in Arthur Eddingt<strong>on</strong>, <str<strong>on</strong>g>The</str<strong>on</strong>g> Philosophy <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Science,Cambridge,1939. Cited<strong>on</strong><br />

page 130.<br />

120 Plato, Parmenides, c. 370 bce. It has been translated into most languages. Reading it<br />

aloud, like a s<strong>on</strong>g, is a beautiful experience. A pale reflecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these ideas is Bohm’s<br />

c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘unbroken wholeness’. Cited <strong>on</strong> page 130.<br />

121 P. Gibbs, Event-symmetric physics, preprintatarxiv.org/abs/hep-th/9505089;seealsohis<br />

website www.weburbia.com/pg/c<strong>on</strong>tents.htm. Cited<strong>on</strong>page130.<br />

122 J. B. Hartle, & S. W. Hawking, Path integral derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> black hole radiance, Physical<br />

Review D 13, pp. 2188–2203, 1976. See also A. Strominger & C. Vafa, Microscopic<br />

origin <str<strong>on</strong>g>of</str<strong>on</strong>g> Bekenstein–Hawking entropy, <str<strong>on</strong>g>Physics</str<strong>on</strong>g> Letters B 379, pp. 99–104, 1996,<br />

preprint at arxiv.org/abs/hep-th/9601029. For another derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> black hole entropy,<br />

see G. T. Horowitz & J. Polchinski, A corresp<strong>on</strong>dence principle for black holes and<br />

strings, Physical Review D 55, pp. 6189–6197, 1997, preprint at arxiv.org/abs/hep-th/<br />

9612146. Cited<strong>on</strong>pages133 and 142.<br />

123 J. Maddox, When entropy does not seem extensive,Nature365, p. 103, 1993. <str<strong>on</strong>g>The</str<strong>on</strong>g> issue is<br />

now explored in all textbooks discussing black holes. John Maddox (b. 1925 Penllergaer,<br />

d. 1999 Abergavenny) was famous for being <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the few people who was knowledgeable<br />

in most natural sciences. Cited <strong>on</strong> page 133.<br />

124 L. Bombelli,R. K. Koul, J. Lee & R. D. Sorkin,Quantum source <str<strong>on</strong>g>of</str<strong>on</strong>g> entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> black<br />

holes,PhysicalReviewD34, pp. 373–383, 1986. Cited <strong>on</strong> page 133.<br />

125 <str<strong>on</strong>g>The</str<strong>on</strong>g> analogy between polymers and black holes is due to G. Weber, <str<strong>on</strong>g>The</str<strong>on</strong>g>rmodynamics at<br />

boundaries,Nature365, p. 792, 1993. Cited <strong>on</strong> page 133.<br />

126 See the classic textby Pierre-Gilles de Gennes,Scaling C<strong>on</strong>cepts in Polymer <str<strong>on</strong>g>Physics</str<strong>on</strong>g>,<br />

Cornell University Press, 1979. Cited <strong>on</strong> page 134.<br />

127 See for example S. Majid, Introducti<strong>on</strong> to braided geometry and q-Minkowski space,preprint<br />

at arxiv.org/abs/hep-th/9410241, orS.Majid,Duality principle and braided geometry,preprintatarxiv.org/abs/hep-th/9409057.<br />

Cited<strong>on</strong>pages135 and 136.<br />

128 <str<strong>on</strong>g>The</str<strong>on</strong>g> relati<strong>on</strong> between spin and statistics has been studied recently by M. V. Berry &<br />

J.M. Robbins,Quantum indistinguishability: spin–statistics without relativity or field theory?,inR.C.Hilborn&G.M.Tinoeditors,Spin–Statistics<br />

C<strong>on</strong>necti<strong>on</strong> and Commutati<strong>on</strong><br />

Relati<strong>on</strong>s, American Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Physics</str<strong>on</strong>g>, 2000. Cited <strong>on</strong> page 137.<br />

129 A. Gregori, Entropy, string theory, and our world, preprintatarxiv.org/abs/hep-th/<br />

0207195. Cited<strong>on</strong>pages138 and 139.<br />

130 String cosmology is a pastime for many. Examples include N. E. Mavromatos, String<br />

cosmology, preprintatarxiv.org/abs/hep-th/0111275, andN.G.Sanchez,New developments<br />

in string gravity and string cosmology – a summary report,preprintatarxiv.org/abs/<br />

hep-th/0209016. Cited<strong>on</strong>page139.<br />

131 On the present record, see en.wkipedia.org/wiki/Ultra-high-energy_cosmic_ray and fr.<br />

wkipedia.org/wiki/Zetta-particule. Cited<strong>on</strong>page140.<br />

132 P. F. Mende, String theory at short distance and the principle <str<strong>on</strong>g>of</str<strong>on</strong>g> equivalence, preprintat<br />

arxiv.org/abs/hep-th/9210001. Cited<strong>on</strong>page140.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


ibliography 457<br />

133 An example is given by A. A. Slavnov, Fermi–Bose duality via extra dimensi<strong>on</strong>,preprint<br />

at arxiv.org/abs/hep-th/9512101. See also the standard work by Michael St<strong>on</strong>e editor,<br />

Bos<strong>on</strong>izati<strong>on</strong>, World Scientific, 1994. Cited <strong>on</strong> page 140.<br />

134 A weave model <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time appears in certain approaches to quantum gravity, such as<br />

Ref. 27. On a slightly different topic, see also S. A. Major, A spin network primer,preprint<br />

at arxiv.org/abs/gr-qc/9905020. Cited<strong>on</strong>page140.<br />

135 L. Smolin & Y. Wan,Propagati<strong>on</strong> and interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chiral states in quantum gravity,preprint<br />

at arxiv.org/abs/0710.1548, and references therein. Cited <strong>on</strong> page 140.<br />

136 A good introducti<strong>on</strong> into his work is the paper D. Kreimer, New mathematicalstructures<br />

in renormalisable quantum field theories, Annals <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 303, pp. 179–202, 2003, erratum<br />

ibid. 305,p.79,2003,preprintatarxiv.org/abs/hep-th/0211136. Cited<strong>on</strong>page141.<br />

137 Introducti<strong>on</strong>s to holography include E. Alvarez, J. C <strong>on</strong>de & L. Hernandez, Rudiments<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> holography, preprintatarxiv.org/abs/hep-th/0205075, andRef. 30. <str<strong>on</strong>g>The</str<strong>on</strong>g>importance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> holography in theoretical high-energy physics was underlined by the discovery <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

J. Maldacena, <str<strong>on</strong>g>The</str<strong>on</strong>g> large N limit <str<strong>on</strong>g>of</str<strong>on</strong>g> superc<strong>on</strong>formal field theories and supergravity, preprint<br />

at arxiv.org/abs/hep-th/9711200. Cited<strong>on</strong>page141.<br />

138 X. -G. Wen, From new states <str<strong>on</strong>g>of</str<strong>on</strong>g> matter to a unificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> light and electr<strong>on</strong>s, preprintat<br />

arxiv.org/abs/0508020. Cited<strong>on</strong>page141.<br />

139 J. S. Avrin, A visualizable representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the elementary particles, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Knot <str<strong>on</strong>g>The</str<strong>on</strong>g>ory<br />

and Its Ramificati<strong>on</strong>s 14, pp. 131–176, 2005. Cited <strong>on</strong> pages 141 and 347.<br />

140 <str<strong>on</strong>g>The</str<strong>on</strong>g> well-known ribb<strong>on</strong> model is presented in S. Bils<strong>on</strong>-Thomps<strong>on</strong>, A topological<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> composite pre<strong>on</strong>s,preprintatarxiv.org/hep-ph/0503213;S. Bils<strong>on</strong>-Thomps<strong>on</strong>,<br />

F. Markopoulou & L. Smolin, Quantum gravity and the standard model, preprint<br />

at arxiv.org/hep-th/0603022; S.Bils<strong>on</strong>-Thomps<strong>on</strong>, J.Hackett, L.Kauffman<br />

& L. Smolin, Particle identificati<strong>on</strong>s from symmetries <str<strong>on</strong>g>of</str<strong>on</strong>g> braided ribb<strong>on</strong> network invariants,<br />

preprintatarxiv.org/abs/0804.0037; S. Bils<strong>on</strong>-Thomps<strong>on</strong>, J. Hackett &<br />

L. Kauffman,Particle topology, braids, and braided belts,preprintatarxiv.org/abs/0903.<br />

1376. Cited<strong>on</strong>pages141, 168,and347.<br />

141 R. J. Finkelstein, A field theory <str<strong>on</strong>g>of</str<strong>on</strong>g> knotted solit<strong>on</strong>s, preprintatarxiv.org/abs/hep-th/<br />

0701124. See also R. J. Finkelstein, Trefoil solit<strong>on</strong>s, elementary fermi<strong>on</strong>s, and SU q (2),<br />

preprint at arxiv.org/abs/hep-th/0602098,R.J.Finkelstein&A.C.Cadavid,Masses<br />

and interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> q-fermi<strong>on</strong>ic knots, preprint at arxiv.org/abs/hep-th/0507022, and<br />

R. J. Finkelstein, A knot model suggested by the standard electroweak theory,preprint<br />

at arxiv.org/abs/hep-th/0408218. Cited<strong>on</strong>pages141 and 347.<br />

142 Louis H. Kauffman,Knotsand <str<strong>on</strong>g>Physics</str<strong>on</strong>g>, World Scientific, 1991. A w<strong>on</strong>derful book. Cited<br />

<strong>on</strong> pages 141 and 277.<br />

143 S. K. Ng, On a knot model <str<strong>on</strong>g>of</str<strong>on</strong>g> the π + mes<strong>on</strong>,preprintatarxiv.org/abs/hep-th/0210024,and<br />

S. K. Ng, On a classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mes<strong>on</strong>s,preprintatarxiv.org/abs/hep-ph/0212334.Cited<strong>on</strong><br />

pages 141 and 347.<br />

144 For a good introducti<strong>on</strong> to superstrings, see the lectures by B. Zwiebach,String theory for<br />

pedestrians, agenda.cern.ch/fullAgenda.php?ida=a063319. For an old introducti<strong>on</strong> to superstrings,seethefamoustextbyM.B.Green,J.H.Schwarz&E.Witten,Superstring<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>ory, Cambridge University Press, volumes 1 and 2, 1987. Like all the other books<br />

<strong>on</strong> superstrings, they c<strong>on</strong>tain no statement that is applicable to or agrees with the strand<br />

model. Cited <strong>on</strong> pages 141 and 348.<br />

145 See A. Sen, An introducti<strong>on</strong> to duality symmetries in string theory,inLes Houches Summer<br />

School: Unity from Duality: Gravity, Gauge <str<strong>on</strong>g>The</str<strong>on</strong>g>ory and Strings (Les Houches, France, 2001),<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


458 bibliography<br />

Springer Verlag, 76, pp. 241–322, 2002. Cited <strong>on</strong> page 141.<br />

146 Brian Greene regularly uses the name string c<strong>on</strong>jecture. For example, he did so in a podium<br />

discussi<strong>on</strong> at TED in 2009; the video <str<strong>on</strong>g>of</str<strong>on</strong>g> the podium discussi<strong>on</strong> can be downloaded at www.<br />

ted.org. Cited<strong>on</strong>page142.<br />

147 L. Susskind,Some speculati<strong>on</strong>s about black hole entropy in string theory,preprintatarxiv.<br />

org/abs/hep-th/9309145.G.T.Horowitz&J.Polchinski,A corresp<strong>on</strong>dence principle<br />

for black holes and strings,PhysicalReviewD55, pp. 6189–6197, 1997, preprint at arxiv.org/<br />

abs/hep-th/9612146. Cited<strong>on</strong>pages142 and 463.<br />

148 F. Wilczek, Getting its from bits, Nature397, pp. 303–306, 1999. Cited <strong>on</strong> page 143.<br />

149 M. R. Douglas,Understanding the landscape,preprintatarxiv.org/abs/hep-th/0602266;<br />

his earlier papers also make the point. For the larger estimate, see W. Taylor & Y. -<br />

N. Wang, <str<strong>on</strong>g>The</str<strong>on</strong>g> F-theory geometry with most flux vacua, preprintatarxiv.org/abs/1511.<br />

03209. Cited<strong>on</strong>page144.<br />

150 <str<strong>on</strong>g>The</str<strong>on</strong>g> difficulties <str<strong>on</strong>g>of</str<strong>on</strong>g> the string c<strong>on</strong>jecture are discussed in the well-known internet blog<br />

by Peter Woit, Not even wr<strong>on</strong>g, atwww.math.columbia.edu/~woit/blog. Several Nobel<br />

Prize winners for particle physics dismiss the string c<strong>on</strong>jecture: Martin Veltman, Sheld<strong>on</strong><br />

Glashow, Burt<strong>on</strong> Richter, Richard Feynman and since 2009 also Steven Weinberg are<br />

am<strong>on</strong>g those who did so publicly. Cited <strong>on</strong> pages 144 and 168.<br />

151 <str<strong>on</strong>g>The</str<strong>on</strong>g> present volume was originally started with the aim to clarify the basic principles <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

string theory and to simplify it as much as possible. In particular, the first six chapters and<br />

the last chapter were c<strong>on</strong>ceived, structured and written with that aim. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are older than<br />

the strand model. Later <strong>on</strong>, the project took an unexpected directi<strong>on</strong>, as explained in Ref. 19.<br />

Cited <strong>on</strong> page 144.<br />

152 Searches for background-free approaches are described by E. Witten, Quantum background<br />

independence in string theory, preprint at arxiv.org/abs/hep-th/9306122 and<br />

E. Witten, On background-independent open string theory, preprintatarxiv.org/abs/<br />

hep-th/9208027. Cited<strong>on</strong>page145.<br />

153 In fact, no other candidate model that fulfils all requirements for the unified theory is available<br />

in the literature so far. This might change in the future, though. Cited <strong>on</strong> page 151.<br />

154 In December 2011 already I did not recall when I c<strong>on</strong>ceived and first explored the fundamental<br />

principle. It was between 2001 and 2006. It was a gradual process started by the<br />

explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt trick and driven by the aim to describe space in a way that produces<br />

Lorentz invariance based <strong>on</strong> extended entities (as I used to call them back then). <str<strong>on</strong>g>The</str<strong>on</strong>g> idea<br />

and the graphs <str<strong>on</strong>g>of</str<strong>on</strong>g> extended c<strong>on</strong>stituents for spin 1/2 is part <str<strong>on</strong>g>of</str<strong>on</strong>g> my volume 4 (<strong>on</strong> spin and<br />

particle exchange) since the 1990s. For many years I searched for a way to extend that model<br />

to include vacuum and the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> physics. This was my pastime when taking the subway to<br />

work during those years. Cited <strong>on</strong> page 158.<br />

155 S. Carlip,<str<strong>on</strong>g>The</str<strong>on</strong>g> small scale structure <str<strong>on</strong>g>of</str<strong>on</strong>g> spacetime,preprintatarxiv.org/abs/1009.1136.This<br />

paper deduces the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuating lines in vacuum from a number <str<strong>on</strong>g>of</str<strong>on</strong>g> arguments<br />

that are completely independent <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model. Steven Carlip has dedicated much <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

his research to the explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this topic. One summary is S. Carlip, Sp<strong>on</strong>taneous dimensi<strong>on</strong>al<br />

reducti<strong>on</strong> in quantum gravity,preprintatarxiv.org/abs/1605.05694; its is also instructive<br />

to read his review S. Carlip, Dimensi<strong>on</strong> and dimensi<strong>on</strong>al reducti<strong>on</strong> in quantum<br />

gravity, Classical and Quantum Gravity 34, p. 193001, 2017, preprint at arxiv.org/abs/1705.<br />

05417. With the strand model in the back <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e’s mind, these results are even more fascinating.<br />

Cited <strong>on</strong> pages 163 and 302.<br />

156 David Deutsch states that any good explanati<strong>on</strong> must be ‘hard to vary’. This must also apply<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


ibliography 459<br />

Challenge 229 e<br />

to a unified model, as it claims to explain everything that is observed. See D. Deutsch,<br />

A new way to explain explanati<strong>on</strong>,videotalkatwww.ted.org. Cited<strong>on</strong>pages167 and 423.<br />

157 L. Bombelli, J. Lee, D. Meyer & R. D. Sorkin,Space-time as a causal set, Physical<br />

Review Letters 59, pp. 521–524, 1987. See also the review by J. Hens<strong>on</strong>, <str<strong>on</strong>g>The</str<strong>on</strong>g> causal set<br />

approach to quantum gravity, preprintatarxiv.org/abs/gr-qc/0601121. Cited<strong>on</strong>pages168<br />

and 301.<br />

158 D. Finkelstein, Homotopy approach to quantum gravity, Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>The</str<strong>on</strong>g>oretical<br />

<str<strong>on</strong>g>Physics</str<strong>on</strong>g> 47, pp. 534–552, 2008. Cited <strong>on</strong> pages 168 and 301.<br />

159 L. H. Kauffman & S. J. Lom<strong>on</strong>aco, Quantum knots, preprint at arxiv.org/abs/<br />

quant-ph/0403228. See also S. J. Lom<strong>on</strong>aco & L. H. Kauffman, Quantum knots<br />

and mosaics,preprintatarxiv.org/abs/0805.0339. Cited<strong>on</strong>page168.<br />

160 Immanuel Kant, Critik der reinen Vernunft, 1781, is a famous but l<strong>on</strong>g book that every<br />

philospher pretends to have read. In his book, Kant introduced the ‘a priori’ existence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

space and time. Cited <strong>on</strong> page 170.<br />

161 <str<strong>on</strong>g>The</str<strong>on</strong>g> literature <strong>on</strong> circularity is rare. For two interesting excepti<strong>on</strong>s, see L. H. Kauffman,<br />

Knot logic, downloadable from www2.math.uic.edu/~kauffman, and L. H. Kauffman,<br />

Reflexivity and eigenform, C<strong>on</strong>structivist Foundati<strong>on</strong>s 4, pp. 121–137, 2009. Cited <strong>on</strong> page<br />

171.<br />

162 Informati<strong>on</strong> <strong>on</strong> the belt trick is scattered across many books and few papers. <str<strong>on</strong>g>The</str<strong>on</strong>g> best source<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> <strong>on</strong> this topic are websites. For belt trick visualizati<strong>on</strong>s see www.evl.uic.edu/<br />

hypercomplex/html/dirac.html, www.evl.uic.edu/hypercomplex/html/handshake.html, or<br />

www.gregegan.net/APPLETS/21/21.html. For an excellent literature summary and more<br />

movies, see www.math.utah.edu/~palais/links.html. N<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> these sites or the cited references<br />

seem to menti<strong>on</strong> that there are many ways to perform the belt trick; this seems to<br />

be hidden knowledge. In September 2009, Greg Egan took up my suggesti<strong>on</strong> and changed<br />

his applet to show an additi<strong>on</strong>al versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt trick. Cited <strong>on</strong> pages 178 and 180.<br />

163 <str<strong>on</strong>g>The</str<strong>on</strong>g>re is an interesting explorati<strong>on</strong> behind this analogy between a n<strong>on</strong>-dissipative system<br />

– a free quantum particle moving in vacuum – and a dissipative system – a macroscopic<br />

body drawn through a viscous liquid, say h<strong>on</strong>ey. <str<strong>on</strong>g>The</str<strong>on</strong>g> first questi<strong>on</strong> is to discover why this<br />

analogy is possible at all. (A careful distincti<strong>on</strong> between the cases with spin 0, spin 1 and<br />

spin 1/2 are necessary.) <str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d questi<strong>on</strong> is the explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bodies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

general shape in viscous fluids at low Reynolds numbers and under c<strong>on</strong>stant force. For the<br />

best overview <str<strong>on</strong>g>of</str<strong>on</strong>g> this questi<strong>on</strong>, see the beautiful article by O. G<strong>on</strong>zalez, A. B. A. Graf<br />

& J.H. Maddocks,Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a rigid body in a Stokesfluid, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Fluid Mechanics<br />

519, pp. 133–160, 2004. Cited <strong>on</strong> pages 197 and 362.<br />

164 D. Bohm,R. Schiller& J. Tiomno,A causal interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Pauli equati<strong>on</strong> (A),<br />

Supplementi al Nuovo Cimento 1, pp. 48 – 66, 1955, and D. Bohm & R. Schiller, A<br />

causal interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Pauli equati<strong>on</strong> (B), Supplementi al Nuovo Cimento 1,pp.67–91,<br />

1955. <str<strong>on</strong>g>The</str<strong>on</strong>g> authors explore an unusual way to interpret the wavefuncti<strong>on</strong>, which is <str<strong>on</strong>g>of</str<strong>on</strong>g> little<br />

interest here; but doing so, they give and explore the descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pauli spinors in terms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Euler angles. Cited <strong>on</strong> page 200.<br />

165 Richard P. Feynman, QED – <str<strong>on</strong>g>The</str<strong>on</strong>g> Strange <str<strong>on</strong>g>The</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> Light and Matter, Princet<strong>on</strong>University<br />

Press 1988. This is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the best summaries <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum theory ever written. Every<br />

physicist should read it. Cited <strong>on</strong> pages 201, 207, 219, 225,and460.<br />

166 S. Kochen& E. P. Specker,<str<strong>on</strong>g>The</str<strong>on</strong>g> problem <str<strong>on</strong>g>of</str<strong>on</strong>g> hidden variables in quantum mechanics, 17,<br />

pp.59–87,1967.Thisisaclassicpaper. Cited<strong>on</strong>page205.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


460 bibliography<br />

167 A. Aspect, J. Dalibard & G. Roger, Experimental tests <str<strong>on</strong>g>of</str<strong>on</strong>g> Bell’s inequalities using<br />

time-varying analyzers, Physical Review Letters 49, pp. 1804–1807, 1982, Cited <strong>on</strong> page<br />

209.<br />

168 L. Kauffman, New invariants <str<strong>on</strong>g>of</str<strong>on</strong>g> knot theory, American Mathematical M<strong>on</strong>thly 95,<br />

pp. 195–242, 1987. See also the image at the start <str<strong>on</strong>g>of</str<strong>on</strong>g> chapter 6 <str<strong>on</strong>g>of</str<strong>on</strong>g> Louis H. Kauffman,<br />

On Knots, Princet<strong>on</strong> University Press, 1987. Cited <strong>on</strong> page 211.<br />

169 <str<strong>on</strong>g>The</str<strong>on</strong>g> details <strong>on</strong> the speed <str<strong>on</strong>g>of</str<strong>on</strong>g> phot<strong>on</strong>s are explained in any textbook <strong>on</strong> quantum electrodynamics.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> issue is also explained by Feynman in Ref. 165 <strong>on</strong> page 89. Cited <strong>on</strong> page 214.<br />

170 J. -M. Lévy-Lebl<strong>on</strong>d, N<strong>on</strong>relativitic particles and wave equati<strong>on</strong>s, Communicati<strong>on</strong>s<br />

in Mathematical <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 6, pp. 286–311, 1967. See also A. Galindo &<br />

C. Sánchez del Río, Intrinsic magnetic moment as a n<strong>on</strong>relativistic phenomen<strong>on</strong>,<br />

American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 29, pp. 582–584, 1961, and V. I. Fushchich, A. G. Nikitin<br />

&V.A.Salogub,On the n<strong>on</strong>-relativistic moti<strong>on</strong> equati<strong>on</strong>s in the Hamilt<strong>on</strong>ian form, Reports<br />

<strong>on</strong> Mathematical <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 13, pp. 175–185, 1978. Cited <strong>on</strong> page 216.<br />

171 L. Lerner, Derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac equati<strong>on</strong> from a relativistic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> spin,<br />

European Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Phyics 17, pp. 172–175, 1996. Cited <strong>on</strong> page 216.<br />

172 E. P. Battey-Pratt & T. J. Racey, Geometric model for fundamental particles, Internati<strong>on</strong>al<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>The</str<strong>on</strong>g>oretical <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 19, pp. 437–475, 1980. Without knowing this work,<br />

C. Schiller had deduced the same results in 2008. Cited <strong>on</strong> pages 217, 218,and470.<br />

173 A. Abraham,Prinzipien der Dynamik des Elektr<strong>on</strong>s, Annalen der Physik 10, pp. 105–179,<br />

1903, J. Frenkel, Die Elektrodynamik des rotierenden Elektr<strong>on</strong>s, ZeitschriftfürPhysik<br />

37, pp. 243–262, 1926, L. H. Thomas, <str<strong>on</strong>g>The</str<strong>on</strong>g> moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a spinning electr<strong>on</strong>,NatureApril10,<br />

p. 514, 1926, and L. H. Thomas, <str<strong>on</strong>g>The</str<strong>on</strong>g> kinematics <str<strong>on</strong>g>of</str<strong>on</strong>g> an electr<strong>on</strong> with an axis,Philosophical<br />

Magazine 3, pp. 1–22, 1927. See also W. E. Baylis, Surprising symmetries in relativistic<br />

charge dynamics, preprintatarxiv.org/abs/physics/0410197. SeealsoW.E.Baylis,<br />

Quantum/classical interface: a geometric approach from the classical side, pp. 127–154<br />

and W. E. Baylis, Geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> paravector space with applicati<strong>on</strong>s to relativistic physics,<br />

pp. 363–387 in Computati<strong>on</strong>al N<strong>on</strong>commutative Algebra and Applicati<strong>on</strong>s, Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the NATO Advanced Study Institute, NATO Science Series II, vol. 136, ed. J. Byrnes,<br />

Kluwer Academic 2004. W. E. Baylis, R. Cabrera & D. Keselica, Quantum/<br />

classical interface: fermi<strong>on</strong> spin, preprintatarxiv.org/abs/0710.3144. D.Hestenes,Zitterbewegung<br />

<str<strong>on</strong>g>Model</str<strong>on</strong>g>ling, Foundati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 23, pp. 365–386, 1993. D. Hestenes,<br />

Zitterbewegung in quantum mechanics – a research program, preprintatarxiv.org/abs/<br />

0802.2728. See also D. Hestenes, Reading the electr<strong>on</strong> clock, preprintatarxiv.org/abs/<br />

0802.3227 and his webpage modelingnts.la.asu.edu/html/GAinQM.html. A.Loinger&<br />

A. Sparzani, Dirac equati<strong>on</strong> without Dirac matrices, IlNuovoCimento39, pp.1140–<br />

1145, 1965.D. Bohm,P. Hilli<strong>on</strong>,T. Takabayasi& J. -P. Vigier,Relativistic rotators<br />

and bilocal theory, Progress <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>The</str<strong>on</strong>g>oretical <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 23, pp. 496–511, 1960. A. Challinor,<br />

A. Lasenby,S. Gill& C. Doran,A relativistic, causal account <str<strong>on</strong>g>of</str<strong>on</strong>g> a spin measurement,<br />

<str<strong>on</strong>g>Physics</str<strong>on</strong>g> Letters A 218, pp. 128–138, 1996. E. Santamato, <str<strong>on</strong>g>The</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> Dirac equati<strong>on</strong> in the<br />

classical mechanics <str<strong>on</strong>g>of</str<strong>on</strong>g> the relativistic top,preprintatarxiv.org/abs/0808.3237.Cited<strong>on</strong>page<br />

219.<br />

174 <str<strong>on</strong>g>The</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> Zitterbewegung was formulated in E. Schrödinger, Über die kräftefreie<br />

Bewegung in der relativistischen Quantenmechanik, Berliner Berichte pp. 418–428, 1930,<br />

and Zur Quantendynamik des Elektr<strong>on</strong>s, Berliner Berichte pp. 63–72, 1931. Numerous subsequent<br />

papers discuss these publicati<strong>on</strong>s. Cited <strong>on</strong> page 219.<br />

175 See for example the book by Martin Rivas, Kinematic <str<strong>on</strong>g>The</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> Spinning Particles,<br />

Springer, 2001. Cited <strong>on</strong> page 219.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


ibliography 461<br />

176 <str<strong>on</strong>g>The</str<strong>on</strong>g> basic papers in the field <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastic quantizati<strong>on</strong> are W. Weizel, Ableitung der<br />

Quantentheorie aus einem klassischen, kausal determinierten <str<strong>on</strong>g>Model</str<strong>on</strong>g>l,ZeitschriftfürPhysik<br />

A 134, pp. 264–285, 1953, W. Weizel,Ableitung der Quantentheorie aus einem klassischen<br />

<str<strong>on</strong>g>Model</str<strong>on</strong>g>l – II, ZeitschriftfürPhysikA135, pp. 270–273, 1954, W. Weizel, Ableitung der<br />

quantenmechanischen Wellengleichung des Mehrteilchensystems aus einem klassischen <str<strong>on</strong>g>Model</str<strong>on</strong>g>l,ZeitschriftfürPhysikA136,<br />

pp. 582–604, 1954. This work was taken up by E. Nels<strong>on</strong>,<br />

Derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Schrödinger equati<strong>on</strong> from Newt<strong>on</strong>ian mechanics, PhysicalReview150,<br />

pp. 1079–1085, 1969, and in Edward Nels<strong>on</strong>, Quantum Fluctuati<strong>on</strong>s, Princet<strong>on</strong> University<br />

Press 1985, also downloadable at www.math.princet<strong>on</strong>.edu/~nels<strong>on</strong>/books.html, and<br />

the book Edward Nels<strong>on</strong>, Stochastic Quantizati<strong>on</strong>, Princet<strong>on</strong> University Press 1985. See<br />

also L. Fritsche & M. Haugk, A new look at the derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Schrödinger equati<strong>on</strong><br />

from Newt<strong>on</strong>ian mechanics, Annalen der Physik 12, pp. 371–402, 2003. A summary<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Nels<strong>on</strong>’s approach is also given in F. Markopoulou & L. Smolin, Quantum theory<br />

from quantum gravity, PhysicalReviewD70, p.124029,2004,preprintatarxiv.org/<br />

abs/gr-qc/0311059. See also the important criticism by T. C. Wallstrom, Inequivalence<br />

between the Schrödinger equati<strong>on</strong> and the Madelung hydrodynamic equati<strong>on</strong>, PhysicalReview<br />

A 49, pp. 1613–1617, 1994, and T. C. Wallstrom, <str<strong>on</strong>g>The</str<strong>on</strong>g> stochastic mechanics <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Pauli equati<strong>on</strong>, Transacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the American Mathematical Society 318, pp. 749–762, 1990.<br />

AproposedanswerisL.Smolin,Could quantum mechanics be an approximati<strong>on</strong> to another<br />

theory?,preprintatarxiv.org/quant-ph/abs/0609109.See also S. K. Srinivasan &<br />

E.C.G. Sudarshan,A direct derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac equati<strong>on</strong> via quaterni<strong>on</strong> measures,<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Physics</str<strong>on</strong>g> A 29, pp. 5181–5186, 1996. Cited <strong>on</strong> page 220.<br />

177 Julian Schwinger, Quantum Mechanics – Symbolism <str<strong>on</strong>g>of</str<strong>on</strong>g> Atomic Measurements,<br />

Springer, 2001. Cited <strong>on</strong> page 222.<br />

178 H. Nikolić,How (not) to teachLorentz covariance <str<strong>on</strong>g>of</str<strong>on</strong>g> the Dirac equati<strong>on</strong>, European Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 35, p. 035003, 2014, preprint at arxiv.org/abs/1309.7070. Cited<strong>on</strong>page222.<br />

179 For such an attempt, see the proposal by M. Rainer, Resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> simple singularities<br />

yielding particle symmetries in space-time, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mathematical <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 35, pp.646–<br />

655, 1994. Cited <strong>on</strong> page 225.<br />

180 C. Schiller,Deducing the three gauge interacti<strong>on</strong>s from the three Reidemeister moves,preprint<br />

at arxiv.org/abs/0905.3905. Cited<strong>on</strong>pages225 and 228.<br />

181 G. T. Horowitz & J. Polchinski, Gauge/gravity duality, preprint at arxiv.org/<br />

abs/gr-qc/0602037. Note also the statement in the introducti<strong>on</strong> that a gravit<strong>on</strong> might<br />

be a composite <str<strong>on</strong>g>of</str<strong>on</strong>g> two spin-1 bos<strong>on</strong>s, which is somewhat reproduced by the strand<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> the gravit<strong>on</strong>. A more c<strong>on</strong>crete approach to gauge–gravity duality is made by<br />

M. van Raamsd<strong>on</strong>k, Building up spacetime with quantum entanglement, preprintat<br />

arxiv.org/1005.3035. This approach to gauge–gravity duality is close to that <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand<br />

model. No citati<strong>on</strong>s.<br />

182 K. Reidemeister, Elementare Begründung der Knotentheorie, Abhandlungen aus dem<br />

Mathematischen Seminar der Universität Hamburg 5, pp. 24–32, 1926. Cited <strong>on</strong> pages 228<br />

and 276.<br />

183 L. Burns,Maxwell’s Equati<strong>on</strong>s are Universal for Locally C<strong>on</strong>served Quantities, Advances<br />

in Applied Clifford Algebras 29, p. 62, 2019. See also J. A. Heras,Can Maxwell’s equati<strong>on</strong>s<br />

be obtained from the c<strong>on</strong>tinuity equati<strong>on</strong>?, American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 75, pp. 652–657,<br />

2007. Cited <strong>on</strong> pages 229, 235,and243.<br />

184 For an attempt to rec<strong>on</strong>cile braided particle models and SU(5) GUT, see D. Cartin,Braids<br />

as a representati<strong>on</strong> space <str<strong>on</strong>g>of</str<strong>on</strong>g> SU(5),preprintatarxiv.org/pdf/1506.08067.Cited<strong>on</strong>page246.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


462 bibliography<br />

185 Sheld <strong>on</strong> Glashow, c<strong>on</strong>firmed this to the author in an email; Richard Feynman,<br />

makesthe point in James Gleick,Genius: <str<strong>on</strong>g>The</str<strong>on</strong>g> Life and Science <str<strong>on</strong>g>of</str<strong>on</strong>g> Richard Feynman,Vintage<br />

Books, 1991, page 288 and also in Robert Crease & Charles Mann, <str<strong>on</strong>g>The</str<strong>on</strong>g> Sec<strong>on</strong>d<br />

Creati<strong>on</strong>: Makers <str<strong>on</strong>g>of</str<strong>on</strong>g> the Revoluti<strong>on</strong> in Twentieth-Century <str<strong>on</strong>g>Physics</str<strong>on</strong>g>, Macmillan Publishing,<br />

page 418; Martin Veltman, writes this in his Nobel Prize Lecture, available <strong>on</strong> www.<br />

nobel.org. Cited<strong>on</strong>page257.<br />

186 For some <str<strong>on</strong>g>of</str<strong>on</strong>g> the background <strong>on</strong> this topic, see F. Wilczek & A. Zee Appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> gauge<br />

structures in simple dynamical systems, Physical Review Letters 52, pp. 2111–2114, 1984,<br />

A. Shapere & F. Wilczek, Self-propulsi<strong>on</strong> at low Reynolds number, PhysicalReview<br />

Letters 58, pp.2051–2054,1987,andA.Shapere&F.Wilczek,Gauge kinematics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

deformable bodies, American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 57, pp. 514–518, 1989. Cited <strong>on</strong> page 274.<br />

187 R.Britto,F. Cachazo,B.Feng&E.Witten,Direct pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> tree-level recursi<strong>on</strong> relati<strong>on</strong><br />

in Yang–Mills theory,preprintatarxiv.org/abs/hep-th/0501052. Cited<strong>on</strong>page275.<br />

188 D. V. Ahluwalia-Khalilova, Operati<strong>on</strong>al indistinguishability <str<strong>on</strong>g>of</str<strong>on</strong>g> double special relativity<br />

from special relativity, Classical and Quantum Gravity 22, pp. 1433–1450, 2005, preprint<br />

at arxiv.org/abs/gr-qc/0212128; see also N. Jafari & A. Shariati, Doubly special<br />

relativity: a new relativity or not?,preprintatarxiv.org/abs/gr-qc/0602075. Cited<strong>on</strong>page<br />

282.<br />

189 E. Verlinde, On the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity and the laws <str<strong>on</strong>g>of</str<strong>on</strong>g> Newt<strong>on</strong>,preprintatarxiv.org/abs/<br />

1001.0785. Cited<strong>on</strong>page283.<br />

190 G.-L. Lesage, Lucrèce Newt<strong>on</strong>ien, Nouveaux mémoires de l’Académie Royale des<br />

Sciences et Belles Lettres pp. 404–431, 1747, or www3.bbaw.de/bibliothek/digital/<br />

struktur/03-nouv/1782/jpg-0600/00000495.htm. See also en.wikipedia.org/wiki/<br />

Le_Sage’s_theory_<str<strong>on</strong>g>of</str<strong>on</strong>g>_gravitati<strong>on</strong>. In fact, the first to propose the idea <str<strong>on</strong>g>of</str<strong>on</strong>g> gravitati<strong>on</strong> as<br />

a result <str<strong>on</strong>g>of</str<strong>on</strong>g> small particles pushing masses was Nicolas Fatio de Duillier in 1688. Cited <strong>on</strong><br />

page 285.<br />

191 G. ’t Ho<str<strong>on</strong>g>of</str<strong>on</strong>g>t,Dimensi<strong>on</strong>alreducti<strong>on</strong>inquantumgravity,preprintatarxiv.org/abs/gr-qc/<br />

9310026. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> the ideas <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper become easier to understand and to argue when<br />

the strand model is used. Cited <strong>on</strong> page 290.<br />

192 S. Carlip,Logarithmic correcti<strong>on</strong>s to black hole entropy from the Cardy formula, Classical<br />

and Quantum Gravity 17, pp. 4175–4186, 2000, preprint at arxiv.org/abs/gr-qc/0005017.<br />

Cited <strong>on</strong> page 291.<br />

193 D. N. Page, <str<strong>on</strong>g>The</str<strong>on</strong>g> Bekenstein Bound, preprintatarxiv.org/abs/1804.10623. Cited <strong>on</strong> page<br />

293.<br />

194 On the limit for angular momentum <str<strong>on</strong>g>of</str<strong>on</strong>g> black holes, see Ref. 34. Cited<strong>on</strong>page293.<br />

195 F. Tamburini,C. Cu<str<strong>on</strong>g>of</str<strong>on</strong>g>ano, M. Della Valle& R. Gilmozzi,No quantum gravity<br />

signature from the farthest quasars,preprintatarxiv.org/abs/1108.6005. Cited<strong>on</strong>page298.<br />

196 B.P. Abbott & al., (LIGO Scientific Collaborati<strong>on</strong> and Virgo Collaborati<strong>on</strong>) Observati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gravitati<strong>on</strong>al waves from a binary black hole merger, Physical Review Letters<br />

116, p. 061102, 2016, also available for free download at journals.aps.org/prl/pdf/10.1103/<br />

PhysRevLett.116.061102. See also the website www.ligo.caltech.edu. More about this discovery<br />

and its implicati<strong>on</strong>s is told in volume II <str<strong>on</strong>g>of</str<strong>on</strong>g> the Moti<strong>on</strong> Mountain series. Cited <strong>on</strong> page<br />

299.<br />

197 On torsi<strong>on</strong>, see the excellent review by R. T. Hamm<strong>on</strong>d, New fields in general relativity,<br />

C<strong>on</strong>temporary <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 36, pp. 103–114, 1995. Cited <strong>on</strong> page 301.<br />

198 H. Kleinert, & J. Zaanen, World nematic crystal model <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity explaining the absence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> torsi<strong>on</strong>, <str<strong>on</strong>g>Physics</str<strong>on</strong>g> Letters A 324, pp. 361–365, 2004. Cited <strong>on</strong> page 301.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


ibliography 463<br />

199 <str<strong>on</strong>g>The</str<strong>on</strong>g> analogy between the situati<strong>on</strong> around line defects and general relativity is explained<br />

in Ekkehart Kröner, K<strong>on</strong>tinuumstheorie der Versetzungen und Eigenspannungen,<br />

Springer, 1958, <str<strong>on</strong>g>The</str<strong>on</strong>g>se ideas have been taken up and pursued by J. D. Eshelby,<br />

B. A. Bilby, and many others after them. Cited <strong>on</strong> page 301.<br />

200 Loop quantum gravity is a vast research field. <str<strong>on</strong>g>The</str<strong>on</strong>g> complete literature is available at arxiv.<br />

org/archive/gr-qc. Cited<strong>on</strong>page301.<br />

201 G. ’t Ho<str<strong>on</strong>g>of</str<strong>on</strong>g>t, Crystalline Gravity, Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Modern <str<strong>on</strong>g>Physics</str<strong>on</strong>g> A 24,<br />

pp. 3243–3255, 2009, and also G. ’ t Ho<str<strong>on</strong>g>of</str<strong>on</strong>g>t, A locally finite model <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity, preprint<br />

at arxiv.org/abs/0804.0328. Cited<strong>on</strong>page301.<br />

202 L. Susskind,New c<strong>on</strong>cepts for old black holes,preprintatarxiv.org/abs/1311.3335,andalso<br />

reference Ref. 147. Cited<strong>on</strong>page302.<br />

203 M. Botta Cantcheff, Spacetime geometry as statistic ensemble <str<strong>on</strong>g>of</str<strong>on</strong>g> strings, preprintat<br />

arxiv.org/abs/1105.3658. Cited<strong>on</strong>page302.<br />

204 N. Arkani-Hamed, L. Motl, A. Nicolis & C. Vafa, <str<strong>on</strong>g>The</str<strong>on</strong>g> string landscape, black<br />

holes and gravity as the weakest force,preprintatarxiv.org/abs/hep-th/0601001.<str<strong>on</strong>g>The</str<strong>on</strong>g>paper<br />

c<strong>on</strong>tradicts the strand model in multiple ways. Cited <strong>on</strong> page 303.<br />

205 M. van Raamsd<strong>on</strong>k, Comments <strong>on</strong> quantum gravity and entanglement, preprintat<br />

arxiv.org/abs/0907.2939. Cited<strong>on</strong>page303.<br />

206 W. H. Zurek & K. S. Thorne, Statistical mechanical origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> a rotating,<br />

charged black hole, Physical Review Letters 54, pp. 2171–2175, 1985. Cited <strong>on</strong> page 303.<br />

207 M. Shaposhnikov& C. Wetterich,Asymptotic safety <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity and the Higgs bos<strong>on</strong><br />

mass,preprintatarxiv.org/abs/0912.0208. Cited<strong>on</strong>page304.<br />

208 M.M. Anber& J.F. D<strong>on</strong>oghue,On the running <str<strong>on</strong>g>of</str<strong>on</strong>g> the gravitati<strong>on</strong>al c<strong>on</strong>stant,preprint<br />

at arxiv.org/abs/1111.2875. Cited<strong>on</strong>page304.<br />

209 <str<strong>on</strong>g>The</str<strong>on</strong>g> 2016 data about modified Newt<strong>on</strong>ian dynamics is found in S. McGaugh, F. Lelli<br />

&J.Schombert,<str<strong>on</strong>g>The</str<strong>on</strong>g> radial accelerati<strong>on</strong> relati<strong>on</strong> in rotati<strong>on</strong>ally supported galaxies,preprint<br />

at arxiv.org/abs/1609.05917,andinF.Lelli,S.S.McGaugh,J.M.Schombert<br />

&M.S.Pawlowski,One law to rule them all: the radial accelerati<strong>on</strong> relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> galaxies,<br />

preprint at arxiv.org/abs/1610.08981. Cited<strong>on</strong>page305.<br />

210 C.H. Lineweaver& T.M. Davis,Misc<strong>on</strong>cepti<strong>on</strong>s about the big bang, Scientific American<br />

pp. 36–45, March 2005. Cited <strong>on</strong> page 307.<br />

211 Supernova Search Team Collaborati<strong>on</strong>, A.G. Riess & al., Observati<strong>on</strong>al<br />

evidence from supernovae for an accelerating universe and a cosmological c<strong>on</strong>stant, Astr<strong>on</strong>omical<br />

Journal 116, pp. 1009–1038, 1998, preprint at arxiv.org/abs/astro-ph/9805201.<br />

Cited <strong>on</strong> page 307.<br />

212 Stephen Hawking &Roger Penrose,<str<strong>on</strong>g>The</str<strong>on</strong>g> Nature <str<strong>on</strong>g>of</str<strong>on</strong>g> Space and Time,Princet<strong>on</strong>University<br />

Press, 1996. Cited <strong>on</strong> page 308.<br />

213 C. Balázs& I. Szapudi,Naturalness <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum energy in holographic theories,preprint<br />

at arxiv.org/abs/hep-th/0603133.SeealsoC.Bambi&F.R.Urban,Natural extensi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the generalised uncertainty principle, preprintatarxiv.org/abs/0709.1965.<str<strong>on</strong>g>The</str<strong>on</strong>g>same<br />

pointismadebyD.A.Eass<strong>on</strong>,P.H.Frampt<strong>on</strong>&G.F.Smoot,Entropic accelerating<br />

universe,preprintatarxiv.org/abs/1002.4278. No citati<strong>on</strong>s.<br />

214 W. Fischler & L. Susskind, Holography and Cosmology, preprintatarxiv.org/abs/<br />

hep-th/9806039. No citati<strong>on</strong>s.<br />

215 For a review <str<strong>on</strong>g>of</str<strong>on</strong>g> recent cosmological data, see D. N. Spergel, R. Bean, O. D oré,<br />

M.R.Nolta, C.L.Bennett, G.Hinshaw, N.Jarosik, E.Komatsu,<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


464 bibliography<br />

L. Page, H. V. Peiris, L. Verde, C. Barnes, M. Halpern, R. S. Hill,<br />

A. Kogut, M. Lim<strong>on</strong>, S. S. Meyer, N. Odegard, G. S. Tucker, J. L. Weiland,<br />

E. Wollack & E.L. Wright, Wilkins<strong>on</strong> Microwave Anisotropy Probe (WMAP) three<br />

year results: implicati<strong>on</strong>s for cosmology,preprintatarxiv.org/abs/astro-ph/0603449. Cited<br />

<strong>on</strong> page 309.<br />

216 <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a large body <str<strong>on</strong>g>of</str<strong>on</strong>g> literature that has explored a time-varying cosmological c<strong>on</strong>stant,<br />

especially in relati<strong>on</strong> to holography. An example with many references is L. Xu, J. Lu &<br />

W. L i, Time variable cosmological c<strong>on</strong>stants from the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe, preprintatarxiv.<br />

org/abs/0905.4773. No citati<strong>on</strong>s.<br />

217 D. Wiltshire, Gravitati<strong>on</strong>al energy and cosmic accelerati<strong>on</strong>, preprintatarxiv.org/abs/<br />

0712.3982 and D. Wiltshire, Dark energy without dark energy, preprintatarxiv.org/<br />

abs/0712.3984. A newer and well-argued paper is D. L. Wiltshire, Cosmic structure,<br />

averaging and dark energy, preprintatarxiv.org/abs/1311.3787. Seealso T.Buchert,<br />

A.A.Coley,H.Kleinert,B.F.Roukema&D.L.Wiltshire,Observati<strong>on</strong>alchallenges<br />

for the standard FLRW model,preprintatarxiv.org/abs/1512.03313. No citati<strong>on</strong>s.<br />

218 <str<strong>on</strong>g>The</str<strong>on</strong>g> attributi<strong>on</strong> to <str<strong>on</strong>g>Vol</str<strong>on</strong>g>taire could not be c<strong>on</strong>firmed. Cited <strong>on</strong> page 313.<br />

219 V. Crede & C.A. Meyer,<str<strong>on</strong>g>The</str<strong>on</strong>g> experimental status <str<strong>on</strong>g>of</str<strong>on</strong>g> glueballs,ProgressinParticleand<br />

Nuclear <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 63, pp. 74–116, 2009. Cited <strong>on</strong> page 344.<br />

220 E. Klempt & A. Zaitsev, Glueballs, hybrids, multiquarks. Experimental facts versus<br />

QCD inspired c<strong>on</strong>cepts, <str<strong>on</strong>g>Physics</str<strong>on</strong>g>Reports454, 2007, preprint at arxiv.org/abs/0708.4016.<br />

Cited <strong>on</strong> pages 342 and 344.<br />

221 R.V. Buniy & T.W. Kephart, A model <str<strong>on</strong>g>of</str<strong>on</strong>g> glueballs, preprint at arxiv.org/pdf/<br />

hep-ph/0209339; R.V.Buniy & T.W.Kephart, Universal energy spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> tight<br />

knots and links in physics, preprintatarxiv.org/pdf/hep-ph/0408025; R.V.Buniy&<br />

T. W. Kephart, Glueballs and the universal energy spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> tight knots and links,<br />

preprint at arxiv.org/pdf/hep-ph/0408027. SeealsoJ.P.Ralst<strong>on</strong>,<str<strong>on</strong>g>The</str<strong>on</strong>g> Bohr atom <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

glueballs,preprintatarxiv.org/pdf/hep-ph/0301089. Cited<strong>on</strong>page344.<br />

222 A.J. Niemi, Are glueballs knotted closed strings?, pp. 127–129, in H. Suganuma,<br />

N.Ishii, M.Oka, H.Enyo, T.Hatsuda, T.Kunihiro & K.Yazaki editors,<br />

Color c<strong>on</strong>finement and hadr<strong>on</strong>s in quantum chromodynamics, World Scientific, 2003, preprint<br />

at arxiv.org/pdf/hep-th/0312133.SeealsoY.M.Cho,B.S.Park&P.M.Zhang,<br />

New interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Skyrme theory,preprintatarxiv.org/pdf/hep-th/0404181;K.K<strong>on</strong>do,<br />

A. Ono, A. Shibata,T. Shinohara& T. Murakami,Glueball mass from quantized<br />

knot solit<strong>on</strong>s and gauge-invariant glu<strong>on</strong> mass, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Physics</str<strong>on</strong>g> A 39, pp. 13767–13782,<br />

2006, preprint at arxiv.org/abs/hep-th/0604006. Cited<strong>on</strong>page344.<br />

223 See the <strong>on</strong>e milli<strong>on</strong> dollar prize described at www.claymath.org/millennium/<br />

Yang-Mills_<str<strong>on</strong>g>The</str<strong>on</strong>g>ory. Cited<strong>on</strong>page345.<br />

224 For a clear review <strong>on</strong> the topic and the planned experiments, see E. Fiorini, Measurement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> neutrino mass in double beta decay,EurophysicsNews38, pp. 30–34, 2007, downloadable<br />

at www.europhysicsnews.org. Cited<strong>on</strong>page327.<br />

225 For example, see the detailed discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> neutrino properties at pdg.web.cern.ch or, in<br />

print, in Ref. 233. Cited<strong>on</strong>page327.<br />

226 For a possible third approach, see A. F. Nichols<strong>on</strong> & D. C. Kennedy,Electroweaktheory<br />

without Higgs bos<strong>on</strong>s, Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Modern <str<strong>on</strong>g>Physics</str<strong>on</strong>g> A 15, pp. 1497–1519,<br />

2000, preprint at arxiv.org/abs/hep-ph/9706471. Cited<strong>on</strong>page329.<br />

227 M. Veltman, <str<strong>on</strong>g>The</str<strong>on</strong>g> Higgs system, lecture slides at www.nikhef.nl/pub/theory/<br />

academiclectures/Higgs.pdf. See also his CERN Yellow Report 97-05, Reflecti<strong>on</strong>s <strong>on</strong> the<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


ibliography 465<br />

Higgs system, 1997, and the paper H. Veltman & M. Veltman, On the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

res<strong>on</strong>ances in l<strong>on</strong>gitudinally polarized vector bos<strong>on</strong> scattering, Acta <str<strong>on</strong>g>Physics</str<strong>on</strong>g> Pol<strong>on</strong>ica B 22,<br />

pp. 669–695, 1991. Cited <strong>on</strong> page 329.<br />

228 J. W. M<str<strong>on</strong>g>of</str<strong>on</strong>g>fat & V. T. Thot, A finite electroweak model without a Higgs particle,preprint<br />

at arxiv.org/abs/0812.1991. <str<strong>on</strong>g>The</str<strong>on</strong>g>ideasgobacktoD.Evens,J.W.M<str<strong>on</strong>g>of</str<strong>on</strong>g>fat,G.Kleppe<br />

&R.P.Woodard,N<strong>on</strong>local regularizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> gauge theories, PhysicalReviewD43,<br />

pp. 499–519, 1991. For more details <strong>on</strong> how to introduce n<strong>on</strong>-locality while maintaining<br />

current c<strong>on</strong>servati<strong>on</strong> and unitarity, see G. Kleppe & R. P. Woodard, N<strong>on</strong>-local Yang-<br />

Mills, Nuclear<str<strong>on</strong>g>Physics</str<strong>on</strong>g>B388, pp. 81–112, 1992, preprint at arxiv.org/abs/hep-th/9203016.<br />

For a different approach that postulates no specific origin for the W and Z masses, see<br />

J. W. M<str<strong>on</strong>g>of</str<strong>on</strong>g>fat, Ultraviolet complete electroweak model without a Higgs particle, preprint<br />

at arxiv.org/abs/1006.1859. Cited<strong>on</strong>page329.<br />

229 H. B. Nielsen & P. Olesen,A vortex line model for dual strings, Nuclear<str<strong>on</strong>g>Physics</str<strong>on</strong>g>B61,<br />

pp. 45–61, 1973. Cited <strong>on</strong> pages 333 and 386.<br />

230 B. Anderss<strong>on</strong>,G. Gustafs<strong>on</strong>,G. Ingelman& T. Sjöstrand,Part<strong>on</strong> fragmentati<strong>on</strong><br />

and string dynamics,<str<strong>on</strong>g>Physics</str<strong>on</strong>g>Reports97,pp.31–145,1983.Cited<strong>on</strong>page333.<br />

231 C.B. Thorn, Subcritical string and large N QCD, preprintatarxiv.org/abs/0809.1085.<br />

Cited <strong>on</strong> page 333.<br />

232 A.J. Buchmann & E.M. Henley, Intrinsic quadrupole moment <str<strong>on</strong>g>of</str<strong>on</strong>g> the nucle<strong>on</strong>, Physical<br />

Review C 63, p. 015202, 2000. Alf<strong>on</strong>s Buchmann also predicts that the quadrupole moment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the other, strange J=1/2octet bary<strong>on</strong>s is positive, and predicts a prolate structure<br />

for all <str<strong>on</strong>g>of</str<strong>on</strong>g> them (private communicati<strong>on</strong>). For the decuplet bary<strong>on</strong>s, with J = 3/2,<br />

the quadrupole moment can <str<strong>on</strong>g>of</str<strong>on</strong>g>ten be measured spectroscopically, and is always negative.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> four Δ bary<strong>on</strong>s are thus predicted to have a negative intrinsic quadrupole moment<br />

and thus an oblate shape. This explained in A. J. Buchmann & E. M. Henley,<br />

Quadrupole moments <str<strong>on</strong>g>of</str<strong>on</strong>g> bary<strong>on</strong>s, PhysicalReviewD65, p. 073017, 2002. For recent updates,<br />

see A. J. Buchmann, Charge form factors and nucle<strong>on</strong> shape, pp. 110–125, in<br />

C.N. Papanicolas& Ar<strong>on</strong> Bernsteineditors, Shape <str<strong>on</strong>g>of</str<strong>on</strong>g> Hadr<strong>on</strong>s Workshop C<strong>on</strong>ference,<br />

Athens, Greece, 27-29 April 2006, AIP C<strong>on</strong>ference Proceedings 904. Cited <strong>on</strong> pages<br />

336 and 340.<br />

233 C. Patrignani & al., (Particle Data Group), Chinese <str<strong>on</strong>g>Physics</str<strong>on</strong>g> C 40, p. 100001, 2016, or<br />

pdg.web.cern.ch. Cited<strong>on</strong>pages337, 338, 339, 361, 363, 376, 377, 378, 379, 464,and466.<br />

234 A review <strong>on</strong> Regge trajectories and Chew-Frautschi plots is W. Drechsler, Das Regge-<br />

Pol-<str<strong>on</strong>g>Model</str<strong>on</strong>g>l, Naturwissenschaften 59, pp. 325–336, 1972. See also the short lecture <strong>on</strong><br />

courses.washingt<strong>on</strong>.edu/phys55x/<str<strong>on</strong>g>Physics</str<strong>on</strong>g>557_lec11.htm. Cited<strong>on</strong>page337.<br />

235 Kurt Gottfried & Victor F. Weisskopf, C<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> Particle <str<strong>on</strong>g>Physics</str<strong>on</strong>g>, Clarend<strong>on</strong><br />

Press, Oxford, 1984. Cited <strong>on</strong> page 338.<br />

236 G. ’t Ho<str<strong>on</strong>g>of</str<strong>on</strong>g>t, G. Isidori,L. Maiani,A.D. Polosa &V. Riquer,Atheory<str<strong>on</strong>g>of</str<strong>on</strong>g>scalar<br />

mes<strong>on</strong>s, <str<strong>on</strong>g>Physics</str<strong>on</strong>g> Letters B 662, pp. 424–430, 2008, preprint at arxiv.org/abs/0801.2288.However,<br />

other researchers, such as arxiv.org/abs/1404.5673, argue against the tetraquark interpretati<strong>on</strong>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> issue is not closed. Cited <strong>on</strong> page 342.<br />

237 M. Karliner,Doubly heavy tetraquarks and bary<strong>on</strong>s,preprintatarxiv.org/abs/1401.4058.<br />

Cited <strong>on</strong> page 346.<br />

238 J. Viro & O. Viro, C<strong>on</strong>figurati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> skew lines, Leningrad Mathematical Journal 1,<br />

pp.1027–1050,1990,andupdatedpreprintatarxiv.org/abs/math.GT/0611374.Cited<strong>on</strong>page<br />

347.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


466 bibliography<br />

239 W. Thom s<strong>on</strong>, On vortex moti<strong>on</strong>, Transacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the Royal Society in Edinburgh pp. 217–<br />

260, 1868. This famous paper stimulated much work <strong>on</strong> knot theory. Cited <strong>on</strong> page 347.<br />

240 H. Jehle, Flux quantizati<strong>on</strong> and particle physics,PhysicalReviewD6, pp. 441–457, 1972,<br />

and H. Jehle, Flux quantizati<strong>on</strong> and fracti<strong>on</strong>al charge <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks, PhysicalReviewD6,<br />

pp. 2147–2177, 1975. Cited <strong>on</strong> page 347.<br />

241 T. R. M<strong>on</strong>gan, A holographic charged pre<strong>on</strong> model, preprintatarxiv.org/abs/0801.3670.<br />

Cited <strong>on</strong> page 347.<br />

242 <str<strong>on</strong>g>The</str<strong>on</strong>g> arguments can be found in A. H. Chamseddine, A. C<strong>on</strong>nes & V. Mukhanov,<br />

Geometry and the quantum: basics, preprint at arxiv.org/abs/1411.0977 and in<br />

A.H. Chamseddine & A. C<strong>on</strong>nes, Why the standard model, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Geometry<br />

and <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 58, pp. 38–47, 2008, preprint at arxiv.org/abs/0706.3688. Cited<strong>on</strong>page348.<br />

243 Jacob’s rings are shown, for example, in the animati<strong>on</strong> <strong>on</strong> www.prestidigitascience.fr/index.<br />

php?page=anneaux-de-jacob. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are already published in the book by Tom Tit, La science<br />

amusante, 1870, and the images were reprinted the popular science books by Edi Lammers,<br />

and, almost a century later <strong>on</strong>, even in the mathematics column and in <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

books by Martin Gardner. See also www.lhup.edu/~dsimanek/scenario/toytrick.htm.Cited<br />

<strong>on</strong> page 351.<br />

244 R. Boughezal, J. B. Tausk & J. J. van der Bij, Three-loop electroweak correcti<strong>on</strong>s to<br />

the W-bos<strong>on</strong> mass and sin 2 θ eff in the large Higgs mass limit, Nuclear<str<strong>on</strong>g>Physics</str<strong>on</strong>g>B725, pp.3–<br />

14, 2005, preprint at arxiv.org/abs/hep-ph/0504092. Cited<strong>on</strong>page361.<br />

245 <str<strong>on</strong>g>The</str<strong>on</strong>g> topic <str<strong>on</strong>g>of</str<strong>on</strong>g> the g-factor <str<strong>on</strong>g>of</str<strong>on</strong>g> the W bos<strong>on</strong> and <str<strong>on</strong>g>of</str<strong>on</strong>g> charged fermi<strong>on</strong>s is covered in the delightful<br />

paper by Barry R. Holstein, How large is the ‘‘natural’’ magnetic moment?,American<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Physics</str<strong>on</strong>g> 74, pp. 1104–1111, 2006, preprint at arxiv.org/abs/hep-ph/0607187.Cited<br />

<strong>on</strong> page 363.<br />

246 <str<strong>on</strong>g>The</str<strong>on</strong>g> calculati<strong>on</strong>s have been performed in August 2016 by Eric Rawd<strong>on</strong>. Cited <strong>on</strong> pages 361<br />

and 363.<br />

247 <str<strong>on</strong>g>The</str<strong>on</strong>g> calculati<strong>on</strong>s have been performed by Eric Rawd<strong>on</strong> and Maria Fisher. Cited <strong>on</strong> page<br />

365.<br />

248 <str<strong>on</strong>g>The</str<strong>on</strong>g> quark masses at Planck energy are due to a private communicati<strong>on</strong> by Xing Zhizh<strong>on</strong>g<br />

and Zhou Shun. <str<strong>on</strong>g>The</str<strong>on</strong>g>y are calculated following the method presented in Quark<br />

mass hierarchy and flavor mixing puzzles, preprintatarxiv.org/abs/1411.2713 and Zhizh<strong>on</strong>g<br />

Xing,He Zhang & Shun Zhou,Updated values <str<strong>on</strong>g>of</str<strong>on</strong>g> running quark and lept<strong>on</strong><br />

masses,preprintatarxiv.org/abs/0712.1419. Cited<strong>on</strong>page365.<br />

249 See H. Fritzsch, A.D. Özer, A scaling law for quark masses,preprintatarxiv.org/abs/<br />

hep-ph/0407308. Cited<strong>on</strong>page366.<br />

250 K. A. Meissner& H. Nicolai,Neutrinos, axi<strong>on</strong>s and c<strong>on</strong>formal symmetry,preprintat<br />

arxiv.org/abs/0803.2814. Cited<strong>on</strong>pages369 and 370.<br />

251 M. Shaposhnikov,Is there a new physics between electroweakand Planck scale?,preprint<br />

at arxiv.org/abs/0708.3550. Cited<strong>on</strong>page370.<br />

252 Y.Diao,C.Ernst,A.Por&U.Ziegler,<str<strong>on</strong>g>The</str<strong>on</strong>g> roplength <str<strong>on</strong>g>of</str<strong>on</strong>g> knots are almost linear in<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> their crossing numbers,preprintatarxiv.org/abs/0912.3282. Cited<strong>on</strong>page373.<br />

253 H. Fritzsch & Z. -Z. Xing, Lept<strong>on</strong> mass hierarchy and neutrino mixing, preprintat<br />

arxiv.org/abs/hep-ph/0601104 Cited <strong>on</strong> page 378.<br />

254 <str<strong>on</strong>g>The</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> neutrino mixing, i.e., neutrino oscillati<strong>on</strong>s, were measured in numerous<br />

experiments from the 1960s <strong>on</strong>wards; most important were the experiments at Super-<br />

Kamiokande in Japan and at the Sudbury Neutrino Observatory in Canada. See Ref. 233.<br />

Cited <strong>on</strong> page 379.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


ibliography 467<br />

255 M. Fukugita & T. Yanagida,Baryogenesis without grand unificati<strong>on</strong>, <str<strong>on</strong>g>Physics</str<strong>on</strong>g> Letters<br />

B 174, pp.45–47,1986.Cited<strong>on</strong>page380.<br />

256 J. M. Cline, Baryogenesis, preprintatarxiv.org/abs/hep-ph/0609145 or the review by<br />

L.Canetti,M.Drewes&M.Shaposhnikov,Matter and Antimatter in the Universe,<br />

preprintatarxiv.org/abs/1204.4186. <str<strong>on</strong>g>The</str<strong>on</strong>g>y explain the arguments that the standard<br />

model with its CKM-CP violati<strong>on</strong> is not sufficient to explain baryogenesis. <str<strong>on</strong>g>The</str<strong>on</strong>g> opposite<br />

view, by the same authors, is found in L. Canetti, M. Drewes, T. Frossard<br />

&M.Shaposhnikov,Dark matter, baryogenesis and neutrino oscillati<strong>on</strong>s from right<br />

handed neutrinos, preprintatarxiv.org/abs/1208.4607; another opposing view is found in<br />

T. Brauner, CP violati<strong>on</strong> and electroweak baryogenesis in the Standard <str<strong>on</strong>g>Model</str<strong>on</strong>g>,EPJWeb<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>ferences 70, p. 00078, 2014. This issue is not settled yet. Cited <strong>on</strong> page 380.<br />

257 Several claims that the coupling c<strong>on</strong>stants changed with the age <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe have<br />

appeared in the literature. <str<strong>on</strong>g>The</str<strong>on</strong>g> first claim was by J. K. Webb, V. V. Flambaum,<br />

C.W. Churchill, M.J. Drinkwater & J.D. Barrow, Asearchfortimevariati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the fine structure c<strong>on</strong>stant, Physical Review Letters 82, pp. 884–887, 1999, preprint at<br />

arxiv.org/abs/astro-ph/9803165. Several subsequent claims have appeared. However, n<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> these claims has been c<strong>on</strong>firmed by subsequent measurements. Nowadays, there is no<br />

data showing that the fine structure c<strong>on</strong>stant changes in time. Cited <strong>on</strong> page 384.<br />

258 <str<strong>on</strong>g>The</str<strong>on</strong>g> poster <strong>on</strong> www.physicsoverflow.org referred to J. P. Lest<strong>on</strong>e, <str<strong>on</strong>g>Physics</str<strong>on</strong>g> based calculati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the fine structure c<strong>on</strong>stant, preprintatarxiv.org/abs/physics/0703151. <str<strong>on</strong>g>The</str<strong>on</strong>g>preprint<br />

has never been published. Cited <strong>on</strong> page 389.<br />

259 For a highly questi<strong>on</strong>able, but still intriguing argument based <strong>on</strong> black hole thermodynamics<br />

that claims to deduce the limit α>ln 3/48π ≈ 1/137.26,seeS.Hod,Gravitati<strong>on</strong>, thermodynamics,<br />

and the fine-structure c<strong>on</strong>stant, Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Modern <str<strong>on</strong>g>Physics</str<strong>on</strong>g> D<br />

19, pp. 2319–2323, 2010. It might well be that similar or other arguments based <strong>on</strong> textbook<br />

physics will yield more c<strong>on</strong>vincing or even better limits in the future. Cited <strong>on</strong> page 389.<br />

260 V. A rnold, Topological Invariants <str<strong>on</strong>g>of</str<strong>on</strong>g> Plane Curves and Caustics, American Mathematical<br />

Society, 1994. Cited <strong>on</strong> page 396.<br />

261 See M. Pospelov & A. Ritz, Electric dipole moments as probes <str<strong>on</strong>g>of</str<strong>on</strong>g> new physics,preprint<br />

at arxiv.org/abs/hep-ph/0504231. Cited<strong>on</strong>page396.<br />

262 C. Schiller,A c<strong>on</strong>jecture <strong>on</strong> deducing general relativity and the standard model with its<br />

fundamental c<strong>on</strong>stants from rati<strong>on</strong>al tangles <str<strong>on</strong>g>of</str<strong>on</strong>g> strands, <str<strong>on</strong>g>Physics</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Particles and Nuclei 50,<br />

pp. 259–-299, 2019. Cited <strong>on</strong> pages 398 and 433.<br />

263 D. Hilbert, Über das Unendliche, Mathematische Annalen 95, pp. 161–190, 1925. Cited<br />

<strong>on</strong> page 418.<br />

264 <str<strong>on</strong>g>The</str<strong>on</strong>g> Book <str<strong>on</strong>g>of</str<strong>on</strong>g> Twenty-four Philosophers, c. 1200, is attributed to the god Hermes Trismegistos,<br />

but was actually written in the middle ages. <str<strong>on</strong>g>The</str<strong>on</strong>g> text can be found in F. Hudry, ed., Liber<br />

viginti quattuor philosophorum, Turnholt, 1997, in the series Corpus Christianorum, C<strong>on</strong>tinuatio<br />

Mediaevalis, CXLIII a, tome III, part 1, <str<strong>on</strong>g>of</str<strong>on</strong>g> the Hermes Latinus editi<strong>on</strong> project headed<br />

by P. Lucentini. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is a Spinozian cheat in the quote: instead <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘nature’, the original says<br />

Page 441 ‘god’. <str<strong>on</strong>g>The</str<strong>on</strong>g> reas<strong>on</strong> why this substituti<strong>on</strong> is applicable is given above. Cited <strong>on</strong> page 423.<br />

265 As a disappointing example, see Gilles Deleuze, Le Pli – Leibniz et le baroque,LesEditi<strong>on</strong>s<br />

de Minuit, 1988. In this unintelligible, completely crazy book, the author pretends to<br />

investigate the implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the idea that the fold (in French ‘le pli’) is the basic entity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

matter and ‘soul’. Cited <strong>on</strong> page 425.<br />

266 Werner Heisenberg, Der Teil und das Ganze, Piper, 1969. <str<strong>on</strong>g>The</str<strong>on</strong>g> text shows well how<br />

boring the pers<strong>on</strong>al philosophy <str<strong>on</strong>g>of</str<strong>on</strong>g> an important physicist can be. Cited <strong>on</strong> page 426.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


468 bibliography<br />

267 John Barrow wrote to the author saying that he might indeed have been the first to have<br />

used the T-shirt image, in his 1988 Gifford Lectures at Glasgow that were a precursor to his<br />

book John D. Barrow, <str<strong>on</strong>g>The</str<strong>on</strong>g>ories <str<strong>on</strong>g>of</str<strong>on</strong>g> Everything: <str<strong>on</strong>g>The</str<strong>on</strong>g> Quest for Ultimate Explanati<strong>on</strong>, 1991.<br />

He added that <strong>on</strong>e can never be sure, though. Cited <strong>on</strong> page 428.<br />

268 René Descartes, Discours de la méthode, 1637. He used and discussed the sentence<br />

again in his Méditati<strong>on</strong>s métaphysiques 1641, and in his Les principes de la philosophie 1644.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>se books influenced many thinkers in the subsequent centuries. Cited <strong>on</strong> page 431.<br />

269 D. D. Kelly,Sleep and dreaming,inPrinciples <str<strong>on</strong>g>of</str<strong>on</strong>g> Neural Science, Elsevier, New York, 1991.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> paper summarises experiments made <strong>on</strong> numerous humans and shows that even during<br />

dreams, people’s estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> time durati<strong>on</strong> corresp<strong>on</strong>ds to that measured by clocks.<br />

Cited <strong>on</strong> page 432.<br />

270 Astrid Lindgren said this in 1977, in her speech at the fiftieth anniversary <str<strong>on</strong>g>of</str<strong>on</strong>g> Oetinger Verlag,<br />

her German publisher. <str<strong>on</strong>g>The</str<strong>on</strong>g> German original is: ‘Alles was an Großem in der Welt geschah,<br />

vollzog sich zuerst in der Phantasie eines Menschen, und wie die Welt v<strong>on</strong> morgenaussehen<br />

wird, hängt in großem Maß v<strong>on</strong> der Einbildungskraftjener ab, die gerade jetzt lesen lernen.’<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> statement is found in Astrid Lindgren,Deshalb brauchen Kinder Bücher,Oetinger<br />

Almanach Nr. 15, p. 14, 1977. Cited <strong>on</strong> page 435.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


CREDITS<br />

Acknowledgments<br />

This volume was first published in 2009. No other pers<strong>on</strong> helped developing or exploring the<br />

strand model, until in 2014, Sergei Fadeev suggested to rethink the strand models for the W<br />

and Z bos<strong>on</strong>s. His suggesti<strong>on</strong> triggered many improvements, including a much clearer relati<strong>on</strong><br />

between the three Reidemeister moves and the intermediate gauge bos<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the three gauge<br />

interacti<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> results were first included in 2015, in editi<strong>on</strong> 28. <str<strong>on</strong>g>The</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fine<br />

structure c<strong>on</strong>stant became more involved, but is still possible.<br />

A few other people helped to achieve progress <strong>on</strong> specific issues or provided encouragement.<br />

In the first half <str<strong>on</strong>g>of</str<strong>on</strong>g> the text, stimulating discussi<strong>on</strong>s in the 1990s with Luca Bombelli helped structuring<br />

the chapter <strong>on</strong> the c<strong>on</strong>tradicti<strong>on</strong>s between general relativity and quantum theory, as well<br />

as the chapter <strong>on</strong> the difference between vacuum and matter. In the years up to 2005, stimulating<br />

discussi<strong>on</strong>s with Saverio Pascazio, Corrado Massa and especially Steven Carlip helped shaping<br />

the chapter <strong>on</strong> limit values.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> sec<strong>on</strong>d half <str<strong>on</strong>g>of</str<strong>on</strong>g> the text, <strong>on</strong> the strand model, owes much to Louis Kauffman. <str<strong>on</strong>g>The</str<strong>on</strong>g> ideas<br />

found in his books and in his papers inspired the ideas <str<strong>on</strong>g>of</str<strong>on</strong>g> this text l<strong>on</strong>g before we met and exchanged<br />

mails. His papers – available <strong>on</strong> www2.math.uic.edu/~kauffman – and his books are all<br />

worth reading; am<strong>on</strong>g them is the fascinating paper Knot Logic and the w<strong>on</strong>derful book Knots<br />

and <str<strong>on</strong>g>Physics</str<strong>on</strong>g>, World Scientific, 1991. His ideas <strong>on</strong> knots, <strong>on</strong> quantum theory, <strong>on</strong> measurement, <strong>on</strong><br />

particle physics, <strong>on</strong> set theory and <strong>on</strong> foundati<strong>on</strong>al issues c<strong>on</strong>vinced me that strands are a promising<br />

directi<strong>on</strong> in the search for a complete theory <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> breadth <str<strong>on</strong>g>of</str<strong>on</strong>g> Louis Kauffman’s<br />

interests and the depth <str<strong>on</strong>g>of</str<strong>on</strong>g> his passi<strong>on</strong> are exemplary.<br />

I thank Eric Rawd<strong>on</strong> and Maria Fisher for their ropelength calculati<strong>on</strong>s. I also thank Claus<br />

Ernst, Andrzej Stasiak, Ralf Metzler and Jas<strong>on</strong> Cantarella for their input and the fruitful discussi<strong>on</strong>s<br />

we had.<br />

Hans Aschauer, Roland Netz, Gerrit Bauer, Stephan Schiller, Richard H<str<strong>on</strong>g>of</str<strong>on</strong>g>fmann, Axel Schenzle,<br />

Reinhard Winterh<str<strong>on</strong>g>of</str<strong>on</strong>g>f, Alden Mead, Franca J<strong>on</strong>es-Clerici, Damo<strong>on</strong> Saghian, Frank Sweetser,<br />

Franz Aichinger, Marcus Platzer, Miles Mutka, and a few people who want to remain an<strong>on</strong>ymous<br />

provided valuable help. My parents, Isabella and Peter Schiller, str<strong>on</strong>gly supported the project.<br />

I thank my mathematics and physics teachers in sec<strong>on</strong>dary school, Helmut Wunderling, for the<br />

fire he has nurtured inside me.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> typesetting and book design is due to the pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al c<strong>on</strong>sulting <str<strong>on</strong>g>of</str<strong>on</strong>g> Ulrich Dirr. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

typography was much improved with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> Johannes Küster and his Mini<strong>on</strong> Math f<strong>on</strong>t.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> design <str<strong>on</strong>g>of</str<strong>on</strong>g> the book and its website also owe much to the suggesti<strong>on</strong>s and support <str<strong>on</strong>g>of</str<strong>on</strong>g> my wife<br />

Britta.<br />

From 2007 to 2011, the electr<strong>on</strong>ic editi<strong>on</strong> and distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Moti<strong>on</strong> Mountain text, and<br />

the research for this volume, was encouraged by Klaus Tschira and generously supported by the<br />

Klaus Tschira Foundati<strong>on</strong>. I also thank the lawmakers and the taxpayers in Germany, who, in<br />

c<strong>on</strong>trast to most other countries in the world, allow residents to use the local university libraries.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


470 credits<br />

Film credits<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> animati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt trick <strong>on</strong> page 178 are copyright and courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g> Greg Egan; they can be<br />

found <strong>on</strong> his website www.gregegan.net/APPLETS/21/21.html. I am also grateful to Greg Egan<br />

for expanding his applet so as to show a sec<strong>on</strong>d opti<strong>on</strong> out <str<strong>on</strong>g>of</str<strong>on</strong>g> the many possible <strong>on</strong>es for the belt<br />

trick.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> beautiful animati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt trick <strong>on</strong> page 179 and the w<strong>on</strong>derful and so-far unique<br />

animati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fermi<strong>on</strong> exchange <strong>on</strong> page 184 are copyright and courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g> Ant<strong>on</strong>io Martos.<br />

He made them for this text. <str<strong>on</strong>g>The</str<strong>on</strong>g>y can be found at vimeo.com/62228139 and vimeo.com/62143283.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> animati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the rotating blue ball attached to a sheet <strong>on</strong> page 180 was made for this book<br />

and is part <str<strong>on</strong>g>of</str<strong>on</strong>g> the s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware found at www.ariwatch.com/VS/Algorithms/DiracStringTrick.htm.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> colourful animati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt trick with many tails <strong>on</strong> page 182 and page 182 are copyright<br />

and courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g> Jas<strong>on</strong> Hise at www.entropygames.net, and were made for this text and for<br />

the Wikimedia Comm<strong>on</strong>s website.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> film <str<strong>on</strong>g>of</str<strong>on</strong>g> the chain ring trick <strong>on</strong> page 350 is copyright and courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g> Franz Aichinger.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> animati<strong>on</strong>s and the film <str<strong>on</strong>g>of</str<strong>on</strong>g> the falling chain ring trick were included into the pdf file with<br />

the help <str<strong>on</strong>g>of</str<strong>on</strong>g> a copy <str<strong>on</strong>g>of</str<strong>on</strong>g> the iShowU s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware sp<strong>on</strong>sored by Neil Clayt<strong>on</strong> from www.shinywhitebox.<br />

com.<br />

Image credits<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> the east side <str<strong>on</strong>g>of</str<strong>on</strong>g> the Langtang Lirung peak in the Nepalese Himalayas, shown<br />

<strong>on</strong> the fr<strong>on</strong>t cover, is courtesy and copyright by Kevin Hite and found <strong>on</strong> his blog thegettingthere.<br />

com. <str<strong>on</strong>g>The</str<strong>on</strong>g> photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> the Ultra Deep Field project <strong>on</strong> page 16 is courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g> NASA.<str<strong>on</strong>g>The</str<strong>on</strong>g>drawing<br />

by Maurits Escher <strong>on</strong> page 63 is copyright by the M.C. Escher Heirs, c/o Cord<strong>on</strong> Art, Baarn,<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> Netherlands, who kindly gave permissi<strong>on</strong> for its use. <str<strong>on</strong>g>The</str<strong>on</strong>g> passport photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> Andrei<br />

Sakharov <strong>on</strong> page 79 is copyright by himself. <str<strong>on</strong>g>The</str<strong>on</strong>g> photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> an apheresis machine <strong>on</strong> page 181<br />

is courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g> Wikimedia. <str<strong>on</strong>g>The</str<strong>on</strong>g> drawing by Peter Battey-Pratt and Thomas Racey <str<strong>on</strong>g>of</str<strong>on</strong>g> the belt trick<br />

<strong>on</strong> page 217,takenfromRef. 172, is courtesy and copyright by Springer Verlag. <str<strong>on</strong>g>The</str<strong>on</strong>g> graph <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

running coupling c<strong>on</strong>stants <strong>on</strong> page 382 is courtesy and copyright by Wim de Boer and taken<br />

from his home page at www-ekp.physik.uni-karlsruhe.de/~deboer. On page 427, the photograph<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Cerro Torre is copyright and courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g> Davide Brighenti, and found <strong>on</strong> Wikimedia;<br />

the photograph <str<strong>on</strong>g>of</str<strong>on</strong>g> the green hill <strong>on</strong> the same page is copyright and courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g> Myriam70, and<br />

found <strong>on</strong> her site www.flickr.com/photos/myriam70. <str<strong>on</strong>g>The</str<strong>on</strong>g> photograph <strong>on</strong> the back cover, <str<strong>on</strong>g>of</str<strong>on</strong>g> a basilisk<br />

running over water, is courtesy and copyright by the Belgian group TERRA vzw and found<br />

<strong>on</strong> their website www.terravzw.org. All drawings are copyright by Christoph Schiller.<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


NAME INDEX<br />

A<br />

Abdalla<br />

A<br />

Abbott, B.P. 462<br />

Abdalla, M.C.B. 455<br />

Abdo, A.A. 454<br />

Abraham, A. 460<br />

Adams, Douglas 108<br />

Adler, R.J. 451<br />

Ahluwalia, D.V. 451, 462<br />

Aichinger, Franz 350, 469, 470<br />

Akama, K. 453<br />

Alexandrov, P.S. 455<br />

Ali, A. 455<br />

Allen, Woody 431<br />

Aloisio, R. 453<br />

Alvarez, E. 457<br />

Amati, D. 451<br />

Amelino-Camelia, G. 449,<br />

453, 454<br />

Anaxagoras <str<strong>on</strong>g>of</str<strong>on</strong>g> Clazimenes<br />

<strong>on</strong> unificati<strong>on</strong> 424<br />

Anber, M.M. 463<br />

Anderss<strong>on</strong>, B. 465<br />

Ant<strong>on</strong>io Martos 184<br />

Argyres, P.C. 455<br />

Aristotle 169, 170, 455<br />

<strong>on</strong> learning 436<br />

<strong>on</strong> points 123<br />

<strong>on</strong> vacuum 84<br />

Arkani-Hamed, N. 463<br />

Arnold, V. 467<br />

Aschauer, Hans 469<br />

Ashtekar, A. 449<br />

Aspect, A. 459<br />

Aspinwall, P. 451<br />

Augustine <str<strong>on</strong>g>of</str<strong>on</strong>g> Hippo 441<br />

Avrin, Jack 457<br />

<strong>on</strong> particles as Moebius<br />

bands 347<br />

B<br />

Balachandran, A.P. 450<br />

Balázs, C. 463<br />

Bambi, C. 463<br />

Barnes, C. 464<br />

Bar<strong>on</strong>, J. 453<br />

Barrow, J.D. 467<br />

Barrow, John D. 468<br />

Bateman, H. 447<br />

Battey-Pratt, Peter 460, 470<br />

Bauer, Gerrit 469<br />

Baylis, W.E. 460<br />

Bean, R. 463<br />

Beenakker, C.W.J. 449<br />

Beig, R. 448<br />

Bekenstein, Jacob 449, 451<br />

<strong>on</strong> the entropy bound 133<br />

Bennett, C.L. 463<br />

Berlin, Isaiah 140<br />

Bernreuther, W. 453<br />

Bernstein, Ar<strong>on</strong> 465<br />

Berry, M.V. 456<br />

Besso, Michele 69<br />

Bianchi, E. 450<br />

Bianco, C.L. 449<br />

Bij, J.J. van der 466<br />

Bilby, B.A. 463<br />

Bils<strong>on</strong>-Thomps<strong>on</strong>, Sundance<br />

457<br />

<strong>on</strong> particles as triple<br />

ribb<strong>on</strong>s 347<br />

Bim<strong>on</strong>te, G. 450<br />

Blair, D.G. 448<br />

Blandford, R. 447<br />

Boer, Wim de 382, 470<br />

Bohm, David 455, 456, 459,<br />

460<br />

<strong>on</strong> entanglement 207<br />

<strong>on</strong> wholeness 107<br />

Bohr, Niels 447<br />

<strong>on</strong> minimum acti<strong>on</strong> 29<br />

<strong>on</strong> thermodynamic<br />

indeterminacy 31<br />

Bombelli, Luca 302, 452, 456,<br />

459, 469<br />

B<strong>on</strong>ner, Yelena 79<br />

Botta Cantcheff, Marcelo 463<br />

<strong>on</strong> fluctuating strings 302<br />

Boughezal, R. 466<br />

Bousso, R. 449<br />

Brauner, T. 467<br />

Brighenti, Davide 427, 470<br />

Brightwell, G. 452<br />

Britto, R. 462<br />

Br<strong>on</strong>shtein, Matvei 8<br />

Brown, Stuart 447<br />

Buchert, T. 464<br />

Buchmann, A.J. 465<br />

Buchmann, Alf<strong>on</strong>s 465<br />

Buniy, R.V. 464<br />

Burns, L. 461<br />

Busch, Wilhelm 412<br />

Byrnes, J. 460<br />

C<br />

Cabibbo, Nicola 376<br />

Cabrera, R. 460<br />

Cachazo, F. 462<br />

Cadavid, A.C. 457<br />

Canetti, L. 467<br />

Cantarella, Jas<strong>on</strong> 469<br />

Carlip, Steven 458, 462, 469<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


472 name index<br />

C<br />

Cartin<br />

<strong>on</strong> fluctuating lines 163,<br />

302<br />

Cartin, D. 461<br />

Challinor, A. 460<br />

Chamseddine, A.H. 466<br />

Chen, B. 449<br />

Cho, Y.M. 464<br />

Christ, N.H. 452<br />

Christiansen, W.A. 453<br />

Churchill, C.W. 467<br />

Ciafal<strong>on</strong>i, M. 451<br />

Cicero, Marcus Tullius<br />

life 106<br />

Clay Mathematics Institute<br />

345<br />

Clayt<strong>on</strong>, Neil 470<br />

Cline, J.M. 467<br />

CODATA 446<br />

Coley, A.A. 464<br />

C<strong>on</strong>de, J. 457<br />

C<strong>on</strong>nes, A. 466<br />

C<strong>on</strong>nes, Alain 348<br />

Cord<strong>on</strong> Art 470<br />

Coule, D.H. 453<br />

Crease, Robert 462<br />

Crede, V. 464<br />

Cu<str<strong>on</strong>g>of</str<strong>on</strong>g>ano, C. 462<br />

D<br />

Dalibard, J. 460<br />

Dam, H. van 94, 449, 453, 454<br />

Dante Alighieri 399<br />

<strong>on</strong> the basic knot 421<br />

Das, A. 452<br />

Davis, T.M. 463<br />

Dehmelt, Hans 453<br />

Deleuze, Gilles 467<br />

Della Valle, M. 462<br />

Democritus<br />

<strong>on</strong> learning 436<br />

<strong>on</strong> particles and vacuum<br />

129<br />

Descartes, René 431, 468<br />

Deutsch, David 163, 459<br />

<strong>on</strong> explanati<strong>on</strong>s 167<br />

DeWitt, B.S. 450<br />

DeWitt, C. 450<br />

Diao, Y. 466<br />

Diner, S. 450<br />

Dirac, Paul 218<br />

<strong>on</strong> unificati<strong>on</strong> 22<br />

Dirr, Ulrich 469<br />

Dis, J. van Lith-van 447<br />

DiSessa, A. 447<br />

D<strong>on</strong>oghue, J.F. 463<br />

Doplicher, S. 451<br />

Doran, C. 460<br />

Doré, O. 463<br />

Douglas, M.R. 458<br />

Drechsler, W. 465<br />

Drewes, M. 467<br />

Drinkwater, M.J. 467<br />

Dum<strong>on</strong>t, Jean-Paul 455<br />

Dys<strong>on</strong>, Freeman 352<br />

Dällenbach, Werner 70<br />

Dürrenmatt, Friedrich 446<br />

E<br />

Eass<strong>on</strong>, D.A. 463<br />

Eddingt<strong>on</strong>, Arthur 456<br />

<strong>on</strong> particle number 129<br />

Egan, Greg 178, 459, 470<br />

Ehlers, Jürgen 450<br />

<strong>on</strong> point particles 59<br />

Ehrenfest, Paul<br />

<strong>on</strong> spinors 200<br />

Ehrenreich, H. 449<br />

Einstein, Albert<br />

last published words 87<br />

<strong>on</strong> c<strong>on</strong>tinuity 87<br />

<strong>on</strong> dropping the<br />

c<strong>on</strong>tinuum 69, 70, 87<br />

<strong>on</strong> gods 446<br />

<strong>on</strong> his deathbed 39<br />

<strong>on</strong> mathematics 108<br />

<strong>on</strong> modifying general<br />

relativity 166<br />

<strong>on</strong> thinking 57<br />

<strong>on</strong> ultimate entities 70<br />

<strong>on</strong> unificati<strong>on</strong> 23<br />

Ellis, G.F.R. 454<br />

Ellis, J. 454, 455<br />

Enyo, H. 464<br />

Ernst, Claus 232, 466, 469<br />

Escher, Maurits 470<br />

Heirs 63<br />

illustrating circularity 62<br />

Eshelby, J.D. 463<br />

Euclid<br />

<strong>on</strong> points 73<br />

Evens, D. 465<br />

F<br />

Facchi, P. 455<br />

Fadeev, Sergei 254, 428, 469<br />

Fatio de Duillier, Nicolas 462<br />

Faust 111<br />

Feng, B. 462<br />

Feynman, Richard 257, 450,<br />

458, 459, 462<br />

<strong>on</strong> many-particle wave<br />

functi<strong>on</strong>s 207<br />

Finkelstein, David 75, 301,<br />

452, 459<br />

Finkelstein, Robert 457<br />

<strong>on</strong> fermi<strong>on</strong>s as knots 347<br />

Fiorini, E. 464<br />

Fischler, W. 463<br />

Fisher, Maria 365, 466, 469<br />

Flambaum, V.V. 467<br />

Flint, H.T. 452<br />

Frampt<strong>on</strong>, P.H. 463<br />

Fredenhagen, K. 451<br />

Fredrikss<strong>on</strong>, S. 452<br />

Frenkel, J. 460<br />

Friedberg, R. 452<br />

Friedman, J.L. 450<br />

Fritsche, L. 461<br />

Fritzsch, H. 452, 466<br />

Frossard, T. 467<br />

Fukugita, M. 467<br />

Fushchich, V.I. 460<br />

G<br />

Gadelka, A.L. 455<br />

Gaessler, W. 453<br />

Galante, A. 453<br />

Galindo, A. 460<br />

Garay, L. 451, 454<br />

Gardner, Martin 466<br />

Garret, D<strong>on</strong> 454<br />

Gehrels, N. 447<br />

Gell-Mann, Murray<br />

<strong>on</strong> strings 145<br />

Gennes, Pierre-Gilles de 456<br />

Gibb<strong>on</strong>s, Gary 447, 448<br />

Gibbs, Phil 451, 456<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


name index 473<br />

G<br />

Gill<br />

<strong>on</strong> event symmetry 85, 130<br />

Gill, S. 460<br />

Gilmozzi, R. 462<br />

Glashow, Sheld<strong>on</strong> 257, 458,<br />

461<br />

Gleick, James 462<br />

Goethe, Johann Wolfgang v<strong>on</strong><br />

<strong>on</strong> searching 111<br />

G<strong>on</strong>zalez, O. 459<br />

Gottfried, Kurt 465<br />

Graf, A.B.A. 459<br />

Green, M.B. 457<br />

Greene, Brian 449, 458<br />

<strong>on</strong> superstrings 142<br />

Gregori, Andrea 456<br />

<strong>on</strong> particle mass 138<br />

Gregory, R. 452<br />

Grillo, A.F. 453<br />

Gross, D.J. 451<br />

Gunzig, E. 450<br />

Gustafs<strong>on</strong>, G. 465<br />

H<br />

Hackett, J. 457<br />

Halpern, M. 464<br />

Hamm<strong>on</strong>d, R.T. 462<br />

Harari, H. 452<br />

Hartle, J.B. 456<br />

Hatsuda, T. 464<br />

Hattori, T. 453<br />

Haugk, M. 461<br />

Hawking, Stephen 451, 454,<br />

456, 463<br />

Heath, T. 452<br />

Hegel, Friedrich 144<br />

Heisenberg, Werner 450, 467<br />

<strong>on</strong> symmetry 426<br />

<strong>on</strong> thermodynamic<br />

indeterminacy 31<br />

<strong>on</strong> unificati<strong>on</strong> 22<br />

Hellund, E.J. 452<br />

Henley, E.M. 465<br />

Hens<strong>on</strong>, J. 459<br />

Heras, J.A. 461<br />

Hermes Trismegistos 423, 467<br />

Hernandez, L. 457<br />

Hertz, Heinrich<br />

<strong>on</strong> everything 424<br />

Hestenes, D. 460<br />

Higgs, Peter 330<br />

Hilbert, David 467<br />

famous mathematical<br />

problems 110<br />

his credo 145<br />

<strong>on</strong> infinity 418<br />

<strong>on</strong> unificati<strong>on</strong> 22<br />

Hilborn, R.C. 456<br />

Hildebrandt, Dieter<br />

life 222<br />

Hiley, B.J. 455<br />

Hill, E.L. 452<br />

Hill, R.S. 464<br />

Hilli<strong>on</strong>, P. 460<br />

Hillman, L. 453<br />

Hinshaw, G. 463<br />

Hise, Jas<strong>on</strong> 182, 470<br />

Hite, Kevin 470<br />

Hod, S. 467<br />

H<str<strong>on</strong>g>of</str<strong>on</strong>g>fer, Eric 67<br />

H<str<strong>on</strong>g>of</str<strong>on</strong>g>fmann, Richard 469<br />

Hohm, U. 449<br />

Holstein, Barry R. 466<br />

H<strong>on</strong>ner, John 447<br />

’t Ho<str<strong>on</strong>g>of</str<strong>on</strong>g>t, Gerard 75, 301, 452,<br />

454, 462, 463, 465<br />

Hooke, Robert 284<br />

Horowitz, G.T. 456, 458, 461<br />

Hudry, F. 467<br />

I<br />

Illy, József 452<br />

Ingelman, G. 465<br />

Inverno, Ray d’ 448<br />

Ishii, N. 464<br />

Isidori, G. 465<br />

J<br />

Jacobs<strong>on</strong>, T. 34, 448<br />

Jaekel, M.-T. 448, 451<br />

Jafari, N. 462<br />

Jammer, Max 447<br />

Janssen, Michel 452<br />

Jarlskog, Cecilia 378<br />

Jarosik, N. 463<br />

Jauch, W. 84, 453<br />

Jehle, Herbert 466<br />

<strong>on</strong> particles as knots 347<br />

Jerven, Walter 434<br />

Johns<strong>on</strong>, Samuel 446<br />

J<strong>on</strong>es-Clerici, Franca 469<br />

Ju, L. 448<br />

K<br />

Kaluza, <str<strong>on</strong>g>The</str<strong>on</strong>g>odor<br />

<strong>on</strong> unificati<strong>on</strong> 23<br />

Kant, Immanuel 170, 459<br />

Karliner, M. 455, 465<br />

Karliner, Marek 346<br />

Karolyhazy, F. 454<br />

Katsuura, K. 453<br />

Kauffman, Lou 218<br />

Kauffman, Louis 457, 459,<br />

460, 469<br />

<strong>on</strong> commutati<strong>on</strong> relati<strong>on</strong>s<br />

211<br />

Kelly, D.D. 468<br />

Kempf, Achim 448, 451<br />

Kennard, E.H. 451<br />

Kennedy, D.C. 464<br />

Kephart, T.W. 464<br />

Keselica, D. 460<br />

Klaus Tschira Foundati<strong>on</strong> 469<br />

Klebanov, I. 455<br />

Kleinert, H. 464<br />

Kleinert, Hagen 301, 462<br />

Klempt, E. 464<br />

Kleppe, G. 465<br />

Knox, A.J. 452<br />

Kochen, S. 459<br />

Kogut, A. 464<br />

Komatsu, E. 463<br />

K<strong>on</strong>do, K. 464<br />

K<strong>on</strong>ishi, K. 451<br />

Kostro, L. 448<br />

Kostro, Ludwik 447<br />

Koul, R.K. 456<br />

Kovtun, P. 449<br />

Kramer, M. 449<br />

Kreimer, Dirk 457<br />

<strong>on</strong> knots in QED 141<br />

Kr<strong>on</strong>ecker, Leopold<br />

life 108<br />

Kröner, Ekkehart 301, 463<br />

Kunihiro, T. 464<br />

Küster, Johannes 469<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


474 name index<br />

L<br />

Lammers<br />

L<br />

Lammers, Edi 466<br />

Lange, B. 448<br />

Lao Tse<br />

<strong>on</strong> moti<strong>on</strong> 425, 434<br />

Lasenby, A. 460<br />

Laughlin, Robert 446<br />

Laërtius, Diogenes 456<br />

Lee Tsung Dao 250, 452<br />

Lee, J. 452, 456, 459<br />

Leibniz, Gottfried Wilhelm<br />

425, 455<br />

<strong>on</strong> parts 109<br />

<strong>on</strong> relati<strong>on</strong>s in nature 308<br />

Leight<strong>on</strong>, Robert B. 450<br />

Lelli, F. 463<br />

Lenin (Vladimir Ilyich<br />

Ulyanov) 83<br />

Lerner, L. 460<br />

Lesage, Georges-Louis 462<br />

<strong>on</strong> universal gravitati<strong>on</strong><br />

285<br />

Lest<strong>on</strong>e, J.P. 467<br />

Li, W. 464<br />

Li, Y-Q. 449<br />

Lichtenberg, Georg Christoph<br />

<strong>on</strong> truth 26<br />

Lieu, R. 453<br />

Lim<strong>on</strong>, M. 464<br />

Lindgren, Astrid 435, 468<br />

Lineweaver, C.H. 463<br />

Lloyd, Seth 455<br />

<strong>on</strong> informati<strong>on</strong> 109<br />

Loinger, A. 460<br />

Loll, R. 451<br />

Lom<strong>on</strong>aco, S.J. 459<br />

Loren, Sophia<br />

<strong>on</strong> everything 357<br />

Lorentz, Hendrik Anto<strong>on</strong> 447<br />

<strong>on</strong> the speed limit 28<br />

Lu, J. 464<br />

Lucentini, P. 467<br />

Lucrece, in full Titus<br />

Lucretius Carus 455<br />

Luzio, E. 453<br />

Lévy-Lebl<strong>on</strong>d, J.-M. 460<br />

M<br />

Maddocks, J.H. 459<br />

Maddox, John 456<br />

life 456<br />

Maggiore, M. 451<br />

Magueijo, J. 453<br />

Maiani, L. 465<br />

Maim<strong>on</strong>ides 65<br />

Majid, S. 456<br />

Major, S.A. 457<br />

Maldacena, J. 457<br />

Mandelbaum, G. 452<br />

Mann, Charles 462<br />

Markopoulou, F. 457, 461<br />

Marmo, G. 450<br />

Marsden, Jerry 274<br />

Martos, Ant<strong>on</strong>io 179, 470<br />

Marx, Groucho<br />

<strong>on</strong> principles 39<br />

Massa, Corrado 447, 448, 469<br />

Mavromatos, N.E. 454, 456<br />

McGaugh, S. 463<br />

McGaugh, S.S. 463<br />

Mead, Alden 274, 448, 469<br />

Meissner, K.A. 466<br />

Mende, P.F. 451, 456<br />

Mende, Paul<br />

<strong>on</strong> extensi<strong>on</strong> checks 140<br />

Metzler, Ralf 469<br />

Meyer, C.A. 464<br />

Meyer, D. 452, 459<br />

Meyer, S.S. 464<br />

Mills, Robert 250<br />

Misner, C.W. 448, 450<br />

M<str<strong>on</strong>g>of</str<strong>on</strong>g>fat, J.W. 465<br />

M<strong>on</strong>gan, Tom 466<br />

<strong>on</strong> particles as tangles 347<br />

M<strong>on</strong>t<strong>on</strong>en, C. 456<br />

Motl, L. 463<br />

Mukhanov, V. 466<br />

Murakami, T. 464<br />

Mutka, Miles 469<br />

Myriam70 427, 470<br />

Méndez, F. 453<br />

N<br />

Nanopoulos, D.V. 454<br />

NASA 17, 470<br />

Nels<strong>on</strong>, Edward 461<br />

Netz, Roland 469<br />

Newt<strong>on</strong>, Isaac 284<br />

Ng Sze Kui 347, 457<br />

Ng, Y.J. 94, 449, 453, 454<br />

Nichols<strong>on</strong>, A.F. 464<br />

Nicolai, H. 466<br />

Nicolis, A. 463<br />

Nielsen, H.B. 465<br />

Niemi, A.J. 464<br />

Nietzsche, Friedrich<br />

<strong>on</strong> walking 152<br />

Nikitin, A.G. 460<br />

Nikolić, H. 461<br />

Nikolić, Hrvoje 222<br />

Nolta, M.R. 463<br />

O<br />

Occam, William <str<strong>on</strong>g>of</str<strong>on</strong>g> 129<br />

Odegard, N. 464<br />

Ohanian, Hans 449<br />

Oka, M. 464<br />

Olesen, P. 465<br />

Olive, D. 456<br />

Ono, A. 464<br />

Oppenheimer, J. 451<br />

Özer, A.D. 466<br />

P<br />

Padmanabhan, T. 450<br />

Paffuti, G. 451<br />

Page, D.N. 462<br />

Page, L. 464<br />

Papanicolas, C.N. 465<br />

Park, B.S. 464<br />

Parmenides 130<br />

Pascazio, Saverio 455, 469<br />

Pati, J.C. 452<br />

Patrignani, C. 465<br />

Pauli, Wolfgang<br />

<strong>on</strong> gauge theory 250<br />

Pawlowski, M.S. 463<br />

Peiris, H.V. 464<br />

Penrose, Roger 463<br />

Peres, A. 452<br />

Phaedrus 436<br />

Piran, T. 454<br />

Pittacus 120<br />

Planck, M. 455<br />

Plato 95, 456<br />

<strong>on</strong> love 436<br />

<strong>on</strong> nature’s unity 130<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


name index 475<br />

P<br />

Platzer<br />

Platzer, Marcus 469<br />

Plotinus 441<br />

Polchinski, J. 456, 458, 461<br />

Polosa, A.D. 465<br />

P<strong>on</strong>tecorvo, Bruno 379<br />

Por, A. 466<br />

Pospelov, M. 467<br />

Preparata, G. 449<br />

Provero, P. 451<br />

R<br />

Raamsd<strong>on</strong>k, Mark van 303,<br />

461, 463<br />

Racey, Thomas 460, 470<br />

Ragazz<strong>on</strong>i, R. 453<br />

Rainer, M. 461<br />

Ralst<strong>on</strong>, J.P. 464<br />

Ramsauer, Carl<br />

life 422<br />

Ramsey, N.F. 452<br />

Randjbar-Daemi, S. 455<br />

Rawd<strong>on</strong>, Eric 365, 466, 469<br />

Raymer, Michael 451<br />

<strong>on</strong> the indeterminacy<br />

relati<strong>on</strong> 65<br />

Reidemeister, Kurt 461<br />

<strong>on</strong> knot deformati<strong>on</strong>s 228,<br />

276<br />

Renaud, S. 448, 451<br />

Reznik, B. 451<br />

Richter, Burt<strong>on</strong> 458<br />

Riemann, Bernhard<br />

<strong>on</strong> geometry 39<br />

Riess, A.G. 463<br />

Rindler, Wolfgang 448, 449<br />

Riquer, V. 465<br />

Ritz, A. 467<br />

Rivas, Martin 460<br />

Robbins, J.M. 456<br />

Roberts, J.E. 451<br />

Roger, G. 460<br />

Rosen, N. 452<br />

Rosenfeld, L. 105, 454<br />

Rothman, T. 454<br />

Roukema, B.F. 464<br />

Rovelli, C. 450, 451<br />

Ruffini, Remo 449<br />

Rutherford, Ernest 148<br />

S<br />

Sabbata, V. de 448<br />

Sabbata, Venzo de 447<br />

Sagan, Carl 454<br />

Saghian, Damo<strong>on</strong> 469<br />

Sakar, S. 454<br />

Sakharov, Andrei 448, 449<br />

life 79<br />

<strong>on</strong> matter c<strong>on</strong>stituents 123<br />

<strong>on</strong> maximum particle<br />

mass 40<br />

<strong>on</strong> minimum length 44<br />

portrait 79<br />

Salam, Abdus 452<br />

<strong>on</strong> unificati<strong>on</strong> 22<br />

Salecker, H. 115, 451<br />

Salogub, V.A. 460<br />

Sanchez, N.G. 456<br />

Sands, Matthew 450<br />

Santamato, E. 460<br />

Santiago, D.I. 451<br />

Schaefer, B.E. 453<br />

Schenzle, Axel 469<br />

Schild, A. 452<br />

Schiller, Britta 469<br />

Schiller, C. 467<br />

Schiller, Christoph 447, 448,<br />

450, 461, 470<br />

Schiller, Isabella 469<br />

Schiller, Peter 469<br />

Schiller, R. 459<br />

Schiller, Stephan 469<br />

Schoen, R.M. 448<br />

Schombert, J. 463<br />

Schombert, J.M. 463<br />

Schrödinger, Erwin 460<br />

<strong>on</strong> thinking 118<br />

Schulmann, Robert 452<br />

Schulz, Charles 137<br />

Schwarz, J.H. 455, 457<br />

Schwinger, Julian 241, 461<br />

Schön, M. 450<br />

Sen, A. 457<br />

Seneca, Lucius Annaeus 430<br />

Shakespeare, William 126, 141,<br />

417<br />

Shalyt-Margolin, A.E. 447<br />

Shapere, Alfred 274, 462<br />

Shaposhnikov, M. 463, 466,<br />

467<br />

Shaposhnikov, Mikhail 304<br />

Shariati, A. 462<br />

Shibata, A. 464<br />

Shinohara, T. 464<br />

Shupe, M.A. 452<br />

Sim<strong>on</strong>i, A. 450<br />

Simplicius 455<br />

Simplicius <str<strong>on</strong>g>of</str<strong>on</strong>g> Cilicia 127<br />

Sivaram, C. 447, 448<br />

Sjöstrand, T. 465<br />

Slavnov, A.A. 457<br />

Smolin, L. 448, 451, 453, 454,<br />

457, 461<br />

Smoot, G.F. 463<br />

Snyder, H.S. 452<br />

Socrates 436<br />

S<strong>on</strong>, D.T. 449<br />

Sorabji, R. 452<br />

Sorkin, R.D. 450, 452, 456, 459<br />

Sparzani, A. 460<br />

Specker, E.P. 459<br />

Spergel, D.N. 463<br />

Spinoza, Baruch 425, 454<br />

Springer Verlag 217, 470<br />

Srinivasan, S.K. 461<br />

Stachel, John J. 452<br />

Stanhope, Philip 420<br />

Starinets, A.O. 449<br />

Stasiak, Andrzej 469<br />

Stewart, Ian 452<br />

St<strong>on</strong>e, Michael 457<br />

Strominger, A. 456<br />

Sudarshan, E.C.G. 461<br />

Suganuma, H. 464<br />

Supernova Search Team<br />

Collaborati<strong>on</strong> 463<br />

Susskind, L. 463<br />

Susskind, Le<strong>on</strong>ard 302, 455,<br />

458, 463<br />

<strong>on</strong> Planck scale scattering<br />

119<br />

Suzuki, M. 453<br />

Sweetser, Frank 469<br />

Szapudi, I. 463<br />

Szilard, Leo 447<br />

<strong>on</strong> minimum entropy 31<br />

Sánchez del Río, C. 460<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


476 name index<br />

T<br />

Takabayasi<br />

T<br />

Takabayasi, T. 460<br />

Tamburini, F. 462<br />

Tanaka, K. 452<br />

Tausk, J.B. 466<br />

Taylor, Gareth 179<br />

Taylor, W. 458<br />

Terence, in full Publius<br />

Terentius Afer<br />

life 117<br />

Thales <str<strong>on</strong>g>of</str<strong>on</strong>g> Miletus 417<br />

Thomas Aquinas 441<br />

Thomas, L.H. 460<br />

Thoms<strong>on</strong>–Kelvin, William<br />

466<br />

<strong>on</strong> atoms as knotted<br />

vortices 347<br />

Thorn, C.B. 465<br />

Thorne, K.S. 448, 450, 463<br />

Thot, V.T. 465<br />

Tillich, Paul 91<br />

Tino, G.M. 456<br />

Tiomno, J. 459<br />

Tit, Tom 466<br />

Townsend, P.K. 448<br />

Treder, H.-J. 447, 448, 454<br />

Tregubovich, A.Ya. 447<br />

Tschira, Klaus 469<br />

Tucker, G.S. 464<br />

Turatto, M. 453<br />

Turnbull, D. 449<br />

U<br />

Uffink, J. 447<br />

Uglum, J. 455<br />

Unruh, W.G. 451, 453<br />

Urban, F.R. 463<br />

V<br />

Vafa, C. 456, 463<br />

Vancea, I.V. 455<br />

Veltman, H. 465<br />

Veltman, Martin 257, 458,<br />

462, 464, 465<br />

Veneziano, G. 451<br />

Verde, L. 464<br />

Verlinde, Erik 462<br />

<strong>on</strong> universal gravitati<strong>on</strong><br />

283<br />

Vigier, J.-P. 460<br />

Viro, Julia 347, 465<br />

Viro, Oleg 347, 465<br />

<str<strong>on</strong>g>Vol</str<strong>on</strong>g>taire<br />

life 313<br />

W<br />

Wald, R.M. 453<br />

Wallstrom, T.C. 461<br />

Wan, Y. 457<br />

Wang, Y.-N. 458<br />

Webb, J.K. 467<br />

Weber, G. 456<br />

Weiland, J.L. 464<br />

Weinberg, Steven 104, 446,<br />

450, 458<br />

<strong>on</strong> unificati<strong>on</strong> 22<br />

Weis, A. 453<br />

Weisskopf, Victor F. 465<br />

Weizel, W. 461<br />

Wen, X.-G. 457<br />

Wetterich, C. 463<br />

Wetterich, Christ<str<strong>on</strong>g>of</str<strong>on</strong>g> 304<br />

Wheeler, John A. 160, 161, 163,<br />

298, 448, 450<br />

life 59<br />

<strong>on</strong> nature’s principles 422<br />

<strong>on</strong> topology change 59<br />

<strong>on</strong> unificati<strong>on</strong> 23<br />

really big questi<strong>on</strong>s 428<br />

Wigner, Eugene 115, 450, 451<br />

Wikimedia 181, 470<br />

Wilczek, Frank 274, 448, 458,<br />

462<br />

Wilde, Oscar 94, 95<br />

life 92<br />

Wiles, Andrew<br />

<strong>on</strong> research 427<br />

William <str<strong>on</strong>g>of</str<strong>on</strong>g> Occam 129<br />

Wiltshire, D. 464<br />

Wiltshire, D.L. 464<br />

Winterberg, F. 455<br />

Winterh<str<strong>on</strong>g>of</str<strong>on</strong>g>f, Reinhard 469<br />

Witten, Edward 457, 458, 462<br />

<strong>on</strong> duality 139<br />

<strong>on</strong> infinities 142<br />

<strong>on</strong> unificati<strong>on</strong> 23<br />

Woit, Peter 458<br />

Wolf, C. 453<br />

Wolf, E. 455<br />

Wolff, Barbara 452<br />

Wollack, E. 464<br />

Woodard, R.P. 454, 465<br />

Wright, E.L. 464<br />

Wunderling, Helmut 469<br />

Wussing, H. 455<br />

X<br />

Xing Zhi-zh<strong>on</strong>g 466<br />

Xing, Z.-Z. 466<br />

Xing, Zhi-zh<strong>on</strong>g 466<br />

Xu, L. 464<br />

Xue, S.-S. 449<br />

Y<br />

Yanagida, T. 467<br />

Yandell, Ben H. 455<br />

Yang Chen Ning 250<br />

Yazaki, K. 464<br />

Z<br />

Zaanen, J. 462<br />

Zaitsev, A. 464<br />

Zee, A. 462<br />

Zeh, H.D. 453<br />

Zemeckis, Robert 454<br />

Zeno <str<strong>on</strong>g>of</str<strong>on</strong>g> Elea 71, 121, 123, 130,<br />

222<br />

<strong>on</strong> moti<strong>on</strong> as an illusi<strong>on</strong><br />

434<br />

<strong>on</strong> size 127<br />

Zhang, He 466<br />

Zhang, P.M. 464<br />

Zhao, C. 448<br />

Zhou Shun 466<br />

Zhou, Shun 466<br />

Ziegler, U. 466<br />

Zimmerman, E.J. 115, 451<br />

Zurek, W.H. 463<br />

Zwiebach, B. 457<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


name index 477<br />

Z<br />

Zwiebach<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


SUBJECT INDEX<br />

Symbols<br />

g-factor<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> W bos<strong>on</strong> 363<br />

Numbers<br />

3<br />

omnipresence in the<br />

standard model 355<br />

A<br />

accelerati<strong>on</strong><br />

indeterminacy 29<br />

upper limit, or Planck 37<br />

accelerator, Planck 83<br />

accuracy, maximum 96<br />

acti<strong>on</strong><br />

as fundamental quantity<br />

418<br />

defined with strands 160,<br />

211, 212<br />

due to particle moti<strong>on</strong> 357<br />

is change 27<br />

lower limit 29–31<br />

no lower limit for virtual<br />

particles 41<br />

principle <str<strong>on</strong>g>of</str<strong>on</strong>g> least 211<br />

upper limit 46<br />

acti<strong>on</strong>, quantum <str<strong>on</strong>g>of</str<strong>on</strong>g>, ħ<br />

as lower limit 37<br />

from strands 152<br />

ignored by relativity 58–59<br />

lower limit 29–31<br />

physics and 8<br />

Planck scales and 61–62<br />

quantum theory implied<br />

by 18, 29<br />

additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> states 191<br />

ADM mass 104<br />

aether<br />

useless 71, 159<br />

vortices in 347<br />

amoeba and nature 131–132,<br />

172<br />

Anaxagoras <str<strong>on</strong>g>of</str<strong>on</strong>g> Clazimenes<br />

<strong>on</strong> unificati<strong>on</strong> 424<br />

angle<br />

weak mixing 362<br />

angular frequency<br />

upper limit, or Planck 37<br />

angular momentum<br />

limit for black holes 293<br />

lower limit and spin 41<br />

upper limit 46–47<br />

anomaly issue 142, 348<br />

anti-twister mechanism 181<br />

antimatter<br />

belt trick and 181<br />

indistinguishability from<br />

matter 54, 78–79, 105<br />

antiparticle see antimatter<br />

apheresis machine 181<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 181<br />

aphorism, a physical 115<br />

apple counting 108<br />

area<br />

lower limit, or Planck 38<br />

argument<br />

encouraging 23<br />

Aristotle<br />

<strong>on</strong> learning 436<br />

<strong>on</strong> points 123<br />

<strong>on</strong> vacuum 84<br />

arrow<br />

Feynman’s rotating 219<br />

Zeno’s flying 123, 222<br />

Aspect experiment 208<br />

asymptotic safety 304<br />

atoms 118<br />

averaging <str<strong>on</strong>g>of</str<strong>on</strong>g> strands 189<br />

Avrin, Jack<br />

<strong>on</strong> particles as Moebius<br />

bands 347<br />

axioms<br />

in a final theory 150<br />

in physics 110, 169–171<br />

axi<strong>on</strong> 275<br />

B<br />

background<br />

c<strong>on</strong>tinuous 157<br />

dependence 150<br />

differs from physical space<br />

285, 288<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 171<br />

independence 171<br />

space 210, 288<br />

space-time 169<br />

Balinese candle dance 178<br />

ball<br />

tethered 371<br />

Banach–Tarski<br />

paradox/theorem 71, 73<br />

band models 141, 168<br />

Barbero–Immirzi parameter<br />

290<br />

bare quantity 240<br />

baryogenesis 380<br />

bary<strong>on</strong><br />

density in universe 309<br />

form factor 340<br />

masses 337<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


subject index 479<br />

B<br />

bath<br />

number 315<br />

number c<strong>on</strong>servati<strong>on</strong> 254,<br />

269, 315<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> lept<strong>on</strong>s 326<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks 321<br />

observed number <str<strong>on</strong>g>of</str<strong>on</strong>g> 20,<br />

103, 165<br />

quadrupole moment 465<br />

Regge trajectories 337<br />

shape 340<br />

spin 333<br />

strand illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

341–343<br />

strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> 301,<br />

340–342<br />

bath<br />

glu<strong>on</strong> 271<br />

measurement and 203<br />

perfect 85<br />

phot<strong>on</strong> 231<br />

vacuum as a 158<br />

weak bos<strong>on</strong> 249<br />

beauty<br />

in physics 57<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> strands 422<br />

symmetry is not 425<br />

beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> time 93<br />

Bekenstein’s entropy bound<br />

44, 48–49, 293<br />

Bekenstein, Jacob<br />

<strong>on</strong> the entropy bound 133<br />

beliefs<br />

about unificati<strong>on</strong> 22<br />

in finitude 420<br />

Occam and 129<br />

belt trick 266<br />

and Dirac equati<strong>on</strong> 218<br />

antimatter and 181<br />

Dirac equati<strong>on</strong> and<br />

215–220<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 217<br />

fermi<strong>on</strong>s and 329<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 177<br />

parity violati<strong>on</strong> and 181,<br />

250<br />

particle mass and 197, 365,<br />

366, 369<br />

phase and 198<br />

quantum theory and 223<br />

saving lives 181<br />

space-time symmetries<br />

and 227<br />

spin 1/2 and 176–181<br />

spin and 136<br />

SU(2) and 247–251<br />

torsi<strong>on</strong> and 301<br />

two opti<strong>on</strong>s 180<br />

wheels and 223<br />

with 96 tails 182<br />

beta decay, neutrinoless<br />

double 327<br />

bets<br />

<strong>on</strong> the strand model 414<br />

big bang<br />

creati<strong>on</strong> and 425<br />

distance in time 94<br />

initial c<strong>on</strong>diti<strong>on</strong>s and 138<br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> 150<br />

no creati<strong>on</strong> in 443<br />

not a singularity 102<br />

not an event 93<br />

precisi<strong>on</strong> and 54<br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> 100<br />

strand illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 308<br />

strands and the 308–309<br />

Bils<strong>on</strong>-Thomps<strong>on</strong>, Sundance<br />

<strong>on</strong> particles as triple<br />

ribb<strong>on</strong>s 347<br />

biology 171<br />

bit 163<br />

black hole<br />

see also Schwarzschild<br />

radius<br />

as size limit 36<br />

as smallest systems 40<br />

cannot have Planck mass<br />

303, 371<br />

charge limit 293<br />

charged 42<br />

clock limits and 65<br />

definiti<strong>on</strong> 32<br />

entropy 133, 290–292<br />

strand illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 290<br />

entropy limit 48–49<br />

evaporati<strong>on</strong> 43, 47, 292<br />

falling into a 303<br />

informati<strong>on</strong> loss 292<br />

limits 292<br />

lower power limit 47<br />

lower temperature limit 50<br />

magnetic field limit and 45<br />

mass 288<br />

maximum force and 32, 33,<br />

42, 43<br />

microstates 290<br />

no microscopic 303, 371<br />

radiati<strong>on</strong> 292<br />

Schwarzschild 32<br />

shape <str<strong>on</strong>g>of</str<strong>on</strong>g> 294<br />

size limit 36<br />

sphericity <str<strong>on</strong>g>of</str<strong>on</strong>g> 294<br />

strand definiti<strong>on</strong> 287<br />

universe as inverted 307<br />

universe lifetime and 52<br />

upper power limit 43<br />

blood platelets 181<br />

blurring <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle 187, 196<br />

Bohm, David<br />

<strong>on</strong> entanglement 207<br />

<strong>on</strong> wholeness 107<br />

Bohr, Niels<br />

<strong>on</strong> minimum acti<strong>on</strong> 29<br />

<strong>on</strong> thermodynamic<br />

indeterminacy 31<br />

Bohr–Einstein discussi<strong>on</strong> 30<br />

Boltzmann c<strong>on</strong>stant k 31, 152<br />

physics and 8<br />

book<br />

perfect, <strong>on</strong> physics 111<br />

boost see Lorentz boost<br />

border <str<strong>on</strong>g>of</str<strong>on</strong>g> space 155<br />

Bose–Einstein c<strong>on</strong>densates 50<br />

bos<strong>on</strong><br />

tangle structure quiz 351<br />

bos<strong>on</strong>izati<strong>on</strong> 140<br />

bos<strong>on</strong>s<br />

as radiati<strong>on</strong> particles 18<br />

definiti<strong>on</strong> 176<br />

gauge 317<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 185<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exchange 185<br />

in millennium descripti<strong>on</strong><br />

18<br />

masses <str<strong>on</strong>g>of</str<strong>on</strong>g> W and Z 360<br />

n<strong>on</strong>e at Planck scales 78<br />

strand model 185<br />

weak gauge 251<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


480 subject index<br />

weak intermediate 252<br />

Botta Cantcheff, Marcelo<br />

<strong>on</strong> fluctuating strings 302<br />

bound see limit<br />

boundary<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> objects 119<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> point particles 120<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> space 101<br />

boxes, limits to 118<br />

braid 135<br />

braid symmetry 136<br />

braiding 349<br />

B<br />

and mass 352<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tails 377, 378<br />

Botta Cantcheff <str<strong>on</strong>g>of</str<strong>on</strong>g> tails, and mass 370<br />

brain, and circularity 171<br />

breaking <str<strong>on</strong>g>of</str<strong>on</strong>g> SU(2) 253<br />

Broglie, de, wavelength<br />

lower limit 68<br />

Br<strong>on</strong>shtein cube 8, 303<br />

bucket experiment, resoluti<strong>on</strong><br />

221<br />

C<br />

Cabibbo angle 376<br />

calculati<strong>on</strong>s<br />

n<strong>on</strong>-perturbative 239<br />

perturbative 239<br />

Calugareanu’s theorem 391,<br />

439<br />

capacitors 45<br />

capacity<br />

indeterminacy <str<strong>on</strong>g>of</str<strong>on</strong>g> 45<br />

Carlip, Steven<br />

<strong>on</strong> fluctuating lines 163,<br />

302<br />

Casimir effect 58<br />

catechism, catholic 441<br />

categories 107<br />

centre <str<strong>on</strong>g>of</str<strong>on</strong>g> group 262<br />

Cerro Torre 427<br />

chain<br />

film <str<strong>on</strong>g>of</str<strong>on</strong>g> falling ring 350<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> falling ring<br />

349<br />

chain ring trick 351<br />

challenge<br />

classificati<strong>on</strong> 9<br />

change<br />

is acti<strong>on</strong> 27<br />

nature minimizes 27, 418<br />

charge<br />

see also electromagnetism<br />

c<strong>on</strong>jugati<strong>on</strong> 245<br />

electric 231<br />

electric, from strands 154<br />

elementary e,physicsand<br />

8<br />

fracti<strong>on</strong>al 45<br />

limit for black holes 293<br />

magnetic, no 233<br />

quantizati<strong>on</strong> 390<br />

unit, electric 383<br />

weak 249–251<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 249<br />

chirality 232, 390<br />

circularity<br />

c<strong>on</strong>tradicti<strong>on</strong>s and 113<br />

fundamental 169–171, 189<br />

in classical physics 60<br />

resoluti<strong>on</strong> 221<br />

in modern physics 62<br />

in physics 110<br />

resoluti<strong>on</strong> 130<br />

classical gravitati<strong>on</strong> 36, 282<br />

classicality<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> measurement apparatus<br />

203<br />

climbing<br />

a green hill 427<br />

Moti<strong>on</strong> Mountain 427<br />

symbolism <str<strong>on</strong>g>of</str<strong>on</strong>g> 445<br />

clocks<br />

limits and Planck time<br />

65–67<br />

CODATA 446<br />

cogito ergo sum 431<br />

Coleman–Mandula theorem<br />

275<br />

collapse<str<strong>on</strong>g>of</str<strong>on</strong>g>wavefuncti<strong>on</strong>204<br />

colour charge 271, 272<br />

strand illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 321<br />

three types 272<br />

colours in nature, origin <str<strong>on</strong>g>of</str<strong>on</strong>g> 18,<br />

433<br />

combinati<strong>on</strong>, linear 190<br />

complete descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

moti<strong>on</strong> 20<br />

complete theory 422<br />

arguments against 22<br />

candidates 22<br />

list <str<strong>on</strong>g>of</str<strong>on</strong>g> testable predicti<strong>on</strong>s<br />

25, 412<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> 20<br />

requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> 148, 149<br />

steps <str<strong>on</strong>g>of</str<strong>on</strong>g> the search for a 24<br />

table <str<strong>on</strong>g>of</str<strong>on</strong>g> requirements 149<br />

complex numbers 274<br />

compositeness and strand<br />

number 345<br />

Compt<strong>on</strong> wavelength<br />

as displacement limit 30<br />

elementarity and 77, 79<br />

final theory and 149<br />

lower limit 68<br />

mass and vacuum 126<br />

particle rotati<strong>on</strong> and 284<br />

quantum effects and<br />

61–62, 107, 219<br />

table with examples 61<br />

upper limit 52<br />

vacuum and 81<br />

computer<br />

nature is not a 420<br />

c<strong>on</strong>diti<strong>on</strong>s<br />

initial, <str<strong>on</strong>g>of</str<strong>on</strong>g> universe 102, 308<br />

c<strong>on</strong>finement 322<br />

c<strong>on</strong>formal invariance 142<br />

c<strong>on</strong>jecture<br />

no avail 306<br />

c<strong>on</strong>jecture, no avail 303<br />

c<strong>on</strong>sciousness<br />

and unified theory 21<br />

c<strong>on</strong>stant<br />

cosmological see<br />

cosmological c<strong>on</strong>stant<br />

coupling see coupling<br />

c<strong>on</strong>stant<br />

c<strong>on</strong>stants<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> fundamental 153<br />

c<strong>on</strong>stituents<br />

comm<strong>on</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g> particles and<br />

space 87<br />

extended 301<br />

fundamental 149<br />

c<strong>on</strong>tinuity 71, 161<br />

as time average 173<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


subject index 481<br />

C<br />

c<strong>on</strong>tinuum<br />

discreteness and 160<br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> 40, 70, 71, 87, 127<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> 418<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> space and time 69<br />

c<strong>on</strong>tinuum<br />

see c<strong>on</strong>tinuity<br />

c<strong>on</strong>tradicti<strong>on</strong>s between<br />

relativity and quantum<br />

theory 58–64<br />

coordinates<br />

fermi<strong>on</strong>ic 135<br />

Grassmann 135<br />

core, tangle<br />

deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 227<br />

rotati<strong>on</strong> 225<br />

rotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 227<br />

thethered 371<br />

corpuscules ultra-m<strong>on</strong>dains<br />

285<br />

cosmic background radiati<strong>on</strong><br />

patterns in 109<br />

cosmic string 300, 305<br />

not possible 300<br />

strand illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 299<br />

cosmological c<strong>on</strong>stant Λ<br />

as millennium issue 19, 165<br />

cosmology and 306<br />

cosmology implied by 18<br />

for flat vacuum 213<br />

from thermodynamics 35<br />

general relativity 52<br />

minimum length and 44<br />

problem 145<br />

time variati<strong>on</strong> 311<br />

vacuum density and 52<br />

cosmological limit<br />

see also system-dependent<br />

limit<br />

lowest force 52<br />

to observables 46, 52–53<br />

cosmological radius<br />

cosmological limits and 52<br />

cosmological scales 91<br />

cosmology 306–312<br />

Coulomb’s inverse square<br />

relati<strong>on</strong> deduced from<br />

strands 233<br />

counting objects 108<br />

coupling c<strong>on</strong>stant<br />

calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 385–396<br />

comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 388<br />

definiti<strong>on</strong> 382<br />

electromagnetic, and<br />

Planck limits 44<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> running 382<br />

running and the Higgs<br />

bos<strong>on</strong> 386<br />

covering, topological 72<br />

CP problem, str<strong>on</strong>g 269, 275<br />

CP violati<strong>on</strong> 338, 377, 378, 380<br />

in neutrinos 380<br />

CP-violating phase 377<br />

CPT invariance 351<br />

CPT symmetry 75, 89, 113<br />

not valid 105<br />

creati<strong>on</strong> 107, 108, 443<br />

is impossible 102<br />

cross secti<strong>on</strong>s at Planck scales<br />

119<br />

crossing<br />

as simplest tangle 319<br />

density 190<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 187<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> definiti<strong>on</strong><br />

154<br />

in knot theory 155<br />

number 373<br />

number, signed 438<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> strands 155<br />

orientati<strong>on</strong> average 190<br />

positi<strong>on</strong> density 189<br />

switch 152<br />

switch as event 154<br />

switch in space-time 153<br />

switch is observable 346<br />

switch, definiti<strong>on</strong> 155, 186<br />

switch, illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 153<br />

crystal, nematic world 301<br />

crystals and vacuum 37<br />

cube<br />

Br<strong>on</strong>shtein 8<br />

physics 8<br />

curiosity 7<br />

current<br />

indeterminacy 45<br />

curvature<br />

see also space-time<br />

around spherical masses<br />

294<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> curve 437<br />

space, from strands 285,<br />

294<br />

strand illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 286<br />

total 327, 373<br />

upper limit, or Planck 38<br />

curve<br />

rotati<strong>on</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g> stars in<br />

galaxies 305<br />

unknotted 316<br />

cutting matter 122<br />

D<br />

D-branes 172<br />

dance 178<br />

dangers <str<strong>on</strong>g>of</str<strong>on</strong>g> a unified theory 22<br />

Dante Alighieri 399<br />

<strong>on</strong> the basic knot 421<br />

dark energy see cosmological<br />

c<strong>on</strong>stant, 19, 165, 306<br />

dark matter 18, 306, 355<br />

is c<strong>on</strong>venti<strong>on</strong>al matter 355<br />

death 431<br />

decay<br />

neutrino-less double-beta<br />

352<br />

decoherence 206<br />

defects in vacuum 286, 299<br />

definiti<strong>on</strong><br />

circular 170<br />

deformati<strong>on</strong><br />

gauge groups and 274<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> core 227<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tails 227<br />

degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom<br />

and boundary 142<br />

and entropy 122<br />

and quantum theory 349<br />

and system surface 50<br />

and volume 85<br />

entropy limit and 42<br />

fundamental 151<br />

in universe 50<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> space-time 49<br />

delocalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> W and Z<br />

bos<strong>on</strong>s 329, 331<br />

Democritus<br />

<strong>on</strong> learning 436<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


482 subject index<br />

D<br />

denseness<br />

<strong>on</strong> particles and vacuum<br />

129<br />

denseness 71<br />

density limit for black holes<br />

293<br />

desert<br />

high-energy 349, 355<br />

determinism 85, 86, 427<br />

Deutsch, David<br />

<strong>on</strong> explanati<strong>on</strong>s 167<br />

devils 22<br />

diffeomorphism invariance<br />

72, 75, 127, 132<br />

differences are approximate<br />

129<br />

dimensi<strong>on</strong>s<br />

higher 141, 163<br />

higher, and the unified<br />

theory 146<br />

no higher 146, 279, 348<br />

n<strong>on</strong>e and superstrings 86<br />

n<strong>on</strong>e at Planck scales 54, 72<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> space undefined 150<br />

origin <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial 209<br />

origin <str<strong>on</strong>g>of</str<strong>on</strong>g> three 209<br />

dinner parties, physics for 27<br />

dipole moment, electric 77<br />

Dirac equati<strong>on</strong> 74, 216<br />

and belt trick 218<br />

explanati<strong>on</strong> 220, 223<br />

from strands 174<br />

from tangles 215–220<br />

ingredients 220<br />

visualizing the 218<br />

Dirac, Paul<br />

<strong>on</strong> unificati<strong>on</strong> 22<br />

discreteness<br />

c<strong>on</strong>tinuity and 160<br />

n<strong>on</strong>e in nature 112, 420<br />

displacement<br />

indeterminacy 30<br />

limit, quantum 29<br />

distance<br />

defined with strands 160<br />

lower limit, or Planck 38<br />

distincti<strong>on</strong><br />

n<strong>on</strong>e in nature 112<br />

divergence<br />

n<strong>on</strong>e in the strand model<br />

278<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> QED 240<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum energy 213<br />

dogmas about unificati<strong>on</strong> 22<br />

domain walls 300, 305<br />

d<strong>on</strong>ate<br />

for this free pdf 9<br />

to this book 9<br />

double beta decay,<br />

neutrinoless 327<br />

double-slit<br />

experiment and gravity<br />

300<br />

with strands 201, 204<br />

doubly special relativity 281,<br />

453<br />

down quark<br />

mass sequence 365<br />

dreams 431–433<br />

duality 169<br />

as an argument for<br />

extensi<strong>on</strong> 128<br />

between large and small<br />

126, 127<br />

space-time see space-time<br />

duality<br />

strings and 455<br />

superstrings and 141<br />

E<br />

Eddingt<strong>on</strong>, Arthur<br />

<strong>on</strong> particle number 129<br />

Eddingt<strong>on</strong>–Finkelstein<br />

coordinates 72<br />

efficiency<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nature 28<br />

Ehlers, Jürgen<br />

<strong>on</strong> point particles 59<br />

Ehrenfest, Paul<br />

<strong>on</strong> spinors 200<br />

Einstein’s field equati<strong>on</strong>s<br />

see field equati<strong>on</strong>s<br />

Einstein’s hole argument 59<br />

Einstein, Albert<br />

last published words 87<br />

<strong>on</strong> c<strong>on</strong>tinuity 87<br />

<strong>on</strong> dropping the<br />

c<strong>on</strong>tinuum 69, 70, 87<br />

<strong>on</strong> gods 446<br />

<strong>on</strong> his deathbed 39<br />

<strong>on</strong> mathematics 108<br />

<strong>on</strong> modifying general<br />

relativity 166<br />

<strong>on</strong> thinking 57<br />

<strong>on</strong> ultimate entities 70<br />

<strong>on</strong> unificati<strong>on</strong> 23<br />

Einstein–Bohr discussi<strong>on</strong> 30<br />

Einstein–Brillouin–Keller<br />

quantizati<strong>on</strong> 30<br />

electric charge quantum<br />

number 382, 390<br />

electric dipole moment 77,<br />

278, 396<br />

electric field<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 234<br />

lower limit 51<br />

upper limit 44, 234<br />

electric potential 198<br />

electrodynamics<br />

from strands 228–246<br />

electromagnetic coupling<br />

c<strong>on</strong>stant<br />

see fine structure c<strong>on</strong>stant<br />

electromagnetic energy<br />

from strands 233<br />

electromagnetism<br />

cosmological limits 51<br />

from strands 228–246<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 232<br />

Planck limits 44–45, 234<br />

electr<strong>on</strong><br />

g-factor 201, 239, 245<br />

tangle <str<strong>on</strong>g>of</str<strong>on</strong>g> 325<br />

electroweak interacti<strong>on</strong> 253<br />

elementary charge see fine<br />

structure c<strong>on</strong>stant<br />

elementary particle<br />

see also particle<br />

acti<strong>on</strong> limit and 29<br />

cannot be point particle 76<br />

cannot have Planck mass<br />

371<br />

definiti<strong>on</strong> 40<br />

properties 313, 357<br />

shape <str<strong>on</strong>g>of</str<strong>on</strong>g> 118, 121, 122<br />

size limit and 29, 30, 36, 40<br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> 119<br />

speed limit and 28<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


subject index 483<br />

E<br />

elements<br />

upper energy limit 40<br />

upper mass limit 40<br />

upper momentum limit 40<br />

virtual particles and 41<br />

elements <str<strong>on</strong>g>of</str<strong>on</strong>g> sets<br />

n<strong>on</strong>e in nature 54, 107<br />

el<strong>on</strong>gati<strong>on</strong> 134<br />

emoti<strong>on</strong>s<br />

beautiful 7<br />

end<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> strand 173<br />

energy<br />

dark see cosmological<br />

c<strong>on</strong>stant<br />

electromagnetic, from<br />

strands 233<br />

from strands 194, 211, 286<br />

indeterminacy 31, 36, 65<br />

kinetic 212<br />

no regi<strong>on</strong> with negative<br />

300<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong>s 288<br />

potential 212<br />

quant<strong>on</strong> definiti<strong>on</strong> 194<br />

speed 28<br />

system-dependent limits<br />

and 46<br />

upper limit for elementary<br />

particles 40, 83<br />

energy–momentum tensor 35<br />

ensembles 108<br />

entangled state 206–209<br />

entanglement 206–209, 223<br />

quantum gravity and 303<br />

entropy<br />

at Planck scales 86<br />

Bekenstein’s bound 48–49,<br />

133, 293<br />

Bekenstein–Hawking 291<br />

black hole 48–49, 305<br />

defined with strands 160<br />

lower limit, or Boltzmann<br />

c<strong>on</strong>stant k 31, 37<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> black holes 290–292<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gravity 283<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong>s 290–292<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum 48<br />

particle shape and 122<br />

upper limit 293<br />

upper limit to 48–49<br />

equati<strong>on</strong>s<br />

n<strong>on</strong>-existence <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong><br />

150<br />

Escher, Maurits<br />

illustrating circularity 62<br />

essence <str<strong>on</strong>g>of</str<strong>on</strong>g> universe 111<br />

Euclid<br />

<strong>on</strong> points 73<br />

Euler angles 200<br />

event<br />

definiti<strong>on</strong> 60, 155<br />

from strands 154<br />

fundamental 152<br />

fundamental, illustrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 149<br />

in dreams 432<br />

symmetry 85, 130<br />

exchange<br />

extensi<strong>on</strong> and 135, 136<br />

existence and Planck scales<br />

109<br />

exotic manifold 172<br />

experiment<br />

hard challenge 380<br />

explanati<strong>on</strong><br />

definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 167<br />

extensi<strong>on</strong><br />

essential for spin 1/2 179<br />

exchange and 135, 136<br />

importance <str<strong>on</strong>g>of</str<strong>on</strong>g> 151<br />

in superstrings 141<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stituents 301<br />

spin and 136<br />

tests <str<strong>on</strong>g>of</str<strong>on</strong>g> 139<br />

unificati<strong>on</strong> and 148<br />

unified theory and 145<br />

extincti<strong>on</strong> 199<br />

extremal identity 114–115<br />

F<br />

Faust 111<br />

featureless<br />

strands are 155<br />

Fermat’s theorem 427<br />

fermi<strong>on</strong><br />

as matter particle 18<br />

definiti<strong>on</strong> 175, 176, 183<br />

exchange and extensi<strong>on</strong><br />

135–136<br />

from strands 176<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 161<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exchange 183<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wave<br />

functi<strong>on</strong> 175<br />

in general relativity 59, 304<br />

in millennium descripti<strong>on</strong><br />

18<br />

n<strong>on</strong>e at Planck scales 78<br />

spin and extensi<strong>on</strong> 136–137<br />

fermi<strong>on</strong>ic coordinates 135<br />

Feynman diagram<br />

QED, illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

238–240<br />

and braiding 352<br />

high-order QED 141<br />

mechanism for 225–280<br />

strands and 238<br />

str<strong>on</strong>g, strand illustrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 272<br />

weak 257<br />

weak, illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 255<br />

weak, strand illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

256<br />

Feynman’s rotating arrow 219<br />

Feynman, Richard<br />

<strong>on</strong> many-particle wave<br />

functi<strong>on</strong>s 207<br />

ficti<strong>on</strong>, no science 356<br />

field<br />

electric 233<br />

magnetic 233<br />

without field 161<br />

field equati<strong>on</strong>s<br />

deduced from a drawing<br />

296<br />

from maximum force<br />

33–36<br />

from strands 295–297<br />

films<br />

dreams and 432<br />

Hollywood 100<br />

final theory 20, 446<br />

modificati<strong>on</strong> 149<br />

unmodifiable 166<br />

fine structure c<strong>on</strong>stant 18, 154<br />

see also coupling c<strong>on</strong>stant,<br />

electromagnetic<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


484 subject index<br />

F<br />

fine-tuning<br />

charge unit and 51, 382<br />

dead end 389<br />

electrodynamics and 229<br />

estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 385<br />

how not to calculate it 389<br />

Planck limits and 44<br />

fine-tuning<br />

n<strong>on</strong>e 374<br />

finitude<br />

absence <str<strong>on</strong>g>of</str<strong>on</strong>g> 420<br />

Finkelstein, Robert<br />

<strong>on</strong> fermi<strong>on</strong>s as knots 347<br />

fish in water 125, 140<br />

flavour quantum numbers 315<br />

flavour-changing charged<br />

currents 323<br />

fluctuating lines 302<br />

fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> strands 157, 162<br />

fluid<br />

tangle moti<strong>on</strong> in 197, 362<br />

foam<br />

quantum see foam,<br />

space-time<br />

space-time 311<br />

foam, space-time 160, 298<br />

folds 132, 425, 467<br />

fool<br />

making <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>eself 347<br />

foolishness 21, 347<br />

force<br />

is momentum flow 18, 32<br />

lower limit 47, 52<br />

maximum see force limit,<br />

maximum<br />

no fifth 276<br />

Planck see force limit,<br />

maximum<br />

surface and 32<br />

unlimited for virtual<br />

particles 41<br />

upper limit 43<br />

force limit, maximum c 4 /4G<br />

37<br />

4-force and 43<br />

black hole and 42, 43<br />

electric charge and 42<br />

general relativity implied<br />

by 18, 31–37<br />

principle 35<br />

quantum effects and 37<br />

size limit and 40<br />

why gravitati<strong>on</strong>al 42<br />

form factor<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> bary<strong>on</strong>s 340<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mes<strong>on</strong>s 336<br />

framing <str<strong>on</strong>g>of</str<strong>on</strong>g> tangle 437<br />

freedom<br />

asymptotic 274<br />

Frenet frame 437<br />

Frenet ribb<strong>on</strong> 438<br />

Fulling–Davies–Unruh effect<br />

82, 283, 305<br />

fundamental principle 152<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 415<br />

funnels 172, 423<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 172<br />

G<br />

g-factor 201, 239, 245<br />

Galilean physics 27, 60, 418,<br />

432<br />

circular reas<strong>on</strong>ing<br />

resoluti<strong>on</strong> 221<br />

gamma-ray bursts 45, 88, 233<br />

gasoline 84<br />

gauge<br />

choice 235–237<br />

covariant derivative 238<br />

freedom, illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 235<br />

interacti<strong>on</strong> 237<br />

interacti<strong>on</strong> antiscreening<br />

387<br />

interacti<strong>on</strong> screening 387<br />

interacti<strong>on</strong>s 225–280<br />

interacti<strong>on</strong>s, summary 276<br />

symmetry 19, 165, 225,<br />

235–237<br />

symmetry and cores 227<br />

symmetry, not valid 74, 105<br />

theory, n<strong>on</strong>-Abelian 250,<br />

269, 317, 345<br />

transformati<strong>on</strong> 235<br />

U(1) freedom, illustrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 236<br />

gauge bos<strong>on</strong><br />

role <str<strong>on</strong>g>of</str<strong>on</strong>g> 317<br />

strand illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 316<br />

weak, illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 251<br />

weak, illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

incorrect 254<br />

Gedanken experiment see<br />

thought experiment<br />

Gell-Mann matrices 260<br />

Gell-Mann, Murray<br />

<strong>on</strong> strings 145<br />

gender and physics 139<br />

general relativity<br />

see also field equati<strong>on</strong>s<br />

c<strong>on</strong>tradicts quantum<br />

theory 58–64<br />

deviati<strong>on</strong>s from 305<br />

from maximum force<br />

33–36<br />

from strands 281<br />

horiz<strong>on</strong>s and 33<br />

in <strong>on</strong>e statement 31<br />

indeterminacy relati<strong>on</strong> 36<br />

millennium issues and<br />

19–20, 165<br />

minimum force 52<br />

n<strong>on</strong>-locality 76<br />

size limit 36<br />

generalizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the strand<br />

model 166, 422<br />

generalized indeterminacy<br />

principle see<br />

indeterminacy relati<strong>on</strong>,<br />

generalized<br />

generalized uncertainty<br />

principle see<br />

indeterminacy relati<strong>on</strong>,<br />

generalized<br />

generati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks 323<br />

generators<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> SU(3) and slides 264<br />

Gibbs, Phil<br />

<strong>on</strong> event symmetry 85, 130<br />

Glashow, Sheld<strong>on</strong><br />

<strong>on</strong> fake unificati<strong>on</strong> 257<br />

global coordinate systems 69<br />

glueballs 344<br />

glu<strong>on</strong><br />

as slide 269<br />

Lagrangian 270–271<br />

self-interacti<strong>on</strong><br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 270<br />

waves 318<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


subject index 485<br />

G<br />

glu<strong>on</strong>ic<br />

glu<strong>on</strong>ic waves 318<br />

glu<strong>on</strong>s 258, 268<br />

Gödel’s incompleteness<br />

theorem 21, 107, 170<br />

gods<br />

and Dante 421<br />

and Einstein 71, 446<br />

and integers 108<br />

and Kr<strong>on</strong>ecker 108<br />

and Leibniz 425<br />

and Thales 417<br />

and Trismegistos 467<br />

definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 441<br />

existence pro<str<strong>on</strong>g>of</str<strong>on</strong>g> 442<br />

favorite T-shirt 428<br />

interventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 428<br />

things and 417<br />

unified theory and 22<br />

Goethe, Johann Wolfgang v<strong>on</strong><br />

<strong>on</strong> searching 111<br />

grand unificati<strong>on</strong> 384, 413<br />

does not exist 245, 258, 275,<br />

278<br />

not final 167<br />

Grassmann coordinates 135<br />

gravitati<strong>on</strong> 283<br />

see also general relativity,<br />

quantum gravity<br />

and double-slit experiment<br />

300<br />

classical 36, 282<br />

entropic 283–285<br />

entropy and 283<br />

from strands 286<br />

maximum force and 31–36<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> superpositi<strong>on</strong> 300<br />

quantum 299<br />

strand illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 282<br />

strands and 282, 289<br />

surface 32, 34, 48<br />

universal 36, 282–285<br />

gravitati<strong>on</strong>al c<strong>on</strong>stant G 32<br />

see also force limit,<br />

maximum, see also power,<br />

upper limit<br />

absence from quantum<br />

theory 59<br />

as c<strong>on</strong>versi<strong>on</strong> c<strong>on</strong>stant 60<br />

physics and 8<br />

gravitati<strong>on</strong>al wave 88<br />

detectors 88<br />

emitted from atoms 304<br />

gravit<strong>on</strong> 298, 320, 324<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 324<br />

strand illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 298<br />

virtual 283, 285, 286<br />

gravity<br />

see gravitati<strong>on</strong><br />

weak, c<strong>on</strong>jecture 303<br />

Greene, Brian<br />

<strong>on</strong> superstrings 142<br />

Gregori, Andrea<br />

<strong>on</strong> particle mass 138<br />

group<br />

centre <str<strong>on</strong>g>of</str<strong>on</strong>g> 262<br />

slide 264<br />

GUT see grand unificati<strong>on</strong><br />

H<br />

Haag’s theorem 275<br />

Haag–Kastler axioms 275<br />

hadr<strong>on</strong><br />

see mes<strong>on</strong>, bary<strong>on</strong><br />

heat and horiz<strong>on</strong>s 34<br />

Heisenberg picture 211<br />

Heisenberg, Werner<br />

<strong>on</strong> symmetry 426<br />

<strong>on</strong> thermodynamic<br />

indeterminacy 31<br />

<strong>on</strong> unificati<strong>on</strong> 22<br />

heresy, religious 442<br />

Hertz, Heinrich<br />

<strong>on</strong> everything 424<br />

hidden variables 189<br />

hierarchy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> particle masses 197, 359,<br />

369<br />

Higgs bos<strong>on</strong><br />

2012 update 330<br />

mass 363<br />

mass predicti<strong>on</strong> 330<br />

predicti<strong>on</strong>s about 328<br />

strand illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 328,<br />

331<br />

Higgs mechanism 369<br />

Hilbert acti<strong>on</strong> 297–298<br />

definiti<strong>on</strong> 297<br />

Hilbert space 194<br />

Hilbert’s problems 110<br />

Hilbert’s sixth problem 55,<br />

110–111<br />

Hilbert, David<br />

famous mathematical<br />

problems 110<br />

his credo 145<br />

<strong>on</strong> infinity 418<br />

<strong>on</strong> unificati<strong>on</strong> 22<br />

hill, gentle green 427<br />

hole argument 59<br />

Einstein’s 286<br />

Hollywood films 100<br />

holography 106, 114, 141, 142,<br />

308, 449, 454, 457, 463,<br />

464, 466<br />

’t Ho<str<strong>on</strong>g>of</str<strong>on</strong>g>t, Gerard 301<br />

hoop c<strong>on</strong>jecture 32, 36, 289,<br />

305<br />

hopping<br />

from strand to strand 352<br />

horiz<strong>on</strong> 101, 287<br />

see also black hole<br />

and Planck scales 114<br />

behind a 288<br />

cosmic 307<br />

cosmic, diameter <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

102–105<br />

cosmic, distance 99–101<br />

cosmic, n<strong>on</strong>e 106<br />

cosmic, shape <str<strong>on</strong>g>of</str<strong>on</strong>g> 101–102<br />

cosmological 307<br />

electric charge 42<br />

energy 288<br />

entropy 290–292<br />

entropy limit 48–49<br />

heat flow 34<br />

maximum force 32–36,<br />

42–43<br />

maximum power 32–36,<br />

42–43<br />

no space bey<strong>on</strong>d 72<br />

nothing behind 414<br />

nothing behind a 72<br />

puzzle 288<br />

quantum effects at 92<br />

radius 33<br />

relati<strong>on</strong> 34<br />

singularities and 59<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


486 subject index<br />

H<br />

Hubble<br />

strand illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 287<br />

symmetries at the 105<br />

temperature 292<br />

temperature limit 42<br />

thermodynamic properties<br />

295<br />

Hubble radius 99<br />

Hubble time 97<br />

hydrogen atom 220<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 221<br />

hypercharge, weak 245, 382<br />

I<br />

idea, Plat<strong>on</strong>ic<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> observables 95<br />

identity, extremal 114–115, 139<br />

illusi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> 434<br />

impenetrability <str<strong>on</strong>g>of</str<strong>on</strong>g> strands 153,<br />

223<br />

incompleteness theorem,<br />

Gödel’s 21, 107, 170<br />

indeterminacy principle<br />

see indeterminacy relati<strong>on</strong><br />

indeterminacy relati<strong>on</strong> 196<br />

all together 37<br />

equivalence to Planck<br />

limits 37<br />

for capacitors 45<br />

for current 45<br />

for temperature 31<br />

generalized 69<br />

Heisenberg’s 30, 65, 69, 84<br />

in general relativity 36<br />

in quantum theory 30<br />

in special relativity 29<br />

in thermodynamics 31<br />

indivisibility <str<strong>on</strong>g>of</str<strong>on</strong>g> nature 420<br />

inducti<strong>on</strong>: not a problem 430<br />

infinity<br />

absence <str<strong>on</strong>g>of</str<strong>on</strong>g> 21, 418<br />

as a lie 419<br />

inflati<strong>on</strong><br />

and strands 309<br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> 309–311, 414<br />

informati<strong>on</strong><br />

in the universe 108<br />

no loss 292<br />

initial c<strong>on</strong>diti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the universe 102, 307,<br />

308<br />

integers 108<br />

interacti<strong>on</strong><br />

definiti<strong>on</strong> 226<br />

electroweak 253<br />

from tangles 227<br />

gauge 225<br />

inversi<strong>on</strong> and 115<br />

mixing 253<br />

no fifth 276<br />

interference<br />

from strands 198, 201–203<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 199, 201<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> double 203<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> double slit<br />

204<br />

visualized with strands 203<br />

invariant<br />

see also acti<strong>on</strong>, quantum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>, see also force limit, see<br />

also Lorentz invariance,<br />

see also Planck units, see<br />

also speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light<br />

knot 232<br />

maximum force as 18<br />

Planck unit as 25, 27–45<br />

quantum <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> as 18<br />

speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light as 17<br />

topological 232<br />

inversi<strong>on</strong> 114–115<br />

irreducibility<br />

computati<strong>on</strong>al 21<br />

isotropy <str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum 69<br />

issue<br />

key, <str<strong>on</strong>g>of</str<strong>on</strong>g> unificati<strong>on</strong> 396<br />

open: ending funnels 172<br />

open: funnel diameter<br />

behaviour under boosts<br />

172<br />

open: lept<strong>on</strong> tangles 327<br />

open: W and Z tangles 254<br />

J<br />

Jarlskog invariant 378<br />

Jehle, Herbert<br />

<strong>on</strong> particles as knots 347<br />

Jerven, Walter 434<br />

K<br />

Kaluza, <str<strong>on</strong>g>The</str<strong>on</strong>g>odor<br />

<strong>on</strong> unificati<strong>on</strong> 23<br />

ka<strong>on</strong>s and quantum gravity 89<br />

Kauffman, Louis<br />

<strong>on</strong> commutati<strong>on</strong> relati<strong>on</strong>s<br />

211<br />

key issues<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> unificati<strong>on</strong> 396<br />

Killing vector field 35<br />

Klein–Gord<strong>on</strong> equati<strong>on</strong> 216<br />

knife, limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 118<br />

knot<br />

closed 318<br />

definiti<strong>on</strong> 318<br />

l<strong>on</strong>g 316, 318<br />

models <str<strong>on</strong>g>of</str<strong>on</strong>g> mes<strong>on</strong>s 344<br />

models <str<strong>on</strong>g>of</str<strong>on</strong>g> nature 168<br />

models <str<strong>on</strong>g>of</str<strong>on</strong>g> particles 141<br />

open 316, 318<br />

table <str<strong>on</strong>g>of</str<strong>on</strong>g> properties 437<br />

topological invariant 232<br />

knots<br />

dimensi<strong>on</strong>ality and 72<br />

in strands 173<br />

Kochen–Specker theorem 205<br />

Kovtun-S<strong>on</strong>-Starinets<br />

c<strong>on</strong>jecture 449<br />

Kreimer, Dirk<br />

<strong>on</strong> knots in QED 141<br />

Kr<strong>on</strong>ecker, Leopold 108<br />

Kruskal–Szekeres coordinates<br />

72<br />

L<br />

Lagrangian<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> physics 57<br />

Dirac 224<br />

electromagnetic field 234<br />

electroweak 255<br />

from strands 212<br />

glu<strong>on</strong> 270–271<br />

n<strong>on</strong>e for strands 348<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> QED 237<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> general relativity 311<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the standard model 279<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the str<strong>on</strong>g interacti<strong>on</strong><br />

273<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the weak interacti<strong>on</strong> 252<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


subject index 487<br />

L<br />

Lagrangian<br />

properties 239<br />

strands and 158, 211–213<br />

superstrings and 143, 144<br />

Lagrangian density see<br />

Lagrangian<br />

Lamb shift, gravitati<strong>on</strong>al 89<br />

Landau pole 240<br />

Langtang Lirung 427<br />

Lao Tse<br />

<strong>on</strong> moti<strong>on</strong> 425, 434<br />

Large Hadr<strong>on</strong> Collider<br />

no discoveries 355<br />

no Higgs bos<strong>on</strong> 330<br />

strand model and 428<br />

W and Z scattering 330,<br />

412<br />

large number hypothesis 104<br />

lattice space-time 75<br />

laziness <str<strong>on</strong>g>of</str<strong>on</strong>g> nature 27<br />

least acti<strong>on</strong> principle<br />

from strands 174, 211–213<br />

in nature 17, 27, 57<br />

valid for strands 279, 297<br />

leather trick 321, 323, 370<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 323<br />

Leibniz, Gottfried Wilhelm<br />

<strong>on</strong> parts 109<br />

<strong>on</strong> relati<strong>on</strong>s in nature 308<br />

length<br />

defined with strands 160<br />

definiti<strong>on</strong> 60<br />

indeterminacy 29<br />

intrinsic 124<br />

lower limit, or Planck 38<br />

maximum 99<br />

minimum 161<br />

Lenin (Vladimir Ilyich<br />

Ulyanov) 83<br />

leptogenesis<br />

n<strong>on</strong>e 380, 381<br />

lept<strong>on</strong><br />

mass ratios 367<br />

number 315<br />

strand illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 326,<br />

368<br />

strand illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

obsolete 367<br />

tangle <str<strong>on</strong>g>of</str<strong>on</strong>g> 325<br />

Lesage, Georges-Louis<br />

<strong>on</strong> universal gravitati<strong>on</strong><br />

285<br />

LHC see Large Hadr<strong>on</strong><br />

Collider<br />

Lichtenberg, Georg Christoph<br />

<strong>on</strong> truth 26<br />

lie, infinity as a 419<br />

life<br />

meaning 431<br />

origin <str<strong>on</strong>g>of</str<strong>on</strong>g> 21<br />

saving with belt trick 181<br />

light<br />

see also speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light<br />

deflecti<strong>on</strong> by the Sun 60<br />

<strong>on</strong>i<strong>on</strong> 98<br />

propagati<strong>on</strong> and quantum<br />

gravity 88<br />

scattering <str<strong>on</strong>g>of</str<strong>on</strong>g> 69<br />

Lilliput<br />

no kingdom 349<br />

lily, beauty <str<strong>on</strong>g>of</str<strong>on</strong>g> 17<br />

limit<br />

cosmological see<br />

cosmological limit<br />

Planck see Planck limits<br />

limits<br />

in nature, summary 55<br />

our human 434<br />

physics in 27<br />

Planck units as 27<br />

size-dependent 46<br />

system dependent, to all<br />

observables 46–53<br />

system-dependent 46<br />

to cutting 119<br />

to measurements 68<br />

to moti<strong>on</strong> 27<br />

to observables, additi<strong>on</strong>al<br />

47<br />

to precisi<strong>on</strong> see precisi<strong>on</strong><br />

linear combinati<strong>on</strong> 190<br />

lines, skew 347<br />

linking number 391, 438<br />

liquid, tangle moti<strong>on</strong> in 197,<br />

362<br />

list<br />

millennium 19, 164<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> experimental<br />

predicti<strong>on</strong>s 412<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> requirements for a<br />

complete theory 149<br />

three important kinds 25<br />

Lloyd, Seth<br />

<strong>on</strong> informati<strong>on</strong> 109<br />

locality<br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> 150<br />

need to aband<strong>on</strong> 76<br />

n<strong>on</strong>e at Planck scales 119<br />

quantum theory vs.<br />

general relativity 59<br />

l<strong>on</strong>g knots 316<br />

loop quantum gravity 140<br />

loop, twisted<br />

electromagnetism and 229<br />

loops<br />

time-like 300<br />

Loren, Sophia<br />

<strong>on</strong> everything 357<br />

Lorentz boosts<br />

maximum force and 32<br />

quantum theory and 218<br />

Lorentz invariance<br />

fluctuati<strong>on</strong>s and 76<br />

n<strong>on</strong>e at Planck scales 72,<br />

84, 88, 89<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> strand model 159<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the vacuum 213<br />

quantum gravity and 89<br />

quantum theory and 216<br />

Lorentz symmetry<br />

see Lorentz invariance<br />

Lorentz transformati<strong>on</strong>s<br />

from invariance <str<strong>on</strong>g>of</str<strong>on</strong>g> c 215<br />

lattices and 75<br />

minimum length and 72<br />

temperature 50<br />

Lorentz, Hendrik Anto<strong>on</strong><br />

<strong>on</strong> the speed limit 28<br />

M<br />

machine, braiding 349<br />

magnetic<br />

m<strong>on</strong>opole, n<strong>on</strong>e 233<br />

magnetic charge 233<br />

magnetic field<br />

lower limit 51<br />

upper limit 44, 234<br />

magnetic moment<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


488 subject index<br />

M<br />

magnetic<br />

anomalous 241–243<br />

neutrino 327<br />

magnetic vector potential 198<br />

man-years <str<strong>on</strong>g>of</str<strong>on</strong>g> work in<br />

superstrings 144<br />

manifolds<br />

see also space, space-time<br />

definiti<strong>on</strong> 73<br />

exotic 172<br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> 72<br />

n<strong>on</strong>e at Planck scales 40<br />

many-particle state 206<br />

Marx, Groucho<br />

<strong>on</strong> principles 39<br />

mass<br />

absolute value for particles<br />

369<br />

ADM 104<br />

and braiding <str<strong>on</strong>g>of</str<strong>on</strong>g> tails 370<br />

black hole 288<br />

calculati<strong>on</strong> for neutrinos<br />

373<br />

calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 358<br />

crossing switch rate as 371<br />

eigenstate <str<strong>on</strong>g>of</str<strong>on</strong>g> quark 377<br />

elementary particle 311, 359<br />

flow, upper limit 41<br />

from strands 196, 286, 328,<br />

346<br />

gap 345<br />

generati<strong>on</strong> 253<br />

gravitati<strong>on</strong>al 80, 81, 104,<br />

358, 361<br />

hierarchy 197, 359, 369–372<br />

in universe 104<br />

inertial 81, 358, 362<br />

inverse <str<strong>on</strong>g>of</str<strong>on</strong>g> 127<br />

maximum density 38<br />

measurement 79–83<br />

negative 84<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> bos<strong>on</strong>s 360<br />

rate limit 293<br />

ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> lept<strong>on</strong>s 367<br />

ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> quarks 364<br />

sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> mes<strong>on</strong>s 337<br />

upper limit for elementary<br />

particles 40, 79–80<br />

W and Z bos<strong>on</strong>s 360<br />

without mass 161<br />

matchboxes and universe 100<br />

mathematics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nature, simplicity <str<strong>on</strong>g>of</str<strong>on</strong>g> 39,<br />

55<br />

matter<br />

density in universe 309<br />

difference from vacuum 65<br />

extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 86, 117–146<br />

indistinguishable from<br />

vacuum 53–54, 82–83<br />

made <str<strong>on</strong>g>of</str<strong>on</strong>g> everything 424<br />

made <str<strong>on</strong>g>of</str<strong>on</strong>g> nothing 424<br />

mixes with vacuum 81, 82<br />

mattress analogy <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum<br />

37<br />

maxim<strong>on</strong>s 79<br />

maximum force<br />

see force limit, maximum<br />

maximum speed<br />

see speed <str<strong>on</strong>g>of</str<strong>on</strong>g> light c<br />

Maxwell’s field equati<strong>on</strong>s 229,<br />

235, 243<br />

meaning in life 431<br />

measurement<br />

always electromagnetic 162<br />

averaging in 86<br />

classicality <str<strong>on</strong>g>of</str<strong>on</strong>g> 203<br />

definiti<strong>on</strong> 418<br />

from strands 204<br />

n<strong>on</strong>e at Planck scales 74<br />

precisi<strong>on</strong> see precisi<strong>on</strong><br />

problem in quantum<br />

theory 21<br />

problem, quantum 21<br />

mechanism for Feynman<br />

diagrams 225–280<br />

membranes 141<br />

Mende, Paul<br />

<strong>on</strong> extensi<strong>on</strong> checks 140<br />

mes<strong>on</strong>s<br />

charmed, illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

335<br />

CP violati<strong>on</strong> 338<br />

excited 337<br />

form factor 336<br />

from tangles 332<br />

heavy, illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 336<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 333<br />

knotted 344<br />

mass sequences 337<br />

pseudoscalar 332<br />

Regge trajectories 337<br />

shape 336<br />

vector 332<br />

metre rule<br />

cosmic horiz<strong>on</strong> and 99<br />

Planck scales and 67<br />

metric<br />

Planck scales and 72<br />

space 73<br />

microstates <str<strong>on</strong>g>of</str<strong>on</strong>g> a black hole<br />

290<br />

millennium descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

physics 17–20<br />

millennium list<br />

final summary 415, 416<br />

not solved by superstring<br />

c<strong>on</strong>jecture 144<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> open issues 19, 20, 164,<br />

165<br />

millennium problems<br />

from the Clay<br />

Mathematics Institute 345<br />

minimal coupling 198, 201,<br />

237<br />

minimal crossing number 232<br />

minimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> change<br />

see least acti<strong>on</strong><br />

minimum length 161<br />

Mini<strong>on</strong> Math f<strong>on</strong>t 469<br />

mixed state 209<br />

mixing<br />

angle, weak 362<br />

angles 376<br />

matrices 376<br />

quark 377<br />

model<br />

n<strong>on</strong>-commutative 348<br />

tangle, <str<strong>on</strong>g>of</str<strong>on</strong>g> particles 161<br />

model, topological particle<br />

347<br />

modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> final theory<br />

149<br />

modified Newt<strong>on</strong>ian<br />

dynamics 305<br />

momentum 196<br />

flow is force 18, 32<br />

indeterminacy 30<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


subject index 489<br />

M<br />

momentum<br />

quant<strong>on</strong> definiti<strong>on</strong> 196<br />

upper limit for elementary<br />

particles 40<br />

momentum indeterminacy 68<br />

m<strong>on</strong>ad 109<br />

M<strong>on</strong>gan, Tom<br />

<strong>on</strong> particles as tangles 347<br />

m<strong>on</strong>ism 425, 454<br />

m<strong>on</strong>opoles, magnetic, n<strong>on</strong>e<br />

233<br />

moti<strong>on</strong> 175<br />

as an illusi<strong>on</strong> 434<br />

complete descripti<strong>on</strong> 20<br />

complete theory 20<br />

complete theory <str<strong>on</strong>g>of</str<strong>on</strong>g> 20<br />

c<strong>on</strong>tinuity <str<strong>on</strong>g>of</str<strong>on</strong>g> 418<br />

essence <str<strong>on</strong>g>of</str<strong>on</strong>g> 434<br />

fast 8, 23<br />

helical 362<br />

limited in nature 27, 37<br />

limits to 27<br />

n<strong>on</strong>e at Planck scales 87<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> particles through<br />

vacuum 352<br />

powerful 8, 23<br />

predictability <str<strong>on</strong>g>of</str<strong>on</strong>g> 418<br />

quantum 176<br />

strand illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 350<br />

tiny 8, 23<br />

translati<strong>on</strong>al 352<br />

ultimate questi<strong>on</strong>s and 417<br />

unified theory 20<br />

uniform 8, 23<br />

Moti<strong>on</strong> Mountain 22<br />

climbing 427<br />

nature <str<strong>on</strong>g>of</str<strong>on</strong>g> 427<br />

supporting the project 9<br />

top <str<strong>on</strong>g>of</str<strong>on</strong>g> 417<br />

move see Reidemeister move<br />

multi-particle state<br />

see many-particle state<br />

multiplicity<br />

approximate 132<br />

multiverse n<strong>on</strong>sense 109, 112,<br />

348, 424, 441<br />

mu<strong>on</strong><br />

g-factor 201, 239, 245<br />

rare decays 327<br />

tangle <str<strong>on</strong>g>of</str<strong>on</strong>g> 325<br />

N<br />

Nati<strong>on</strong>al Institute for Play 447<br />

natural units see also Planck<br />

limits, see also Planck<br />

units, 38, 152<br />

naturalness<br />

n<strong>on</strong>e 374<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> standard model 154<br />

nature<br />

and descripti<strong>on</strong>, table <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

difference 169<br />

efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> 28<br />

event symmetry 85<br />

has no meaning 112<br />

is indivisible 420<br />

is not finite 420<br />

laziness <str<strong>on</strong>g>of</str<strong>on</strong>g> 27<br />

limits moti<strong>on</strong> 37<br />

made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e strand 424<br />

multiplicity <str<strong>on</strong>g>of</str<strong>on</strong>g> 130<br />

no infinity in 418<br />

no sets nor elements 54–55<br />

n<strong>on</strong>-locality <str<strong>on</strong>g>of</str<strong>on</strong>g> 76<br />

not a computer 420<br />

not a set 130<br />

not discrete 420<br />

table <str<strong>on</strong>g>of</str<strong>on</strong>g> properties 113<br />

unity <str<strong>on</strong>g>of</str<strong>on</strong>g> 130<br />

vs. people 436<br />

whether deterministic 85,<br />

427<br />

whole in each <str<strong>on</strong>g>of</str<strong>on</strong>g> its parts<br />

423<br />

nematic world crystal 301<br />

neurobiology 171<br />

neutrino<br />

magnetic moment 327<br />

mass calculati<strong>on</strong> 373<br />

mixing 379<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 379<br />

tangle <str<strong>on</strong>g>of</str<strong>on</strong>g> 325<br />

neutrinoless double beta<br />

decay 327<br />

neutr<strong>on</strong><br />

decay and strand model<br />

257<br />

form factor 340<br />

neutr<strong>on</strong>–antineutr<strong>on</strong><br />

oscillati<strong>on</strong>s 278<br />

Newt<strong>on</strong>’s bucket 221<br />

Newt<strong>on</strong>ian physics<br />

see Galilean physics<br />

Nietzsche, Friedrich<br />

<strong>on</strong> walking 152<br />

night sky 17<br />

meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> 425<br />

nightmare scenario 355<br />

no avail c<strong>on</strong>jecture 303, 306<br />

no-hair theorem 134, 289<br />

n<strong>on</strong>-commutative model 348<br />

n<strong>on</strong>-locality 150<br />

natural 171<br />

solves c<strong>on</strong>tradicti<strong>on</strong>s 76<br />

n<strong>on</strong>-perturbative calculati<strong>on</strong>s<br />

239<br />

n<strong>on</strong>-zero acti<strong>on</strong> 29<br />

norm <str<strong>on</strong>g>of</str<strong>on</strong>g> quantum state 193<br />

nothing<br />

difference from universe 91<br />

NSA dream 308<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> stars 103<br />

numbers, no real 53, 74<br />

O<br />

object<br />

moti<strong>on</strong> and 60<br />

observables<br />

basic 160<br />

defined with crossing<br />

switches 158<br />

n<strong>on</strong>e at Planck scales 74<br />

system-dependent limits<br />

46<br />

unexplained, millennium<br />

issues 19<br />

value definiti<strong>on</strong> 173<br />

observer<br />

definiti<strong>on</strong> 83<br />

Occam’s razor 129, 168<br />

oct<strong>on</strong>i<strong>on</strong>s 274<br />

Olbers’ paradox 43<br />

operator<br />

Hermitean 210<br />

unitary 210<br />

order out <str<strong>on</strong>g>of</str<strong>on</strong>g> chaos 422<br />

origin<br />

human 431<br />

oscillator, harm<strong>on</strong>ic 275<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


490 subject index<br />

O<br />

overcrossing<br />

overcrossing 253, 254<br />

P<br />

pantheism 442<br />

parity 245<br />

n<strong>on</strong>e at Planck scales 79<br />

violati<strong>on</strong> 249–251<br />

belt trick and 181<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> nature see parts<br />

particle<br />

see also elementary<br />

particle, see also matter, see<br />

also virtual particle<br />

circular definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

space-time and 60<br />

comm<strong>on</strong> c<strong>on</strong>stituents with<br />

vacuum 89<br />

definiti<strong>on</strong> 60, 175, 313<br />

electrically charged 231<br />

exchange 75, 78, 135<br />

in the millennium<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> physics 18<br />

internal structure 346<br />

intrinsic property list 315<br />

lower speed limit 52<br />

made <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e strand 314<br />

made <str<strong>on</strong>g>of</str<strong>on</strong>g> three strands 325<br />

spin <str<strong>on</strong>g>of</str<strong>on</strong>g> 339<br />

made <str<strong>on</strong>g>of</str<strong>on</strong>g> two strands 318<br />

mass 358<br />

mass, absolute value 369<br />

moti<strong>on</strong> 60<br />

moti<strong>on</strong> through vacuum<br />

352<br />

no exchange at horiz<strong>on</strong><br />

scales 105<br />

no point 33, 40, 42, 59,<br />

76–79<br />

n<strong>on</strong>e at Planck scales<br />

78–83, 90, 162<br />

number in the universe<br />

103–105, 109, 112, 113,<br />

129–131<br />

number that fits in<br />

vacuum 125<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> four or more strands<br />

340<br />

pair creati<strong>on</strong> 59, 61, 101<br />

properties 313, 357<br />

quantum 161, 177<br />

spectrum, explanati<strong>on</strong> 352,<br />

353<br />

spectrum, predicti<strong>on</strong> 353<br />

spin 1 314<br />

stable 176<br />

table <str<strong>on</strong>g>of</str<strong>on</strong>g> corresp<strong>on</strong>dence<br />

with tangles 346<br />

tangle as 162<br />

translati<strong>on</strong>al moti<strong>on</strong> 352<br />

virtual 41, 155, 159, 174<br />

parts<br />

are approximate 129<br />

in nature 129, 418<br />

in nature, lack <str<strong>on</strong>g>of</str<strong>on</strong>g> 129<br />

n<strong>on</strong>e in nature 420<br />

pastime, unificati<strong>on</strong> as 22<br />

path<br />

helical 362<br />

integral 201<br />

integral formulati<strong>on</strong> 188<br />

Pauli equati<strong>on</strong> 201, 216<br />

from tangles 200<br />

Pauli matrices 200<br />

Pauli, Wolfgang<br />

<strong>on</strong> gauge theory 250<br />

Penrose c<strong>on</strong>jecture 289, 305<br />

pentaquarks 347<br />

permutati<strong>on</strong> symmetry<br />

not valid 75, 105, 135<br />

origin <str<strong>on</strong>g>of</str<strong>on</strong>g> 186<br />

perturbati<strong>on</strong> theory<br />

c<strong>on</strong>vergence <str<strong>on</strong>g>of</str<strong>on</strong>g> 243<br />

failure <str<strong>on</strong>g>of</str<strong>on</strong>g> 330<br />

validity <str<strong>on</strong>g>of</str<strong>on</strong>g> 240<br />

phase 175<br />

average 190<br />

CP-violating 377<br />

quantum 190<br />

tangle 229<br />

Philippine wine dance 178<br />

photography, limits <str<strong>on</strong>g>of</str<strong>on</strong>g> 120<br />

phot<strong>on</strong> 230<br />

affected by quantum<br />

gravity 88<br />

disappearance <str<strong>on</strong>g>of</str<strong>on</strong>g> 230<br />

entangled<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 209<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> 230<br />

speed <str<strong>on</strong>g>of</str<strong>on</strong>g> 213<br />

stability <str<strong>on</strong>g>of</str<strong>on</strong>g> 230<br />

physical space differs from<br />

background space 285<br />

physical system 28, 108<br />

see also system-dependent<br />

limit<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 156<br />

physicists<br />

c<strong>on</strong>servative 56, 429<br />

physics 170<br />

approximati<strong>on</strong>s and the<br />

sky 425<br />

beauty in 57<br />

book, perfect 111<br />

definiti<strong>on</strong> 17<br />

Galilean 27, 60, 418, 432<br />

gender and 139<br />

golden age 22<br />

in four steps 421<br />

in limit statements 27<br />

in the year 2000 19<br />

map <str<strong>on</strong>g>of</str<strong>on</strong>g> 8<br />

moti<strong>on</strong> limits in 27, 37<br />

progress <str<strong>on</strong>g>of</str<strong>on</strong>g> 421<br />

simplicity in 426<br />

simplicity <str<strong>on</strong>g>of</str<strong>on</strong>g> 27–37, 39<br />

table <str<strong>on</strong>g>of</str<strong>on</strong>g> progress 421<br />

the science <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> 17<br />

unificati<strong>on</strong> in <strong>on</strong>e<br />

statement 420<br />

physics cube 8<br />

Planck accelerati<strong>on</strong> 37<br />

Planck accelerator 83<br />

Planck acti<strong>on</strong> ħ<br />

see acti<strong>on</strong>, quantum <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Planck angular frequency 37<br />

Planck area 38<br />

Planck c<strong>on</strong>stant ħ<br />

see acti<strong>on</strong>, quantum <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Planck curvature 38<br />

Planck density 38, 80<br />

Planck distance 38<br />

Planck energy 42, 58, 83<br />

see also Planck scales<br />

definiti<strong>on</strong> 40<br />

Planck entropy 152<br />

Planck force c 4 /4G<br />

see force limit, maximum<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


subject index 491<br />

P<br />

Planck<br />

Planck length 38, 152<br />

see also Planck scales,<br />

Planck energy<br />

antimatter and 54<br />

as measurement limit<br />

67–74<br />

duality and 114<br />

extremal identity and 114<br />

mass limit and 79<br />

shutters and 120<br />

space-time lattices and 75<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> 61<br />

Planck limits<br />

see also Planck units,<br />

natural units<br />

curiosities and challenges<br />

41–45<br />

definiti<strong>on</strong> 37<br />

electromagnetic 44–45<br />

Planck mass 79, 370<br />

definiti<strong>on</strong> 40<br />

does not exist as black hole<br />

303, 371<br />

does not exist as<br />

elementary particles 371<br />

stand model 370<br />

strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> 370<br />

Planck mass density 38<br />

Planck momentum<br />

definiti<strong>on</strong> 40<br />

Planck scales<br />

as domain <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>tradicti<strong>on</strong>s 60<br />

definiti<strong>on</strong> 38<br />

general relativity and<br />

quantum theory at 60–64<br />

large symmetry at 128<br />

nature at 65–90<br />

no dimensi<strong>on</strong>s at 72<br />

no events at 70<br />

no measurements at 74–75<br />

no observables at 74–75<br />

no space-time at 73<br />

no supersymmetry at 79<br />

no symmetries at 74–75<br />

surprising behaviour at<br />

65–90<br />

vacuum and matter at<br />

53–54, 82–83<br />

Planck speed c see speed <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

light c<br />

Planck time 152<br />

age measurement and 94<br />

as measurement limit<br />

65–67, 94, 98, 115<br />

shutters and 120<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> 61<br />

Zeno effect and 123<br />

Planck units 37, 150, 152, 161<br />

as invariants 27, 38<br />

as key to unificati<strong>on</strong> 145<br />

as limits 27, 38, 68<br />

as natural units 68<br />

corrected, definiti<strong>on</strong> 38<br />

definiti<strong>on</strong> 25<br />

key to unificati<strong>on</strong> 55<br />

Planck value 38<br />

see natural units, see<br />

Planck units<br />

Planck volume 38, 45, 68<br />

number in the universe 50<br />

plate trick 178<br />

platelets 181<br />

Plato<br />

<strong>on</strong> love 436<br />

<strong>on</strong> nature’s unity 130<br />

Plat<strong>on</strong>ic idea<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> time 95<br />

play 22<br />

plural 418<br />

and moti<strong>on</strong> 434<br />

Poincaré symmetry<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum 215<br />

point particles<br />

do not exist 33, 40, 42, 59,<br />

76–79<br />

points<br />

as clouds 121<br />

as tubes 125<br />

cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 125<br />

do not exist 25, 33, 41, 54,<br />

67–74<br />

exchange 135<br />

in vacuum 124<br />

incompatible with<br />

unificati<strong>on</strong> 25, 64<br />

shape <str<strong>on</strong>g>of</str<strong>on</strong>g> 117<br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> 124, 125<br />

poke see also Reidemeister<br />

move<br />

basic<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 249<br />

gauge group<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 248<br />

transfer<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 247<br />

posets 107<br />

positi<strong>on</strong><br />

from strands 175<br />

indeterminacy 67<br />

positr<strong>on</strong> charge 340<br />

potential<br />

and strands 198<br />

electric 233<br />

indeterminacy 45<br />

electromagnetic 234<br />

magnetic 233<br />

power<br />

lower limit to 47<br />

misuse <str<strong>on</strong>g>of</str<strong>on</strong>g> 22<br />

surface and 32<br />

upper limit 43<br />

upper limit c 5 /4G 31–37<br />

precessi<strong>on</strong> 180<br />

precisi<strong>on</strong><br />

does not increase with<br />

energy 128<br />

fun and 115<br />

lack at Planck scales 72<br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> at Planck scales 69<br />

limited by quantum theory<br />

59<br />

limits 78<br />

limits to 53–55<br />

maximum 96<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> age measurements 94<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> clocks 67, 94–99<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> final theory 149<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> length measurements 67<br />

predictability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> 418<br />

predicti<strong>on</strong>s<br />

about axi<strong>on</strong>s 275<br />

about cosmology 310<br />

about dark matter 355<br />

about general relativity 304<br />

about grand unificati<strong>on</strong><br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


492 subject index<br />

P<br />

pre<strong>on</strong><br />

278<br />

about mes<strong>on</strong>s 337<br />

about supersymmetry 278<br />

about the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

interacti<strong>on</strong>s 276<br />

about the str<strong>on</strong>g<br />

interacti<strong>on</strong> 275<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the strand model 412<br />

<strong>on</strong> charge quantizati<strong>on</strong> 382<br />

<strong>on</strong> coupling c<strong>on</strong>stants 385<br />

<strong>on</strong> the weak interacti<strong>on</strong><br />

258<br />

pre<strong>on</strong> models 452<br />

pride 21<br />

principle<br />

fundamental 152<br />

fundamental, illustrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 149<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> least acti<strong>on</strong> 17, 27, 57,<br />

211, 279<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> least change 17, 27, 57<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> maximum force see<br />

force limit, maximum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-zero acti<strong>on</strong> 29<br />

quantum acti<strong>on</strong> 222<br />

probability density 193<br />

process<br />

fundamental 154<br />

projecti<strong>on</strong>, minimal 390<br />

propagator 220, 223<br />

properties<br />

intrinsic 86, 313<br />

unexplained, as<br />

millennium issues 19<br />

prot<strong>on</strong><br />

charge 340<br />

decay 278<br />

form factor 340<br />

mass 340<br />

tangle <str<strong>on</strong>g>of</str<strong>on</strong>g> 340<br />

puzzle about strands 324<br />

Q<br />

QCD 273–276<br />

QED 228–246<br />

c<strong>on</strong>vergence <str<strong>on</strong>g>of</str<strong>on</strong>g> 243<br />

quantities<br />

bare 240<br />

quantum acti<strong>on</strong> principle 212,<br />

222<br />

quantum effects<br />

are due to extensi<strong>on</strong> 424<br />

quantum field theory 221, 387<br />

as approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

strand model 276<br />

strand hopping and 352<br />

quantum fluctuati<strong>on</strong>s 107<br />

quantum foam see foam,<br />

space-time<br />

quantum geometry 76, 114<br />

quantum gravity 299<br />

QED and 246<br />

definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 298<br />

does not exist 306<br />

effects <strong>on</strong> phot<strong>on</strong>s 88<br />

entanglement and 303<br />

entropy and 290<br />

experiments in 88–89<br />

extensi<strong>on</strong> and 140, 290<br />

finite entropy 133<br />

from strands 311<br />

gravity waves and 88<br />

is unobservable 306<br />

loop 301<br />

Lorentz symmetry and 89<br />

minimum distance and 38<br />

minimum power and 48<br />

no such theory 24<br />

n<strong>on</strong>-locality 76<br />

Planck scales and 74<br />

predicti<strong>on</strong>s 305, 414<br />

predicti<strong>on</strong>s about 279<br />

strands and 295, 300<br />

topology and 310<br />

quantum groups 413<br />

quantum lattices 107<br />

quantum measurement<br />

from tangles 203<br />

quantum mechanics see also<br />

quantum theory, 220<br />

quantum numbers<br />

all 315<br />

bary<strong>on</strong> number 315<br />

charge(s) 315<br />

flavour 315<br />

lept<strong>on</strong> number 315<br />

parity 315<br />

spin 315<br />

quantum particle<br />

properties 313<br />

quantum state 187<br />

quantum theory<br />

and space-time curvature<br />

82<br />

c<strong>on</strong>tradicts general<br />

relativity 58–64<br />

displacement limit 29, 30<br />

implied by quantum <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

acti<strong>on</strong> 18<br />

in <strong>on</strong>e statement 29<br />

measurement problem 21<br />

millennium issues and 19,<br />

164–165<br />

no infinity in 418<br />

n<strong>on</strong>-zero acti<strong>on</strong> 29<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> matter 174<br />

space-time curvature and<br />

58<br />

vacuum and 80<br />

quark<br />

flavour change<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 322<br />

mass calculati<strong>on</strong> 366<br />

mixing<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 376<br />

model acceptance 334<br />

Planck energy table 366<br />

ropelength table 366<br />

quarks<br />

are elementary 76<br />

fracti<strong>on</strong>al charge 45<br />

generati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 323<br />

mass ratios 364<br />

mes<strong>on</strong>s and 332<br />

mixing 376, 377<br />

strand illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 320,<br />

364<br />

tangles 320–323<br />

quasars 234<br />

quaterni<strong>on</strong>s 274<br />

qubit 163<br />

R<br />

race, in quantum gravity 88<br />

Raychaudhuri equati<strong>on</strong> 35,<br />

295<br />

Raymer, Michael<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


subject index 493<br />

R<br />

real<br />

<strong>on</strong> the indeterminacy<br />

relati<strong>on</strong> 65<br />

real numbers, no 53, 74<br />

reducti<strong>on</strong>ism<br />

and the strand model 162<br />

and the unified theory 21<br />

Regge slope<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 338<br />

Regge trajectories 337<br />

regi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> negative energy 305<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> negative energy not<br />

possible 300<br />

regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> negative energy<br />

300<br />

regularizati<strong>on</strong><br />

n<strong>on</strong>-local 329<br />

weak bos<strong>on</strong>s and 330<br />

Reidemeister move<br />

and gauge bos<strong>on</strong>s 317<br />

first or type I or twist<br />

228–246<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> types 227<br />

sec<strong>on</strong>d or type II or poke<br />

228, 246–258<br />

third or type III or slide<br />

228, 258–276, 317<br />

Reidemeister’s theorem 276<br />

Reidemeister, Kurt<br />

<strong>on</strong> knot deformati<strong>on</strong>s 228,<br />

276<br />

relativity<br />

as approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

strand model 311<br />

doubly special 453<br />

general see general<br />

relativity<br />

no infinity in 418<br />

special see special relativity<br />

summary <strong>on</strong> 311<br />

renormalizati<strong>on</strong><br />

at Planck scales 75<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> QCD 274<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> QED 239<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gravity 305<br />

requirements<br />

for a complete theory 148,<br />

149<br />

resoluti<strong>on</strong><br />

in measurements 120<br />

Reynolds number 362<br />

ribb<strong>on</strong><br />

framing 437<br />

mathematical 391<br />

models 141, 168, 347<br />

Ricci scalar 297, 298<br />

Ricci tensor 35<br />

Riemann, Bernhard<br />

<strong>on</strong> geometry 39<br />

ring chain trick 351<br />

rope braiding 349<br />

ropelength 361<br />

measured in diameters 361<br />

rotati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tangle cores 225<br />

tethered 181<br />

rotati<strong>on</strong> curve<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> stars in galaxies 305<br />

rule, superselecti<strong>on</strong> 192<br />

running<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> coupling 241, 257, 274<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> coupling c<strong>on</strong>stants 387<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> coupling, data 386<br />

S<br />

S-duality 126<br />

safety, asymptotic 304<br />

Sakharov, Andrei 79<br />

<strong>on</strong> matter c<strong>on</strong>stituents 123<br />

<strong>on</strong> maximum particle<br />

mass 40<br />

<strong>on</strong> minimum length 44<br />

portrait 79<br />

Salam, Abdus<br />

<strong>on</strong> unificati<strong>on</strong> 22<br />

scalar multiplicati<strong>on</strong> 191<br />

scalar product 193<br />

scale<br />

extremal, nature at 113<br />

scales, cosmological 91<br />

scattering<br />

by vacuum 83<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>gitudinal W and Z<br />

bos<strong>on</strong>s 329, 331<br />

to determine mass 81<br />

to determine size 77, 119<br />

Schrödinger equati<strong>on</strong> 74, 194,<br />

215<br />

Schrödinger picture 188, 211<br />

Schrödinger, Erwin<br />

<strong>on</strong> thinking 118<br />

Schwarzschild black hole 287<br />

see black hole<br />

Schwarzschild radius<br />

see also black hole<br />

as limit <str<strong>on</strong>g>of</str<strong>on</strong>g> general<br />

relativity 60<br />

as measurement limit 68,<br />

80, 81<br />

definiti<strong>on</strong> 32<br />

entropy and 133<br />

extensi<strong>on</strong> and 117<br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> sets and 107<br />

mass and vacuum 126<br />

table with examples 61<br />

science ficti<strong>on</strong>, no 356<br />

scissor trick 178<br />

see-saw mechanism 369, 380<br />

self-linking number 438<br />

sets<br />

not useful to describe<br />

nature 130<br />

not useful to describe<br />

universe 54–55, 106–108<br />

shape<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> points 117<br />

touching 121<br />

sheet<br />

and belt trick 180<br />

shivering 153<br />

and divergences 278<br />

short-time average 187<br />

shutter<br />

limits <str<strong>on</strong>g>of</str<strong>on</strong>g> a 120<br />

time table 120<br />

SI units 153<br />

SI units <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement 161<br />

simplicity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> physics 39<br />

simplificati<strong>on</strong><br />

as guiding idea 426<br />

single atom 84<br />

singularities<br />

horiz<strong>on</strong> and 59<br />

n<strong>on</strong>e in nature 85, 150<br />

n<strong>on</strong>e in the strand model<br />

293<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


494 subject index<br />

S<br />

size<br />

n<strong>on</strong>e inside black holes<br />

288<br />

n<strong>on</strong>e predicted in nature<br />

305<br />

size<br />

indeterminacy 36<br />

system-dependent limits<br />

and 46<br />

size limit<br />

due to cosmology 51<br />

due to general relativity 36<br />

due to quantum theory 30<br />

due to special relativity 29<br />

skew lines 347<br />

sky, at night 17<br />

slide see Reidemeister move<br />

group 264<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> observable<br />

265<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

unobservable 264<br />

transfer, illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 259<br />

slit<br />

double, and gravity 300<br />

double, and strands 201,<br />

204<br />

Sokolov–Ternov effect 305,<br />

306<br />

space see also background, see<br />

also vacuum<br />

airless, breathing in 87<br />

background 157, 169<br />

border <str<strong>on</strong>g>of</str<strong>on</strong>g> 155<br />

c<strong>on</strong>stituents <str<strong>on</strong>g>of</str<strong>on</strong>g> 124<br />

curved 285<br />

definiti<strong>on</strong> 418<br />

discrete and c<strong>on</strong>tinuous<br />

160<br />

in dreams 432<br />

isotropy and strands 158,<br />

159, 189, 213, 215<br />

mathematical 73<br />

metric 73<br />

no points in 124<br />

n<strong>on</strong>e at Planck scales 90<br />

not a lattice 75<br />

not a manifold 73<br />

physical 156, 288<br />

physical, definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

159–160<br />

physical, differs from<br />

background space 288<br />

physical, from strands 168<br />

shivering 153, 156, 172, 351<br />

topological 73<br />

topology change, not<br />

needed 184<br />

space-time see also curvature<br />

as statistical average 76<br />

as thermodynamic limit 76<br />

circular definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

particles and 60<br />

c<strong>on</strong>tinuity 40, 70, 71, 87,<br />

127<br />

curvature 35<br />

curvature and quantum<br />

theory 58, 82<br />

discrete and c<strong>on</strong>tinuous<br />

160<br />

duality 114, 126<br />

elasticity 37<br />

entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> 48<br />

foam 160, 298, 311<br />

moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 49<br />

must be fluctuating 76<br />

no dimensi<strong>on</strong>ality at<br />

Planck scales 72<br />

n<strong>on</strong>-commutative 279<br />

not a lattice 75, 107<br />

not a manifold 73<br />

results from upper energy<br />

speed 28<br />

shivering 153, 156, 172, 351<br />

symmetries 227<br />

topology change, not<br />

needed 184<br />

spatial order 69<br />

special relativity<br />

double or deformed 304<br />

doubly special 281<br />

falsified by minimum<br />

length 72<br />

implied by maximum<br />

speed 17<br />

in <strong>on</strong>e statement 28–29<br />

massive tangles and 352<br />

strands and 281<br />

spectrum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> particles, explanati<strong>on</strong><br />

353<br />

speed<br />

lower limit 47, 52<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> energy 28<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> light c<br />

from strands 213–215<br />

physics and 8<br />

strands and 213<br />

tangles and 351<br />

special relativity implied<br />

by maximum 17, 28<br />

unlimited for virtual<br />

particles 41<br />

upper limit 28, 37<br />

spin<br />

and strand number 339<br />

at Planck scales 78<br />

belt trick and 136, 301<br />

entangled<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 208<br />

extensi<strong>on</strong> and 136<br />

foam 140, 301<br />

from strands 176<br />

from tangles 176<br />

general relativity and 59<br />

importance <str<strong>on</strong>g>of</str<strong>on</strong>g> 136<br />

many-particle<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 207<br />

minimal acti<strong>on</strong> and 41<br />

operator 200<br />

orientati<strong>on</strong> 175<br />

superpositi<strong>on</strong><br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 205<br />

three-dimensi<strong>on</strong>ality and<br />

210<br />

without topology change<br />

450<br />

spin–statistics theorem 176<br />

spinor 200, 218, 222<br />

visualizati<strong>on</strong> 218<br />

sp<strong>on</strong>sor<br />

this book 9<br />

this free pdf 9<br />

standard model<br />

and the complete theory<br />

24<br />

standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle<br />

physics<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


subject index 495<br />

S<br />

star<br />

millennium descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

physics 18, 148<br />

strands and 154<br />

star<br />

rotati<strong>on</strong> curve in galaxies<br />

305<br />

Stark effect, gravitati<strong>on</strong>al 89<br />

stars<br />

in the universe 103<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> 103<br />

state<br />

entangled 208<br />

in dreams 432<br />

separable 208<br />

Stern–Gerlach experiment<br />

201<br />

st<strong>on</strong>es 176<br />

strand<br />

as cloud 156<br />

averaging 189<br />

braiding and mass 352<br />

definiti<strong>on</strong> 155<br />

density 160, 172<br />

diameter 152<br />

diameter behaviour under<br />

boosts 156<br />

diameter, issues 155<br />

ends 173<br />

evoluti<strong>on</strong> equati<strong>on</strong> 189<br />

fluctuati<strong>on</strong>s, c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong><br />

188, 296<br />

hopping 352<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong>s<br />

188<br />

impenetrability 153, 302<br />

impenetrability <str<strong>on</strong>g>of</str<strong>on</strong>g> 223<br />

knotted 173<br />

linear combinati<strong>on</strong><br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 193<br />

puzzle 324<br />

scalar multiplicati<strong>on</strong><br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 192<br />

spacing 160<br />

substance <str<strong>on</strong>g>of</str<strong>on</strong>g> a 162<br />

translati<strong>on</strong>inother<br />

languages 151<br />

vs. superstring 347<br />

strand model<br />

anomalous magnetic<br />

moment and 241–243<br />

basis <str<strong>on</strong>g>of</str<strong>on</strong>g> 148<br />

beauty <str<strong>on</strong>g>of</str<strong>on</strong>g> 422<br />

betting <strong>on</strong> 414<br />

checking the 173<br />

c<strong>on</strong>firmati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 357<br />

extensi<strong>on</strong> and 148<br />

foundati<strong>on</strong>s 152<br />

fundamental principle 152<br />

generalizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 166, 422<br />

graphic summary 399<br />

history <str<strong>on</strong>g>of</str<strong>on</strong>g> 428<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fundamental<br />

event 149<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fundamental<br />

principle 149<br />

is natural 154<br />

list <str<strong>on</strong>g>of</str<strong>on</strong>g> predicti<strong>on</strong>s 412<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Planck mass 370<br />

other research and the 429<br />

simplicity <str<strong>on</strong>g>of</str<strong>on</strong>g> 168<br />

slow acceptance 429<br />

table <str<strong>on</strong>g>of</str<strong>on</strong>g> predicti<strong>on</strong>s 412<br />

vs. superstrings 347<br />

stress-energy tensor 43<br />

string nets 141<br />

string trick see also belt trick,<br />

178<br />

quantum theory and 220,<br />

223<br />

strings see superstrings<br />

str<strong>on</strong>g nuclear interacti<strong>on</strong><br />

258–276<br />

c<strong>on</strong>servati<strong>on</strong> properties<br />

273<br />

SU(2) 247, 382<br />

breaking 253<br />

SU(2) breaking 253<br />

SU(2) field<br />

classical waves 317<br />

SU(3)<br />

and slides 263–270<br />

multiplicati<strong>on</strong> table 262<br />

properties 260–263<br />

SU(3) field<br />

classical waves 318<br />

supergravity<br />

not correct 246, 258, 278<br />

supermembranes 141<br />

superparticles 278<br />

superpositi<strong>on</strong><br />

from strands 190<br />

gravitati<strong>on</strong>al field <str<strong>on</strong>g>of</str<strong>on</strong>g> 300<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> clocks 59<br />

principle 74<br />

superselecti<strong>on</strong> rules 192<br />

superstrings<br />

basic principles <str<strong>on</strong>g>of</str<strong>on</strong>g> 144<br />

black hole entropy and 291<br />

c<strong>on</strong>jecture 142<br />

dimensi<strong>on</strong>ality and 86<br />

joke 143<br />

Lagrangian 143<br />

not an explanati<strong>on</strong> 167<br />

overview 141–146<br />

status 144<br />

summary 144<br />

vs. strands 347<br />

supersymmetry<br />

not correct 75, 79, 135, 167,<br />

246, 258, 278, 353, 413<br />

required 22<br />

strings and 141<br />

unified theory and 146<br />

support<br />

this book 9<br />

this free pdf 9<br />

surface<br />

force and 32<br />

gravity 32, 34, 48, 292<br />

physical 32, 44<br />

surprises in nature 86, 427<br />

Susskind, Le<strong>on</strong>ard<br />

<strong>on</strong> Planck scale scattering<br />

119<br />

switch <str<strong>on</strong>g>of</str<strong>on</strong>g> crossing 152<br />

symmetry<br />

at the horiz<strong>on</strong> 105<br />

beauty and 425<br />

between large and small<br />

126<br />

breaking 253<br />

event 85<br />

no higher 279<br />

n<strong>on</strong>e at Planck scales 75,<br />

150<br />

space-time 227<br />

total 127<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


496 subject index<br />

S<br />

system<br />

system, physical<br />

table <str<strong>on</strong>g>of</str<strong>on</strong>g> corresp<strong>on</strong>dence<br />

with strands 157<br />

table <str<strong>on</strong>g>of</str<strong>on</strong>g> corresp<strong>on</strong>dence<br />

with tangles 301<br />

Szilard, Leo<br />

<strong>on</strong> minimum entropy 31<br />

T<br />

T-duality 126<br />

T-shirt 428<br />

first use 468<br />

tachy<strong>on</strong> 28<br />

tail<br />

braiding 253<br />

deformati<strong>on</strong>s 227<br />

essential for spin 1/2 179<br />

model for particle 136<br />

shifting 378<br />

Tait number 438<br />

tangle 158<br />

alternating 390<br />

as particle 161<br />

blurred 187, 196<br />

chirality 390<br />

coloured, illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

271<br />

core 175<br />

core deformati<strong>on</strong><br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 226<br />

core rotati<strong>on</strong> 225<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 226<br />

family 334<br />

family <str<strong>on</strong>g>of</str<strong>on</strong>g> lept<strong>on</strong>s 367<br />

four-stranded 344, 345<br />

framing <str<strong>on</strong>g>of</str<strong>on</strong>g> 437<br />

functi<strong>on</strong> 186, 187<br />

functi<strong>on</strong>s are wave<br />

functi<strong>on</strong>s 189–196<br />

ideal 360, 437<br />

lept<strong>on</strong> 325<br />

locally knotted 320<br />

moving<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 195, 214<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> four or more strands<br />

340<br />

<strong>on</strong>e-stranded 318<br />

phase 229<br />

prime 320<br />

quark 321<br />

rati<strong>on</strong>al 319, 321, 340<br />

rati<strong>on</strong>al, as coloured<br />

fermi<strong>on</strong> 272<br />

rati<strong>on</strong>al, definiti<strong>on</strong> 272<br />

rati<strong>on</strong>al, <str<strong>on</strong>g>of</str<strong>on</strong>g> high<br />

complexity 323<br />

table <str<strong>on</strong>g>of</str<strong>on</strong>g> properties 437<br />

tails 175, 177<br />

tight 360<br />

tight, illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 360<br />

topological invariant 232<br />

trivial 319<br />

two-stranded 325<br />

tangle classes<br />

<strong>on</strong>e strand, illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

314<br />

three strands, illustrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 325<br />

two strands, illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

319<br />

tangle model<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> particles 161<br />

tau<br />

tangle <str<strong>on</strong>g>of</str<strong>on</strong>g> 325<br />

technicolour 413<br />

temperature<br />

indeterminacy 31<br />

lower limit 50<br />

upper limit 42<br />

vacuum 283<br />

tethers 175<br />

tetraquark<br />

strand illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 343<br />

tetraquarks 342<br />

theorem<br />

Banach–Tarski see<br />

Banach–Tarski<br />

paradox/theorem<br />

Calugareanu 439<br />

Coleman–Mandula 275<br />

Fermat’s last 427<br />

Gödel’s see<br />

incompleteness theorem,<br />

Gödel’s<br />

Kochen–Specker 205<br />

no-hair 134, 289<br />

Reidemeister’s 276<br />

spin–statistics 176<br />

Weinberg–Witten 275<br />

theory<br />

complete 20<br />

complete, not <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

everything 422<br />

final 20, 446<br />

freedom <str<strong>on</strong>g>of</str<strong>on</strong>g> 425<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> everything 20, 131<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> everything does not<br />

exist 422<br />

physical, definiti<strong>on</strong> 21<br />

unified 20<br />

thermodynamics in <strong>on</strong>e<br />

statement 31<br />

thinking<br />

extreme 22<br />

mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> 18<br />

Thoms<strong>on</strong>–Kelvin, William<br />

<strong>on</strong> atoms as knotted<br />

vortices 347<br />

thought experiment<br />

c<strong>on</strong>stituents and 123<br />

<strong>on</strong> extensi<strong>on</strong> 139<br />

<strong>on</strong> force and power 33<br />

<strong>on</strong> shape 122<br />

<strong>on</strong> vacuum 81, 125<br />

time 169<br />

beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> 93<br />

coordinate 67<br />

defined with strands 160<br />

definiti<strong>on</strong> 60, 418<br />

does not exist 95<br />

in dreams 432<br />

indeterminacy 45, 65<br />

issue <str<strong>on</strong>g>of</str<strong>on</strong>g> 153<br />

lower limit, or Planck 37<br />

maximum 92<br />

measurement 59<br />

Plat<strong>on</strong>ic idea 95<br />

proper, end <str<strong>on</strong>g>of</str<strong>on</strong>g> 67<br />

time-like loops 300<br />

tombst<strong>on</strong>e 428<br />

topological models 347<br />

topological space 73<br />

topological writhe 232<br />

definiti<strong>on</strong> 390<br />

topology change<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> space-time, not needed<br />

184<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


subject index 497<br />

T<br />

topology<br />

topology <str<strong>on</strong>g>of</str<strong>on</strong>g> the universe 310<br />

toroidal black holes 300<br />

torsi<strong>on</strong><br />

in general relativity 301,<br />

305<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> curve 437<br />

total, <str<strong>on</strong>g>of</str<strong>on</strong>g> a curve 438<br />

translati<strong>on</strong> invariance 69<br />

trick<br />

belt 178<br />

dirty Higgs 330<br />

leather 370<br />

plate 178<br />

scissor 178<br />

tubes in space 125<br />

tuning, fine<br />

n<strong>on</strong>e 374<br />

Turing machines 107<br />

twist see Reidemeister move,<br />

317, 391, 438<br />

and gauge<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 236<br />

generalized 237<br />

twist transfer<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 229<br />

twisted loop 229<br />

U<br />

U(1) 229–238, 245, 382<br />

U(1) invariance 198<br />

U-duality 126<br />

uncertainty see indeterminacy<br />

uncertainty principle see<br />

indeterminacy relati<strong>on</strong><br />

uncertainty relati<strong>on</strong> see<br />

indeterminacy relati<strong>on</strong><br />

unificati<strong>on</strong> see also complete<br />

theory<br />

arguments against 21–22<br />

as lack <str<strong>on</strong>g>of</str<strong>on</strong>g> finitude 420<br />

as pastime 22<br />

as riddle 21, 22, 24<br />

beliefs and dogmas 22<br />

difficulty <str<strong>on</strong>g>of</str<strong>on</strong>g> 302<br />

disinformati<strong>on</strong> 446<br />

grand see grand<br />

unificati<strong>on</strong><br />

is possible 128<br />

key to 55<br />

millennium issues and 18<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s 278, 385<br />

quantum theory and<br />

relativity 57<br />

reas<strong>on</strong> for failure 257<br />

requiring extreme<br />

thinking 22<br />

simplicity <str<strong>on</strong>g>of</str<strong>on</strong>g> 22, 39<br />

steps <str<strong>on</strong>g>of</str<strong>on</strong>g> the search for 24<br />

three key issues 396<br />

unified models<br />

assumpti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 168<br />

complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> 168<br />

requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> 148, 149<br />

uniqueness 423<br />

unified theory<br />

arguments against 21<br />

candidates 141, 168, 301,<br />

347<br />

dangers 22<br />

disinformati<strong>on</strong> 446<br />

extensi<strong>on</strong> and 145<br />

higher dimensi<strong>on</strong>s and<br />

146, 348<br />

how to find it 146<br />

supersymmetry and 146<br />

uniqueness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the unified model 423<br />

unitarity<br />

violati<strong>on</strong> in W and Z<br />

bos<strong>on</strong> scattering 329<br />

units<br />

Planck’s natural see Planck<br />

units, natural units<br />

universal gravitati<strong>on</strong> 36, 282<br />

universe<br />

age error <str<strong>on</strong>g>of</str<strong>on</strong>g> 94, 95<br />

age <str<strong>on</strong>g>of</str<strong>on</strong>g> 92<br />

as inverted black hole 307<br />

definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 112, 115<br />

difference from nothing 91<br />

essence <str<strong>on</strong>g>of</str<strong>on</strong>g> 111<br />

fate <str<strong>on</strong>g>of</str<strong>on</strong>g> 99<br />

finiteness <str<strong>on</strong>g>of</str<strong>on</strong>g> 306<br />

has no meaning 112<br />

horiz<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 307<br />

informati<strong>on</strong> and 109<br />

initial c<strong>on</strong>diti<strong>on</strong>s 102, 308<br />

luminosity limit 43<br />

mass <str<strong>on</strong>g>of</str<strong>on</strong>g> 103–105<br />

matter density 309<br />

no boundary 106<br />

no informati<strong>on</strong> in 109<br />

not a c<strong>on</strong>tainer 131<br />

not a physical system 108<br />

not a set 54–55, 106–108<br />

oscillating 92<br />

power limit 48<br />

radius 101<br />

sense <str<strong>on</strong>g>of</str<strong>on</strong>g> 111<br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> 100<br />

strand illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 307<br />

strand model 306<br />

strand model <str<strong>on</strong>g>of</str<strong>on</strong>g> 162<br />

system dependent limits<br />

and 46–53<br />

table <str<strong>on</strong>g>of</str<strong>on</strong>g> properties 112<br />

topology <str<strong>on</strong>g>of</str<strong>on</strong>g> 310<br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 101<br />

unmodifiability <str<strong>on</strong>g>of</str<strong>on</strong>g> final<br />

theory 166<br />

Unruh effect see<br />

Fulling–Davies–Unruh<br />

effect<br />

Unruh radiati<strong>on</strong> see<br />

Fulling–Davies–Unruh<br />

effect<br />

up quark<br />

mass sequence 365<br />

V<br />

vacuum see also space<br />

as a bath 158<br />

breathing in 87<br />

comm<strong>on</strong> c<strong>on</strong>stituents with<br />

particles 56, 62, 64, 82, 87,<br />

89, 134<br />

defects in 286, 299<br />

difference from matter 65<br />

elasticity <str<strong>on</strong>g>of</str<strong>on</strong>g> 37<br />

energy density 19, 58, 165,<br />

213<br />

entropy bound 48–49<br />

entropy <str<strong>on</strong>g>of</str<strong>on</strong>g> 48<br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> schematic<br />

159<br />

indistinguishable from<br />

matter 53–54, 82–83<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


498 subject index<br />

V<br />

variables<br />

Lorentz invariance 213<br />

made <str<strong>on</strong>g>of</str<strong>on</strong>g> everything 424<br />

mass error 80–82<br />

mixes with matter 81<br />

n<strong>on</strong>e at Planck scales 90<br />

Poincaré symmetry 215<br />

relativity vs. quantum<br />

theory 58–64<br />

strand model 159, 174<br />

tangle functi<strong>on</strong> 189<br />

temperature 283<br />

uniqueness <str<strong>on</strong>g>of</str<strong>on</strong>g> 159, 174, 213,<br />

279, 286, 356<br />

variables, hidden 205<br />

vector<br />

binormal 437<br />

normal 437<br />

Verlinde, Erik<br />

<strong>on</strong> universal gravitati<strong>on</strong><br />

283<br />

violence and infinity 419<br />

virtual particles 41, 155, 159,<br />

174<br />

at Planck scales 78<br />

viscous fluids<br />

tangles and 197, 362<br />

volume 73<br />

lower limit, or Planck 38<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the universe 101<br />

vortices in the aether 347<br />

W<br />

W bos<strong>on</strong><br />

g-factor <str<strong>on</strong>g>of</str<strong>on</strong>g> 363<br />

mass 363<br />

mass <str<strong>on</strong>g>of</str<strong>on</strong>g> 360<br />

strand model 251<br />

two mass values 329<br />

W polarizati<strong>on</strong><br />

illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 329<br />

walls<br />

limitati<strong>on</strong>s to 119<br />

water flow<br />

upper limit 41<br />

wave functi<strong>on</strong> 175, 187<br />

and crossing size 190<br />

as blurred tangles 220<br />

as rotating cloud 189<br />

collapse 204<br />

collapse from tangles 203<br />

definiti<strong>on</strong> 189<br />

is a tangle functi<strong>on</strong><br />

189–196<br />

visualizing the 218<br />

wave, gravitati<strong>on</strong>al<br />

emitted from atoms 304<br />

waves<br />

glu<strong>on</strong>ic 318<br />

weak bos<strong>on</strong>s 251<br />

weak charge 249–251<br />

weak current<br />

absence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

flavour-changing 346<br />

weak gravity c<strong>on</strong>jecture 303<br />

weak hypercharge 245, 382<br />

weak interacti<strong>on</strong> 246–258<br />

weak mixing angle 362<br />

Weinberg, Steven<br />

<strong>on</strong> unificati<strong>on</strong> 22<br />

Weinberg–Witten theorem<br />

275<br />

Wheeler, John A.<br />

<strong>on</strong> ‘it from bit’ 163<br />

<strong>on</strong> mass without mass 161<br />

<strong>on</strong> nature’s principles 422<br />

<strong>on</strong> space-time foam 160,<br />

298<br />

<strong>on</strong> topology change 59<br />

<strong>on</strong> unificati<strong>on</strong> 23<br />

really big questi<strong>on</strong>s 428<br />

Wheeler–DeWitt equati<strong>on</strong> 74<br />

wheels<br />

n<strong>on</strong>e in nature 223<br />

wholeness, Bohm’s unbroken<br />

107, 456<br />

Wightman axioms 275<br />

Wiles, Andrew<br />

<strong>on</strong> research 427<br />

Witten, Edward<br />

<strong>on</strong> duality 139<br />

<strong>on</strong> infinities 142<br />

<strong>on</strong> unificati<strong>on</strong> 23<br />

words and physics 426<br />

world<br />

crystal, nematic 301<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dreams 431<br />

origin <str<strong>on</strong>g>of</str<strong>on</strong>g> 431<br />

wormholes 172, 298, 300, 310<br />

do not exist 300, 305<br />

writhe 391<br />

2d 438<br />

3d 439<br />

topological 232, 438<br />

topological, definiti<strong>on</strong> 390<br />

writhing number 439<br />

Y<br />

Yang–Mills theory see gauge<br />

theory, n<strong>on</strong>-Abelian<br />

Yukawa coupling 370<br />

Yukawa mechanism 369<br />

Z<br />

Z bos<strong>on</strong> 253<br />

mass 363<br />

mass <str<strong>on</strong>g>of</str<strong>on</strong>g> 360<br />

strand model 251<br />

two mass values 329<br />

Zeno effect, quantum 30, 123<br />

Zeno <str<strong>on</strong>g>of</str<strong>on</strong>g> Elea<br />

<strong>on</strong> moti<strong>on</strong> as an illusi<strong>on</strong><br />

434<br />

<strong>on</strong> size 127<br />

Zeno’s argument against<br />

moti<strong>on</strong> 71, 121, 123<br />

resoluti<strong>on</strong> 222<br />

zero-point energy 58, 73<br />

Zitterbewegung 219<br />

Moti<strong>on</strong> Mountain – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>ume <str<strong>on</strong>g>VI</str<strong>on</strong>g>: <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> copyright © Christoph Schiller June 2008–October 2020 free pdf file available at www.moti<strong>on</strong>mountain.net/research.html


MOTION MOUNTAIN<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Adventure</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Physics</str<strong>on</strong>g> – <str<strong>on</strong>g>Vol</str<strong>on</strong>g>. <str<strong>on</strong>g>VI</str<strong>on</strong>g><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Strand</str<strong>on</strong>g> <str<strong>on</strong>g>Model</str<strong>on</strong>g> –<br />

A <str<strong>on</strong>g>Speculati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> Unificati<strong>on</strong><br />

What is the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> colours?<br />

Which problems in physics are unsolved since the year 2000<br />

and what might be their soluti<strong>on</strong>?<br />

Why do moti<strong>on</strong> and change exist?<br />

What is the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> the principle <str<strong>on</strong>g>of</str<strong>on</strong>g> least acti<strong>on</strong>?<br />

What is the origin <str<strong>on</strong>g>of</str<strong>on</strong>g> gauge symmetries?<br />

What is the most fantastic voyage possible?<br />

Answering these and other questi<strong>on</strong>s, this book<br />

gives an entertaining and mind-twisting introducti<strong>on</strong><br />

to the search for the final theory <str<strong>on</strong>g>of</str<strong>on</strong>g> physics. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

search leads to the strand model: Based<strong>on</strong>a<br />

simple principle, strands reproduce quantum theory,<br />

the standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle physics and general<br />

relativity. <str<strong>on</strong>g>Strand</str<strong>on</strong>g>s agree with all experimental data<br />

and allow estimating the fine structure c<strong>on</strong>stant,<br />

particle masses and all other c<strong>on</strong>stants <str<strong>on</strong>g>of</str<strong>on</strong>g> nature.<br />

Christoph Schiller, PhD Université Libre de Bruxelles,<br />

is a physicist and physics popularizer. This entertaining<br />

book is for students, teachers and anybody interested<br />

in modern research about fundamental physics.<br />

Pdf file available free <str<strong>on</strong>g>of</str<strong>on</strong>g> charge at<br />

www.moti<strong>on</strong>mountain.net/research.html

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!