27.07.2021 Views

Kompendium 2020 Forschung & Klinik

Das Kompendium 2020 der Universitätsklinik für Orthopädie und Unfallchirurgie von MedUni Wien und AKH Wien (o. Univ.-Prof. R. Windhager) stellt einen umfassenden Überblick über die medizinsichen Leistungen und auch die umfangreichen Forschungsfelder dar. Die Veröffentlichungen zeigen die klinische Relevanz und innovative Ansätze der einzelnen Forschungsrichtungen. Herausgeber: Universitätsklinik für Orthopädie und Unfallchirurgie MedUni Wien und AKH Wien Prof. Dr. R. Windhager ISBN 978-3-200-07715-7

Das Kompendium 2020 der Universitätsklinik für Orthopädie und Unfallchirurgie von MedUni Wien und AKH Wien (o. Univ.-Prof. R. Windhager) stellt einen umfassenden Überblick über die medizinsichen Leistungen und auch die umfangreichen Forschungsfelder dar. Die Veröffentlichungen zeigen die klinische Relevanz und innovative Ansätze der einzelnen Forschungsrichtungen.

Herausgeber: Universitätsklinik für Orthopädie und Unfallchirurgie
MedUni Wien und AKH Wien
Prof. Dr. R. Windhager

ISBN 978-3-200-07715-7

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

TOP-Studien<br />

44<br />

3D Synovium-on-a-chip with scattering biosensing.<br />

„Researchers were able to develop a<br />

non-invasive lab-on-a-chip system for<br />

the modelling of architectural changes<br />

inside RA patient-derived synovial<br />

organoids during inflammatory<br />

remodeling. This constitutes as a<br />

major technological advance as the<br />

study presents the first translation<br />

of human synovium organoids into<br />

a miniaturized biochip format.“<br />

Mario Rothbauer<br />

in arthritic disease modelling. Currently his team is expanding this technological<br />

platform for other musculoskeletal structures, including osteochondral,<br />

adipose, and fibrous tissues. Essentially, patient-derived tissue microsystems<br />

comprise microfluidic microchannels, isolated primary patient cells (i.e.,<br />

fibroblast-like synoviocytes, chondrocytes, fibroblasts, or adipocytes), and<br />

three-dimensional hydrogels as scaffolding material. In contrast to bioprinting,<br />

where the basic shape is defined a priori by the printing technique, the microsystems<br />

of the KCLOB form complex tissue-like structures resembling patient<br />

joint tissues solely by the patient cells’ potential to remodel a bulk scaffold and<br />

organize themselves into functional tissue-like structures.<br />

Development of a Non-invasive Lab-on-a-chip System<br />

Based on almost a decade of collaborative synovium-on-a-chip development,<br />

basic researchers at the „Karl Chiari Lab for Orthopaedic Biology“<br />

and the „Division of Rheumatology“ joined forces with Vienna University of<br />

Technology, the University of Natural Resources and Life Sciences (BOKU),<br />

and the TranslaTUM of Technical University of Munich, to develop a non-invasive<br />

lab-on-a-chip system for the modelling of architectural changes inside<br />

RA patient-derived synovial organoids during inflammatory remodeling. This<br />

constitutes as a major technological advance as the study presents the first<br />

translation of human synovium organoids into a miniaturized biochip format.<br />

It demonstrated the formation of synovial organoids by in situ polymerization of<br />

hydrogel with a high degree of position accuracy as well as a more reproducible<br />

environment for organoid reorganization. Time-resolved light scattering<br />

signals of 3D synovial organoids subjected to a TNF-α-mediated inflammatory<br />

stimulus showed a significant scatter signal increase of 16% and<br />

21% already at day 3 and 4, respectively. These alterations in light scattering<br />

are a direct result of the structural and architectural changes within the<br />

inflamed synovial organoid, featuring Cadherin-11-mediated thickening of<br />

the synovial lining as well as the cellular network structures of the synovial<br />

sublining with a strong Interleukin-6 and Interleukin-8 response.<br />

Further Findings<br />

The basic approach of combining multiple self-organizing biochip organoids<br />

for crosstalk studies is currently under investigation for molecular RA and OA<br />

research. While microfluidic models recapitulating molecular aspects of bone

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!