23.12.2012 Views

Current Opinion in Investigational Drugs

Current Opinion in Investigational Drugs

Current Opinion in Investigational Drugs

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong><br />

<strong>Investigational</strong> <strong>Drugs</strong><br />

Mike Williams EDITOR<br />

Vol 7 No 1 January 2006<br />

Stanley Crooke, Annette Doherty, William Hagmann, John Kemp, Jacob J Plattner CO-EDITORS<br />

In this issue<br />

Central and peripheral nervous system<br />

• The genome: Five years on<br />

• Steroid therapy for exudative age-related<br />

macular degeneration<br />

• Nitrone sp<strong>in</strong> on cerebral ischemia<br />

• <strong>Drugs</strong> <strong>in</strong> development for Park<strong>in</strong>son's disease<br />

• The mechanism of action of gabapent<strong>in</strong> <strong>in</strong><br />

neuropathic pa<strong>in</strong><br />

• 5-HT 1A receptor activation <strong>in</strong> pa<strong>in</strong> relief<br />

• Glyc<strong>in</strong>e receptors: A new therapeutic target <strong>in</strong><br />

pa<strong>in</strong> pathways<br />

• Does VEGF represent a potential treatment for<br />

amyotrophic lateral sclerosis?<br />

• Ispronicl<strong>in</strong>e<br />

• AEOL-10150<br />

• Vivitrex


<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> Vol 7 No 1 January 2006<br />

Editor <strong>in</strong> Chief Michael Williams USA<br />

Co-Editors Stanley Crooke USA Annette Doherty UK William Hagmann USA John<br />

Kemp GERMANY Jacob J Plattner USA<br />

Patent Editor Hermann AM Mucke AUSTRIA<br />

Thomson Scientific<br />

Middlesex House<br />

34-42 Cleveland Street<br />

London<br />

W1T 4JE<br />

UK<br />

Tel +44 (0)20 7070 6565<br />

Fax +44 (0)20 7070 6570<br />

Email: TS.Custserv.EMEA@thomson.<br />

com<br />

Manag<strong>in</strong>g Editor<br />

Barbara Chan<br />

Email: barbara.chan@thomson.com<br />

In-house Editors<br />

Tracey Coll<strong>in</strong>s (Anti-<strong>in</strong>fectives, Endocr<strong>in</strong>e<br />

and Metabolics, and Oncological)<br />

Email: tracey.coll<strong>in</strong>s@thomson.com<br />

Paula F<strong>in</strong>n (Anti-<strong>in</strong>flammatory,<br />

Cardiovascular and Renal, and Nervous<br />

System)<br />

Email: paula.f<strong>in</strong>n@thomson.com<br />

Editorial Board<br />

Janet Allen (UK)<br />

Rafael Apitz-Castro (Venezuela)<br />

John F Barrett (USA)<br />

Maria Belvisi (UK)<br />

Frank Bennett (USA)<br />

Andreas Billich (Austria)<br />

Norbert Bischofberger (USA)<br />

Roy Black (USA)<br />

Mel Blumenthal (USA)<br />

Frank Cerasoli (USA)<br />

Bruce Chabner (USA)<br />

Daniel Chu (USA)<br />

Kelv<strong>in</strong> Cooper (USA)<br />

Joseph Coyle (USA)<br />

Neal Cutler (USA)<br />

Mohsen Daneshtalab (Canada)<br />

Erik De Clercq (Belgium)<br />

Chet De Groat (USA)<br />

Errol DeSouza (Germany)<br />

Andy Dray (Canada)<br />

Mariano Elices (USA)<br />

Jilly Evans (USA)<br />

Tony Evans (Australia)<br />

Giora Feuerste<strong>in</strong> (USA)<br />

Alan C Foster (USA)<br />

W<strong>in</strong> Gutteridge (Switzerland)<br />

Jean Marc Herbert (France)<br />

Taff Jones (Canada)<br />

Loran Killar (USA)<br />

Gav<strong>in</strong> Kilpatrick (UK)<br />

George Koob (USA)<br />

Daniel Lane (USA)<br />

Alan Lewis (USA)<br />

John McCall (USA)<br />

Rodger McMillan (UK)<br />

He<strong>in</strong>z Moser (USA)<br />

Bo Öberg (Sweden)<br />

Jose Palacios (Spa<strong>in</strong>)<br />

Alan Palmer (UK)<br />

Michael Parnham (Croatia)<br />

Herbert P<strong>in</strong>edo (Netherlands)<br />

Yves Pommier (USA)<br />

John Reed (UK)<br />

Malcolm Richardson (F<strong>in</strong>land)<br />

Steve Rosenberg (USA)<br />

Alessandro Sette (USA)<br />

Jim Sikorski (USA)<br />

John Souness (USA)<br />

Paul Smith (New Zealand)<br />

Ken Tanaka (USA)<br />

Eugene Thorsett (USA)<br />

Section Editors<br />

January 2006/July 2006<br />

Central and Peripheral Nervous System<br />

Mike Briley (France), Mike Crowell (USA), Robert<br />

Davis (USA), Steve England (UK), Peter<br />

Goadsby (UK), Clifford Woolf (USA), Mike Wyllie<br />

(UK), Stev<strong>in</strong> Zorn (USA)<br />

February 2006/August 2006<br />

Anti-<strong>in</strong>fectives<br />

Rob<strong>in</strong> Cooper (USA), Simon Croft (Switzerland),<br />

Christian Hubschwerlen (Switzerland), Jeffrey H<br />

Toney (USA), Alan Johnson (UK), Barney<br />

Koszalka (USA), Nicholas Meanwell (USA), R<strong>in</strong>o<br />

Rappuoli (Italy), John Rex (UK), David A Stevens<br />

(USA)<br />

March 2006/September 2006<br />

Cardiovascular and Renal<br />

Frank Barone (USA), Tom Colatsky (USA), De-Zai<br />

Dai (Ch<strong>in</strong>a), Delv<strong>in</strong> Knight (USA), Brian Krause<br />

(USA), Keith E Suckl<strong>in</strong>g (UK), J Ruth Wu-Wong<br />

(USA)<br />

April 2006/October 2006<br />

Endocr<strong>in</strong>e and Metabolics<br />

Bruno Allolio (Germany), Franklyn Bolander (USA),<br />

Joy H<strong>in</strong>son (UK), Nigel Levens (France), Terry<br />

Opgenorth (USA)<br />

May 2006/November 2006<br />

Anti-<strong>in</strong>flammatory, Immunologicals and<br />

Biologicals<br />

Cynthia Darl<strong>in</strong>gton (New Zealand), Francis Dumont<br />

(USA), David Howat (France), Cees Korstanje<br />

(Netherlands), Tony Mann<strong>in</strong>g (USA), Randall Morris<br />

(USA), Neville Punchard (UK)<br />

June 2006/December 2006<br />

Oncological<br />

Suresh Ambudkar (USA), Andrew Dorr (USA),<br />

David Gewirtz (USA), Michael Lotze (USA), Ala<strong>in</strong><br />

Rolland (USA), Edward Sausville (USA), Ian<br />

Stratford (UK), Mario Sznol (USA), Paul<br />

Workman (UK)


<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong><br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong><br />

ISSN 1472-4472<br />

is published monthly by:<br />

Thomson Scientific<br />

Middlesex House<br />

34-42 Cleveland Street<br />

London<br />

W1T 4JE<br />

UK<br />

Tel: +44(0)20 7070 6565<br />

Fax: +44(0)20 7070 6570<br />

Email: TS.Custserv.EMEA@thomson.com<br />

Editorial Director Bernadette Swords<br />

Manag<strong>in</strong>g Editor (Journal) Barbara Chan<br />

Manag<strong>in</strong>g Editor (Evaluations) Sue Gotham<br />

In-house Editors (Journal) Tracey Coll<strong>in</strong>s, Paula<br />

F<strong>in</strong>n<br />

In-house Editors (Evaluations) Peter Aylett, Ruth<br />

Os<strong>in</strong>ame, Tom Phillips<br />

Assistant Editors Timur Mehmet, Amanda Pr<strong>in</strong>ce,<br />

Peter Stanislas<br />

Production Editor Debbie Wallbank<br />

Cover design © 2006 Andrew SR Featherstone -<br />

Research Graphix<br />

Copyright © 2005 The Thomson Corporation<br />

No part of this publication may be reproduced, stored<br />

<strong>in</strong> a retrieval system, or transmitted <strong>in</strong> any electronic<br />

or other form without prior permission of the copyright<br />

owner.<br />

Article repr<strong>in</strong>ts are available through Thomson<br />

Scientific’s repr<strong>in</strong>t service. For <strong>in</strong>formation contact:<br />

TS.Custserv.EMEA@thomson.com<br />

Advertis<strong>in</strong>g <strong>in</strong>formation<br />

Advertis<strong>in</strong>g is accepted <strong>in</strong> <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong><br />

<strong>Investigational</strong> <strong>Drugs</strong>. For further <strong>in</strong>formation on<br />

this and other products produced by Thomson<br />

Scientific, contact: Ken Forrest, Thomson Scientific,<br />

Holbrook House, 14 Great Queen Street, London,<br />

WC2B 5DF, UK<br />

Ken.Forrest@thomson.com, +44 (0)20 7424 2168 or<br />

visit our website at<br />

www.thomsoncurrentdrugs.com<br />

While every effort is made by the publisher<br />

and editorial board to see that no <strong>in</strong>accurate or<br />

mislead<strong>in</strong>g data, op<strong>in</strong>ion or statement appear<br />

<strong>in</strong> this journal, they wish to make it clear that<br />

the data and op<strong>in</strong>ions appear<strong>in</strong>g <strong>in</strong> the articles<br />

and advertisements here<strong>in</strong> are the<br />

responsibility of the contributor or advertiser<br />

concerned. Accord<strong>in</strong>gly, the publishers, the<br />

editorial board and section editors and their<br />

respective employees, officers and agents<br />

accept no liability whatsoever for the<br />

consequences of any such <strong>in</strong>accurate or<br />

mislead<strong>in</strong>g data, op<strong>in</strong>ion or statement.<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> is<br />

<strong>in</strong>dexed by Index Medicus, MEDLINE,<br />

EMBASE/Excerpta Medica, Chemical<br />

Abstracts and Derwent Drug File.<br />

Pr<strong>in</strong>ted <strong>in</strong> the UK<br />

Subscription <strong>in</strong>formation Annual subscription (twelve issues)<br />

Subscription rates <strong>in</strong>clude airspeed delivery<br />

North America Japan Rest of World<br />

Corporate $ 3641 ¥ 496,780 £ 2297<br />

Additional copy $ 1849 ¥ 248,390 £ 1146<br />

Academic rate $ 1849 ¥ 248,390 £ 1146<br />

Orders<br />

All orders (except for Japan) should<br />

be placed with<br />

Thomson Scientific<br />

Customer Support and Order<br />

Process<strong>in</strong>g Department<br />

1st Floor, Holbrook House<br />

14 Great Queen Street<br />

London<br />

WC2B 5DF<br />

UK<br />

Tel +44 (0) 20 7344 2800<br />

Fax +44 (0)20 7344 2972<br />

Orders for Japan<br />

Technomics Inc<br />

Nihonbashi TM Bldg<br />

1-8-11 Nihonbashi<br />

Horidome-cho<br />

Chuo-ku<br />

Tokyo 103<br />

Japan<br />

Tel +81 3 3666 2952<br />

Fax +81 3 3666 2730<br />

Subscription queries<br />

All enquiries should be addressed to<br />

Thomson Scientific<br />

Customer Support and Order Process<strong>in</strong>g Department<br />

1st Floor, Holbrook House<br />

14 Great Queen Street<br />

London<br />

WC2B 5DF<br />

UK<br />

Tel +44 (0)20 7344 2800<br />

Fax +44 (0)20 7344 2972<br />

In case of particular difficulty please contact<br />

TS.Custserv.EMEA@thomson.com


Aims and organization<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> is a monthly publication cover<strong>in</strong>g all therapeutic areas, <strong>in</strong> recognition of the<br />

<strong>in</strong>creas<strong>in</strong>gly multi-discipl<strong>in</strong>ary nature of modern drug discovery and development. With <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong><br />

<strong>Drugs</strong>, we aim to help the reader by provid<strong>in</strong>g <strong>in</strong> a systematic manner:<br />

• critical reviews of selected areas of <strong>in</strong>vestigational drug research<br />

• expert evaluation of selected drugs currently <strong>in</strong> cl<strong>in</strong>ical trials<br />

• selection of the most <strong>in</strong>terest<strong>in</strong>g papers and patents, annotated by experts.<br />

Subject division<br />

Six therapeutic categories are covered with each be<strong>in</strong>g featured <strong>in</strong> separate journal issues, and each therapeutic area be<strong>in</strong>g<br />

covered twice-yearly. The broad therapeutic categories and the specialist topics with<strong>in</strong> each are as follows:<br />

• Anti-<strong>in</strong>fectives Antifungals and antiparasitics; antibacterials (β-lactams, glycopeptides and other agents); antibacterials<br />

(qu<strong>in</strong>olones, macrolides and oxazolid<strong>in</strong>ones); vacc<strong>in</strong>es; antivirals (HIV); antivirals (non-HIV)<br />

• Anti-<strong>in</strong>flammatory, Immunologicals and Biologicals Musculoskeletal; respiratory; dermatology; nervous system;<br />

transplantation<br />

• Cardiovascular and Renal Hypertension and renal failure; stroke and ang<strong>in</strong>a; arrhythmia and heart failure;<br />

antithrombotics; hemostasis and hematological diseases; atherosclerosis, hypercholesterolemia and heart disease<br />

• Endocr<strong>in</strong>e and Metabolics Diabetes, reproductive endocr<strong>in</strong>ology, hormone disorders, bone metabolism and obesity<br />

• Central and Peripheral Nervous System Pa<strong>in</strong>; neuro-urology and neurogastroenterology; neurodegenerative and<br />

cognitive disorders; affective/behavioral/personality disorders and substance abuse; neurology and neuroprotection;<br />

schizophrenia and psychosis<br />

• Oncological Cell signal<strong>in</strong>g modulators; cytotoxic drugs; immunotherapeutic drugs and monoclonal antibodies; prote<strong>in</strong><br />

therapeutics, <strong>in</strong>clud<strong>in</strong>g growth factors; gene therapy; antisense <strong>in</strong>hibitors<br />

Each issue also conta<strong>in</strong>s a general alerts section which covers all therapeutic areas.<br />

Selection of topics to be reviewed Section Editors, who are major authorities <strong>in</strong> the field, are appo<strong>in</strong>ted by the Editors of<br />

the journal. They divide their section <strong>in</strong>to a number of topics, ensur<strong>in</strong>g that the field is comprehensively covered and that all<br />

issues of current importance are emphasized. Section Editors commission reviews from authorities on each topic that they<br />

have selected. Section Editors also identify compounds of significant promise and commission expert evaluations of these<br />

drugs. Submitted articles are peer reviewed before publication.<br />

Contents<br />

Patent alerts Brief commentaries on the scientific and/or commercial significance of new patents selected and written by<br />

experts with<strong>in</strong> their respective fields. These are presented beside the patent abstract from Patent fast-alert, published by<br />

Thomson <strong>Current</strong> <strong>Drugs</strong>.<br />

Paper alerts Expert commentary on a selection of recently published papers is provided.<br />

Therapeutic overviews Short m<strong>in</strong>i-reviews <strong>in</strong> which an area of <strong>in</strong>terest to the pharmaceutical <strong>in</strong>dustry is critically reviewed <strong>in</strong><br />

the context of recent developments. These pieces are <strong>in</strong>tended to be personal, thought-provok<strong>in</strong>g and controversial, where<br />

appropriate.<br />

Reviews Authors write concise reviews <strong>in</strong> which they present recent developments <strong>in</strong> their subject, emphasiz<strong>in</strong>g the aspects<br />

that, <strong>in</strong> their op<strong>in</strong>ion, are most important and provide short annotations to the papers and patents that they consider to be the<br />

most <strong>in</strong>terest<strong>in</strong>g from all those recently published <strong>in</strong> their topic. The reviews focus predom<strong>in</strong>antly on <strong>in</strong>vestigational drugs, or<br />

the therapeutic/commercial applications of new discoveries.<br />

Drug evaluations Expert commentary on the scientific and commercial potential of selected drugs <strong>in</strong> cl<strong>in</strong>ical trials are<br />

provided <strong>in</strong> each issue, <strong>in</strong> the form of drug evaluations. An evaluation is a review of the available literature (scientific and<br />

commercial) and acts as an expert guide to the bibliography, highlight<strong>in</strong>g references of particular <strong>in</strong>terest. <strong>Op<strong>in</strong>ion</strong> on the<br />

drug's potential, with a personal viewpo<strong>in</strong>t on its therapeutic and economic viability, are <strong>in</strong>cluded. The bibliographies conta<strong>in</strong><br />

only those papers referenced <strong>in</strong> the report, but readers may purchase the full bibliography, as it appears <strong>in</strong> <strong>Current</strong> <strong>Drugs</strong>'<br />

<strong>Investigational</strong> <strong>Drugs</strong> database (IDdb), if they wish.<br />

Literature classifications Key references relat<strong>in</strong>g to the drug are classified accord<strong>in</strong>g to a set of standard head<strong>in</strong>gs to<br />

provide a quick guide to the bibliography. These head<strong>in</strong>gs are as follows:<br />

Chemistry: References which discuss synthesis and structure-activity relationships.<br />

Metabolism: References which discuss metabolism, pharmacok<strong>in</strong>etics and toxicity.<br />

Biology: References which disclose aspects of the drug's pharmacology <strong>in</strong> animal models.<br />

Cl<strong>in</strong>ical: Reports of cl<strong>in</strong>ical phase studies <strong>in</strong> volunteers provid<strong>in</strong>g, where available, data on the follow<strong>in</strong>g: whether the<br />

experiment is placebo-controlled or double- or s<strong>in</strong>gle-bl<strong>in</strong>d, number of patients, dosage.<br />

Literature annotations Throughout the journal, a bullet<strong>in</strong>g system is used to denote <strong>in</strong>formation deemed by the author or<br />

editor to be either: • of special <strong>in</strong>terest; or •• of outstand<strong>in</strong>g <strong>in</strong>terest.<br />

Bi-annual <strong>in</strong>dexes Every six months, follow<strong>in</strong>g completion of coverage of each therapeutic area, cumulative <strong>in</strong>dexes of<br />

contents are provided.


<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> Vol 7 No 1 January 2006<br />

Paper alert<br />

1 Mohsen Daneshtalab, Mariano J Elices & Robert E Hurst<br />

Patent selection<br />

4 Hermann AM Mucke<br />

Patent alert<br />

7 Hermann AM Mucke, Peter Norman & Clifford Whelan<br />

Central and Peripheral Nervous System<br />

Mike Briley, Mike Crowell, Robert Davis, Steve England,<br />

Peter Goadsby, Clifford Woolf, Mike Wyllie & Stev<strong>in</strong> Zorn<br />

14 Michael Williams<br />

Editorial overview: The genome: Five years on<br />

18 Maneli Mozaffarieh & Andreas Wedrich<br />

Editorial overview: Steroid therapy for exudative age-related<br />

macular degeneration: Bridg<strong>in</strong>g the gap until a cure is found<br />

20 Sheila A Doggrell<br />

Nitrone sp<strong>in</strong> on cerebral ischemia<br />

25 Tom H Johnston & Jonathan M Brotchie<br />

<strong>Drugs</strong> <strong>in</strong> development for Park<strong>in</strong>son's disease: An update<br />

33 J Kenneth Baillie & Ian Power<br />

The mechanism of action of gabapent<strong>in</strong> <strong>in</strong> neuropathic pa<strong>in</strong><br />

40 Francis C Colpaert<br />

5-HT1A receptor activation: New molecular and neuroadaptive<br />

mechanisms of pa<strong>in</strong> relief<br />

48 Joseph W Lynch & Robert J Callister<br />

Glyc<strong>in</strong>e receptors: A new therapeutic target <strong>in</strong> pa<strong>in</strong> pathways<br />

54 Joanna Iłżecka<br />

Does VEGF represent a potential treatment for amyotrophic<br />

lateral sclerosis?<br />

60 Hugo Geerts<br />

Ispronicl<strong>in</strong>e (Targacept)<br />

70 Richard W Orrell<br />

AEOL-10150 (Aeolus)<br />

81 Christ<strong>in</strong>e E Head<strong>in</strong>g<br />

Vivitrex (Alkermes/Cephalon)<br />

89 Erratum


The next issue of this journal (Vol 7 No 2 February 2006)<br />

Will conta<strong>in</strong>:<br />

Anti-<strong>in</strong>fectives<br />

Rob<strong>in</strong> Cooper, Simon Croft, Christian Hubschwerlen, Jeffrey H<br />

Toney, Alan Johnson, Barney Koszalka, Nicholas Meanwell, R<strong>in</strong>o<br />

Rappuoli, John Rex & David A Stevens<br />

Barney Koszalka & Nicholas Meanwell<br />

Editorial overview: Viral entry mechanisms<br />

Mark Erion<br />

HepDirect prodrugs for target<strong>in</strong>g nucleotide-based antiviral drugs to<br />

the liver<br />

Asim Kumar Debnath<br />

Prospects and strategies for the discovery and development of<br />

small-molecule <strong>in</strong>hibitors of six-helix bundle formation <strong>in</strong> class 1 viral<br />

fusion prote<strong>in</strong>s<br />

Robert Smolic, Mart<strong>in</strong>a Volarevic, Cather<strong>in</strong>e H Wu & George Y<br />

Wu<br />

Potential applications of siRNA <strong>in</strong> hepatitis C virus therapy<br />

Larry Boone<br />

Next generation non-nucleoside reverse transcriptase <strong>in</strong>hibitors for<br />

the treatment of HIV<br />

Maria Zambon<br />

Influenza immunization strategies<br />

David Koelle<br />

Novel treatment options for herpes simplex virus<br />

Ursula Theuretzbacher & Jeffrey H Toney<br />

Nature's clarion call of antibacterial resistance: Are we listen<strong>in</strong>g?<br />

David Shlaes<br />

Novel tetracycl<strong>in</strong>es<br />

David Kaufman<br />

Veronate (Inhibitex)<br />

Joseph Jao-Yiu Sung & Henry Lik-Yuen Chan<br />

HBV-ISS (Dynavax)<br />

David McMillan<br />

StreptAvax (ID Biomedical)


Paper alert<br />

A selection of <strong>in</strong>terest<strong>in</strong>g recently published papers from<br />

major journals relat<strong>in</strong>g to drug discovery and research.<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):1-3<br />

© The Thomson Corporation ISSN 1472-4472<br />

Contents<br />

1 Anti-<strong>in</strong>fectives<br />

2 Endocr<strong>in</strong>e & metabolic<br />

2 Oncological<br />

Anti-<strong>in</strong>fectives<br />

Selected by Mohsen Daneshtalab (Memorial University, St<br />

John's, NL, Canada)<br />

In vitro and <strong>in</strong> vivo antibacterial activities of SM-216601, a<br />

new broad-spectrum parenteral carbapenem.<br />

Ueda Y, Kanazawa K, Eguchi K, Takemoto K, Eriguchi Y,<br />

Sunagawa M (Sumitomo Pharmaceuticals Research Division,<br />

Osaka, Japan).<br />

Antimicrob Agents Chemother (2005) 49(10):4185-4196.<br />

•• Significance The emergence of multidrug-resistant, Grampositive<br />

bacteria such as methicill<strong>in</strong>-resistant Staphylococcus<br />

aureus (MRSA), penicill<strong>in</strong>-resistant Streptococcus pneumoniae<br />

(PRSP) and vancomyc<strong>in</strong>-resistant enterococci (VRE), has<br />

affected the usefulness of antibacterial chemotherapy <strong>in</strong> recent<br />

years. Resistance to β-lactam antibiotics is a serious concern<br />

because this class of compounds exhibits several advantages<br />

over other antibacterials. Thus, there is an urgent need for new<br />

β-lactam agents effective aga<strong>in</strong>st resistant pathogens. These<br />

researchers previously reported that 2-(4-arylthiazole-2-ylthio)-<br />

1β-methylcarbapenems, such as SM-17466 (Sumitomo Seika<br />

Chemicals Co Ltd/F Hoffmann-La Roche Ltd) and its<br />

derivatives, showed potent activity aga<strong>in</strong>st MRSA ow<strong>in</strong>g to<br />

their high aff<strong>in</strong>ity for penicill<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> (PBP)2a.<br />

SM-17466 was also effective aga<strong>in</strong>st Enterococcus faecium<br />

compared with other carbapenems. These observations<br />

prompted the search for novel carbapenems with potent<br />

activity aga<strong>in</strong>st MRSA and VRE. SM-216601 (Sumitomo Seika<br />

Chemicals Co Ltd/F Hoffmann-La Roche Ltd), a<br />

dihydropyrrolyl thiazole analog of SM-17466, was identified,<br />

which demonstrated broad-spectrum antibacterial activity<br />

aga<strong>in</strong>st Gram-positive and Gram-negative bacteria. This paper<br />

describes <strong>in</strong> vitro studies <strong>in</strong>vestigat<strong>in</strong>g the activity of SM-216601<br />

aga<strong>in</strong>st different cl<strong>in</strong>ical isolates compared with vancomyc<strong>in</strong>,<br />

l<strong>in</strong>ezolid and several other β-lactams. In addition, the efficacy of<br />

SM-216601 aga<strong>in</strong>st systemic <strong>in</strong>fections <strong>in</strong> mice caused by<br />

methicill<strong>in</strong>-sensitive S aureus, MRSA, Escherichia coli,<br />

Pseudomonas aerug<strong>in</strong>osa and experimental E faecium<br />

subcutaneous abscesses is described.<br />

F<strong>in</strong>d<strong>in</strong>gs This study <strong>in</strong>vestigated the <strong>in</strong> vitro antibacterial<br />

activity, aff<strong>in</strong>ity for bacterial PBPs and resistance to<br />

hydrolysis by dehydropeptidase (DHP)-1 of SM-216601, and<br />

evaluated its <strong>in</strong> vivo efficacy aga<strong>in</strong>st Gram-positive and<br />

Gram-negative bacteria and pharmacok<strong>in</strong>etics <strong>in</strong> mice.<br />

SM-216601 exhibited potent activity aga<strong>in</strong>st MRSA, PRSP,<br />

VRE, ampicill<strong>in</strong>-resistant Haemophilus <strong>in</strong>fluenzae, Moraxella<br />

catarrhalis, E coli, Klebsiella pneumoniae and Proteus mirabilis.<br />

In addition, SM-216601 was highly efficacious aga<strong>in</strong>st<br />

experimentally <strong>in</strong>duced <strong>in</strong>fections <strong>in</strong> mice caused by<br />

S aureus, E faecium, E coli and P aerug<strong>in</strong>osa. Its sensitivity aga<strong>in</strong>st<br />

renal DHP-1 was similar to that of meropenem and superior to<br />

that of imipenem. SM-216601 exhibited improved<br />

pharmacok<strong>in</strong>etics compared with imipenem and meropenem<br />

<strong>in</strong> mice, rats, dogs and cynomolgus monkeys.<br />

Design, synthesis, and biological activity of m-tyros<strong>in</strong>ebased<br />

16- and 17-membered macrocyclic <strong>in</strong>hibitors of<br />

hepatitis C virus NS3 ser<strong>in</strong>e protease.<br />

Chen KX, Njoroge FG, Pichardo J, Prongay A, Butkiewicz N, Yao<br />

N, Madison V, Girijavallabhan V (Scher<strong>in</strong>g-Plough Research<br />

Institute, Kenilworth, NJ, USA).<br />

J Med Chem (2005) 48(20):6229-6235.<br />

• Significance The worldwide spread of hepatitis C virus<br />

(HCV) <strong>in</strong>fection has caused a global health crisis. The only<br />

therapies currently available for the treatment of HCV <strong>in</strong>fection<br />

are subcutaneous <strong>in</strong>terferon (IFN)α or pegylated IFNα<br />

monotherapy, or the comb<strong>in</strong>ation of IFNα or pegylated IFNα<br />

and oral ribavir<strong>in</strong>. These therapies have limited efficacies and<br />

cause considerable side effects <strong>in</strong> patients. Therefore, the search<br />

for small molecules with high efficacy and less toxicity<br />

cont<strong>in</strong>ues. The viral NS3 prote<strong>in</strong> and its correspond<strong>in</strong>g enzyme,<br />

NS3 protease, are attractive drug targets <strong>in</strong> HCV. Many<br />

protease <strong>in</strong>hibitors that have peptidic molecular structures have<br />

been developed <strong>in</strong> recent years. However, because of low<br />

bioavailability and poor pharmacok<strong>in</strong>etics, most of these<br />

<strong>in</strong>hibitors have failed to make it onto the market.<br />

Peptidomimetics are peptidic analogs that resist hydrolytic<br />

enzymes while exhibit<strong>in</strong>g the same enzyme <strong>in</strong>hibitory<br />

characteristics as the correspond<strong>in</strong>g peptides. The potential of<br />

cyclic hexapeptides as <strong>in</strong>hibitors of the HCV NS3 protease have<br />

been reported <strong>in</strong> a number of studies. Based on these<br />

discoveries, novel 16- and 17-membered r<strong>in</strong>g analogs were<br />

synthesized and evaluated for HCV NS3 protease <strong>in</strong>hibitory<br />

activity.<br />

F<strong>in</strong>d<strong>in</strong>gs The synthesis of these cyclic peptides began with<br />

the coupl<strong>in</strong>g of the commercially available N-Boccyclohexylglyc<strong>in</strong>e<br />

and m-tyros<strong>in</strong>e methyl ester, which <strong>in</strong> five<br />

steps gave rise to methyl 11(S)-cyclohexyl-9.12-dioxo-2-oxa-<br />

10,13-diazabicyclo[14.3.1]eicosa-1(20),16,18-triene-14(S)carboxylate.<br />

Hydrolysis of this <strong>in</strong>termediate followed by<br />

coupl<strong>in</strong>g with [2-(3-am<strong>in</strong>o-2-hydroxy-hexanoylam<strong>in</strong>o)acetylam<strong>in</strong>o]-phenylacetic<br />

acid tert-butyl ester hydrochloride<br />

afforded the desired 17-membered macrocyclic compounds<br />

as either O-tert-butyl ester, free carboxylic acid, or the<br />

correspond<strong>in</strong>g mono- or dimethylamide analogs. The<br />

correspond<strong>in</strong>g 16-membered analogs were synthesized <strong>in</strong><br />

the same manner as above. In an HCV protease cont<strong>in</strong>uous<br />

assay, the 16-membered analogs were less active than the<br />

correspond<strong>in</strong>g 17-membered analogs. This study confirmed<br />

the potential of these 17-membered macrocycles as lead<br />

compounds for further development of anti-HCV drugs.<br />

Synthesis and structure-activity relationships of novel<br />

anti-hepatitis C agents: N 3 ,5'-cyclo-4-(β-D-ribofuranosyl)vic-triazolo[4,5-b]pyrid<strong>in</strong>-5-one<br />

derivatives.<br />

Wang P, Du J, Rachakonda S, Chun B-K, Tharnish PM, Stuyver<br />

LJ, Otto MJ, Sch<strong>in</strong>azi RF, Watanabe KA (Pharmasset Inc,<br />

Pr<strong>in</strong>ceton, NJ, USA).<br />

J Med Chem (2005) 48(20):6454-6460.<br />

• Significance Chronic hepatitis C virus (HCV) <strong>in</strong>fection is<br />

1


2 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

predicted to become a major challenge for healthcare providers,<br />

especially as the currently asymptomatic carriers of this virus<br />

may develop hepatocellular carc<strong>in</strong>oma. Furthermore, the death<br />

rate due to HCV <strong>in</strong>fection is predicted to triple <strong>in</strong> the next ten to<br />

20 years. <strong>Current</strong> treatment protocols <strong>in</strong>volve either the<br />

adm<strong>in</strong>istration of <strong>in</strong>terferon (IFN)α or its pegylated form alone<br />

or <strong>in</strong> comb<strong>in</strong>ation with ribavir<strong>in</strong> (RBV). IFNα causes<br />

neuropsychiatric adverse effects and anemia is the most<br />

common side effect of RBV. In addition, the response rate for<br />

both therapeutic approaches is < 50%. Thus, the identification<br />

of new and effective drugs for the treatment of HCV <strong>in</strong>fection is<br />

critical. These researchers previously identified a novel<br />

compound, N 3,5'-cyclo-4-(β-D-ribofuranosyl)-vic-triazolo[4,5b]pyrid<strong>in</strong>-5-one<br />

(CRTP), which exhibited moderate anti-HCV<br />

activity <strong>in</strong> a subgenomic RNA replicon system. In an effort to<br />

discover more potent anti-HCV agents, a series of 6- and 7substituted<br />

derivatives of CRTP were synthesized. In this<br />

study, different 5-thiono, 6-halo, 7-alkylam<strong>in</strong>o and 7-methyl<br />

analogs of CRTP were synthesized and their anti-HCV activity<br />

and cytotoxicity evaluated. Some of the newly synthesized<br />

compounds exhibited 8- to 40-fold more potent anti-HCV<br />

activity than that of CRTP.<br />

F<strong>in</strong>d<strong>in</strong>gs CRTP was <strong>in</strong>itially synthesized from 1-(2,3,5-tri-Obenzoyl-β-D-ribofuranosyl)-5-nitropyrid<strong>in</strong>-2-one<br />

us<strong>in</strong>g either<br />

a five-step traditional synthetic method or a one-pot<br />

synthetic method. Further synthetic procedures <strong>in</strong>volv<strong>in</strong>g<br />

CRTP resulted <strong>in</strong> 5-thiono, 6-chloro/bromo, 7-am<strong>in</strong>o or 7alkylam<strong>in</strong>o<br />

analogs. The 7-methyl analog of CRTP was<br />

prepared us<strong>in</strong>g a different methodology. The synthesized<br />

compounds were tested for their ability to <strong>in</strong>hibit HCV RNA<br />

<strong>in</strong> a subgenomic replicon Huh-7 cell l<strong>in</strong>e. Cytotoxicity was<br />

determ<strong>in</strong>ed us<strong>in</strong>g an MTS assay. Among the compounds<br />

tested, the 5-thiono, 6-chloro, 6-bromo, 7-am<strong>in</strong>o, 7methylam<strong>in</strong>o<br />

and 7-methyl analogs exhibited more potent<br />

anti-HCV activity than CRTP, with the 6-chloro and 6-bromo<br />

analogs be<strong>in</strong>g the most potent. This study suggests a direct<br />

correlation between the anti-HCV activity and the<br />

cytotoxicity of these compounds.<br />

Endocr<strong>in</strong>e & metabolics<br />

Selected by Mariano J Elices (PharmaMar USA, Cambridge,<br />

MA, USA)<br />

Normal fast<strong>in</strong>g plasma glucose levels and type 2<br />

diabetes <strong>in</strong> young men.<br />

Tirosh A, Shai I, Tekes-Manova D, Israeli E, Pereg D, Shochat<br />

T, Kochba I, Rudich A; Israeli Diabetes Research Group<br />

(Medical Corps Headquarters, Tel-Hashomer, Israel).<br />

N Engl J Med (2005) 353(14):1454-1462.<br />

• Significance Science textbooks generally list the range of<br />

fast<strong>in</strong>g plasma glucose values for healthy <strong>in</strong>dividuals<br />

(normoglycemic) as be<strong>in</strong>g 70 to 110 mg/dl. However, <strong>in</strong><br />

2003, an expert committee at the American Diabetes<br />

Association (ADA) revised this long-held view and<br />

suggested that fast<strong>in</strong>g blood glucose levels of 101 to 109<br />

mg/dl represent impairment of glucose metabolism and<br />

thus pose a risk for the development of type 2 diabetes. In<br />

general, the <strong>in</strong>cidence of type 2 diabetes has <strong>in</strong>creased <strong>in</strong><br />

developed countries, <strong>in</strong>clud<strong>in</strong>g among younger members of<br />

the population that have traditionally not been considered to<br />

be at risk; thus it is of significant value to uncover risk<br />

factors for this illness.<br />

F<strong>in</strong>d<strong>in</strong>gs In order to address which risk factors contribute to<br />

the development of type 2 diabetes, the <strong>in</strong>vestigators exam<strong>in</strong>ed<br />

a computerized database that was established <strong>in</strong> 1992 to<br />

capture data from the MELANY (MEtabolic, Lifestyle, And<br />

Nutrition assessment <strong>in</strong> Young adults) trial. This trial was<br />

conducted among military personnel over 25 years of age <strong>in</strong><br />

Israel who received periodic exam<strong>in</strong>ations every three to five<br />

years. At the time of their periodic visit, each <strong>in</strong>dividual gave a<br />

blood sample after a 14-h fast<strong>in</strong>g period, and received a medical<br />

exam<strong>in</strong>ation; a detailed questionnaire was also completed by<br />

each <strong>in</strong>dividual. The primary endpo<strong>in</strong>t of the study was a new<br />

diagnosis of type 2 diabetes dur<strong>in</strong>g the trial (based on criteria<br />

outl<strong>in</strong>ed by the ADA expert committee) which <strong>in</strong>volved the<br />

record<strong>in</strong>g of two fast<strong>in</strong>g plasma glucose levels of at least 126<br />

mg/dl. Of 13,163 male <strong>in</strong>dividuals with fast<strong>in</strong>g blood glucose<br />

levels of ≤ 100 mg/dl, there were 208 new cases of type 2<br />

diabetes (ie, a 1.6% <strong>in</strong>cidence) spann<strong>in</strong>g an average of 5.7 years<br />

of follow-up. Multivariate models showed that males with<br />

fast<strong>in</strong>g blood glucose at the high end of the normal range (91 to<br />

99 mg/dl), comb<strong>in</strong>ed with serum triglyceride levels of ≥ 150<br />

mg/dl, had an 8.23-fold higher risk of develop<strong>in</strong>g type 2<br />

diabetes compared with <strong>in</strong>dividuals with fast<strong>in</strong>g plasma<br />

glucose and serum triglyceride levels of ≤ 86 and < 150 mg/dl,<br />

respectively. In a similar manner, hazard ratios revealed a 8.29fold<br />

higher risk of develop<strong>in</strong>g type 2 diabetes <strong>in</strong> obese men<br />

(body mass <strong>in</strong>dex ≥ 30) even when they had a normal, albeit<br />

high, fast<strong>in</strong>g blood glucose (91 to 99 mg/dl), compared with<br />

control <strong>in</strong>dividuals with fast<strong>in</strong>g plasma glucose levels and a<br />

body mass <strong>in</strong>dex of ≤ 86 mg/dl and < 25, respectively. These<br />

data strongly suggest that normoglycemic <strong>in</strong>dividuals with<br />

either serum triglyceride levels > 150 mg/dl or exhibit<strong>in</strong>g<br />

relative obesity (ie, body mass <strong>in</strong>dex ≥ 30) are at an <strong>in</strong>creased<br />

risk of develop<strong>in</strong>g type 2 diabetes later <strong>in</strong> life. From a healthcare<br />

standpo<strong>in</strong>t, these f<strong>in</strong>d<strong>in</strong>gs expose a host of opportunities <strong>in</strong><br />

diagnostic, preventive and therapeutic areas <strong>in</strong> type 2 diabetes.<br />

Oncological<br />

Selected by Robert E Hurst (Oklahoma University Health<br />

Sciences Center, OK, USA)<br />

A potential synergistic anticancer effect of paclitaxel<br />

and amifost<strong>in</strong>e on endometrial cancer.<br />

Dai D, Holmes AM, Nguyen T, Davies S, Theele DP,<br />

Verschraegen C, Leslie KK (University of New Mexico Health<br />

Sciences Center, Albuquerque, NM, USA).<br />

Cancer Res (2005) 65(20):9517-9524.<br />

• Significance Although the prognosis for endometrial cancer<br />

is generally good, advanced or recurrent cases have a poor<br />

prognosis, with chemotherapy offer<strong>in</strong>g mostly palliative<br />

therapy. Amifost<strong>in</strong>e has been proven to protect normal cells<br />

aga<strong>in</strong>st a number of chemotherapeutic agents, <strong>in</strong>clud<strong>in</strong>g<br />

paclitaxel. Amifost<strong>in</strong>e not only allows the adm<strong>in</strong>istration of<br />

higher doses of paclitaxel but, <strong>in</strong> this study, the drug also had a<br />

direct effect on endometrial cancer cells, and acted<br />

synergistically with paclitaxel. Thus, comb<strong>in</strong>ation therapy<br />

with these two drugs may be more effective than paclitaxel<br />

alone.


F<strong>in</strong>d<strong>in</strong>gs In vitro studies with poorly differentiated Hec50co<br />

endometrial cancer cells demonstrated that amifost<strong>in</strong>e had<br />

direct anticancer effects, produc<strong>in</strong>g G1 arrest of the cell cycle<br />

and <strong>in</strong>duc<strong>in</strong>g apoptosis. Amifost<strong>in</strong>e was also active <strong>in</strong> a<br />

flank xenograft model <strong>in</strong> nude mice. A s<strong>in</strong>gle dose of<br />

Paper alert 3<br />

amifost<strong>in</strong>e (178 µM) reduced the IC50 value of paclitaxel<br />

from 14 to 2 nM, and amifost<strong>in</strong>e acted synergistically with<br />

paclitaxel to <strong>in</strong>duce G2 to M growth arrest and apoptosis.<br />

The survival of mice was improved significantly over either<br />

agent alone <strong>in</strong> a flank xenograft model.


4<br />

Patent selection<br />

The follow<strong>in</strong>g recently issued patents have been pre-selected<br />

as be<strong>in</strong>g of particular <strong>in</strong>terest from the <strong>Current</strong> Patents<br />

Gazette. Full alerts will appear <strong>in</strong> forthcom<strong>in</strong>g issues of<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong>.<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):4-6<br />

© The Thomson Corporation ISSN 1472-4472<br />

Oncologic, endocr<strong>in</strong>e and metabolic<br />

NOVARTIS AG Inhibitors of IAP. WO-2005097791 (20<br />

October 2005)<br />

• Compounds that <strong>in</strong>hibit the b<strong>in</strong>d<strong>in</strong>g of Smac prote<strong>in</strong> to<br />

<strong>in</strong>hibitors of apoptosis prote<strong>in</strong>s (IAPs), thereby promot<strong>in</strong>g the<br />

apoptosis of rapidly divid<strong>in</strong>g cells are described. These<br />

compounds are useful for the treatment of proliferation diseases<br />

such as cancer. This application represents cont<strong>in</strong>uation of<br />

research by this group on Smac and IAPs (see also WO-<br />

2004005248 and WO-2005074989); a May 2005 press release<br />

from Novartis gives details of the Smac mimetic project. Some<br />

of the <strong>in</strong>ventors have previously worked on k<strong>in</strong>ase <strong>in</strong>hibitors<br />

and <strong>in</strong>tegr<strong>in</strong> receptor antagonists.<br />

UNIVERSITY OF WESTERN AUSTRALIA Osteoblast growth<br />

factor. WO-2005100389 (27 October 2005)<br />

• Caltr<strong>in</strong> (calcium transport <strong>in</strong>hibitor), a small cyste<strong>in</strong>e-rich<br />

secretory prote<strong>in</strong> isolated from a hematopoietic macrophage<br />

cell l<strong>in</strong>e, elevates cytosolic calcium levels and may be used<br />

for treat<strong>in</strong>g or prevent<strong>in</strong>g bone disorders. The <strong>in</strong>ventors are<br />

named on prior applications from Verigen Transplantation<br />

Service International AG, for example, WO-03026689,<br />

concern<strong>in</strong>g the use of growth factors from chondrocytes for<br />

the treatment of osteogenesis.<br />

MEDIQUEST THERAPEUTICS INC Polyam<strong>in</strong>e analogs that<br />

activate antizyme frameshift<strong>in</strong>g. WO-2005105729 (10<br />

November 2005)<br />

• Polyam<strong>in</strong>e analogs that activate antizyme frameshift<strong>in</strong>g to<br />

downregulate production of endogenous polyam<strong>in</strong>es by<br />

ornith<strong>in</strong>e decarboxylase and transport via the correspond<strong>in</strong>g<br />

polyam<strong>in</strong>e transporter are claimed. These compounds are<br />

useful <strong>in</strong> the treatment of cellular proliferation-associated<br />

<strong>in</strong>dications, particularly alopecia. This application claims<br />

several polyam<strong>in</strong>es, of which two compounds have previously<br />

been specifically claimed <strong>in</strong> US-06914079 (by the same<br />

<strong>in</strong>ventors). MediQuest, <strong>in</strong> collaboration with researchers at the<br />

University of Utah, is <strong>in</strong>vestigat<strong>in</strong>g a series of polyam<strong>in</strong>e<br />

analogs. The company is also <strong>in</strong>vestigat<strong>in</strong>g a polyam<strong>in</strong>e<br />

transporter <strong>in</strong>hibitor ORI-1202.<br />

PFIZER INC Inhibitors of checkpo<strong>in</strong>t k<strong>in</strong>ases (Wee1 and<br />

Chk1). US-20050250836 (10 November 2005)<br />

• Novel substituted <strong>in</strong>dacene molecules that specifically <strong>in</strong>hibit<br />

one or both of the checkpo<strong>in</strong>t k<strong>in</strong>ases Wee1 and Chk1 and are<br />

useful <strong>in</strong> the treatment of proliferative disorders are described.<br />

Pfizer is <strong>in</strong>vestigat<strong>in</strong>g PD-166285, a prote<strong>in</strong> k<strong>in</strong>ase <strong>in</strong>hibitor.<br />

Results presented at the American Association for Cancer<br />

Research meet<strong>in</strong>g <strong>in</strong> April 2000 <strong>in</strong>dicated that PD-166285<br />

<strong>in</strong>hibited Wee1 tyros<strong>in</strong>e k<strong>in</strong>ase. Pfizer (formerly Agouron) is<br />

also <strong>in</strong>vestigat<strong>in</strong>g a series of Chk1 <strong>in</strong>hibitors for the potential<br />

treatment of cancer. As of May 2005, <strong>in</strong>vestigations were<br />

ongo<strong>in</strong>g (see WO-03091255).<br />

SMITHKLINE BEECHAM CORP; CYTOKINETICS INC Certa<strong>in</strong><br />

chemical entities, compositions, and methods. WO-<br />

2005107762 (17 November 2005)<br />

• Substituted heterocyclic amides as <strong>in</strong>hibitors of CENP-E<br />

k<strong>in</strong>es<strong>in</strong> activity for the treatment of cellular proliferative<br />

disorders are described. This cont<strong>in</strong>ues the collaboration<br />

between Cytok<strong>in</strong>etics and GlaxoSmithKl<strong>in</strong>e (formerly<br />

SmithKl<strong>in</strong>eBeecham), although this appears to be a new<br />

research direction as previous research relates to KSP<br />

k<strong>in</strong>es<strong>in</strong> (see WO-2005060692, which names three of the<br />

present <strong>in</strong>ventors). Cytok<strong>in</strong>etics and GlaxoSmithKl<strong>in</strong>e have<br />

two KSP <strong>in</strong>hibitors <strong>in</strong> phase I and II trials for cancer.<br />

BUCK INSTITUTE; TOURO UNIVERSITY; THE BURNHAM INSTITUTE<br />

Artificially designed pore-form<strong>in</strong>g prote<strong>in</strong>s with<br />

antitumor effects. US-20050256040 (17 November 2005)<br />

• Use of a small globular prote<strong>in</strong> (SGP) to disrupt a biological<br />

membrane is claimed. SGP is established as the prototype for a<br />

new class of artificial prote<strong>in</strong>s designed for therapeutic<br />

application. SGP can be used for disrupt<strong>in</strong>g tumor growth (eg,<br />

Kaposi's sarcoma, breast carc<strong>in</strong>oma, malignant melanoma of<br />

the sk<strong>in</strong>, lung and prostate cancer and metastases). This<br />

application cont<strong>in</strong>ues the <strong>in</strong>ventors' cancer research (eg, WO-<br />

2005094383). One of the <strong>in</strong>ventors is associated with the<br />

Burnham Institute and the other with the University of Touro.<br />

E MERCK PATENT GMBH GM3 synthase as a therapeutic<br />

target <strong>in</strong> microvascular complications of diabetes. WO-<br />

2005108600 (17 November 2005)<br />

• GM3 synthase <strong>in</strong>hibitors to treat microvascular complications<br />

of diabetes (eg, diabetic nephropathy) are claimed. Also claimed<br />

is a method for screen<strong>in</strong>g for GM3 synthase <strong>in</strong>hibitors. See also<br />

WO-00234201 and WO-09936396 for previous applications<br />

by members of this team.<br />

Pulmonary-allergy, dermatological,<br />

gastro<strong>in</strong>test<strong>in</strong>al and anti-<strong>in</strong>flammatory<br />

ONO PHARMACEUTICAL CO LTD Novel BLT2-mediated<br />

disease, and BLT2 b<strong>in</strong>d<strong>in</strong>g agent and compound. WO-<br />

2005102388 (03 November 2005)<br />

• A compound capable of selective b<strong>in</strong>d<strong>in</strong>g to BLT2 is<br />

disclosed. Its use as a therapeutic agent for BLT2-mediated<br />

disease, <strong>in</strong>clud<strong>in</strong>g cutaneous disorders, bowel disease and<br />

HIV <strong>in</strong>fection, is described. This application may be related<br />

to the company's ONO-4057, a dual antagonist of two<br />

leukotriene B4 receptors, BLT1 and BLT2, for the potential<br />

treatment of Behcet's disease, psoriasis and <strong>in</strong>flammatory<br />

bowel disease. WO-2004031118 (by different <strong>in</strong>ventors) is<br />

cited as relevant <strong>in</strong> the search report.<br />

NOVARTIS AG CRTH2 receptor antagonists. WO-<br />

2005105727 (10 November 2005)<br />

• Novel compounds as CRTH2 (G-prote<strong>in</strong>-coupled<br />

chemoattractant receptor expressed on Th2 cells) receptor<br />

antagonists, useful for the treatment of respiratory and<br />

<strong>in</strong>flammatory conditions, are disclosed. CRTH2 appears to<br />

be a new target for Novartis and the <strong>in</strong>ventors, this be<strong>in</strong>g<br />

their only patent application on the receptor. Oxagen and<br />

Ortho-McNeil are currently lead<strong>in</strong>g this field, with both<br />

companies hav<strong>in</strong>g programs <strong>in</strong> precl<strong>in</strong>ical development.


Anti-<strong>in</strong>fectives<br />

JANSSEN PHARMACEUTICA NV Inhibitors of bacterial type III<br />

prote<strong>in</strong> secretion systems. US-20050250819 (10<br />

November 2005)<br />

• Novel triaz<strong>in</strong>e compounds as <strong>in</strong>hibitors of bacterial type III<br />

prote<strong>in</strong> secretion systems, useful for the treatment and<br />

prevention of bacterial <strong>in</strong>fections, particularly Gramnegative<br />

bacterial <strong>in</strong>fections, are described. The <strong>in</strong>ventors<br />

have been named on other applications disclos<strong>in</strong>g<br />

antibacterials. However, this specific action appears to be a<br />

new target.<br />

Biological and immunological<br />

CATALYST BIOSCIENCES INC Cleavage of VEGF and VEGF<br />

receptor by wild-type and mutant proteases. WO-<br />

2005100556 (27 October 2005)<br />

• Mutated granzyme B polypeptides (mute<strong>in</strong>s) that cleave<br />

vascular endothelial growth factor (VEGF) or the VEGF<br />

receptor and <strong>in</strong>hibit angiogenesis are claimed. The mute<strong>in</strong>s<br />

may be used for the treatment of angiogenesis-related<br />

disorders (eg, cancer, <strong>in</strong>flammation, diabetes and macular<br />

degeneration). This is only the company's second<br />

application and cont<strong>in</strong>ues its development of modified<br />

enzymes (see WO-2004031733). In July 2005, Catalyst<br />

exclusively licensed <strong>in</strong>tellectual property cover<strong>in</strong>g protease<br />

eng<strong>in</strong>eer<strong>in</strong>g from Torrey P<strong>in</strong>es.<br />

CURTIN UNIVERSITY OF TECHNOLOGY Therapeutic hepar<strong>in</strong>s<br />

and their b<strong>in</strong>d<strong>in</strong>g to <strong>in</strong>terleuk<strong>in</strong>s 4 and 5, and PECAM-1.<br />

WO-2005100374 (27 October 2005)<br />

• These glycosam<strong>in</strong>oglycan oligosaccharides are claimed for<br />

use <strong>in</strong> the treatment of a wide range of conditions. The<br />

British <strong>in</strong>ventor appears to be based at the National<br />

Institute for Biological Standards and Control.<br />

Bassiri A, Das A, Dillon S, Duffy K, Seideman J, Mbow ML,<br />

Karlsson L, Sun S, Zhu J, Cunn<strong>in</strong>gham M Toll-like receptor<br />

9 effector agents and uses thereof. US-20050244410 (03<br />

November 2005)<br />

• Cell-surface toll-like receptor 9 (TLR9) effector agents, such<br />

as TLR9 receptor b<strong>in</strong>d<strong>in</strong>g agents and TLR9 ligand b<strong>in</strong>d<strong>in</strong>g<br />

agents (namely antibodies and other prote<strong>in</strong>s), and their use<br />

<strong>in</strong> modulat<strong>in</strong>g immune responses for the treatment of, for<br />

example, <strong>in</strong>fections, cancer and <strong>in</strong>flammation, are described.<br />

The <strong>in</strong>ventors appear to be based at Centocor and feature on<br />

a related application, WO-2004096156.<br />

E MERCK PATENT GMBH Dihydrobenzothiophenes. WO-<br />

2005108355 (17 November 2005)<br />

• Dihydrobenzothiophenes as modulators of mitotic motor<br />

prote<strong>in</strong>s, particularly Eg5, useful for the treatment of, for<br />

example, angiogenesis, cancers, arteriosclerosis, eye<br />

disorders and <strong>in</strong>flammation, are disclosed. See WO-<br />

2005063735 for substituted tetrahydroqu<strong>in</strong>ol<strong>in</strong>e derivatives<br />

with the same action.<br />

Central and peripheral nervous system<br />

Patent selection 5<br />

BIOCORTECH Derivatives of 14,15-dihydro 20,21d<strong>in</strong>oreburnamen<strong>in</strong>-14-ol,<br />

and applications thereof. WO-<br />

2005103047 (03 November 2005)<br />

• 14,15-Dihydro 20,21-d<strong>in</strong>oreburnamen<strong>in</strong>-14-ol derivatives<br />

are targeted at the treatment of depression. A similar use of<br />

the parent nucleus was claimed <strong>in</strong> WO-2005082365. This<br />

application is possibly l<strong>in</strong>ked to BC-19, an orally active<br />

small molecule believed to reactivate the norep<strong>in</strong>ephr<strong>in</strong>e<br />

pathways, which Biocortech is develop<strong>in</strong>g for the potential<br />

treatment of depression. By April 2005, phase II trials of<br />

BC-19 were underway.<br />

SANGAMO BIOSCIENCES INC Treatment of neuropathic pa<strong>in</strong><br />

with z<strong>in</strong>c f<strong>in</strong>ger prote<strong>in</strong>s. WO-2005100392 (27 October<br />

2005)<br />

• Use of a nucleic acid consist<strong>in</strong>g of a z<strong>in</strong>c f<strong>in</strong>ger DNAb<strong>in</strong>d<strong>in</strong>g<br />

doma<strong>in</strong> eng<strong>in</strong>eered to b<strong>in</strong>d target genes and<br />

modulate overexpression of dorsal root ganglia genes (eg,<br />

VR1, TRKA and Nav1.8) of pa<strong>in</strong> patients, and a<br />

transcriptional repression doma<strong>in</strong>, are described. This<br />

application appears to be related to the company's ZFP TF<br />

(pa<strong>in</strong>) gene therapy, us<strong>in</strong>g Avigen's adeno-associated virus<br />

gene delivery system for the potential treatment of<br />

neuropathic pa<strong>in</strong>. See US-20040091991 and WO-<br />

2005028630.<br />

ELI LILLY & CO BACE <strong>in</strong>hibitors. WO-2005108358/WO-<br />

2005108358 (17 November 2005)<br />

• Alkylamide-substituted pyrrolid<strong>in</strong>e and related<br />

ethanolam<strong>in</strong>e derivatives are disclosed. These compounds<br />

are β-amyloid precursor prote<strong>in</strong> cleav<strong>in</strong>g enzyme (BACE)<br />

<strong>in</strong>hibitors, and appear to be some of the first small molecules<br />

to emerge from the program. See WO-00068266 and WO-<br />

00069262 for related drug screen<strong>in</strong>g methods and<br />

technology. Lilly is <strong>in</strong>vestigat<strong>in</strong>g ethanolam<strong>in</strong>e-conta<strong>in</strong><strong>in</strong>g<br />

peptide-based BACE <strong>in</strong>hibitors, <strong>in</strong>clud<strong>in</strong>g LY-2070103, for<br />

the potential treatment of Alzheimer's disease. In August<br />

2005, one of the <strong>in</strong>ventors from this team presented<br />

precl<strong>in</strong>ical data from this program at the 230th American<br />

Chemical Society meet<strong>in</strong>g <strong>in</strong> Wash<strong>in</strong>gton DC.<br />

Cardiovascular, ocular and renal<br />

ARYX THERAPEUTICS INC New 4-hydroxycoumar<strong>in</strong><br />

derivatives are vitam<strong>in</strong> K epoxide reductase <strong>in</strong>hibitors -<br />

useful for the treatment of coagulation disorders. WO-<br />

2005100336 (27 October 2005)<br />

• 3-Substituted 4-hydroxy-2-oxo-2H-chrom-3-ene derivatives<br />

are claimed. See WO-02085882 for related warfar<strong>in</strong><br />

analogs. ARYx is <strong>in</strong>vestigat<strong>in</strong>g ATI-5000, a warfar<strong>in</strong><br />

analog identified us<strong>in</strong>g its RetroMetabolic platform<br />

technology, for the potential treatment of deep ve<strong>in</strong><br />

thrombosis and prevention of stroke <strong>in</strong> atrial fibrillation<br />

patients.


6 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

JAPAN HEALTH SCIENCE FOUNDATION; UNIVERSITY OF<br />

TOKUSHIMA Agent for controll<strong>in</strong>g cholesterol<br />

homeostasis-associated gene transcription activity<br />

mediated by FXR activation. WO-2005097097 (20 October<br />

2005)<br />

• Two of the <strong>in</strong>ventors are based at Tokushima Bunri<br />

University, and all are named on WO-2005092328, which<br />

disclosed bis(bibenzyl) cyclic ether derivatives as farnesoid<br />

X-receptor (FXR) activators, useful for the treatment of<br />

hyperlipidemia.<br />

THERAPTOSIS SA Caspase-2 <strong>in</strong>hibitors and their biological<br />

applications. WO-2005105829 (10 November 2005)<br />

• Novel caspase-2 <strong>in</strong>hibitors and their use for treat<strong>in</strong>g<br />

ischemia are claimed. Several of these <strong>in</strong>ventors claimed<br />

double-stranded RNA molecules with this activity <strong>in</strong> WO-<br />

2004103389.


Patent alert<br />

Patent alert provides abstracts and expert commentary on a<br />

selection of recent patents that have been identified as be<strong>in</strong>g<br />

of particular <strong>in</strong>terest. Selections are based on patent abstracts<br />

featured <strong>in</strong> patent products published by Thomson<br />

Scientific. <strong>Current</strong> op<strong>in</strong>ions are provided based on the<br />

novelty of the <strong>in</strong>vention and its potential application.<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):7-13<br />

© The Thomson Corporation ISSN 1472-4472<br />

Contents<br />

7 Anti-<strong>in</strong>flammatory & immunomodulatory<br />

8 Cardiovascular & renal<br />

9 Central & peripheral nervous system<br />

10 Endocr<strong>in</strong>e & metabolics<br />

12 Oncological<br />

Anti-<strong>in</strong>flammatory & immunomodulatory<br />

Selected by Clifford Whelan (Phlogopharm Ltd, Hatfield,<br />

Hertfordshire, UK)<br />

New C5a receptor <strong>in</strong>hibitory compounds - useful for<br />

treat<strong>in</strong>g, eg, <strong>in</strong>flammation and S aureus <strong>in</strong>fections<br />

ALLIGATOR BIOSCIENCE AB (PUBL) (Van Strijp JAD, De Haas<br />

CJC, Kemm<strong>in</strong>k J, Van Kessel KPM)<br />

WO-2005100385, 27 October 2005<br />

Compounds for prevent<strong>in</strong>g <strong>in</strong>tramolecular contact of Nterm<strong>in</strong>al<br />

residues 10 to 18 of human C5aR with the extracellular<br />

loops, are claimed. Also claimed are further compositions and<br />

use of the compounds for treat<strong>in</strong>g conditions <strong>in</strong>volv<strong>in</strong>g the C5a<br />

receptor on cells other than neutrophils, monocytes and<br />

endothelial cells, for example, <strong>in</strong>flammation, and for use <strong>in</strong><br />

therapeutic vacc<strong>in</strong>es for <strong>in</strong>fections caused by chemotaxis<br />

<strong>in</strong>hibitory prote<strong>in</strong> from Staphylococcus aureus (CHIPS)produc<strong>in</strong>g<br />

bacteria. The agents are stated to be small enough for<br />

use <strong>in</strong> therapy. U937 cells express<strong>in</strong>g C5aR were <strong>in</strong>cubated with<br />

<strong>in</strong>creas<strong>in</strong>g concentrations of CHIPS31-121 or CHIPS31-121<br />

mutant compounds. The samples were further <strong>in</strong>cubated with<br />

10 µg/ml of FITC-labeled anti-C5aR S5/1 monoclonal antibody.<br />

The IC50 values of the CHIPS31-121 mutants, <strong>in</strong> which s<strong>in</strong>gle<br />

am<strong>in</strong>o acids were substituted <strong>in</strong>to alan<strong>in</strong>es, were calculated.<br />

The CHIPS31-121 mutants with the lowest IC50 values (ng/ml)<br />

were N47 (5), R46 (10), Y121 deleted (10), K54 (10), K50 (10),<br />

G102 (12) and K101 (15). Chemical sequences are provided <strong>in</strong><br />

the source document.<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

S aureus is a common member of the bacterial flora on human<br />

sk<strong>in</strong>. Although its presence is usually symptom free, it can<br />

cause a number of pathologies, rang<strong>in</strong>g from superficial<br />

pustules to major life-threaten<strong>in</strong>g <strong>in</strong>fections. Furthermore, the<br />

evolution of stra<strong>in</strong>s of S aureus that are resistant to antibiotic<br />

therapy makes the development of novel approaches to the<br />

treatment of <strong>in</strong>fection an important therapeutic target.<br />

Neutrophil accumulation at the site of <strong>in</strong>flammation and<br />

<strong>in</strong>fection is a hallmark of acute <strong>in</strong>flammation. Neutrophil<br />

chemotaxis can result from a wide range of compounds and<br />

this may have physiological importance. However, major<br />

chemoattractants <strong>in</strong> acute <strong>in</strong>flammation are complement<br />

products formed from plasma prote<strong>in</strong>. This disclosure describes<br />

a series of prote<strong>in</strong>s that <strong>in</strong>hibit b<strong>in</strong>d<strong>in</strong>g of the complement<br />

product C5a to its receptor. The prote<strong>in</strong>s described are based on<br />

an endogenous prote<strong>in</strong> released by S aureus. Such prote<strong>in</strong>s are<br />

likely to reduce neutrophil accumulation <strong>in</strong> vivo and may even<br />

be of benefit <strong>in</strong> <strong>in</strong>flammatory diseases, such as chronic<br />

obstructive pulmonary disease, <strong>in</strong> which products released by<br />

activated neutrophils appear to <strong>in</strong>itiate changes that are not<br />

beneficial. However, <strong>in</strong> <strong>in</strong>fection, particularly that characterized<br />

by abscess formation, neutrophil chemotaxis appears to conta<strong>in</strong><br />

the <strong>in</strong>fection, and patients who are deficient <strong>in</strong> complement<br />

products seem to suffer severe <strong>in</strong>fections. Thus, further research<br />

is required to determ<strong>in</strong>e whether the prote<strong>in</strong>s described will<br />

have utility <strong>in</strong> the treatment of <strong>in</strong>fection, and to determ<strong>in</strong>e how<br />

they can be utilized as anti-<strong>in</strong>flammatory agents.<br />

New imidazole compounds are H4 receptor <strong>in</strong>hibitors -<br />

useful for the <strong>in</strong>hibition of leukocyte recruitment and for<br />

the treatment of <strong>in</strong>flammation and immune disorders<br />

JANSSEN PHARMACEUTICA NV (Buzard DJ, Edwards JP,<br />

K<strong>in</strong>drachuk DE, Venable JD)<br />

WO-2005092066, 06 October 2005<br />

New imidazole compounds are claimed, as well as their use<br />

as H4 receptor <strong>in</strong>hibitors for the <strong>in</strong>hibition of leukocyte<br />

recruitment and for the treatment of <strong>in</strong>flammation. The<br />

compounds are claimed to be useful for the treatment of<br />

<strong>in</strong>flammatory response (eg, to chemotherapy or <strong>in</strong>fection),<br />

allergy, dermatological disorders, autoimmune disease,<br />

lymphatic disorders, immunodeficiency, asthma, chronic<br />

obstructive pulmonary disease, atherosclerosis, rheumatoid<br />

arthritis, multiple sclerosis and <strong>in</strong>flammatory bowel disease<br />

(eg, Crohn's disease or ulcerative colitis). The compounds<br />

can also be isotopically labeled and used <strong>in</strong> diagnostic<br />

imag<strong>in</strong>g. No suitable advantage is given. The illustrated<br />

compound had a Ki value of 6 nM when tested <strong>in</strong> vitro for its<br />

ability to b<strong>in</strong>d to human histam<strong>in</strong>e H4 receptors expressed<br />

by SK-N-MC or COS7 cells. Seventy specific compounds are<br />

claimed, <strong>in</strong>clud<strong>in</strong>g 1-(3-[4-[4,5-bis-(3-methoxyphenyl)-1Himidazol-2-yl]-3-chlorophenoxy]propyl)-4-methyl[1,4]diazepane.<br />

C<br />

H 3<br />

O<br />

O CH3<br />

H<br />

N<br />

Cl O<br />

N<br />

WO-2005092066<br />

(Janssen)<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

Leukocyte accumulation is one of the hallmarks of<br />

<strong>in</strong>flammation. Generally <strong>in</strong> the lesion, granulocytes and<br />

macrophages act as effector cells and lymphocytes act to<br />

orchestrate the response. Many reports <strong>in</strong> the literature suggest<br />

N<br />

N<br />

CH 3<br />

7


8 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

that histam<strong>in</strong>e may have a role <strong>in</strong> the process of leukocyte<br />

recruitment by act<strong>in</strong>g on leukocytes to promote chemotaxis,<br />

and by act<strong>in</strong>g on endothelial cells to <strong>in</strong>crease P-select<strong>in</strong><br />

expression and promote leukocyte adhesion. Until recently,<br />

research <strong>in</strong> this area was unclear, partly because the histam<strong>in</strong>e<br />

receptors mediat<strong>in</strong>g these events were not well def<strong>in</strong>ed. The<br />

f<strong>in</strong>d<strong>in</strong>g that leukocytes, such as eos<strong>in</strong>ophils, express histam<strong>in</strong>e<br />

H4 receptors that mediate histam<strong>in</strong>e-<strong>in</strong>duced chemotaxis has<br />

provided researchers with an additional therapeutic target that<br />

this disclosure seeks to exploit.<br />

Eos<strong>in</strong>ophils are thought to be the effector cells responsible for<br />

the <strong>in</strong>flammatory changes that underlie asthma, atopic<br />

dermatitis and other pathologies. Thus, it seems reasonable to<br />

propose that compounds that <strong>in</strong>hibit eos<strong>in</strong>ophil accumulation<br />

<strong>in</strong> tissues will have therapeutic utility. However, a degree of<br />

redundancy exists <strong>in</strong> the <strong>in</strong>flammatory process, which may<br />

enable the body to mount a response <strong>in</strong> the absence of one<br />

pathway. The same appears to be the case with eos<strong>in</strong>ophil<br />

recruitment, where many factors appear to be chemotactic<br />

agents for eos<strong>in</strong>ophils. For example, <strong>in</strong>terleuk<strong>in</strong> (IL)-5 is an<br />

important factor <strong>in</strong> eos<strong>in</strong>ophil recruitment, yet antibodies to<br />

IL-5 failed to produce a cl<strong>in</strong>ically beneficial effect when<br />

adm<strong>in</strong>istered to patients with asthma.<br />

The compounds described <strong>in</strong> this disclosure, if developed,<br />

will enable the role of histam<strong>in</strong>e H4 receptors <strong>in</strong> the process<br />

of leukocyte recruitment to be tested <strong>in</strong> humans. Such trials<br />

will determ<strong>in</strong>e the therapeutic potential of such compounds.<br />

Use of a composition compris<strong>in</strong>g a nicot<strong>in</strong>e ligand and<br />

an antidepressant - for treat<strong>in</strong>g ulcerative colitis<br />

THE JOYCE CLARKE LIVING TRUST AGREEMENT (Clarke DE)<br />

US-20050234024, 20 October 2005<br />

A method for treat<strong>in</strong>g ulcerative colitis <strong>in</strong> a patient hav<strong>in</strong>g<br />

<strong>in</strong>flammatory bowel disease, emphysema, chronic heart<br />

failure, lung cancer and esophageal cancer by adm<strong>in</strong>ister<strong>in</strong>g<br />

a composition compris<strong>in</strong>g a comb<strong>in</strong>ation of nicot<strong>in</strong>e, its<br />

analog or an antagonist, and an antidepressant is claimed. A<br />

substitute for smok<strong>in</strong>g compris<strong>in</strong>g the composition and a kit<br />

compris<strong>in</strong>g the composition are also claimed. No suitable<br />

advantage is given, and no suitable biological data are<br />

presented. The antidepressant is claimed to be bupropion.<br />

N<br />

CH 3<br />

N<br />

US-20050234024<br />

(Joyce Clarke Liv<strong>in</strong>g Trust)<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

Ulcerative colitis is a common <strong>in</strong>flammatory condition of the<br />

colon that affects <strong>in</strong>dividuals of all ages <strong>in</strong> the developed<br />

world. It has a major impact on the quality of life of those<br />

affected and has an impact on the economy of developed<br />

countries. Furthermore, ulcerative colitis is not well treated,<br />

thus there is a need for an effective therapy, particularly one<br />

that reduces the frequency of hospital admissions.<br />

It is well documented that the <strong>in</strong>cidence of ulcerative colitis<br />

among non-smokers is 3- to 4-fold greater than among smokers<br />

and that nicot<strong>in</strong>e appears to be responsible for this protective<br />

effect. In addition, when tobacco smokers cease smok<strong>in</strong>g,<br />

ulcerative colitis is often precipitated. While nicot<strong>in</strong>e can be<br />

used to treat ulcerative colitis, it is addictive and has many<br />

actions on the cardiovascular system. Some laboratories have<br />

<strong>in</strong>vestigated whether the mechanism of the addictive effect of<br />

nicot<strong>in</strong>e is dist<strong>in</strong>ct from the beneficial action with a view to<br />

develop<strong>in</strong>g a selective agent, although none of these projects<br />

has resulted <strong>in</strong> a cl<strong>in</strong>ically useful agent.<br />

Bupropion is used when smokers are attempt<strong>in</strong>g to reduce<br />

their dependence on nicot<strong>in</strong>e (tobacco), although this drug is<br />

not without adverse events. This disclosure describes an<br />

<strong>in</strong>terest<strong>in</strong>g comb<strong>in</strong>ation for the treatment of ulcerative<br />

colitis, <strong>in</strong> which nicot<strong>in</strong>e is used to treat colitis and<br />

bupropion is used to prevent the depression that occurs on<br />

withdrawal of the nicot<strong>in</strong>e. Whether or not bupropion will<br />

prevent nicot<strong>in</strong>e addiction is unclear. Furthermore, it seems<br />

unlikely that the addition of bupropion will prevent adverse<br />

cardiovascular effects. Thus, much research is required to<br />

see if this approach to the treatment of a disease with much<br />

unmet medical need will have utility.<br />

Cardiovascular & renal<br />

Selected by Hermann AM Mucke (Pharmaceutical<br />

Consultant and Analyst, Vienna, Austria) and Clifford<br />

Whelan (Phlogopharm Ltd, Hatfield, Hertfordshire, UK)<br />

New 4-hydroxycoumar<strong>in</strong> derivatives are vitam<strong>in</strong> K<br />

epoxide reductase <strong>in</strong>hibitors - useful for the treatment of<br />

coagulation disorders<br />

ARYX THERAPEUTICS (Druzgala P, Becker C)<br />

WO-2005100336, 27 October 2005<br />

Novel 4-hydroxycoumar<strong>in</strong> derivatives, their salts and<br />

compositions conta<strong>in</strong><strong>in</strong>g them are claimed. The compounds<br />

are disclosed to be useful for the treatment of coagulation<br />

disorders and to act by <strong>in</strong>hibit<strong>in</strong>g vitam<strong>in</strong> K epoxide<br />

reductase. The compounds are stable, and have a shorter<br />

half-life and a lower <strong>in</strong>cidence of side effects and toxicity<br />

compared with prior art anticoagulants. The effect of several<br />

compounds on vitam<strong>in</strong> K epoxide reductase activity was<br />

determ<strong>in</strong>ed. The specified compound displayed an IC50<br />

value of 5.07 µM. The stability of the compounds to<br />

metabolism by pooled human liver microsomes, conta<strong>in</strong><strong>in</strong>g<br />

both CYP450 and esterase, with or without an NADPH cofactor,<br />

was also determ<strong>in</strong>ed. The specified compound had<br />

stabilities at 90 m<strong>in</strong> of 91 and 96%, respectively, and stability<br />

<strong>in</strong> buffer of 92% at 90 m<strong>in</strong>; both the compound and its<br />

correspond<strong>in</strong>g acid metabolite had no <strong>in</strong>hibitory effect on<br />

human IKr <strong>in</strong> stably transfected HEK-293 cells, nor <strong>in</strong> a broad<br />

cellular and biochemical receptor screen<strong>in</strong>g assay. The<br />

specified compound, 1,1,1,3,3,3-hexafluoro-2-methylpropan-<br />

2-yl 4-((4-hydroxy-2-oxo-2H-chromen-3-yl)methyl)benzoate,<br />

is the only compound specifically claimed for use.


OH<br />

O O<br />

WO-2005100336<br />

(Aryx)<br />

C<br />

H 3<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

Vitam<strong>in</strong> K epoxide reductase recycles the epoxide created by<br />

γ-glutamyl carboxylase before vitam<strong>in</strong> K can be re-used as an<br />

essential cofactor for the post-translational γ-carboxylation of<br />

several blood coagulation factors. Genetic polymorphisms of<br />

this quite recently uncovered enzyme complex could be partly<br />

responsible for the variable response to warfar<strong>in</strong> therapy, but<br />

polymorphisms <strong>in</strong> the CYP2C9 gene, affect<strong>in</strong>g S-warfar<strong>in</strong><br />

clearance, are probably more important. This has<br />

spurred development of warfar<strong>in</strong> analogs (<strong>in</strong>clud<strong>in</strong>g<br />

4-hydroxycoumar<strong>in</strong>s) as more predictable anticoagulants. The<br />

compounds of the <strong>in</strong>vention conta<strong>in</strong> a halogenated ester group,<br />

which makes them more susceptible to degradation by<br />

hydrolases, while reduc<strong>in</strong>g or elim<strong>in</strong>at<strong>in</strong>g their CYP450<br />

metabolism. This should greatly alleviate the problem of drug<br />

<strong>in</strong>teraction, which is also typical for warfar<strong>in</strong>. Such designed<br />

compounds could offer powerful alternatives to the current<br />

platelet aggregation <strong>in</strong>hibitors.<br />

Use of a composition to <strong>in</strong>hibit PUMA function <strong>in</strong><br />

cardiomyocytes - for prevent<strong>in</strong>g or reduc<strong>in</strong>g<br />

ischemia/reperfusion-<strong>in</strong>duced myocardial cell death<br />

BOSTON BIOMEDICAL RESEARCH INSTITUTE (Erhardt P, Toth A)<br />

WO-2005099772, 27 October 2005<br />

The use of a composition to <strong>in</strong>hibit p53 upregulated modulator<br />

of apoptosis (PUMA) function <strong>in</strong> cardiomyocytes is claimed for<br />

prevent<strong>in</strong>g or reduc<strong>in</strong>g ischemia/reperfusion <strong>in</strong>duced<br />

myocardial cell death. The composition is adm<strong>in</strong>istered dur<strong>in</strong>g<br />

or after an ischemic attack, and <strong>in</strong>hibits b<strong>in</strong>d<strong>in</strong>g of PUMA to<br />

Bcl-2 or Bcl-xL. It is claimed that the <strong>in</strong>vention is also useful for<br />

screen<strong>in</strong>g for <strong>in</strong>hibitors of PUMA expression, for prevent<strong>in</strong>g<br />

cell death <strong>in</strong> stem-cell explants <strong>in</strong>tended to restore cardiac<br />

function. The <strong>in</strong>vention provides an effective means of<br />

protect<strong>in</strong>g cardiomyocytes from cell death follow<strong>in</strong>g<br />

myocardial <strong>in</strong>farction. The hearts of PUMA-deficient mice<br />

showed significantly better functional recovery at the end of<br />

reperfusion than hearts from wild-type litter mates, <strong>in</strong>clud<strong>in</strong>g<br />

recovery of left ventricular developed pressure, first derivatives<br />

of left ventricular pressure, and left ventricular end-diastolic<br />

pressure. In addition, the functional recovery of PUMAdeficient<br />

hearts accompanies correspond<strong>in</strong>g <strong>in</strong>hibition of<br />

apoptosis and necrosis as well as reduced <strong>in</strong>farct size. Chemical<br />

structures are provided <strong>in</strong> the source document.<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

Follow<strong>in</strong>g stroke or myocardial <strong>in</strong>farction, cells that are<br />

deprived of a blood supply die. On reperfusion, many cells<br />

that are at risk also die, often as a result of free radical<br />

damage. Whereas cells killed as a direct result of the <strong>in</strong>farct<br />

die from necrosis, those exposed to free radicals may<br />

undergo apoptosis. Thus, an agent that <strong>in</strong>hibits apoptosis<br />

may have utility <strong>in</strong> the acute therapy of ischemic disease.<br />

The p53 gene modulates apoptosis and offers an attractive<br />

O<br />

O<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

Patent alert 9<br />

target for the development of agents that modulate this<br />

process.<br />

This disclosure describes some experiments <strong>in</strong> which mice<br />

deficient <strong>in</strong> the p53 upregulated modulator of apoptosis, a<br />

factor that promotes apoptosis, developed smaller <strong>in</strong>farcts<br />

and showed better recovery <strong>in</strong> a model of myocardial<br />

<strong>in</strong>farction than their wild-type litter mates. Thus, <strong>in</strong><br />

pr<strong>in</strong>ciple, <strong>in</strong>hibition of apoptosis leads to a reduction <strong>in</strong><br />

<strong>in</strong>farct size and improved recovery. The disclosure claims<br />

the use of antisense oligonucleotides as a means of <strong>in</strong>hibit<strong>in</strong>g<br />

apoptosis, although it is not clear how these agents would be<br />

used therapeutically. Patients present cl<strong>in</strong>ically with an<br />

<strong>in</strong>farct, thus any therapy with a long onset of action may not<br />

have utility. Alternatively, the use of such compounds as<br />

prophylactic agents <strong>in</strong> patients with a history of<br />

cardiovascular disease may render these patients susceptible<br />

to the development of tumors, given that many tumors do<br />

not undergo apoptosis as a result of mutations <strong>in</strong> the p53<br />

gene. Thus, while this disclosure is an <strong>in</strong>terest<strong>in</strong>g concept,<br />

further research is required before the utility of the<br />

hypothesis can be tested cl<strong>in</strong>ically.<br />

Central & peripheral nervous system<br />

Selected by Hermann AM Mucke (Pharmaceutical<br />

Consultant and Analyst, Vienna, Austria)<br />

Use of an annex<strong>in</strong> II <strong>in</strong>hibitor - for treat<strong>in</strong>g<br />

neurodegenerative diseases or CNS disorders<br />

QUARK BIOTECH INC/FUJISAWA PHARMACEUTICAL CO LTD<br />

(Fe<strong>in</strong>ste<strong>in</strong> EM, Mett I, Shtutman M)<br />

WO-2005091716, 06 October 2005<br />

A method for treat<strong>in</strong>g neurodegenerative diseases, central<br />

nervous system (CNS) disorders or <strong>in</strong>jury to CNS, for example,<br />

sp<strong>in</strong>al cord <strong>in</strong>jury and traumatic bra<strong>in</strong> <strong>in</strong>jury, compris<strong>in</strong>g<br />

adm<strong>in</strong>ister<strong>in</strong>g a composition of an annex<strong>in</strong> II <strong>in</strong>hibitor is<br />

claimed. The use of an annex<strong>in</strong> II <strong>in</strong>hibitor for promot<strong>in</strong>g or<br />

enhanc<strong>in</strong>g recovery from the claimed diseases and an <strong>in</strong>hibitor<br />

of annex<strong>in</strong> II are also claimed. The neurodegenerative diseases<br />

are claimed to be stroke, hypertension, cerebral vascular<br />

disease, systemic hypotension, Park<strong>in</strong>son's disease, epilepsy,<br />

depression, amyotrophic lateral sclerosis, Alzheimer's disease,<br />

Hunt<strong>in</strong>gton's disease and HIV-<strong>in</strong>duced dementia. A method for<br />

diagnos<strong>in</strong>g neurodegenerative diseases and ischemic events by<br />

detect<strong>in</strong>g the levels of annex<strong>in</strong> II polypeptide is disclosed. The<br />

annex<strong>in</strong> II <strong>in</strong>hibitor is disclosed to <strong>in</strong>hibit neurotoxic-stress<strong>in</strong>duced<br />

apoptosis. No suitable advantage is given, and no<br />

suitable biological data are presented. The annex<strong>in</strong> II <strong>in</strong>hibitor is<br />

claimed to be a compound, for example, sodium nitroprusside<br />

or Tyrphost<strong>in</strong> AG1024, or an antisense polynucleotide.<br />

Chemical sequences are provided <strong>in</strong> the source document.<br />

C<br />

H 3<br />

C<br />

H 3<br />

HO<br />

CH 3<br />

Br<br />

N<br />

WO-2005091716<br />

(Quark Biotech/Fujisawa)<br />

N


10 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

The annex<strong>in</strong>s are a family of highly homologous calcium<br />

and phospholipid b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s. Annex<strong>in</strong> II serves as a<br />

co-receptor for both plasm<strong>in</strong>ogen and tissue plasm<strong>in</strong>ogen<br />

activator on endothelial cells and greatly facilitates the<br />

generation of plasm<strong>in</strong>. Its primary role is believed to be <strong>in</strong><br />

coagulation, although <strong>in</strong>volvement <strong>in</strong> cell-membrane fusion<br />

and cancer <strong>in</strong>vasion has also been demonstrated. This<br />

<strong>in</strong>vention relates to the discovery that the expression of<br />

annex<strong>in</strong> II is <strong>in</strong>volved <strong>in</strong> neuronal apoptosis <strong>in</strong>duced by<br />

oxidative or ischemic stress. Us<strong>in</strong>g stroke-specific neuronal<br />

cDNA subtraction libraries on microarrays prepared from<br />

rats before and after middle cerebral artery occlusion, the<br />

<strong>in</strong>ventors determ<strong>in</strong>ed that the annex<strong>in</strong> II gene is upregulated<br />

with<strong>in</strong> 6 h of ischemia, reaches a maximum at 48 h and can<br />

be repressed <strong>in</strong> vivo by pre-treatment with a specific siRNA.<br />

In situ hybridization demonstrated <strong>in</strong>duction of prote<strong>in</strong><br />

expression on leukocytes and macrophages, but not <strong>in</strong><br />

neurons, which makes the <strong>in</strong>vention less surpris<strong>in</strong>g because<br />

this <strong>in</strong>dicates that the neurotoxic action of annex<strong>in</strong> II is not a<br />

direct one; rather it ties <strong>in</strong>to known mechanisms. Only<br />

detailed functional studies can reveal if this prote<strong>in</strong> could<br />

actually become a drug target or rather should be 'better left<br />

alone' (Blood (2005) 105(5):1845-1846).<br />

New g<strong>in</strong>kgolide derivatives and compositions are<br />

amyloid β prote<strong>in</strong> <strong>in</strong>hibitors - useful for the treatment of<br />

Alzheimer's disease<br />

THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW<br />

YORK (Vitolo OV, Nakanishi K, Shelanski ML, Krane S, Arancio<br />

O, Jaracz S, Berova ND)<br />

WO-2005092324, 06 October 2005<br />

Novel g<strong>in</strong>kgolide derivatives, compositions conta<strong>in</strong><strong>in</strong>g<br />

them, optionally <strong>in</strong> comb<strong>in</strong>ation with an antioxidant,<br />

compositions compris<strong>in</strong>g a mixture of g<strong>in</strong>kgolides, a process<br />

for the extraction of G<strong>in</strong>kgo biloba, and the use of the<br />

compositions for the treatment of neurological and<br />

neurodegenerative disease, especially Alzheimer's disease,<br />

are claimed. The composition produced by the claimed<br />

process is stated to be more efficacious than the currently<br />

available standardized extract Egb-761. Compounds were<br />

tested as <strong>in</strong>hibitors of β-amyloid (1-42) prote<strong>in</strong>-<strong>in</strong>duced<br />

long-term potentiation (LTP) <strong>in</strong> a hippocampal slice assay.<br />

At concentrations of 1 µM, g<strong>in</strong>kgolide J and g<strong>in</strong>kgolide A<br />

both restored long-term potentiation values to control levels,<br />

while neither g<strong>in</strong>kgolide B nor g<strong>in</strong>kgolide C was effective.<br />

Several compounds are specifically claimed for use, for<br />

example, g<strong>in</strong>kgolide J. Compositions conta<strong>in</strong><strong>in</strong>g g<strong>in</strong>kgolide J<br />

and g<strong>in</strong>kgolide A are also claimed.<br />

O<br />

O<br />

H<br />

CH 3<br />

OH CH3 CH<br />

OH 3<br />

O<br />

CH 3<br />

O<br />

O<br />

OH O H<br />

O<br />

WO-2005092324<br />

(Trustees of Columbia University)<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

When extracts from G<strong>in</strong>kgo biloba were first offered as<br />

cognition enhancers several decades ago, their scientific<br />

foundation was extremely narrow, and even a decade ago<br />

our knowledge at the molecular level was limited. Today,<br />

hardly a month passes <strong>in</strong> which the peer-reviewed and<br />

patent literature does not carry new, well-founded<br />

contributions concern<strong>in</strong>g G<strong>in</strong>kgo compounds. That<br />

g<strong>in</strong>kgolide B can block β-amyloid (1-42)-<strong>in</strong>duced<br />

neurotoxicity had been published before, but scientists from<br />

Columbia University have now extended this to g<strong>in</strong>kgolides<br />

A and J. More importantly, they have shown that these<br />

molecules also <strong>in</strong>hibit β-amyloid blockade of neuronal LTP.<br />

At concentrations of 1 µM, g<strong>in</strong>kgolides A and J both restored<br />

LTP <strong>in</strong> hippocampal slices to control levels, while the B- and<br />

C-type molecules were <strong>in</strong>effective. Less than a month before<br />

the pert<strong>in</strong>ent March 2004 priority date, a Ukra<strong>in</strong>ian research<br />

group had published the f<strong>in</strong>d<strong>in</strong>g that 5 µM of g<strong>in</strong>kgolide B<br />

(but not J) completely <strong>in</strong>hibited the <strong>in</strong>duction of<br />

hippocampal LTP (Neurochem Int (2004) 44(3):171-177). LTP<br />

modulation has much more profound therapeutic<br />

implications than simple neuroprotection, and <strong>in</strong> the case of<br />

the g<strong>in</strong>kgolides it might be caused by the <strong>in</strong>terplay of two<br />

mechanisms: blockade of glyc<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g sites and<br />

antagonism of receptors for platelet-activat<strong>in</strong>g factor, a<br />

bioactive lipid that has been proposed to be a retrograde<br />

mediator of LTP.<br />

Endocr<strong>in</strong>e & metabolics<br />

Selected by Peter Norman (Norman Consult<strong>in</strong>g, Burnham,<br />

Bucks, UK)<br />

New sulfonamide derivatives are PPARα agonists -<br />

useful for the treatment of, eg, lipid disorders and<br />

atherosclerosis<br />

PFIZER PRODUCTS INC (Hamanaka ES, Kehrli ME Jr)<br />

WO-2005092845, 06 October 2005<br />

Novel sulfonamide derivatives, their salts or prodrugs,<br />

compositions conta<strong>in</strong><strong>in</strong>g them, optionally <strong>in</strong> comb<strong>in</strong>ation<br />

with additional active <strong>in</strong>gredients, and methods of their use for<br />

the treatment of dyslipidemia, obesity, hypertriglyceridemia,<br />

hyperlipidemia, hypoalphalipoprote<strong>in</strong>emia, metabolic<br />

syndrome, diabetes mellitus, hyper<strong>in</strong>sul<strong>in</strong>emia, impaired<br />

glucose tolerance, <strong>in</strong>sul<strong>in</strong> resistance, diabetic complications,<br />

atherosclerosis, hypertension, coronary heart disease,<br />

hypercholesterolemia, <strong>in</strong>flammation, osteoporosis,<br />

thrombosis, peripheral vascular disease, cognitive<br />

dysfunction or congestive heart failure are claimed. These<br />

compounds are stated to be peroxisome proliferatoractivated<br />

receptor (PPAR) agonists, particularly PPARα<br />

agonists. No suitable advantage is given. The ability of the<br />

compounds to reduce postpartum serum non-esterified fatty<br />

acid (NEFA) and liver triglyceride levels was determ<strong>in</strong>ed <strong>in</strong><br />

calv<strong>in</strong>g dairy cattle follow<strong>in</strong>g dos<strong>in</strong>g (route unspecified) on<br />

alternate days <strong>in</strong> the week prior to calv<strong>in</strong>g and for 8 days<br />

follow<strong>in</strong>g. Several compounds are specifically claimed, for<br />

example, 2-methyl-5-(4'-trifluoromethoxybiphenyl-4-ylsulfamoyl)-benzoic<br />

acid, which significantly (p < 0.01)


educed serum NEFA and liver triglyceride levels at a dose<br />

of 0.5 mg/kg. Functional and anti-atherosclerotic studies are<br />

additionally described, but no result<strong>in</strong>g data are presented.<br />

F<br />

F<br />

F<br />

O<br />

H<br />

N<br />

S<br />

O O<br />

WO-2005092845<br />

(Pfizer)<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

PPAR agonists of vary<strong>in</strong>g specificities have attracted<br />

considerable attention for the treatment of various metabolic<br />

disorders. However, their development has encountered<br />

many problems ow<strong>in</strong>g to side effects and toxicity, lead<strong>in</strong>g to<br />

the abandonment of many compounds and caus<strong>in</strong>g the Food<br />

and Drug Adm<strong>in</strong>istration (FDA) to impose additional<br />

toxicology requirements for this class of compounds. The<br />

FDA's rejection of the dual PPAR agonist muraglitazar has<br />

prompted Bristol-Myers Squibb Co and Merck & Co Inc to<br />

consider discont<strong>in</strong>u<strong>in</strong>g development of the drug. This<br />

application is notable for two reasons: first, Pfizer has shown<br />

limited <strong>in</strong>terest <strong>in</strong> the development of PPAR agonists, and<br />

second, because the acid head group <strong>in</strong> the claimed<br />

compounds is present as a benzoic acid rather than the more<br />

common phenylpropionic acid or its isosteres.<br />

Use of alkyne MCH antagonists - for the treatment of,<br />

eg, obesity, metabolic disorders or diabetes<br />

BOEHRINGER INGELHEIM INTERNATIONAL GMBH (Stenkamp D,<br />

Mueller SG, Lustenberger P, Lehmann-L<strong>in</strong>tz T, Roth GJ, Rudolf<br />

K, Sch<strong>in</strong>dler M, Thomas L, Lotz R)<br />

US-20050234101, 20 October 2005<br />

The use of alkyne derivatives, their tautomers, enantiomers<br />

or salts, or compositions compris<strong>in</strong>g them, to <strong>in</strong>fluence<br />

eat<strong>in</strong>g behavior, reduce body weight or prevent or treat a<br />

metabolic disorder is claimed. The metabolic disorder is<br />

claimed to be selected from the group consist<strong>in</strong>g of bulimia,<br />

bulimia nervosa, cachexia, anorexia, anorexia nervosa or<br />

hyperphagia. The compounds are also claimed to be useful<br />

for the treatment of diabetes, diabetic ret<strong>in</strong>opathy,<br />

neuropathy or nephropathy, <strong>in</strong>sul<strong>in</strong> resistance, cardiac<br />

<strong>in</strong>sufficiency, arteriosclerosis, high blood pressure, arthritis,<br />

hyperlipidemia, mastocytosis, emotional disorders, affective<br />

disorders, depression, anxiety, sleep disorders, reproductive<br />

disorders, sexual disorders, memory disorders, epilepsy,<br />

dementia, hormonal disorders, ur<strong>in</strong>ary <strong>in</strong>cont<strong>in</strong>ence,<br />

hyperactive ur<strong>in</strong>ary bladder, urgency or enuresis, and<br />

dependencies or withdrawal symptoms. The compounds are<br />

stated to act as melan<strong>in</strong> concentrat<strong>in</strong>g hormone (MCH)<br />

antagonists. No specific advantage is given. The activity of<br />

these compounds was assessed <strong>in</strong> an MCH-1 receptorb<strong>in</strong>d<strong>in</strong>g<br />

test. Several compounds are specifically claimed, for<br />

example, (2-{4-[5-(4-chlorophenyl)pyrid<strong>in</strong>-2-ylethynyl]-2methylphenoxy}ethyl)(cyclohexyl)cyclopentylam<strong>in</strong>e,<br />

which<br />

had an IC50 value of 6.2 nM.<br />

O<br />

OH<br />

CH 3<br />

N<br />

O<br />

C<br />

H 3<br />

US-20050234101<br />

(Boehr<strong>in</strong>ger Ingelheim)<br />

N<br />

Patent alert 11<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

Obesity is a major problem <strong>in</strong> all developed countries and is<br />

an underly<strong>in</strong>g causal factor <strong>in</strong> the development of many<br />

other conditions, such as type 2 diabetes and heart disease.<br />

Despite this, there are few approved therapeutic agents for<br />

the treatment of obesity, and none of the currently marketed<br />

drugs are well tolerated. A number of new approaches for<br />

the treatment of obesity are under <strong>in</strong>vestigation and the<br />

development of MCH antagonists is prom<strong>in</strong>ent <strong>in</strong> this<br />

regard. Boehr<strong>in</strong>ger has not previously shown an <strong>in</strong>terest <strong>in</strong><br />

this target; however, this application and WO-2005085221<br />

suggest that this is another research area <strong>in</strong> which the<br />

company is actively <strong>in</strong>volved, and that it is seek<strong>in</strong>g to<br />

expand its metabolic disease portfolio.<br />

New substituted pyrimid<strong>in</strong>e derivatives are DPP-IV<br />

<strong>in</strong>hibitors - useful for treat<strong>in</strong>g, eg, diabetes, cancer,<br />

autoimmune disease, HIV <strong>in</strong>fection and immunodeficiency<br />

SYRRX INC (Feng J, Gwaltney SL, Stafford JA, Zhang Z)<br />

WO-2005095381, 13 October 2005<br />

Novel substituted pyrimid<strong>in</strong>e and related derivatives, a<br />

process for their preparation and methods of their use for<br />

<strong>in</strong>hibit<strong>in</strong>g dipeptidyl peptidase (DPP)-IV and for the<br />

treatment of types 1 and 2 diabetes, cancer (particularly<br />

colorectal, prostate, breast, thyroid, sk<strong>in</strong>, lung or head and<br />

neck cancer), autoimmune disorders (<strong>in</strong>clud<strong>in</strong>g rheumatoid<br />

arthritis, psoriasis and multiple sclerosis), HIV <strong>in</strong>fection,<br />

<strong>in</strong>adequate lymphocyte or hematopoietic cell levels,<br />

chemotherapy or radiation therapy side effects (particularly<br />

kidney failure and bone marrow disorders) and<br />

immunodeficiency are claimed. The compounds are<br />

selective for DPP-IV over other proteases. Protocols for<br />

protease <strong>in</strong>hibition assays are described. The compounds are<br />

stated to exhibit selective DPP-IV <strong>in</strong>hibitory activity at<br />

concentrations of at least 50-fold less than those required to<br />

<strong>in</strong>hibit fibroblast activation prote<strong>in</strong>-α, with Ki values<br />

rang<strong>in</strong>g between 10 -9 and 10 -5 M, but no specific data are<br />

presented. Several compounds are specifically claimed,<br />

<strong>in</strong>clud<strong>in</strong>g 2-(6-[3(R)-am<strong>in</strong>opiperid<strong>in</strong>-1-yl]-3-methyl-2,4-dioxo-<br />

3,4-dihydro-2H-pyrimid<strong>in</strong>-1-ylmethyl)benzonitrile.<br />

N<br />

H 2<br />

N<br />

N<br />

N<br />

O<br />

N<br />

WO-2005095381<br />

(Syrrx)<br />

O<br />

CH 3<br />

Cl


12 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

A number of new approaches to the treatment of diabetes<br />

are be<strong>in</strong>g pursued. Of these, the development of DPP-IV<br />

<strong>in</strong>hibitors is by far the most advanced, with three<br />

compounds (MK-431 (Merck & Co Inc/Banyu<br />

Pharmaceutical Co Ltd/Ono Pharmaceutical Co Ltd),<br />

saxaglipt<strong>in</strong> (Bristol-Myers Squibb Co) and vildaglipt<strong>in</strong><br />

(Novartis Institutes for BioMedical Research Inc)) currently<br />

<strong>in</strong> phase III cl<strong>in</strong>ical trials. These compounds, like nearly all<br />

other DPP-IV <strong>in</strong>hibitors, are based on the almost ubiquitous<br />

2-pyrrolonitrile chemotype. Few other chemotypes have<br />

been described, and the compounds claimed <strong>in</strong> this<br />

application represent a considerable variation <strong>in</strong> this regard.<br />

This difference may be due to the successful exploitation of<br />

structure-aided drug design that is the focus of research at<br />

Takeda San Diego (formerly Syrrx).<br />

Oncological<br />

Selected by Peter Norman (Norman Consult<strong>in</strong>g, Burnham,<br />

Bucks, UK)<br />

New 6-phenylfuro[2,3-d]pyrimid<strong>in</strong>e derivatives are DDR2<br />

tyros<strong>in</strong>e k<strong>in</strong>ase <strong>in</strong>hibitors - useful for the treatment of<br />

rheumatoid arthritis, cirrhosis and cancer<br />

KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY/JEIL<br />

PHARMACEUTICAL CO LTD (Yang B-S, Yang K-M, Kim H-J, Park<br />

I-S, Park S-D, Lee J-H, Kwon H-M, Woo B-Y)<br />

WO-2005092896, 06 October 2005<br />

Novel 6-phenylfuro[2,3-d]pyrimid<strong>in</strong>e derivatives and their<br />

salts, compositions conta<strong>in</strong><strong>in</strong>g them, their use as <strong>in</strong>hibitors<br />

of the discoid<strong>in</strong> doma<strong>in</strong> receptor (DDR)2 tyros<strong>in</strong>e k<strong>in</strong>ase,<br />

and <strong>in</strong> the treatment of hepatocirrhosis, rheumatism and<br />

cancer are claimed. The DDR prote<strong>in</strong> has been reported to<br />

enhance the development of fibroblasts and to show<br />

<strong>in</strong>creased expression <strong>in</strong> metastatic cancer cells. The claimed<br />

compounds are the first low-molecular-weight <strong>in</strong>hibitors of<br />

DDR2 k<strong>in</strong>ase described. In a rat cannulated bile duct model<br />

of cirrhosis, adm<strong>in</strong>istration of one compound (10<br />

mg/kg/day for 2 weeks) <strong>in</strong>hibited hydroxy furor<strong>in</strong><br />

production from 4.93 to 2.23 mg/g (the normal level).<br />

Approximately 200 compounds are exemplified. No<br />

compounds are specifically claimed.<br />

Cl<br />

O<br />

N<br />

CH3 HN<br />

WO-2005092896<br />

(Korea Institute of Science and Technology/Jeil)<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

DDR2 is a widely expressed member of a subfamily of<br />

receptor tyros<strong>in</strong>e k<strong>in</strong>ases whose ligands are fibrillar<br />

collagens. Studies <strong>in</strong> knockout mice suggest that it acts to<br />

regulate cellular proliferation and, for example, fibroblast<br />

signal<strong>in</strong>g. Tyros<strong>in</strong>e k<strong>in</strong>ases <strong>in</strong> this subfamily have attracted<br />

little attention until now, thus the appearance of this<br />

application claim<strong>in</strong>g the first documented <strong>in</strong>hibitors of<br />

N<br />

S<br />

N<br />

N<br />

DDR2 k<strong>in</strong>ase is likely to evoke considerable efforts <strong>in</strong> the<br />

field. The claimed compounds also represent a novel<br />

chemotype of tyros<strong>in</strong>e k<strong>in</strong>ase <strong>in</strong>hibitor, which may have<br />

enhanced selectivity compared with the better characterized<br />

tyros<strong>in</strong>e k<strong>in</strong>ases.<br />

New thioalkeneamide derivatives are transketolase<br />

<strong>in</strong>hibitors - useful for the treatment of cancer<br />

ARRAY BIOPHARMA INC (Boyd SA)<br />

WO-2005095344, 13 October 2005<br />

Novel thioalkeneamide derivatives and their use, either<br />

alone or <strong>in</strong> comb<strong>in</strong>ation with a thiam<strong>in</strong>e-restricted diet<br />

and/or other therapeutic agents, to <strong>in</strong>hibit transketolase<br />

activity and cellular nucleic acid synthesis, and to reduce the<br />

cellular levels of ribulose/ribose-5-phosphate are claimed.<br />

These compounds are also claimed to <strong>in</strong>crease apoptosis <strong>in</strong><br />

tumor cells and to reduce tumor growth. They are stated to<br />

be additionally useful as <strong>in</strong>hibitors of metastasis and<br />

angiogenesis. No suitable advantage is given. Several<br />

compounds are specifically claimed, <strong>in</strong>clud<strong>in</strong>g N-(2-am<strong>in</strong>o-6methylpyrid<strong>in</strong>-3-ylmethyl)-N-{2-[2-[(2-am<strong>in</strong>o-6-methylpyrid<strong>in</strong>-3ylmethyl)formylam<strong>in</strong>o]-1-(2-hydroxyethyl)-propenyl-disulfanyl]-<br />

4-hydroxy-1-methylbut-1-enyl}formamide (AR-00342632), which<br />

had an IC50 value of 10 nM aga<strong>in</strong>st HCT116 colon carc<strong>in</strong>oma<br />

cells <strong>in</strong> vitro.<br />

C<br />

H 3<br />

N<br />

NH 2<br />

C<br />

H 3<br />

N<br />

O<br />

H<br />

S S<br />

OH<br />

OH<br />

H<br />

WO-2005095344<br />

(Array)<br />

N<br />

CH 3<br />

O NH 2<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

Transketolase is a metabolic enzyme that plays a crucial role<br />

<strong>in</strong> tumor cell nucleic acid synthesis, us<strong>in</strong>g glucose through<br />

the elevated non-oxidative pentose phosphate pathway.<br />

Thus, <strong>in</strong>hibitors of this enzyme constitute a novel approach<br />

to the treatment of cancer. To date, this possibility has been<br />

almost completely neglected, with only Array's disclosure of<br />

the activity of AR-00342632 at the 2005 American Chemical<br />

Society meet<strong>in</strong>g, and S*BIO and Chiron's description of the<br />

identification of lead compounds via high-throughput<br />

screen<strong>in</strong>g <strong>in</strong>dicat<strong>in</strong>g any <strong>in</strong>terest. This application was one<br />

of two from Array (see also WO-2005095391). AVEO<br />

Pharmaceuticals published WO-2005094803 claim<strong>in</strong>g such<br />

<strong>in</strong>hibitors on the same day.<br />

New 2-am<strong>in</strong>omethylthiazole-5-carboxamide derivatives<br />

are prote<strong>in</strong> k<strong>in</strong>ase modulators - useful for the treatment<br />

of, eg, neurological disease and cancer<br />

LEXICON GENETICS INC (J<strong>in</strong> H, Shi Z-C, Theis H, Kolb H)<br />

WO-2005097766, 20 October 2005<br />

New 2-am<strong>in</strong>omethylthiazole-5-carboxamide derivatives,<br />

their compositions, and their use for the treatment of, for<br />

example, allergy, cardiovascular disease, cancer, dental<br />

disease, dermatological disease, endocr<strong>in</strong>e disease,<br />

metabolic disorder, gastro<strong>in</strong>test<strong>in</strong>al disease, genitour<strong>in</strong>ary<br />

N<br />

CH 3


disease, hematological disease, hepatobiliary disease,<br />

<strong>in</strong>fection, musculoskeletal disease, neurological disease,<br />

nutritional disorder, ocular disease, psychiatric disorder,<br />

pulmonary disease and leukemia are claimed. It is disclosed<br />

that the compounds can be used for the treatment of<br />

diseases mediated by prote<strong>in</strong> k<strong>in</strong>ase <strong>in</strong>hibition. No suitable<br />

advantage is given. No biological data are presented. The<br />

specified compound is one of several 2-am<strong>in</strong>omethylthiazole-5-carboxamide<br />

compounds specifically claimed.<br />

C<br />

H 3<br />

N<br />

N<br />

S<br />

N<br />

N<br />

H<br />

O<br />

WO-2005097766<br />

(Lexicon Genetics)<br />

CH 3<br />

O CH3<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

Lexicon Genetics is one of several genomics companies that<br />

has switched its bus<strong>in</strong>ess strategy to pursue the<br />

development of small-molecule therapeutics. In January<br />

2005, Lexicon Genetics <strong>in</strong>dicated that it had identified two<br />

small-molecule candidates, the more advanced of which<br />

(LX-1521) is an anti-apoptotic k<strong>in</strong>ase <strong>in</strong>hibitor discovered<br />

from Lexicon's LG152 k<strong>in</strong>ase target program. Until October<br />

2005, Lexicon Genetics had not published any patent<br />

applications claim<strong>in</strong>g k<strong>in</strong>ase <strong>in</strong>hibitors. The appearance of<br />

this application and WO-2005095420, which claims<br />

thiazolopyrazoles, provides the first <strong>in</strong>dication as to the<br />

chemical strategy that is be<strong>in</strong>g pursued.<br />

New 3-am<strong>in</strong>opyrazole derivatives are tropomyos<strong>in</strong>related<br />

k<strong>in</strong>ase <strong>in</strong>hibitors - useful for the treatment of<br />

cancer and fibroproliferative/differentiative disorders<br />

ASTRAZENECA AB/ASTRAZENECA UK LTD (Lyne P, Wang B,<br />

Wang T)<br />

WO-2005103010, 03 November 2005<br />

Novel 3-am<strong>in</strong>opyrazole derivatives, their salts, processes for<br />

their preparation, compositions conta<strong>in</strong><strong>in</strong>g them and<br />

methods of their use as tropomyos<strong>in</strong>-related k<strong>in</strong>ase (Trk)<br />

<strong>in</strong>hibitors for the treatment of cancers, fibroproliferative/<br />

differentiative disorders, psoriasis, rheumatoid arthritis,<br />

Patent alert 13<br />

Kaposi's sarcoma, hemangioma, nephropathy, atheroma,<br />

atherosclerosis, arterial restenosis, autoimmune disease,<br />

<strong>in</strong>flammation, bone disease or ocular disease with ret<strong>in</strong>al<br />

vessel proliferation are claimed. The compounds are<br />

particularly stated to <strong>in</strong>hibit TrkA and TrkB activity. No<br />

suitable advantage is given. The ability of compounds to<br />

<strong>in</strong>hibit TrkA and TrkB activity was determ<strong>in</strong>ed <strong>in</strong> vitro us<strong>in</strong>g<br />

an amplified lum<strong>in</strong>escent proximity assay and appropriate<br />

biot<strong>in</strong>ylated polypeptide substrates. Compounds are stated<br />

to have IC50 values of 0.01 to 10 µM aga<strong>in</strong>st TrkB activity. No<br />

specific biological data aga<strong>in</strong>st TrkB are presented. Six<br />

compounds are specifically claimed, for example, (R)-4-(5cyclopropyl-1H-pyrazol-3-ylam<strong>in</strong>o)-2-[1-(4-fluorophenyl)-<br />

2-hydroxyethylam<strong>in</strong>o]-5-nitrobenzonitrile, which had an<br />

IC50 value of 0.859 µM aga<strong>in</strong>st TrkA.<br />

F<br />

HO<br />

N<br />

H<br />

N<br />

H<br />

N<br />

N<br />

WO-2005103010<br />

(AstraZeneca)<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong><br />

TrkA and TrkB are two members of the Trk proto-oncogene<br />

family and thus constitute logical targets for the<br />

development of novel anticancer agents. Despite this,<br />

relatively few small-molecule <strong>in</strong>hibitors of these k<strong>in</strong>ases<br />

have been described to date, and, of those that have, a<br />

number are broad-spectrum k<strong>in</strong>ase <strong>in</strong>hibitors. AstraZeneca<br />

is the first company to describe compounds that appear to<br />

be specific <strong>in</strong>hibitors of these k<strong>in</strong>ases, and which also<br />

represent a fairly novel k<strong>in</strong>ase <strong>in</strong>hibitor chemotype. This<br />

application claims compounds similar to those<br />

claimed <strong>in</strong> the application WO-2005049033, but employs<br />

pyrazolyl-am<strong>in</strong>obenzene derivatives rather than pyrazolylam<strong>in</strong>opyrimid<strong>in</strong>es.<br />

NH<br />

N +<br />

O<br />

O


14<br />

Editorial overview<br />

The genome: Five years on<br />

Michael Williams<br />

Address<br />

Department of Molecular Pharmacology and Biological Chemistry<br />

Fe<strong>in</strong>berg School of Medic<strong>in</strong>e<br />

Northwestern University<br />

Chicago<br />

IL 60611<br />

USA<br />

Email: mazar<strong>in</strong>e1643@comcast.net<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):14-17<br />

© The Thomson Corporation ISSN 1472-4472<br />

In 2001, one of the major milestones <strong>in</strong> the history of<br />

biomedical research was achieved, namely the publication of<br />

draft maps of the human genome [1,2], an activity that was<br />

reportedly completed <strong>in</strong> 2003 [3]. This was <strong>in</strong>evitably<br />

accompanied by various predictions that the discrete<br />

molecular source of all human diseases would soon be<br />

known [4-6] and, as a consequence, that the path to the<br />

discovery of novel, more efficacious and safer drugs, based<br />

on as yet unknown and unproven targets resident <strong>in</strong> the<br />

genome, would be exponentially more facile, more<br />

productive, faster and cheaper, ow<strong>in</strong>g to the unique diseaseassociation<br />

of the targets. The then US President, Bill<br />

Cl<strong>in</strong>ton, predicted that 'with this new found knowledge,<br />

humank<strong>in</strong>d is on the verge of ga<strong>in</strong><strong>in</strong>g immense new power<br />

to heal' [7]. Conversely, recent research by Accenture/CMR<br />

International notes that 'only 3% of projects aimed at new<br />

targets will enter precl<strong>in</strong>ical development compared with<br />

17% for projects on established targets' [8].<br />

Almost five years later, an <strong>in</strong>formal survey of 500 scientists<br />

<strong>in</strong>volved <strong>in</strong> the drug discovery process found that 67% were<br />

unconv<strong>in</strong>ced that the genome maps had 'even moderate<br />

effects on drug research' [9]. Similarly, biotechnology<br />

<strong>in</strong>dustry observers and genomic scientists cautioned that the<br />

promised 'fruits of genomics' [10] are unlikely to emerge <strong>in</strong><br />

the near future, with a 10 to 20 year timeframe be<strong>in</strong>g<br />

considered more likely [11].<br />

Additionally, <strong>in</strong> follow<strong>in</strong>g the theme of us<strong>in</strong>g novel<br />

approaches to f<strong>in</strong>d<strong>in</strong>g new drugs, <strong>in</strong> this same group of 500<br />

scientists, 64% 'considered that their organization, at best,<br />

only supported <strong>in</strong>novation to a moderate extent' [9], echo<strong>in</strong>g<br />

similar comments made by Drews [12] and Vagelos [13].<br />

This f<strong>in</strong>d<strong>in</strong>g <strong>in</strong>dicated a disconnect between the concept of<br />

<strong>in</strong>novation−'the act of <strong>in</strong>troduc<strong>in</strong>g someth<strong>in</strong>g new'−that is<br />

religiously cited as the driver for drug discovery [8,14], and<br />

the rampant technology acquisition and implementation <strong>in</strong><br />

the biotech and pharmaceutical <strong>in</strong>dustries over the past<br />

decade. Clearly, the acquisition of enabl<strong>in</strong>g technologies is<br />

very dist<strong>in</strong>ct from their effective use and subsequent ability<br />

to impact the way th<strong>in</strong>gs are done. In reflect<strong>in</strong>g on the<br />

contributions of the late Paul Janssen to the pharmaceutical<br />

<strong>in</strong>dustry, Black noted that successful drug discovery should<br />

avoid 'wishful th<strong>in</strong>k<strong>in</strong>g' and superficiality, and focus <strong>in</strong>stead<br />

on conception, concentration, commitment and creativity<br />

[15]. In this context, the strategic management of the<br />

drug-discovery process appears critical to support the<br />

process of <strong>in</strong>novation and entrepreneurship [16] to ensure<br />

that the enabl<strong>in</strong>g technologies actually contribute to, rather<br />

than diffuse, the focus.<br />

As with many of the new technologies <strong>in</strong> biomedical<br />

research, the expectations for genome-based <strong>in</strong>formation<br />

have far outweighed their fledgl<strong>in</strong>g status with 'overhyp<strong>in</strong>g'<br />

be<strong>in</strong>g a frequently expressed concern [17-20]. Genetics was<br />

described as a 'science of exceptions' by Jones <strong>in</strong> 2000, with<br />

human life expectancy far more dependent on the<br />

environment (epigenetics) than the genome (genetics) [17].<br />

Jones also noted that geneticists have made promises<br />

regard<strong>in</strong>g the deliverables <strong>in</strong> genetics for decades,<br />

controversially suggest<strong>in</strong>g that four letters of the genetic<br />

code might more reasonably be H, Y, P and E.<br />

However, hype related to new technology <strong>in</strong>troductions is not<br />

unique to either the genome or biomedical research and has<br />

been formalized <strong>in</strong> Fenn's 'hype cycle' (Figure 1) [21]. Initially<br />

used <strong>in</strong> 1995, the concept has been more broadly extended to<br />

the maturity and adoption rates of a wide range of emerg<strong>in</strong>g<br />

technologies <strong>in</strong> different <strong>in</strong>dustries. The question for the<br />

genome-based, biomedical research enterprise <strong>in</strong> 2006 is where<br />

genome-based drug discovery currently lies on the maturity<br />

scale. One may argue that the thought leaders <strong>in</strong> genomics are<br />

still operat<strong>in</strong>g <strong>in</strong> the 'peak of <strong>in</strong>flated expectations', while those<br />

reduc<strong>in</strong>g the genome to practice (by fiat or choice) <strong>in</strong> pharma<br />

and biotech are operat<strong>in</strong>g <strong>in</strong> the 'trough of disillusionment'<br />

(Figure 1) [9]. The sceptics are at least ahead of the pundits on<br />

the hype cycle abscissa of maturity.<br />

While many heritable disorders have already been identified <strong>in</strong><br />

which a mutation <strong>in</strong> a s<strong>in</strong>gle gene is necessary and sufficient to<br />

produce a disease, critics of genome-based drug discovery have<br />

po<strong>in</strong>ted out that the genetic associations for Hunt<strong>in</strong>gton's<br />

disease [22], sickle cell anemia [23] and cystic fibrosis [24] were<br />

known before the mapp<strong>in</strong>g of the genome and, despite the<br />

identification of discrete molecular lesions <strong>in</strong>volv<strong>in</strong>g these<br />

associations, have yet to yield effective treatments. Similarly, <strong>in</strong><br />

the Alzheimer's disease (AD) field, the two key mechanisms<br />

thought to contribute to disease progression and neuronal<br />

death−amyloid β deposition and tau hyperphosphorylation<br />

[25]−together with the genetic association of AD with<br />

apolipoprote<strong>in</strong> E alleles [26], have been active research targets<br />

for many years with, aga<strong>in</strong>, little progress hav<strong>in</strong>g been made <strong>in</strong><br />

either understand<strong>in</strong>g the orig<strong>in</strong> and contribution of the<br />

molecular lesion to disease etiology or how this knowledge can<br />

be used to f<strong>in</strong>d effective treatments. Of additional concern <strong>in</strong><br />

the area of AD therapeutics is that the National Institute for<br />

Health and Cl<strong>in</strong>ical Excellence <strong>in</strong> the UK has recently<br />

recommended that the drugs currently approved for use <strong>in</strong> the<br />

treatment of AD (eg, donezepil) are no longer prescribed,<br />

because their benefit to the patient does not justify their cost<br />

[27]; the implications of this recommendation represent part of<br />

a much broader debate [28].


Figure 1. The hype cycle.<br />

Visibility<br />

Technology<br />

trigger<br />

Positive<br />

hype<br />

Don't jo<strong>in</strong> <strong>in</strong> just because it's '<strong>in</strong>'<br />

Peak of <strong>in</strong>flated<br />

expectations<br />

Negative<br />

hype<br />

Don't miss out just because it's 'out'<br />

Trough of<br />

disillusionment<br />

Maturity<br />

Slope of<br />

enlightenment<br />

Plateau of<br />

productivity<br />

Editorial overview 15<br />

Technology trigger: a breakthrough technology that generates significant <strong>in</strong>terest and rampant acquisition and deal mak<strong>in</strong>g and claims to<br />

revolutionize the future of drug discovery.<br />

Peak of <strong>in</strong>flated expectations: a phase of over enthusiasm and unrealistic predictions <strong>in</strong> the press, dur<strong>in</strong>g which successes <strong>in</strong> terms of<br />

<strong>in</strong>vestigational new drugs are <strong>in</strong>frequent. Conference organizers reap the benefits from organiz<strong>in</strong>g frequent 'updates' on the usefulness and<br />

utilization of the technology with speakers who spend the majority of their time attend<strong>in</strong>g such conferences and are thus removed from the<br />

practicalities of try<strong>in</strong>g to use the technology effectively.<br />

Trough of disillusionment: the technology s<strong>in</strong>ks from the limelight as it did not live up to its over-<strong>in</strong>flated expectations; technocrats and<br />

research management move onto the next technology trigger <strong>in</strong> the hope that this will be 'the one'. The phenomenon of hype addiction is<br />

apparent.<br />

Slope of enlightenment: additional focused research leads to a true understand<strong>in</strong>g of the utility of the technology (eg, parallel synthesis<br />

versus comb<strong>in</strong>atorial chemistry).<br />

Plateau of productivity: the practical benefits of the technology are widely demonstrated and accepted. It is found to make a big difference<br />

just as those who are long gone said they thought it would (modified from reference [45]).<br />

(Reproduced with permission from Gartner and L<strong>in</strong>den A, Fenn J: Understand<strong>in</strong>g Gartner's Hype Cycles. Research ID R-20-197, Gartner,<br />

Stamford, CT, USA. © 2003 Gartner) [21].<br />

Additional examples of tantaliz<strong>in</strong>g gene associations with<br />

disease phenotypes that have already been established, yet<br />

rema<strong>in</strong> controversial, are: the dopam<strong>in</strong>e transporter and<br />

attention-deficit hyperactivity disorder [29], the breast<br />

cancer gene and cancer [30], the cystic fibrosis<br />

transmembrane conductance regulator and cystic fibrosis<br />

[31], and α1 antitryps<strong>in</strong> deficiency and chronic obstructive<br />

pulmonary disease [32].<br />

An <strong>in</strong>terest<strong>in</strong>g observation regard<strong>in</strong>g the perceived<br />

commercial value of the genome, albeit an extremely shortterm<br />

view, is that the majority of the high-profile<br />

genomic/genetics companies founded <strong>in</strong> the 1990s<br />

[33]−Celera, Human Genome Sciences, Incyte, Millennium,<br />

Exelexis, Curagen and Genset−have either dramatically<br />

changed their bus<strong>in</strong>ess model toward that of more<br />

traditional biotechs (eg, small-molecule and/or biologicals<br />

drug discovery) or ceased to exist, leav<strong>in</strong>g only Myriad<br />

Genetics <strong>in</strong> Salt Lake City, USA and DeCode genetics, based<br />

primarily <strong>in</strong> Reykjavik, Iceland, as the rema<strong>in</strong><strong>in</strong>g two<br />

players of note <strong>in</strong> the field of genome-based medic<strong>in</strong>e, each<br />

build<strong>in</strong>g on unique access to discrete patient populations<br />

with extensive genealogical and genetic records: members of<br />

the Mormon Church <strong>in</strong> Salt Lake City, and the population of<br />

Iceland <strong>in</strong> Reykjavik.<br />

With an <strong>in</strong>creas<strong>in</strong>g recognition of the significant challenges<br />

<strong>in</strong>herent <strong>in</strong> translat<strong>in</strong>g genomic <strong>in</strong>formation to practice (the<br />

99% perspiration part of the def<strong>in</strong>ition of genius ascribed to<br />

Thomas Edison), thought leaders have had no compunction<br />

<strong>in</strong> leav<strong>in</strong>g the <strong>in</strong>complete bus<strong>in</strong>ess of the genome beh<strong>in</strong>d to<br />

focus their attentions on the many other 'omics' that exist<br />

beyond the genome. These <strong>in</strong>clude proteomics [34], which<br />

provides even bigger technical challenge than genomics,<br />

given an <strong>in</strong>f<strong>in</strong>itely more complex data set full of labile<br />

unknowns dependent on post-translational modification<br />

(such as phosphorylation, glycosylation and splic<strong>in</strong>g) and<br />

the need for extensive subproteomic analysis based on the<br />

current limitations of mass spectrometroscopic-based<br />

analytical capabilities that lag far beh<strong>in</strong>d the questions be<strong>in</strong>g<br />

posed [35,36].<br />

The latest of the 'omic' sciences is that of the '<strong>in</strong>teractome'<br />

[37], an evolv<strong>in</strong>g collection of b<strong>in</strong>ary prote<strong>in</strong>-prote<strong>in</strong>


16 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

<strong>in</strong>teractions that may form the scaffold for functional genomics<br />

and proteomics, that has emerged from the recently published<br />

draft of the human haplotype map (HapMap) [37,38]. HapMap<br />

is anticipated to 'provide <strong>in</strong>sight <strong>in</strong>to development and disease<br />

mechanisms at a systems level' and to facilitate genome-wide<br />

association studies, represent<strong>in</strong>g a major step forward <strong>in</strong><br />

understand<strong>in</strong>g human disease etiology, provided that the same<br />

concerns regard<strong>in</strong>g data replication that are prevalent <strong>in</strong> the<br />

genome [39], and more so <strong>in</strong> the proteome [36], are not a<br />

function of the enhanced complexity and practice of the<br />

<strong>in</strong>teractome [40].<br />

While there is early enthusiasm for the promise of the<br />

<strong>in</strong>teractome (the 'technology trigger' phase of the hype cycle)<br />

Sharon Begley of the Wall Street Journal (who brought the<br />

world the parts model of the Boe<strong>in</strong>g 777 as a metaphor for<br />

the reductionistic approach to decipher<strong>in</strong>g the genome) [41]<br />

has questioned the 'limited' value of the HapMap [19] <strong>in</strong> the<br />

context of tw<strong>in</strong> studies [42] <strong>in</strong> which identical DNA and<br />

haplotypes lead to different phenotypes.<br />

Dur<strong>in</strong>g the course of this year, <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong><br />

<strong>Investigational</strong> <strong>Drugs</strong> hopes to present a series of Editorials,<br />

written or suggested by members of its Editorial Board, that<br />

are focused on the challenges and progress <strong>in</strong> utiliz<strong>in</strong>g<br />

<strong>in</strong>formation from the genome and its 'omic' progeny <strong>in</strong> the<br />

context of both discrete therapeutic areas and genomeassociated<br />

technology platforms. In an era of considerable<br />

scepticism as to the value of new biologies [9,18] and their<br />

ability to be <strong>in</strong>tegrated with more traditional approaches to<br />

drug discovery [43], the capacity of these discipl<strong>in</strong>es to add<br />

to the solutions, rather than the problems that are deemed to<br />

be contribut<strong>in</strong>g to the dearth of new drug <strong>in</strong>troductions [8,<br />

43,44], will be reviewed.<br />

Suggested read<strong>in</strong>g<br />

1. Lander ES, L<strong>in</strong>ton LM, Birren B, Nusbaum C, Zody MC, Baldw<strong>in</strong> J,<br />

Devon K, Dewar K, Doyle M, Fitz Hugh W, Funke R et al: Initial<br />

sequenc<strong>in</strong>g and analysis of the human genome. Nature (2001)<br />

409(6822):860-921.<br />

2. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith<br />

HO, Yandell M, Evans CA, Holt RA, Gocayne JD et al: The sequence<br />

of the human genome. Science (2001) 291(5507):1304-1351.<br />

3. Coll<strong>in</strong>s FS, Morgan M, Patr<strong>in</strong>os A: The human genome project:<br />

Lessons from large-scale biology. Science (2003) 300(5617):286-<br />

290.<br />

4. Moore SD: Biotechnology executives discuss the impact of the<br />

genetic revolution. Wall Street Journal (2000) July 24:B10-B11.<br />

5. Coll<strong>in</strong>s FS, Green ED, Guttmacher AE, Guyer MS: A vision for the<br />

future of genomics research. Nature (2003) 422(6934):835-847.<br />

6. Stoughton RB, Friend SH: How molecular profil<strong>in</strong>g could<br />

revolutionize drug discovery. Nat Rev Drug Discov (2005) 4(4):345-<br />

350.<br />

7. Belk<strong>in</strong> L: A doctor for the future. New York Times Magaz<strong>in</strong>e (2005)<br />

November 06:68-115.<br />

8. Carney S: How can we avoid the productivity gap? Drug Disc Today<br />

(2005) 10(15):1011-1013.<br />

9. Carney S: Question: What do you call 500 scientists com<strong>in</strong>g<br />

together to address the productivity gap? Answer: A start. Drug<br />

Disc Today (2005) 10(15):1025-1029.<br />

10. Lehman Brothers/McK<strong>in</strong>sey & Co: The Fruits of Genomics. New York,<br />

NY, USA (2001) January.<br />

11. Weatherall D: Personalised medic<strong>in</strong>es: Hopes and realities. Royal<br />

Society, London, UK (2005):1-52.<br />

12. Drews J: Strategic trends <strong>in</strong> the drug <strong>in</strong>dustry. Drug Disc Today<br />

(2003) 8(9):411-420.<br />

13. Osbourne E: After plateau, 'big growth phase' due for<br />

biotechnology: Vagelos. BioWorld Today (2005): May 25.<br />

14. Frantz S: Europe fiddles while <strong>in</strong>novation burns. Nat Rev Drug<br />

Discov (2005) 4(9):704-705.<br />

15. Black J: A personal perspective on Dr Paul Janssen. J Med Chem<br />

(2005) 48(6):1687-1688.<br />

16. Sams-Dodd F: Optimiz<strong>in</strong>g the discovery organization for<br />

<strong>in</strong>novation. Drug Disc Today (2005) 10(15):1049-1056.<br />

17. Jones S: Genetics <strong>in</strong> Medic<strong>in</strong>e: Real Promises, Unreal<br />

Expectations. Milbank Memorial Fund Report (2000) 9:June.<br />

18. Kub<strong>in</strong>yi H: Drug research: Myths, hype and reality. Nat Rev Drug<br />

Discov (2003) 2(8):665-668.<br />

19. Guttmacher AE, Coll<strong>in</strong>s FS: Realiz<strong>in</strong>g the promise of genomics <strong>in</strong><br />

biomedical research. J Am Med Assoc (2005) 294(11):1399-1402.<br />

20. Begley S: L<strong>in</strong>k<strong>in</strong>g DNA profiles to diseases may not lead to<br />

prevention. Wall Street Journal (2005) November 04:B1.<br />

21. L<strong>in</strong>den A, Fenn J: Understand<strong>in</strong>g Gartner's hype cycles. Research ID<br />

R-20-197, Gartner, Stamford, CT, USA (2003).<br />

22. Marx J: Neurodegeneration: Hunt<strong>in</strong>gton's research po<strong>in</strong>ts to<br />

possible new therapies. Science (2005) 310(5745):43-45.<br />

23. Edwards CL, Scales MT, Loughl<strong>in</strong> C, Bennett GG, Harris-Peterson S,<br />

De Castro LM, Whitworth E, Abrams M, Feliu M, Johnson S, Wood M et<br />

al: A brief review of the pathophysiology, associated pa<strong>in</strong>, and<br />

psychosocial issues <strong>in</strong> sickle cell disease. Int J Behav Med (2005)<br />

12(3):171-179.<br />

24. Rubenste<strong>in</strong> RC: Novel, mechanism-based therapies for cystic<br />

fibrosis. Curr Op<strong>in</strong> Pediatr (2005) 17(3):385-392.<br />

25. Forman MS, Trojanowski JQ, Lee VM-Y: Neurodegenerative<br />

diseases: A decade of discoveries paves the way for therapeutic<br />

breakthroughs. Nat Med (2004) 10(10):1055-1063.<br />

26. Fenili D, McLaur<strong>in</strong> J: Cholesterol and ApoE: A target for Alzheimer's<br />

disease therapeutics. Curr Drug Targets CNS Neurol Disord (2005)<br />

4(5):553-567.<br />

27. Whalen J: Brita<strong>in</strong> stirs outcry by weigh<strong>in</strong>g benefits of drugs versus<br />

price. Wall Street Journal (2005) November 27:A1-A11.<br />

28. Avorn J: Powerful Medic<strong>in</strong>es: The Benefits, Risks and Costs of<br />

Prescription <strong>Drugs</strong>. Knopf, New York, NY, USA (2004):1-464.<br />

29. Langley K, Turic D, Peirce TR, Mills S, Van Den Bree MB, Owen MJ,<br />

O'Donovan MC, Thapar A: No support for association between the<br />

dopam<strong>in</strong>e transporter (DAT1) gene and ADHD. Am J Med Genetics<br />

Part B: Neuropsychiatric Genetics (2005) 139(1):7-10.<br />

30. Couz<strong>in</strong> J: Choices−and uncerta<strong>in</strong>ties−for women with BRCA<br />

mutations. Science (2003) 302(5645):592.<br />

31. Des Georges M, Guittard C, Altieri J-P, Templ<strong>in</strong> C, Sarles J, Sarda P,<br />

Claustres M: High heterogeneity of CFTR mutations and unexpected<br />

low <strong>in</strong>cidence of cystic fibrosis <strong>in</strong> Mediterranean France. J Cystic<br />

Fibrosis (2004) 3(4):265-272.<br />

32. DeMeo DL, Silverman EK: Genetics of chronic obstructive pulmonary<br />

disease. Sem<strong>in</strong> Respir Crit Care Med (2003) 24(2):151-160.<br />

33. Rab<strong>in</strong>ow P: French DNA. University of Chicago Press, Chicago, IL,<br />

USA (1999).<br />

34. Figuys D: Proteomics: The basic overview. In: Industrial Proteomics:<br />

Applications for Biotechnology and Pharmaceuticals. John Wiley & Sons<br />

Inc, New York, NY, USA (2005):1-62.


35. Huber LA: Is proteomics head<strong>in</strong>g <strong>in</strong> the wrong direction? Nat Rev<br />

Mol Cell Biol (2003) 4(1):74-80.<br />

36. Kopec K, Bozyczko-Coyne D, Williams M: Target identification and<br />

validation <strong>in</strong> drug discovery: The role of proteomics. Biochem<br />

Pharmacol (2005) 69(8):1133-1139.<br />

37. Rual J-F, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N,<br />

Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord M et<br />

al: Towards a proteome-scale map of the human prote<strong>in</strong>-prote<strong>in</strong><br />

<strong>in</strong>teraction network. Nature (2005) 437(7062):1173-1178.<br />

38. Altshuler D, Brooks LD, Chakravarti A, Coll<strong>in</strong>s FS, Daly MJ, Donnelly P,<br />

International HapMap Consortium: A haplotype map of the human<br />

genome. Nature (2005) 437(7063):1299-1320.<br />

39. Williams M: Genome-based drug discovery: Prioritiz<strong>in</strong>g disease<br />

susceptibility/disease-associated genes as novel drug targets for<br />

schizophrenia. Curr Op<strong>in</strong> Investig <strong>Drugs</strong> (2003) 4(1):31-36.<br />

Editorial overview 17<br />

40. Kruglyak L: Power tools for human genetics. Nat Genet (2005)<br />

37(12):1299-1300.<br />

41. Begley S: Biologists hail dawn of a new approach: Don't shoot the<br />

radio. Wall Street Journal Marketplace (2003) February 21:B1.<br />

42. Wong AHC, Gottesman II, Petronis A: Phenotypic differences <strong>in</strong><br />

genetically identical organisms: The epigenetic perspective. Hum<br />

Mol Genet (2005) 14(1):R11-R18.<br />

43. Williams M: Systems and <strong>in</strong>tegrative biology as alternative guises<br />

for pharmacology: Prime time for an iPharm concept? Biochem<br />

Pharmacol (2005) 70(12):1707-1716.<br />

44. Milne GM Jr: Pharmaceutical productivity - the imperative for new<br />

paradigms. Ann Rep Med Chem (2003) 38:383-396.<br />

45. McFedries P: Hype cycle. Word Spy (2001) November 29.<br />

www.wordspy.com/words/hypecycle.asp


18<br />

Editorial overview<br />

Steroid therapy for exudative age-related macular degeneration: Bridg<strong>in</strong>g<br />

the gap until a cure is found<br />

Maneli Mozaffarieh & Andreas Wedrich*<br />

Address<br />

Department of Ophthalmology<br />

Medical University of Graz<br />

Auenbruggerplatz 4<br />

A-8036 Graz<br />

Austria<br />

Email: andreas.wedrich@meduni-graz.at<br />

* To whom correspondence should be addressed<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):18-19<br />

© The Thomson Corporation ISSN 1472-4472<br />

Age-related macular degeneration (AMD) is a devastat<strong>in</strong>g<br />

disease affect<strong>in</strong>g <strong>in</strong>dividuals of over 50 years of age, and is<br />

the lead<strong>in</strong>g cause of irreversible bl<strong>in</strong>dness <strong>in</strong> the developed<br />

world [1,2]. It is estimated that 1.6% of the population <strong>in</strong> the<br />

50- to 65-year-old age group is affected, and <strong>in</strong> the UK there<br />

are 16,000 new cases per year. The implications of this<br />

untreatable disease <strong>in</strong> terms of social impact, healthcare<br />

costs and personal misery are considerable. <strong>Current</strong><br />

treatments for both the wet and dry forms of the disease are<br />

of limited efficacy [3], and, therefore, there is keen <strong>in</strong>terest<br />

among scientists and physicians to develop new therapies.<br />

Corticosteroids have long been the cornerstone of ocular<br />

anti-<strong>in</strong>flammatory therapy. In addition, they can suppress<br />

cell proliferation. Consequently, steroids have been used for<br />

the treatment of several ocular diseases, adm<strong>in</strong>istered either<br />

locally or systemically. In recent years, one particular<br />

steroid, triamc<strong>in</strong>olone acetonide, has received much<br />

attention from scientists. Various researchers studied the<br />

possibility of <strong>in</strong>ject<strong>in</strong>g this corticosteroid directly <strong>in</strong>to the<br />

eye, firstly <strong>in</strong> animals [4,5] and later <strong>in</strong> selected patients. The<br />

<strong>in</strong>travitreal use of this corticosteroid ga<strong>in</strong>ed popularity<br />

amongst ophthalmologists for the treatment of a wide range<br />

of ret<strong>in</strong>al diseases, <strong>in</strong>clud<strong>in</strong>g diabetic and cystoid macular<br />

edema and exudative AMD.<br />

Steroids, along with the majority of other drugs, do not exert<br />

solely beneficial effects. One common side effect is the rise of<br />

<strong>in</strong>traocular pressure (IOP) that is associated with steroid use.<br />

This issue was addressed <strong>in</strong> a study where a group of<br />

known steroid responders were treated with four different<br />

steroids topically [6]. The results of this study showed that<br />

IOP did not beg<strong>in</strong> to <strong>in</strong>crease until after 3 and 5 weeks of<br />

treatment. The beauty of this f<strong>in</strong>d<strong>in</strong>g for ophthalmologists<br />

was that <strong>in</strong> the worst-case scenario, there rema<strong>in</strong>s a 3-week<br />

w<strong>in</strong>dow of relative safety when treat<strong>in</strong>g with a topical<br />

ophthalmic corticosteroid. Moreover, almost all patients<br />

with primary-care conditions respond to treatment <strong>in</strong> less<br />

than 2 weeks when the steroid is applied topically.<br />

Therefore, should we be concerned about the risk of IOP<br />

elevation after triamc<strong>in</strong>olone acetonide <strong>in</strong>travitreal use for<br />

exudative AMD? Furthermore, do we <strong>in</strong>crease the chances<br />

of improved vision for patients <strong>in</strong> the long term when<br />

<strong>in</strong>ject<strong>in</strong>g this steroid through the <strong>in</strong>travitreal route? The<br />

results of some of the research that has been conducted <strong>in</strong><br />

this area show that even 4 mg of <strong>in</strong>travitreal triamc<strong>in</strong>olone<br />

significantly raises IOP [7,8]. In one particular study, the<br />

researchers describe us<strong>in</strong>g 25 mg of triamc<strong>in</strong>olone for<br />

<strong>in</strong>travitreal <strong>in</strong>jections [9], which may <strong>in</strong>crease IOP even more<br />

significantly. The <strong>in</strong>vestigators suggested that the advantage of<br />

a higher dose would be the longer <strong>in</strong>traocular availability of the<br />

drug [10], rather than the temporary visual improvements<br />

encountered <strong>in</strong> patients after <strong>in</strong>travitreal <strong>in</strong>jections [8], despite<br />

the possible side effects. It appears that our scientific<br />

enthusiasm for possible visual improvements <strong>in</strong> exudative<br />

AMD with steroid <strong>in</strong>jections has forced us to step sideways.<br />

Indeed, various studies suggest that <strong>in</strong> exudative AMD, the<br />

modes of action of triamc<strong>in</strong>olone are l<strong>in</strong>ked to the<br />

downregulation of <strong>in</strong>flammatory markers and endothelial<br />

cell permeability [11,12]. However, moderate-to-high<br />

concentrations of this drug would be required at the site of<br />

action <strong>in</strong> order to prevent further growth of subret<strong>in</strong>al<br />

neovascular tissue. For patients, this requirement would mean<br />

that triamc<strong>in</strong>olone must be <strong>in</strong>jected repeatedly, otherwise visual<br />

improvements would only occur <strong>in</strong> the short term [8]. The<br />

question that then arises is up to how many <strong>in</strong>travitreal<br />

<strong>in</strong>jections of this steroid can be tolerated by the eye of each<br />

patient? Unfortunately, most of the research that has been<br />

conducted <strong>in</strong> this area to date has not been associated with a<br />

long enough follow-up time, one of the longer follow-up times<br />

be<strong>in</strong>g 18 months [7]. We therefore do not have a fair idea of the<br />

actual long-term outcome (ie, visual improvement or the side<br />

effects of this drug), particularly when <strong>in</strong>ject<strong>in</strong>g via the<br />

<strong>in</strong>travitreal route more than once.<br />

Another concern when us<strong>in</strong>g <strong>in</strong>travitreal steroids is the<br />

association of steroid use with an <strong>in</strong>crease <strong>in</strong> lens opacity. In<br />

one particular study <strong>in</strong> which <strong>in</strong>travitreal <strong>in</strong>jections of<br />

triamc<strong>in</strong>olone were adm<strong>in</strong>istered for the treatment of diffuse<br />

diabetic macular edema [13], a 3-fold <strong>in</strong>crease of the posterior<br />

subcapsular cataract score among phakic patients occurred.<br />

This trend toward cataract progression suggests that cataract is<br />

a likely risk of steroid <strong>in</strong>jections. Cataracts <strong>in</strong>fluence quality-oflife<br />

measures [14], and therefore a delay of cataract onset could<br />

have a tremendous <strong>in</strong>fluence on the health of patients and on<br />

healthcare costs. The issue of cataract progression is also of<br />

particular <strong>in</strong>terest for patients with AMD, because there is<br />

controversy regard<strong>in</strong>g the possible benefits or risks of cataract<br />

surgery <strong>in</strong> these patients. While some reports suggest that<br />

cataract surgery may worsen the progression of AMD [15,16],<br />

others describe a benefit [17,18]. It may therefore be more<br />

justified to resist the temptation to treat patients with multiple<br />

<strong>in</strong>travitreal steroid <strong>in</strong>jections as there is currently no evidence<br />

of long-term benefits and, by <strong>in</strong>creas<strong>in</strong>g the chances of<br />

cataracts, patients may become more vulnerable to possible<br />

side effects after surgery.<br />

A further side effect of corticosteroid <strong>in</strong>jections is steroid<strong>in</strong>duced<br />

<strong>in</strong>fection [19,20]. Some researchers have reported


cases of pseudo-endophthalmitis [21], which appear to<br />

resolve without any specific treatment. At this po<strong>in</strong>t we can<br />

only postulate that, <strong>in</strong> case of true <strong>in</strong>fectious<br />

endophthalmitis, the course of the disease may be altered <strong>in</strong><br />

the presence of a moderate-to-high dose (25 mg) of<br />

triamc<strong>in</strong>olone acetonide, which may necessitate patients<br />

be<strong>in</strong>g treated aggressively. Placebo-controlled cl<strong>in</strong>ical trials<br />

<strong>in</strong> large multicenter populations, with a long-term followup,<br />

could provide evidence of the efficacy of this drug and<br />

assess possible side effects and complications. However, it<br />

may be difficult to design effective placebo-controlled trials<br />

<strong>in</strong> a study for which an <strong>in</strong>vasive procedure is required.<br />

Overall, there is still no strong body of scientific evidence to<br />

support the benefits of <strong>in</strong>travitreal <strong>in</strong>jections of steroids <strong>in</strong><br />

the prevention of age-related eye disease. Additional data<br />

regard<strong>in</strong>g the toxic effects of steroids on the ret<strong>in</strong>a and optic<br />

nerve, the optimum dosage and the number of <strong>in</strong>travitreal<br />

<strong>in</strong>jections that can be tolerated by the eyes of the patients, as<br />

well as the perceptions of the patients themselves and<br />

quality-of-life measures, could provide physicians with<br />

more <strong>in</strong>sight and help them to understand the long-term<br />

risks and benefits for patients.<br />

So why should we proceed with caution <strong>in</strong> view of the<br />

possibility that <strong>in</strong>travitreal <strong>in</strong>jections of steroids may have<br />

important benefits? Firstly, mak<strong>in</strong>g recommendations before<br />

there is adequate knowledge to support long-term effects<br />

erodes the credibility of science <strong>in</strong> the eyes of the public.<br />

Moreover, <strong>in</strong>travitreal triamc<strong>in</strong>olone acetonide <strong>in</strong>jections<br />

may not promote additional ga<strong>in</strong> <strong>in</strong> the quality of life or<br />

overall health of the patients. We suggest that physicians<br />

effectively educate their patients with regard to all benefits<br />

and possible side effects of steroids <strong>in</strong> order for the patients<br />

to establish realistic expectations. In particular, they should<br />

be <strong>in</strong>formed that there is no firm scientific knowledge as to<br />

whether steroid <strong>in</strong>jections are at all beneficial <strong>in</strong> the longterm<br />

for the treatment of exudative AMD. Further careful<br />

<strong>in</strong>vestigations of the pathogenesis of AMD, <strong>in</strong> addition to<br />

studies of the effects of <strong>in</strong>travitreal steroid <strong>in</strong>jections, are<br />

required <strong>in</strong> order to ga<strong>in</strong> a greater understand<strong>in</strong>g of the<br />

treatment possibilities for this debilitat<strong>in</strong>g disease. Until<br />

then, <strong>in</strong>travitreal steroid <strong>in</strong>jections will rema<strong>in</strong> a bridge over<br />

the therapy gap until a cure is found.<br />

Suggested read<strong>in</strong>g<br />

1. Bressler NM, Bressler SB, F<strong>in</strong>e SL: Age-related macular<br />

degeneration. Surv Ophthalmol (1988) 32(6):375-413.<br />

2. Kle<strong>in</strong> R, Kle<strong>in</strong> BE, L<strong>in</strong>ton KL: Prevalence of age-related maculopathy.<br />

The Beaver Dam Eye Study. Ophthalmology (1992) 99(6):933-943.<br />

3. Mozaffarieh M, Sacu S, Wedrich A: The role of the carotenoids, lute<strong>in</strong><br />

and zeaxanth<strong>in</strong>, <strong>in</strong> protect<strong>in</strong>g aga<strong>in</strong>st age-related macular<br />

degeneration: A review based on controversial evidence. Nutr J<br />

(2003) 2:20.<br />

4. Ciulla TA, Criswell MH, Danis RP, Hill TE: Intravitreal triamc<strong>in</strong>olone<br />

acetonide <strong>in</strong>hibits choroidal neovascularization <strong>in</strong> a laser-treated<br />

rat model. Arch Ophthalmol (2001) 119(3):399-404.<br />

Editorial overview 19<br />

5. Danis RP, B<strong>in</strong>gaman DP, Yang Y, Ladd B: Inhibition of preret<strong>in</strong>al and<br />

optic nerve head neovascularization <strong>in</strong> pigs by <strong>in</strong>travitreal<br />

triamc<strong>in</strong>olone acetonide. Ophthalmology (1996) 103(12):2099-2104.<br />

6. Leibowitz HM, Bartlett JD, Rich R, McQuirter H, Stewart R, Assil K:<br />

Intraocular pressure-rais<strong>in</strong>g potential of 1.0% rimexolone <strong>in</strong><br />

patients respond<strong>in</strong>g to corticosteroids. Arch Ophthalmol (1996)<br />

114(8):933-937.<br />

7. Challa JK, Gillies MC, Penfold PL, Gyory JF, Hunyor AB, Billson FA:<br />

Exudative macular degeneration and <strong>in</strong>travitreal triamc<strong>in</strong>olone: 18<br />

month follow up. Aust N Z J Ophthalmol (1998) 26(4):277-281.<br />

8. Danis RP, Ciulla TA, Pratt LM, Anliker W: Intravitreal triamc<strong>in</strong>olone<br />

acetonide <strong>in</strong> exudative age-related macular degeneration. Ret<strong>in</strong>a<br />

(2000) 20(3):244-250.<br />

9. Jonas JB, Kreissig I, Hugger P, Sauder G, Panda-Jonas S, Degenr<strong>in</strong>g<br />

R: Intravitreal triamc<strong>in</strong>olone acetonide for exudative age related<br />

macular degeneration. Br J Ophthalmol (2003) 87(4):462-468.<br />

10. Rodriguez-Coleman H, Yuan P, Kim H, Gravl<strong>in</strong> L, Srivastava S, Csaky<br />

KG, Rob<strong>in</strong>son MR: Intravitreal <strong>in</strong>jection of triamc<strong>in</strong>olone for diffuse<br />

macular edema. Arch Ophthalmol (2004) 122(7):1085-1086.<br />

11. Penfold PL, Wen L, Madigan MC, Gillies MC, K<strong>in</strong>g NJ, Provis JM:<br />

Triamc<strong>in</strong>olone-acetonide modulates permeablility and <strong>in</strong>tercellular<br />

adhesion molecule-1 (ICAM-1) expression of the ECV304 cell l<strong>in</strong>e:<br />

Implications for macular degeneration. Cl<strong>in</strong> Exp Immunol (2000)<br />

121(3):458-465.<br />

12. Penfold PL, Wong JG, Gyory J, Billson FA: Effects of triamc<strong>in</strong>olone<br />

acetonide on microglial morphology quantitative expression of<br />

MHC-II <strong>in</strong> exudative age-related macular degeneration. Cl<strong>in</strong><br />

Experiment Ophthalmol (2001) 29(3):188-192.<br />

13. Jonas JB, Kreissig I, Sofker A, Degenr<strong>in</strong>g RF: Intravitreal <strong>in</strong>jection of<br />

triamc<strong>in</strong>olone for diffuse diabetic macular edema. Arch Ophthalmol<br />

(2003) 121(1):57-61.<br />

14. Mozaffarieh M, Krepler K, He<strong>in</strong>zl H, Sacu S, Wedrich A: Visual<br />

function, quality of life and patient satisfaction after ophthalmic<br />

surgery: A comparative study. Ophthalmologica (2004) 218(1):26-30.<br />

15. Pollack A, Bukelman A, Zalish M, Leiba H, Oliver M: The course of<br />

age-related macular degeneration follow<strong>in</strong>g bilateral cataract<br />

surgery. Ophthalmic Surg Lasers (1998) 29(4):286-294.<br />

16. Van de Schaft TL, Mooy CM, de Bruijn WC, Mulder PG, Pameyer JH, de<br />

Jong PT: Increased prevalence of disciform macular degeneration<br />

after cataract extraction with implantation of an <strong>in</strong>traocular lens. Br<br />

J Ophthalmol (1994) 78(6):441-445.<br />

17. Shuttleworth GN, Luhishi EA, Harrad RA: Do patients with age related<br />

maculopathy and cataract benefit from cataract surgery? Br J<br />

Ophthalmol (1998) 82(6):611-616.<br />

18. Armbrecht AM, F<strong>in</strong>dlay C, Kaushal S, Asp<strong>in</strong>all P, Hill AR, Dhillon B: Is<br />

cataract surgery justified <strong>in</strong> patients with age related macular<br />

degeneration? A visual function and quality of life assessment. Br J<br />

Ophthalmol (2000) 84(12):1343-1348.<br />

19. Engelman CJ, Palmer JD, Egbert P: Orbital abscess follow<strong>in</strong>g<br />

subtenon triamc<strong>in</strong>olone <strong>in</strong>jection. Arch Ophthalmol (2004)<br />

122(4):654-655.<br />

20. Nelson ML, Tennant MT, Sival<strong>in</strong>gam A, Regillo CD, Belmont JB,<br />

Martidis A: Infectious and presumed non<strong>in</strong>fectious endophthalmitis<br />

after <strong>in</strong>travitreal triamc<strong>in</strong>olone acetonide <strong>in</strong>jection. Ret<strong>in</strong>a (2003)<br />

23(5):686-691.<br />

21. Sutter FK, Gillies MC: Pseudo-endophthalmitis after <strong>in</strong>travitreal<br />

<strong>in</strong>jection of triamc<strong>in</strong>olone. Br J Ophthalmol (2003) 87(8):972-974.


20<br />

Nitrone sp<strong>in</strong> on cerebral ischemia<br />

Sheila A Doggrell<br />

Address<br />

Division of Health Practice<br />

Auckland University of Technology-Akoranga Campus<br />

90 Akoranga Drive<br />

Northcote<br />

Auckland<br />

New Zealand<br />

Email: s.doggrell@xtra.co.nz<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):20-24<br />

© The Thomson Corporation ISSN 1472-4472<br />

Cl<strong>in</strong>ical trials with radical scaveng<strong>in</strong>g antioxidants have<br />

shown little or no benefit <strong>in</strong> the treatment of ischemic stroke.<br />

The sp<strong>in</strong> trap nitrones covalently b<strong>in</strong>d with short-lived reactive<br />

radicals to <strong>in</strong>activate them for longer than the conventional<br />

scaveng<strong>in</strong>g antioxidants. One of these agents, NXY-059, is<br />

effective <strong>in</strong> animal models of cerebral ischemia, and is <strong>in</strong> phase<br />

III cl<strong>in</strong>ical trials for ischemic stroke by AstraZeneca, under<br />

license from Renovis. Second-generation nitrones (azulenyl<br />

nitrones) have also been described and shown to be<br />

neuroprotective <strong>in</strong> animal models. Thus, at last, it seems that<br />

antioxidants that are potent enough to have considerable<br />

potential for the treatment of cerebral ischemia are <strong>in</strong><br />

development.<br />

Keywords Animal model, azulenyl nitrone, cerebral ischemia,<br />

cl<strong>in</strong>ical trial, NXY-059, PBN, S-PBN, stilbazulenyl nitrone<br />

Introduction<br />

Stroke is the lead<strong>in</strong>g cause of disability and the third lead<strong>in</strong>g<br />

cause of death <strong>in</strong> the western world. Approximately 750,000<br />

new cases occur <strong>in</strong> the US each year, and although strokes<br />

are more prevalent <strong>in</strong> the elderly, they can occur at all ages,<br />

and are more common <strong>in</strong> African-Americans than<br />

Caucasians. The only pharmacological treatment for acute<br />

ischemic stroke currently used is tissue plasm<strong>in</strong>ogen<br />

activator (tPA) to dissolve the clot.<br />

As the most common cause of ischemic stroke <strong>in</strong> humans is<br />

an <strong>in</strong>farct <strong>in</strong> the middle cerebral artery [1], animal stroke<br />

models should ideally <strong>in</strong>volve occlusion of this artery.<br />

Although cerebral <strong>in</strong>farcts can reperfuse, a considerable<br />

amount of time may elapse before this occurs [2];<br />

consequently it is appropriate to study potential<br />

neuroprotective drugs <strong>in</strong> both transient and permanent<br />

occlusion animal models.<br />

The bra<strong>in</strong> is a highly oxygenated organ that consumes<br />

approximately a fifth of the total oxygen of the body, and<br />

which derives most of its energy from oxidative metabolism<br />

of the mitochondrial respiratory cha<strong>in</strong>. It is extremely<br />

sensitive to oxidative damage from free radicals, which<br />

occurs dur<strong>in</strong>g ischemia/reperfusion <strong>in</strong>sult and ultimately<br />

leads to neuronal cell death. Plasma levels of the antioxidant<br />

vitam<strong>in</strong> C are lowered, whereas markers of oxidative stress<br />

are <strong>in</strong>creased <strong>in</strong> patients with ischemic stroke [3], <strong>in</strong>dicat<strong>in</strong>g<br />

that antioxidants may be useful <strong>in</strong> the prevention and<br />

treatment of this disorder. However, antioxidant vitam<strong>in</strong><br />

supplementation is <strong>in</strong>effective <strong>in</strong> prevent<strong>in</strong>g stroke [4], and<br />

limited success has been achieved with free-radical<br />

scavengers (reviewed <strong>in</strong> reference [5]).<br />

Free-radical scavengers, such as vitam<strong>in</strong> E, donate a<br />

hydrogen ion to a radical to form a second radical−the<br />

tocopherol radical with vitam<strong>in</strong> E−which is relatively stable.<br />

However, the tocopherol radical can generate radicals itself<br />

under certa<strong>in</strong> circumstances, for example, exposure to<br />

reduc<strong>in</strong>g metals. Nitrone sp<strong>in</strong> traps are so-called because<br />

they covalently b<strong>in</strong>d with short-lived reactive radicals, such<br />

as hydroxyl radicals, as stable nitroxides. Historically, the<br />

nitrones were used to identify and elucidate free radicals<br />

and associated chemical and biological mechanisms. More<br />

recently, the therapeutic potential of nitrones as<br />

neuroprotective agents has been considered. In the first part<br />

of this review, the effects of the first generation of nitrones <strong>in</strong><br />

animal models of cerebral ischemia are discussed. One of<br />

these nitrones, NXY-059 (AstraZeneca plc/Renovis Inc;<br />

Figure 1), is undergo<strong>in</strong>g phase III cl<strong>in</strong>ical trials for the<br />

treatment of stroke and is discussed <strong>in</strong> more detail <strong>in</strong> this<br />

review. F<strong>in</strong>ally, the second-generation nitrones, the azulenyl<br />

nitrones, which are much more potent sp<strong>in</strong> traps than the<br />

first-generation nitrones, are considered as neuroprotective<br />

agents <strong>in</strong> a variety of animal models, <strong>in</strong>clud<strong>in</strong>g cerebral<br />

ischemia.<br />

First-generation nitrones<br />

PBN, S-PBN, MDL-101002 and S-34176<br />

The first nitrone sp<strong>in</strong> trap agent to demonstrate<br />

neuroprotective properties was α-phenyl-tert-butyl nitrone<br />

(PBN; Figure 1). Interest<strong>in</strong>gly, it was found that nitrone sp<strong>in</strong><br />

trap agents were effective when adm<strong>in</strong>istered after the<br />

ischemic event. Thus, when PBN was adm<strong>in</strong>istered 30 m<strong>in</strong><br />

prior to, or 30 m<strong>in</strong> after, a 5-m<strong>in</strong> bilateral occlusion of the<br />

carotid artery <strong>in</strong> the gerbil, it reduced the subsequent<br />

damage to the hippocampal CAI pyramidal cell layer [6•,7],<br />

and this protection was associated with the ability to<br />

prevent a cascade of free radical generation by form<strong>in</strong>g sp<strong>in</strong><br />

adducts [8]. Subsequently, PBN was shown to reduce<br />

cortical <strong>in</strong>farction when <strong>in</strong>jected before and after transient<br />

middle cerebral artery occlusion <strong>in</strong> the rat, a standard model<br />

of ischemic stroke [9]. In the focal embolic cerebral ischemia<br />

model <strong>in</strong> the rat, both PBN and N-tert-butyl-(2-sulfophenyl)nitrone<br />

(S-PBN; AstraZeneca plc/Renovis Inc; Figure 1)<br />

reduced the neurological deficit and cerebral <strong>in</strong>farct volume<br />

when commenced 2 h after the <strong>in</strong>troduction of an<br />

autologous thrombus <strong>in</strong>to the right-side middle coronary<br />

artery [10].<br />

The next group of nitrone sp<strong>in</strong> traps had a cyclic structure<br />

and demonstrated improved activity over PBN. These<br />

<strong>in</strong>cluded MDL-101002 (Figure 1), which is more potent than<br />

PBN <strong>in</strong> <strong>in</strong>hibit<strong>in</strong>g iron-<strong>in</strong>duced peroxidation <strong>in</strong> liposomes,<br />

as well as <strong>in</strong> trapp<strong>in</strong>g superoxide anions and hydroxyl<br />

radicals [11]. Furthermore, the hydroxyl radical adducts<br />

formed with MDL-101002 had a longer half-life (5 m<strong>in</strong>) than<br />

adducts formed with PBN [11]. MDL-101002 was reported to


Figure 1. The structures of selected first generation nitrones.<br />

C<br />

H 3<br />

C<br />

H 3<br />

HO<br />

Na<br />

CH 3<br />

N +<br />

O<br />

S<br />

O<br />

O<br />

O<br />

S<br />

O<br />

OH<br />

NXY-059<br />

(AstraZeneca/Renovis)<br />

Na<br />

C<br />

H 3<br />

C<br />

H 3<br />

C<br />

H 3<br />

C<br />

H 3<br />

be neuroprotective <strong>in</strong> the transient and permanent middle<br />

cerebral artery ligation models of stroke <strong>in</strong> rats [12],<br />

however, there have been no further reports of its<br />

development for the treatment of stroke.<br />

The chemical structures of some imidazolyl nitrones have been<br />

described [13], with the <strong>in</strong> vivo activity of one of these agents,<br />

S-34176 (Servier; Figure 1), reported <strong>in</strong> 2005. When<br />

adm<strong>in</strong>istered at a dose of 75 mg/kg <strong>in</strong>traperitoneally 30 m<strong>in</strong><br />

before transient global ischemia, S-34176 prevented delayed<br />

neuronal death <strong>in</strong> the hippocampal CA1 area <strong>in</strong> the rat [14]. The<br />

effects of S-34176 when adm<strong>in</strong>istered after cerebral <strong>in</strong>farction <strong>in</strong><br />

an animal model have not been reported to date.<br />

NXY-059: Animal and cellular studies<br />

The nitrone compound that has been studied most to date is<br />

NXY-059 (reviewed <strong>in</strong> reference [15]). In the rat transient<br />

focal cerebral ischemia model (2 h of middle cerebral artery<br />

occlusion), NXY-059 reduced <strong>in</strong>farct volume when<br />

adm<strong>in</strong>istered at 30 mg/kg/h commenc<strong>in</strong>g 3 to 6 h after the<br />

start of reperfusion [16]. This agent was more water soluble<br />

than PBN, but also proved more efficacious despite hav<strong>in</strong>g<br />

less ability to penetrate the blood-bra<strong>in</strong> barrier (BBB) [16].<br />

This f<strong>in</strong>d<strong>in</strong>g suggests that one of the benefits of NXY-059 is<br />

its ability to <strong>in</strong>hibit free radical damage to the endothelium<br />

with<strong>in</strong> the blood vessel. A subsequent study, us<strong>in</strong>g the same<br />

model, showed that when NXY-059 treatment (1, 10 and 30<br />

mg/kg/h) was commenced 2.75 h after occlusion, both the<br />

neurological deficit (scored from forelimb flexion,<br />

spontaneous rotation and absence of response to<br />

contralateral whisker stimulation) and <strong>in</strong>farct size were<br />

reduced <strong>in</strong> a dose-dependent manner at 24 h [17].<br />

In permanent focal cerebral ischemia <strong>in</strong> the spontaneously<br />

hypertensive rat (clip on middle cerebral artery), there was a<br />

22.6% <strong>in</strong>farct of the contralateral hemisphere 24 h after<br />

occlusion [18]. The <strong>in</strong>farct size was reduced to 17.4% with a<br />

cont<strong>in</strong>uous <strong>in</strong>fusion of NXY-059 (30 mg/kg/h) commenced<br />

5 m<strong>in</strong> after occlusion, but this did not reach significance [18].<br />

At 60 mg/kg/h NXY-059, the <strong>in</strong>farct size was reduced to<br />

14.5%, which was a significant reduction [18]. A subsequent<br />

study us<strong>in</strong>g permanent ischemia <strong>in</strong> normotensive rats showed<br />

that with a load<strong>in</strong>g dose of 32.5 mg NXY-059 adm<strong>in</strong>istered<br />

subcutaneously, followed by 30 mg/kg/h of NXY-059<br />

adm<strong>in</strong>istered via an osmotic m<strong>in</strong>ipump (commenced 5 m<strong>in</strong><br />

after occlusion), there was a reduction <strong>in</strong> the damage to the<br />

sub-cortex, but not the cortex, and that higher doses reduced<br />

the damaged area <strong>in</strong> both the cortex and sub-cortex<br />

CH 3<br />

N +<br />

O<br />

CH 3<br />

N +<br />

O<br />

O<br />

S<br />

O<br />

OH<br />

Na<br />

Nitrone sp<strong>in</strong> on cerebral ischemia Doggrell 21<br />

PBN S-PBN<br />

MDL-101002<br />

S-34176<br />

(AstraZeneca/Renovis)<br />

(Servier)<br />

N +<br />

O<br />

CH 3<br />

CH 3<br />

H3C<br />

C<br />

H 3<br />

CH 3<br />

N +<br />

O<br />

H<br />

N<br />

N<br />

F F<br />

[17]. A further experiment showed that a 50-mg/kg/h dose<br />

of NXY-059 gave some neuroprotection <strong>in</strong> both the cortex<br />

and sub-cortex when the <strong>in</strong>fusion was commenced 2 h after<br />

the occlusion [17].<br />

In humans, agents that improve functional disability after<br />

stroke are required. Thus, the f<strong>in</strong>d<strong>in</strong>g that NXY-059 reduces<br />

the functional disability result<strong>in</strong>g from ischemic stroke <strong>in</strong><br />

monkeys was welcomed. At a dose of 28 mg/kg for 48 h,<br />

commenced 5 m<strong>in</strong> after middle cerebral artery occlusion,<br />

NXY-059 improved the reach of monkeys with their<br />

hemiparetic arm, lessened spatial perceptual neglect at 3 and<br />

10 weeks, and reduced bra<strong>in</strong> damage [19]. Of more <strong>in</strong>terest<br />

was a subsequent study <strong>in</strong> the monkey middle cerebral<br />

artery occlusion model show<strong>in</strong>g that if a higher dose of<br />

NXY-059 was adm<strong>in</strong>istered, the commencement of <strong>in</strong>fusion<br />

could be delayed for 4 h after occlusion while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

the beneficial effect [20•]. In conclusion, NXY-059 treatment<br />

ameliorated long-term motor impairment, improved the use<br />

of the contralateral stroke-affected arm, and lessened spatial<br />

neglect, while reduc<strong>in</strong>g <strong>in</strong>farct size [20•].<br />

Several drugs that have shown efficacy <strong>in</strong> animal models of<br />

stroke, <strong>in</strong>clud<strong>in</strong>g the γ-am<strong>in</strong>obutyric acid mimetic<br />

clomethiazole [21] and N-methyl-D-aspartate antagonists<br />

(eg, AR-R15896AR (AstraZeneca plc)) [22], have been<br />

unsuccessful <strong>in</strong> cl<strong>in</strong>ical trials because of a lack of efficacy or<br />

tolerability [21,22]. In the monkey model of stroke, NXY-059<br />

was more efficacious than clomethiazole or AR-R15896AR,<br />

produc<strong>in</strong>g a greater reduction <strong>in</strong> <strong>in</strong>farct size follow<strong>in</strong>g<br />

middle cerebral artery occlusion [23]. Of the three drugs,<br />

only NXY-059 improved motor deficit and reduced spatial<br />

neglect after 10 weeks [23].<br />

At present, the only effective treatment for ischemic stroke is<br />

the fibr<strong>in</strong>olytic agent tPA, which acts by dissolv<strong>in</strong>g the clot.<br />

The efficacy of NXY-059 has been studied <strong>in</strong> embolic models<br />

of cerebral ischemia alone and <strong>in</strong> comb<strong>in</strong>ation with tPA; the<br />

number of small clots that had to be adm<strong>in</strong>istered to rabbits<br />

to <strong>in</strong>duce neurological deficits was <strong>in</strong>creased by both<br />

NXY-059 and tPA when adm<strong>in</strong>istered alone 3 h after<br />

external carotid ligation [24]. When used as a comb<strong>in</strong>ation<br />

therapy, NXY-059 and tPA had an additive effect on<br />

<strong>in</strong>creas<strong>in</strong>g the number of small clots required to cause<br />

neurological deficits [24]. Subsequently, it was shown that<br />

the late co-adm<strong>in</strong>istration (6 h) of NXY-059 and the synthetic<br />

tPA tenecteplase was associated with an improvement <strong>in</strong><br />

behavioral deficits [25].<br />

F


22 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

PBN has effective BBB penetration, but questions have<br />

rema<strong>in</strong>ed about whether NXY-059 penetrates the BBB<br />

sufficiently for it to have a central mechanism of action. In a coculture<br />

of endothelial cells and primary astrocytes as a model of<br />

the BBB, uptake of PBN was high, but uptake of S-PBN and<br />

NXY-059 was not [26]. However, the permeability of BBB by<br />

NXY-059 <strong>in</strong>creased with <strong>in</strong>creas<strong>in</strong>g length of ischemia,<br />

although there was no uptake <strong>in</strong>to endothelial cells [26].<br />

In addition to act<strong>in</strong>g as a sp<strong>in</strong> trap for free radicals, NXY-059<br />

may be neuroprotective by <strong>in</strong>hibit<strong>in</strong>g the release of<br />

cytochrome C, a key <strong>in</strong>itiator of apoptosis. Cytochrome C<br />

levels <strong>in</strong>creased dur<strong>in</strong>g reperfusion after a 2-h occlusion of<br />

the rat cerebral artery, and NXY-059 treatment prevented<br />

this <strong>in</strong>crease [27].<br />

NXY-059: Cl<strong>in</strong>ical studies<br />

NXY-059 was well tolerated by healthy volunteers at an<br />

<strong>in</strong>fusion rate of 1.1 to 1.5 mg/kg/h for up to 72 h [28].<br />

Excretion of NXY-059 occurred via the renal route and, <strong>in</strong><br />

<strong>in</strong>dividuals with renal impairment, plasma clearance was<br />

directly proportional to glomerular filtration rate [29].<br />

NXY-059 usually has a half-life of 2 to 4 h, but this was<br />

extended to 10 to 12 h <strong>in</strong> <strong>in</strong>dividuals with moderate and<br />

severe renal impairment [29]. Consequently, <strong>in</strong> patients with<br />

renal impairment, the dose of NXY-059 needs to be adjusted<br />

on the basis of creat<strong>in</strong><strong>in</strong>e clearance [29].<br />

When adm<strong>in</strong>istered to patients with<strong>in</strong> 24 h of stroke,<br />

NXY-059 (250 mg over 1 h, followed by 85 mg/h for 71 h, or<br />

500 mg over 1 h, followed by 170 mg/h for 71 h) was well<br />

tolerated [30]. In this small study of tolerability, the cl<strong>in</strong>ical<br />

outcome scores were collected for descriptive purposes only,<br />

and no improvement <strong>in</strong> cl<strong>in</strong>ical outcome was demonstrated<br />

for these doses, possibly because the study was not designed<br />

to measure efficacy [30]. Furthermore, the doses of NXY-059<br />

used gave plasma levels (25 and 40 µmol/l) that were lower<br />

than those associated with neuroprotection <strong>in</strong> animal studies<br />

(200 µmol/l) [30], and thus may have been too low to be<br />

efficacious. Subsequently, higher doses of NXY-059 were<br />

tested <strong>in</strong> patients with<strong>in</strong> 24 h of stroke onset (915 mg over 1<br />

h, followed by 420 mg/h for 71 h, or 1820 mg over 1 h,<br />

followed by 844 mg/h for 71 h), with the higher dose<br />

achiev<strong>in</strong>g a steady-state plasma level of 260 µmol/l, which<br />

Figure 2. The structures of STAZN and lipid- and water-soluble AZNs.<br />

C<br />

H 3<br />

C<br />

H 3<br />

C<br />

H 3<br />

CH 3<br />

N +<br />

CH 3<br />

O<br />

C<br />

H 3<br />

CH 3<br />

_<br />

O<br />

STAZN<br />

(University of Miami)<br />

CH 3<br />

N +<br />

C<br />

H 3<br />

CH 3<br />

CH 3<br />

CH 3<br />

C<br />

H 3<br />

was above that associated with therapeutic benefit <strong>in</strong><br />

animals [31]. Furthermore, the higher doses were also well<br />

tolerated [31]. Although these studies were not conducted to<br />

determ<strong>in</strong>e effectiveness, at day 30, 58% of the 38 patients<br />

adm<strong>in</strong>istered the 844-mg dose of NXY-059 were assessed as<br />

good on the Barthel Index Score, compared with 47% of<br />

patients from the placebo group [31].<br />

NXY-059 (as Cerovive) is currently undergo<strong>in</strong>g phase III cl<strong>in</strong>ical<br />

trials for the treatment of ischemic stroke. The Stroke Acute<br />

Ischemia NXY Treatment (SAINT-1) trial is evaluat<strong>in</strong>g the effect<br />

of NXY-059 on disability and neurological recovery <strong>in</strong> acute<br />

ischemic stroke patients [32]. The Independent Data and Safety<br />

Monitor<strong>in</strong>g Board that reviewed the outcome after a 3-month<br />

follow-up <strong>in</strong> 1000 patients recommended that the trial be<br />

cont<strong>in</strong>ued [32]. In May 2005, AstraZeneca announced that the<br />

first analysis of data from the SAINT-1 trial <strong>in</strong> 1700 patients<br />

showed a significant reduction (p = 0.038) for patients treated<br />

with NXY-059 compared with those receiv<strong>in</strong>g placebo, based<br />

on the Modified Rank<strong>in</strong> Scale for neurological impairment [33].<br />

However, there was no significant difference between<br />

NXY-059 and placebo on the National Institutes of Health<br />

Stroke Scale [33].<br />

Second-generation nitrones<br />

Azulenyl nitrones<br />

Azulenyl nitrones (AZNs) are a class of compounds that can<br />

be synthesized from the natural product guaiazulene [34]<br />

and possess oxidation potentials far lower than that of firstgeneration<br />

nitrones [35•]. For example, the nitronylsubstituted<br />

hydrocarbon stilbazulenyl nitrone (STAZN,<br />

University of Miami; Figure 2) is 300-fold more potent at<br />

<strong>in</strong>hibit<strong>in</strong>g the free radical-mediated aerobic peroxidation of<br />

cumene than PBN or NXY-059 [36•]. Furthermore, because<br />

STAZN is lipid soluble, it is likely to cross the BBB.<br />

STAZN has neuroprotective activity <strong>in</strong> a rat model of<br />

traumatic bra<strong>in</strong> <strong>in</strong>jury. Anesthetized rats were subjected to a<br />

right parietoccipital parasagittal fluid-percussion <strong>in</strong>jury, and<br />

neurological status was evaluated on days 1, 2 and 7 [37•]. At a<br />

dose of 30 mg/kg, when adm<strong>in</strong>istered 5 m<strong>in</strong> and 4 h after the<br />

trauma, STAZN improved neurological scores on days 2 and<br />

7 compared with vehicle [37•]. The mean contusion area was<br />

CH 3<br />

C<br />

H 3<br />

_<br />

O<br />

CH 3<br />

N +<br />

O<br />

CH3 CH3 H<br />

O<br />

CH 3<br />

C<br />

H 3<br />

CH 3<br />

C<br />

H 3<br />

_<br />

O<br />

CH 3<br />

N +<br />

H<br />

CH3 CH3 C<br />

H 3<br />

H<br />

N +<br />

O<br />

CH 3<br />

lipid-soluble AZN water-soluble AZN<br />

CH 3


4.8 mm 2 <strong>in</strong> vehicle-treated rats, which was reduced by 63%<br />

to 1.8 mm 2 follow<strong>in</strong>g treatment with STAZN [37•]. This<br />

reduction was <strong>in</strong> the deep cortical contusion, with the<br />

hippocampal cell loss <strong>in</strong> the CA3 sector be<strong>in</strong>g unaffected by<br />

STAZN [37•].<br />

STAZN was also neuroprotective <strong>in</strong> animal models of<br />

Park<strong>in</strong>son's disease and Hunt<strong>in</strong>gton's disease. The<br />

neurotox<strong>in</strong> 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrid<strong>in</strong>e<br />

(MPTP) causes Park<strong>in</strong>sonian syndrome <strong>in</strong> humans, and is<br />

commonly used to create animal models of Park<strong>in</strong>son's<br />

disease. The toxic metabolite of MPTP accumulates <strong>in</strong> the<br />

mitochondria of dopam<strong>in</strong>ergic nerves, where it impairs<br />

energy production and <strong>in</strong>creases free radical production to<br />

ultimately lead to dopam<strong>in</strong>ergic nerve death. In the MPTP<br />

model <strong>in</strong> mice, both a lipid-soluble and a water-soluble<br />

azulenyl nitrone (Figure 2), adm<strong>in</strong>istered prior to and after<br />

MPTP adm<strong>in</strong>istration, protected aga<strong>in</strong>st dopam<strong>in</strong>e<br />

depletion, and were more efficacious than S-PBN [35•].<br />

In 1998, AZNs were shown to be neuroprotective <strong>in</strong> cerebral<br />

ischemia. The hippocampal neurons of gerbils are<br />

particularly sensitive to ischemia, and after 7 m<strong>in</strong> of bilateral<br />

carotid occlusion followed by 5 days of reperfusion, a 70%<br />

loss of neurons <strong>in</strong> the CA1 hippocampus resulted [34]. This<br />

loss was reduced to 36% by an <strong>in</strong>traperitoneal<br />

adm<strong>in</strong>istration of 100 mg/kg of AZN 30 m<strong>in</strong> prior to the<br />

occlusion [34].<br />

STAZN (10 or 20 mg/kg) adm<strong>in</strong>istered <strong>in</strong>traperitoneally 30 m<strong>in</strong><br />

before and 3, 12 and 24 h after MPTP adm<strong>in</strong>istration, reduced<br />

the depletion of dopam<strong>in</strong>ergic nerves <strong>in</strong> the substantia nigra<br />

pars compacta <strong>in</strong> animal models of Hunt<strong>in</strong>gton's and<br />

Park<strong>in</strong>son's diseases [38•]. In this study, the mitochondrial<br />

<strong>in</strong>hibitor 3-nitropropionic acid was used to create an animal<br />

model of Hunt<strong>in</strong>gton's disease. Treatment with STAZN (before<br />

and dur<strong>in</strong>g the adm<strong>in</strong>istration of 3-nitropropionic acid)<br />

reduced levels of the lipid peroxidation product<br />

melondialdehyde and the lesion volumes [38•].<br />

Importantly, STAZN was shown to be neuroprotective <strong>in</strong><br />

cerebral ischemia when adm<strong>in</strong>istered after occlusion. A<br />

standard neurobehavioral assessment demonstrated that<br />

after 2 h of middle coronary artery occlusion, rats improved<br />

modestly over a 72-h period [39••]. This improvement was<br />

quicker and more extensive when rats were treated with<br />

STAZN at <strong>in</strong>traperitoneal doses of 0.6 mg/kg at onset and<br />

repeated after 2 h of reperfusion [39••]. STAZN treatment<br />

also reduced the <strong>in</strong>farct volume, with the neuroprotection<br />

be<strong>in</strong>g predom<strong>in</strong>antly <strong>in</strong> the cortical region; <strong>in</strong> 13 of 22<br />

STAZN-treated rats, the cortical <strong>in</strong>farct was almost<br />

completely prevented [39••]. The researchers commented<br />

that the neuroprotection seen with STAZN exceeded that<br />

observed with many other agents <strong>in</strong> a similar model [39••].<br />

The doses of STAZN needed for a neuroprotective effect<br />

were 300- to 600-fold lower than those needed to <strong>in</strong>duce<br />

neuroprotection with NXY-059 [38•].<br />

Pharmacok<strong>in</strong>etic studies showed that STAZN was slowly<br />

absorbed after <strong>in</strong>traperitoneal <strong>in</strong>jection <strong>in</strong> the rat, with a<br />

Nitrone sp<strong>in</strong> on cerebral ischemia Doggrell 23<br />

computed half-life of 13.9 h [40]. After <strong>in</strong>travenous <strong>in</strong>jection<br />

of STAZN, a two-component decay occurred, with half-lives<br />

of 28 m<strong>in</strong> and 6.7 h [40]. STAZN permeated the bra<strong>in</strong>, where<br />

levels <strong>in</strong> the whole forebra<strong>in</strong> of the rat were 2.5% of blood<br />

levels, and also accumulated <strong>in</strong> rat liver [40].<br />

Conclusion<br />

The effectiveness of free radical-scaveng<strong>in</strong>g antioxidants <strong>in</strong><br />

cl<strong>in</strong>ical trials for the prevention and treatment of cerebral<br />

ischemia has been disappo<strong>in</strong>t<strong>in</strong>g. The sp<strong>in</strong> trap nitrones<br />

covalently b<strong>in</strong>d with short-lived reactive radicals to<br />

<strong>in</strong>activate them for longer than the conventional scaveng<strong>in</strong>g<br />

antioxidants. The first nitrone sp<strong>in</strong> trap agent shown to be<br />

neuroprotective was PBN. More importantly, it was<br />

discovered that nitrone sp<strong>in</strong> trap agents were effective when<br />

adm<strong>in</strong>istered after onset of ischemia. One of these agents,<br />

NXY-059, has demonstrated efficacy <strong>in</strong> animal models of<br />

cerebral ischemia and is undergo<strong>in</strong>g cl<strong>in</strong>ical trials for<br />

ischemic stroke. Second-generation nitrones (AZNs) with a<br />

greater ability to remove reactive radicals have been<br />

<strong>in</strong>vestigated <strong>in</strong> studies, <strong>in</strong> which neuroprotection <strong>in</strong> animal<br />

models of traumatic bra<strong>in</strong> <strong>in</strong>jury, Park<strong>in</strong>son's disease,<br />

Hunt<strong>in</strong>gton's disease and cerebral ischemia have been<br />

demonstrated. Thus, at last, it seems that potent antioxidants<br />

that have considerable potential for the treatment of cerebral<br />

ischemia are <strong>in</strong> development.<br />

References<br />

1. Mohr JP, Gauther JC, Hier D, Ste<strong>in</strong> RW: Middle cerebral artery. In:<br />

Stroke: Pathophysiology, Diagnosis and Management. Barnett HJ, Mohr<br />

JP, Ste<strong>in</strong> BM, Yatsu FM (Eds), Churchill Liv<strong>in</strong>gstone, New York, NY,<br />

USA (1992) 1:377-450.<br />

2. R<strong>in</strong>gelste<strong>in</strong> EB, B<strong>in</strong>iek R, Wehller C, Ammel<strong>in</strong>g B, Nolte PN, Thron A:<br />

Type and extent of hemispheric bra<strong>in</strong> <strong>in</strong>farctions and cl<strong>in</strong>ical<br />

outcome <strong>in</strong> early and delayed middle cerebral artery recanalization.<br />

Neurology (1992) 42(2):289-298.<br />

3. Sanchez-Moreno C, Dashe JF, Scott T, Thaler D, Folste<strong>in</strong> MF, Mart<strong>in</strong> A:<br />

Decreased levels of plasma vitam<strong>in</strong> C and <strong>in</strong>creased concentration<br />

of <strong>in</strong>flammatory and oxidative stress markers after stroke. Stroke<br />

(2004) 35(1):163-168.<br />

4. Heart Protection Study Collaborative Group: MRC/BHF Heart<br />

Protection Study of antioxidant vitam<strong>in</strong> supplementation <strong>in</strong> 20,536<br />

high-risk <strong>in</strong>dividuals: A randomised placebo-controlled trial. Lancet<br />

(2002) 360(9326):23-33.<br />

5. Green AR, Ashwood T: Free radical trapp<strong>in</strong>g as a therapeutic<br />

approach to neuroprotection <strong>in</strong> stroke: Experimental and cl<strong>in</strong>ical<br />

studies with NXY-059 and free radical scavengers. Curr Drug<br />

Targets CNS Neurol Disord (2005) 4(2):109-118.<br />

6. Phillis JW, Clough-Helfman C: Protection from cerebral ischemic<br />

<strong>in</strong>jury <strong>in</strong> gerbils with the sp<strong>in</strong> trap agent N-tert-butyl-αphenylnitrone<br />

(PBN). Neurosci Lett (1990) 116(3):315-319.<br />

• This is the first paper describ<strong>in</strong>g the neuroprotective effect of a nitrone.<br />

7. Clough-Helfman C, Phillis JW: The free radical trapp<strong>in</strong>g agent N-tertbutyl-α-phenylnitrone<br />

(PBN) attenuates cerebral ischaemic <strong>in</strong>jury<br />

<strong>in</strong> gerbils. Free Radic Res Commun (1991) 15(3):177-186.<br />

8. Sen S, Phillis JW: α-Phenyl-tert-butyl-nitrone (PBN) attenuated hydroxyl<br />

radical production dur<strong>in</strong>g ischemia-reperfusion <strong>in</strong>jury of rat bra<strong>in</strong>: An<br />

EPR study. Free Radic Res Commun (1993) 19(4):255-265.<br />

9. Zaus<strong>in</strong>ger S, Hungerhuber E, Baethmann A, Reulen H, Schmid-Elsaesser R:<br />

Neurological impairment <strong>in</strong> rats after transient middle cerebral artery<br />

occlusion: A comparative study under various treatment paradigms.<br />

Bra<strong>in</strong> Res (2000) 863(1-2):94-105.


24 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

10. Yang Y, Li Q, Shuaib A: Neuroprotection by 2-h postischemia<br />

adm<strong>in</strong>istration of two free radical scavengers, α-phenyl-N-tert-butylnitrone<br />

(PBN) and N-tert-butyl-(2-sulfophenyl)-nitrone (S-PBN), <strong>in</strong> rats<br />

subjected to focal embolic cerebral ischemia. Exp Neurol (2000)<br />

163(1):39-45.<br />

11. Thomas CE, Ohlweiler DF, Carr AA, Nieduzak TR, Hay DA, Adams G, Vaz<br />

R, Bernotas RC: Characterization of the radical trapp<strong>in</strong>g activity of a<br />

novel series of cyclic nitrone sp<strong>in</strong> traps. J Biol Chem (1996) 271(6):3097-<br />

3104.<br />

12. Johnson MP, McCarty DR, Velayo NL, Markgraf CG, Chmielewski PA,<br />

Ficorilli JV, Cheng HC, Thomas CE: MDL 101,002, a free radical sp<strong>in</strong> trap,<br />

is efficacious <strong>in</strong> permanent and transient focal ischemia models. Life<br />

Sci (1998) 63(4):241-253.<br />

13. Dha<strong>in</strong>aut A, Tizot A, Raimbaud E, Lockhart B, Lestage P, Goldste<strong>in</strong> S:<br />

Synthesis, structure, and neuroprotective properties of novel<br />

imidazolyl nitrones. J Med Chem (2000) 43(11):2165-2175.<br />

14. Lockhart B, Roger A, Bonhomme N, Goldste<strong>in</strong> S, Lestage P: In vivo<br />

neuroprotective effects of the novel imidazolyl nitrone free-radical<br />

scavenger (Z)-α-[(2-thiazol-2-yl)imidazole-4-yl]-N-tert-butylnitrone<br />

(S34176). Eur J Pharmacol (2005) 511(2-3):127-136.<br />

15. Green AR, Ashwood T, Odergren T, Jackson DM: Nitrones as<br />

neuroprotective agents <strong>in</strong> cerebral ischemia with particular reference to<br />

NXY-059. Pharmacol Ther (2003) 100(3):195-214.<br />

16. Kuroda S, Tsuchidate R, Smith ML, Maples KR, Siesjo BK: Neuroprotective<br />

effects of a novel nitrone, NXY-059, after transient focal cerebral<br />

ischemia <strong>in</strong> the rat. J Cereb Blood Flow Metab (1999) 19(7):778-787.<br />

17. Sydserff SG, Borelli AR, Green AR, Cross AJ: Effect of NXY-059 on <strong>in</strong>farct<br />

volume after transient or permanent middle cerebral artery occlusion <strong>in</strong><br />

the rat; studies on dose, plasma concentration and therapeutic time<br />

w<strong>in</strong>dow. Br J Pharmacol (2002) 135(1):103-112.<br />

18. Zhao Z, Cheng M, Maples KR, Ma JY, Buchan AM: NXY-059, a novel free<br />

radical trapp<strong>in</strong>g compound, reduces cortical <strong>in</strong>farction after permanent<br />

focal ischemia <strong>in</strong> the rat. Bra<strong>in</strong> Res (2001) 909(1-2):46-50.<br />

19. Marshall JW, Duff<strong>in</strong> KJ, Green AR, Ridley RM: NXY-059, a free radicaltrapp<strong>in</strong>g<br />

agent, substantially lessens the functional disability result<strong>in</strong>g<br />

from cerebral ischemia <strong>in</strong> primate species. Stroke (2001) 32(1):190-198.<br />

20. Marshall JW, Cumm<strong>in</strong>gs RM, Bowes LJ, Ridley RM, Green AR: Functional<br />

and histological evidence for the protective effect of NXY-059 <strong>in</strong> a<br />

primate model of stroke when given 4 hours after occlusion. Stroke<br />

(2003) 34(9):2228-2233.<br />

• This paper describes the efficacy of NXY-059 <strong>in</strong> a monkey model of stroke.<br />

21. Lyden P, Shauib A, Ng K, Lev<strong>in</strong> K, Atk<strong>in</strong>son RP, Rajput A, Wechsler L,<br />

Ashwood T, Claesson L, Odergren T, Salazar-Grueso E: Clomethiazole<br />

acute stroke study <strong>in</strong> ischemic stroke (CLASS-I): F<strong>in</strong>al results. Stroke<br />

(2002) 33(1):122-128.<br />

22. Diener HC, AlKhedr A, Busse O, Hacke W, Z<strong>in</strong>gmark PH, Jonsson N, Basun<br />

H: Treatment of acute ischaemic stroke with the low-aff<strong>in</strong>ity, usedependent<br />

NMDA antagonist AR-R15896AR. A safety and tolerability<br />

study. J Neurol (2002) 249(5):561-568.<br />

23. Marshall JW, Green AR, Ridley RM: Comparison of the neuroprotective<br />

effect of clomethiazole, AR-R15896AR and NXY-059 <strong>in</strong> a primate model<br />

of stroke us<strong>in</strong>g histological and behavioural measures. Bra<strong>in</strong> Res (2003)<br />

972(1-2):119-126.<br />

24. Lapchak PA, Araujo DM, Song D, Wei J, Ziv<strong>in</strong> JA: Neuroprotective effects<br />

of the sp<strong>in</strong> trap agent disodium-[(tert-butylim<strong>in</strong>o)methyl]benzene-1,3disulfonate<br />

N-oxide (generic NXY-059) <strong>in</strong> a rabbit small clot embolic<br />

stroke model - comb<strong>in</strong>ation studies with the thrombolytic tissue<br />

plasm<strong>in</strong>ogen activator. Stroke (2002) 33(5):1411-1415.<br />

25. Lapchak PA, Song D, Wei J, Ziv<strong>in</strong> JA: Coadm<strong>in</strong>istration of NXY-059<br />

and tenecteplase six hours follow<strong>in</strong>g embolic strokes <strong>in</strong> rabbits<br />

improved cl<strong>in</strong>ical rat<strong>in</strong>g scores. Exp Neurol (2004) 188(2):279-285.<br />

26. Dehouck MP, Cecchelli R, Richard Green A, Renftel M, Lundquist S: In<br />

vitro blood-bra<strong>in</strong> barrier permeability and cerebral endothelial cell<br />

uptake of the neuroprotective nitrone compound NXY-059 <strong>in</strong><br />

normoxic, hypoxic and ischemic conditions. Bra<strong>in</strong> Res (2002) 955<br />

(1-2):229-235.<br />

27. Han M, He QP, Yong G, Siesjo BK, Li PA: NXY-059, a nitrone with<br />

free radical trapp<strong>in</strong>g properties <strong>in</strong>hibits release of cytochrome C<br />

after cerebral ischemia. Cell Mol Biol (Noisy-le-grand) (2003)<br />

49(8):1249-1252.<br />

28. Edenius C, Strid S, Breitholtz-Emanuelsson A, Dal<strong>in</strong> L, Jerl<strong>in</strong>g M,<br />

Fransson B: NXY-059, the first nitrone be<strong>in</strong>g developed for stroke, is<br />

safe and well tolerated <strong>in</strong> young and elderly healthy volunteers.<br />

Cerebrovasc Dis (1999) 9:102.<br />

29. Strid S, Borga O, Edenius C, Jostell KG, Odergren T, Weil A:<br />

Pharmacok<strong>in</strong>etics <strong>in</strong> renally impaired subjects of NXY-059, a<br />

nitrone-based, free-radical trapp<strong>in</strong>g agent developed for the<br />

treatment of acute stoke. Eur J Cl<strong>in</strong> Pharmacol (2002) 58(6):409-415.<br />

30. Lees KR, Sharma AK, Barer D, Ford GA, Kostulas V, Cheng Y-F,<br />

Odergren T: Tolerability and pharmacok<strong>in</strong>etics of the nitrone<br />

NXY-059 <strong>in</strong> patients with acute stroke. Stroke (2001) 32(3):675-680.<br />

31. Lees KR, Barer D, Ford GA, Hacke W, Kostulas V, Sharma AK,<br />

Odegren T: Tolerability of NXY-059 at higher target concentrations<br />

<strong>in</strong> patients with acute stroke. Stroke (2003) 34(2):482-487.<br />

32. Renovis Inc: Phase III trials for CEROVIVE (NXY-059) will cont<strong>in</strong>ue<br />

as planned follow<strong>in</strong>g <strong>in</strong>terim data analysis. Press Release (2004):<br />

October 14.<br />

33. AstraZeneca plc: First results from SAINT-1 trial show<br />

AstraZeneca's CEROVIVE (NXY-059) demonstrates a reduction <strong>in</strong><br />

disability <strong>in</strong> patients with acute ischemia stroke. Press Release<br />

(2005):May 04.<br />

34. Althaus JS, Fleck TJ, Becker DA, Hall ED, Vonvoigtlander PF: Azulenyl<br />

nitrones: Colorimetric detection of oxyradical end products and<br />

neuroprotection <strong>in</strong> the gerbil transient forebra<strong>in</strong> ischemia/reperfusion<br />

model. Free Radic Biol Med (1998) 24(5):738-744.<br />

35. Klivenyi P, Matthews RT, Wermer M, Yang L, MacGarvey U, Becker<br />

DA, Natero R, Beal MF: Azulenyl nitrone sp<strong>in</strong> trap protects aga<strong>in</strong>st<br />

MPTP neurotoxicity. Exp Neurol (1998) 152(1):163-166.<br />

• This paper describes the neuroprotective effect of azulenyl nitrones <strong>in</strong> an<br />

animal model of Park<strong>in</strong>son's disease.<br />

36. Becker DA, Ley JJ, Echegoyen L, Alvarado R: Stilbazulenyl nitrone<br />

(STAZN): A nitronyl-substituted hydrocarbon with the potency of<br />

classical phenolic cha<strong>in</strong>-break<strong>in</strong>g antioxidants. J Am Chem Soc<br />

(2002) 124(17):4678-4684.<br />

• This study demonstrated that STAZN has higher antioxidant activity than<br />

PBN and NXY-059.<br />

37. Belayev L, Becker DA, Alonso OF, Liu Y, Busto R, Ley JJ, G<strong>in</strong>sberg<br />

MD: Stilbazulenyl nitrone, a novel azulenyl nitrone antioxidant:<br />

Improved neurological deficit and reduced contusion size after<br />

traumatic bra<strong>in</strong> <strong>in</strong>jury <strong>in</strong> rats. J Neurosurg (2002) 96(6):1077-1083.<br />

• This study demonstrated the neuroprotective effect of STAZN <strong>in</strong> an animal<br />

model of traumatic bra<strong>in</strong> <strong>in</strong>jury.<br />

38. Yang L, Cal<strong>in</strong>gasan NY, Chen J, Ley JJ, Becker DA, Beal MF: A novel<br />

azulenyl nitrone antioxidant protects aga<strong>in</strong>st MPTP and 3nitropropionic<br />

acid neurotoxicities. Exp Neurol (2005) 191(1):86-93.<br />

• This study demonstrated the neuroprotective effect of STAZN <strong>in</strong> an animal<br />

model of Hunt<strong>in</strong>gton's disease.<br />

39. G<strong>in</strong>sberg MD, Becker DA, Busto R, Belayev A, Zhang Y, Khoutorova L,<br />

Ley JJ, Zhao W, Belayev L: Stilbazulenyl nitrone, a novel<br />

antioxidant, is highly neuroprotective <strong>in</strong> focal ischemia. Ann Neurol<br />

(2003) 54(3):330-342.<br />

•• This paper describes the neuroprotective effect of STAZN <strong>in</strong> an animal<br />

model of ischemic stroke.<br />

40. Ley JJ, Vigdorchik A, Belayev K, Zhao W, Busto R, Khoutorova L, Becker<br />

DA, G<strong>in</strong>sberg MD: Stilbazulenyl nitrone, a second-generation azulenyl<br />

nitrone antioxidant, confers endur<strong>in</strong>g neuroprotection <strong>in</strong> experimental<br />

focal cerebral ischemia <strong>in</strong> the rat: Neurobehavior, histopathology, and<br />

pharmacok<strong>in</strong>etics. J Pharmacol Exp Ther (2005) 313(3):1090-1100.


<strong>Drugs</strong> <strong>in</strong> development for Park<strong>in</strong>son's disease: An update<br />

Tom H Johnston 1 & Jonathan M Brotchie 1,2 *<br />

Addresses<br />

1 Toronto Western Research Institute<br />

Toronto Western Hospital<br />

University Health Network<br />

399 Bathurst Street, MC 11-419<br />

Toronto<br />

ON M5T 2S8<br />

Canada<br />

Email: brotchie@uhnres.utoronto.ca<br />

2Atuka Ltd<br />

37th Floor<br />

First Canadian Place<br />

100 K<strong>in</strong>g Street West<br />

Toronto<br />

ON M5X 1C9<br />

Canada<br />

*To whom correspondence should be addressed<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):25-32<br />

© The Thomson Corporation ISSN 1472-4472<br />

The current development of emerg<strong>in</strong>g pharmacological<br />

treatments for Park<strong>in</strong>son's disease (PD), from precl<strong>in</strong>ical to<br />

launch, is summarized. Advances over the past year are<br />

highlighted, <strong>in</strong>clud<strong>in</strong>g the significant progress of several drugs<br />

through various stages of development. Several agents have<br />

been discont<strong>in</strong>ued from development, either because of adverse<br />

effects or lack of cl<strong>in</strong>ical efficacy. The methyl-esterified form of<br />

L-DOPA (melevodopa) and the monoam<strong>in</strong>e oxidase type B<br />

<strong>in</strong>hibitor rasagil<strong>in</strong>e have both been launched. With regard to<br />

the monoam<strong>in</strong>e re-uptake <strong>in</strong>hibitors, many changes have been<br />

witnessed, with new agents reach<strong>in</strong>g precl<strong>in</strong>ical development<br />

and pre-exist<strong>in</strong>g ones be<strong>in</strong>g discont<strong>in</strong>ued or hav<strong>in</strong>g no<br />

development reported. Of the dopam<strong>in</strong>e agonists, many<br />

cont<strong>in</strong>ue to progress successfully through cl<strong>in</strong>ical trials.<br />

Others have struggled to demonstrate a significant advantage<br />

over currently available treatments and have been<br />

discont<strong>in</strong>ued. The field of non-dopam<strong>in</strong>ergic treatments<br />

rema<strong>in</strong>s dynamic. The α2 adrenergic receptor antagonists and<br />

the adenos<strong>in</strong>e A2A receptor antagonists rema<strong>in</strong> <strong>in</strong> cl<strong>in</strong>ical<br />

trials. Trials of the neuronal synchronization modulator<br />

levetiracetam are at an advanced stage, and there has also been<br />

a new addition to the class (ie, seletracetam). There has been a<br />

change <strong>in</strong> the landscape of neuroprotective agents that<br />

modulate disease progression. Candidates from the classes of<br />

growth factors and glyceraldehyde-3-phosphate dehydrogenase<br />

<strong>in</strong>hibitors have been discont<strong>in</strong>ued, or no development has been<br />

reported, and the mixed l<strong>in</strong>eage k<strong>in</strong>ase <strong>in</strong>hibitor CEP-1347 has<br />

been discont<strong>in</strong>ued for PD treatment. Other drugs <strong>in</strong> this field,<br />

such as neuroimmunophil<strong>in</strong>s, estrogens and α-synucle<strong>in</strong><br />

oligomerization <strong>in</strong>hibitors, rema<strong>in</strong> <strong>in</strong> development.<br />

Keywords Adenos<strong>in</strong>e A2A, antipark<strong>in</strong>sonian, monoam<strong>in</strong>e<br />

oxidase <strong>in</strong>hibitors, non-dopam<strong>in</strong>ergic<br />

Introduction<br />

A summary of select antipark<strong>in</strong>sonian, antidysk<strong>in</strong>etic and<br />

neuroprotective/neurorestorative agents discussed <strong>in</strong> this<br />

review is presented <strong>in</strong> Tables 1 to 3. For a detailed<br />

discussion of the rationale for the majority of drugs <strong>in</strong><br />

development, refer to our orig<strong>in</strong>al review [1]. It should be<br />

25<br />

noted that, for commercial reasons, much of the <strong>in</strong>formation<br />

that relates to the development of these compounds is not<br />

available <strong>in</strong> the public doma<strong>in</strong> and our understand<strong>in</strong>g is<br />

derived from a variety of media reports of vary<strong>in</strong>g levels of<br />

reliability (eg, scientific literature, websites and company<br />

annual reports).<br />

Antipark<strong>in</strong>sonian symptomatic agents<br />

In the field of antipark<strong>in</strong>sonian therapies, the development of<br />

two dopam<strong>in</strong>e-replac<strong>in</strong>g compounds, etilevodopa and<br />

sumanirole, has been discont<strong>in</strong>ued [2,3]. In both <strong>in</strong>stances, it<br />

seems that this was not due to a lack of antipark<strong>in</strong>sonian<br />

efficacy, but rather because of a lack of any advantage over<br />

compet<strong>in</strong>g products. The discont<strong>in</strong>uation of Pfizer's sumanirole<br />

is disappo<strong>in</strong>t<strong>in</strong>g because it represented the first truly dopam<strong>in</strong>e<br />

D2-selective agonist [4], and thus had great promise as an agent<br />

that might avoid some of the complications that are associated<br />

with traditional dopam<strong>in</strong>e replacement therapy, such as<br />

dysk<strong>in</strong>esia and psychosis [5]. The reason beh<strong>in</strong>d the failure is<br />

unclear, and the entirety of Pfizer's precl<strong>in</strong>ical data on this agent<br />

may never enter the public doma<strong>in</strong>. However, from what has<br />

been made public, it appears that the precl<strong>in</strong>ical <strong>in</strong>vestigations<br />

to def<strong>in</strong>e the advantageous properties of sumanirole over its<br />

competitors, especially with respect to development/<br />

expression of dysk<strong>in</strong>esia and/or psychosis, were quite limited.<br />

This was particularly so <strong>in</strong> studies <strong>in</strong> 1-methyl-4-phenyl-1,2,3,6tetrahydropyrid<strong>in</strong>e<br />

(MPTP) primates, where little beyond<br />

antipark<strong>in</strong>sonian efficacy appears to have been presented<br />

publicly [6,7]. Cl<strong>in</strong>ical trials designed to maximize the potential<br />

advantages of sumanirole might thus have been overlooked.<br />

Another significant change <strong>in</strong> the field with<strong>in</strong> the last year<br />

is the decl<strong>in</strong>e <strong>in</strong> optimism regard<strong>in</strong>g monoam<strong>in</strong>e uptake<br />

<strong>in</strong>hibitors. Although the concept of enhanc<strong>in</strong>g rema<strong>in</strong><strong>in</strong>g<br />

levels of dopam<strong>in</strong>e with such compounds was supported<br />

by studies <strong>in</strong> MPTP-lesioned marmosets [8,9], the<br />

development of brasofens<strong>in</strong>e, SPD-473 and SPD-451 has<br />

been discont<strong>in</strong>ued [10]. The reasons beh<strong>in</strong>d these failures<br />

vary, but <strong>in</strong>clude, for example, lack of efficacy (SPD-473)<br />

[11]. In light of these developments, the results of the<br />

ongo<strong>in</strong>g phase II trial of NS-2330 (NeuroSearch<br />

A/S/Boehr<strong>in</strong>ger Ingleheim Corp) [12] and the<br />

development of SEP-226330 (Sepracor Inc), an agent<br />

claimed to reduce dopam<strong>in</strong>e and noradrenal<strong>in</strong>e, but not<br />

seroton<strong>in</strong>, re-uptake, are awaited with <strong>in</strong>terest [13].<br />

Advances <strong>in</strong> the development of patch and controlledrelease<br />

formulations of agonists have been made. Lead<strong>in</strong>g<br />

the way are studies with the rotigot<strong>in</strong>e patch (Schwarz<br />

Pharma AG/Otsuka Pharmaceutical Co Ltd), which is at the<br />

pre-registration stage, while the lisuride transcutaneous<br />

patch (Neurobiotec GmbH/Prestwick Pharmaceuticals Inc)<br />

has advanced to phase III cl<strong>in</strong>ical trials [14]. A controlledrelease<br />

version of the D2 agonist rop<strong>in</strong>irole<br />

(GlaxoSmithKl<strong>in</strong>e plc/SkyePharma plc) is undergo<strong>in</strong>g phase<br />

III cl<strong>in</strong>ical trials [15].


26 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

Table 1. Examples of antipark<strong>in</strong>sonian agents.<br />

Compound Develop<strong>in</strong>g company/<br />

<strong>in</strong>stitution<br />

Class of<br />

compound<br />

Dopam<strong>in</strong>ergic<br />

L-DOPA <strong>in</strong>haled<br />

(Inhaled levodopa)<br />

O-1369<br />

Boston Life Sciences Inc Dopam<strong>in</strong>e<br />

(BLS-602/BLS-605)<br />

uptake <strong>in</strong>hibitor<br />

SEP-226330 Sepracor Inc Dopam<strong>in</strong>e/<br />

norep<strong>in</strong>ephr<strong>in</strong>e<br />

reuptake<br />

<strong>in</strong>hibitor<br />

H<br />

O CH 3<br />

Cl<br />

Cl<br />

HO<br />

O<br />

O<br />

OH O<br />

OH<br />

OH<br />

Phase of<br />

cl<strong>in</strong>ical<br />

development<br />

Other potential<br />

actions<br />

Alkermes Inc - Precl<strong>in</strong>ical -<br />

Reference<br />

[35•]<br />

Precl<strong>in</strong>ical - [36]<br />

Precl<strong>in</strong>ical - [13]<br />

Rotigot<strong>in</strong>e nasal spray Schwarz Pharma AG D2 agonist Phase I Neuroprotective [37]<br />

BIA 3202<br />

(BIA-3-270)<br />

BIAL Group COMT <strong>in</strong>hibitor Phase I Neuroprotective [38]<br />

Cell therapy (dopam<strong>in</strong>e<br />

Titan<br />

Human ret<strong>in</strong>al Phase II - [39]<br />

producers, Park<strong>in</strong>son's)<br />

Pharmaceuticals Inc/ pigment<br />

(Spheram<strong>in</strong>e)<br />

Scher<strong>in</strong>g AG epithelial cells<br />

on microcarrier<br />

beads that<br />

produce<br />

L-DOPA<br />

NS-2330<br />

NeuroSearch A/S/ Monam<strong>in</strong>e Phase II Cognitive [40]<br />

H C 3<br />

Boehr<strong>in</strong>ger Ingelheim reuptake<br />

enhancement.<br />

N H<br />

Corp<br />

<strong>in</strong>hibitor<br />

Antidepressant<br />

Rop<strong>in</strong>irole<br />

GlaxoSmithKl<strong>in</strong>e plc/<br />

(ReQuip CR)<br />

SkyePharma plc<br />

Lisuride transdermal patch Prestwick<br />

Pharmaceuticals Inc/<br />

NeuroBiotech GmbH<br />

Saf<strong>in</strong>amide<br />

Newron Pharmaceuticals<br />

(PNU-151774E)<br />

SpA<br />

N<br />

H 2<br />

O<br />

CH 3<br />

H<br />

N<br />

Bifeprunox<br />

(DU-127090)<br />

N<br />

H<br />

N<br />

O<br />

O<br />

SLV-308<br />

(SME-308)<br />

CH 3<br />

N<br />

O<br />

N<br />

H<br />

Rotigot<strong>in</strong>e<br />

(N-0923/SPM-962)<br />

OH<br />

N<br />

N<br />

N<br />

O<br />

O<br />

CH 3<br />

HCl<br />

S<br />

F<br />

Solvay SA/<br />

H Lundbeck A/S/<br />

Wyeth Pharmaceuticals<br />

D3/weak D2<br />

agonist<br />

Phase III Neuroprotective [15]<br />

D2/D1 agonist Phase III - [14]<br />

MAO-B<br />

<strong>in</strong>hibitor/Na + and<br />

K + channel<br />

modulator<br />

D2 partial<br />

agonist/5-HT1A<br />

agonist<br />

Solvay SA D2 partial<br />

Schwarz Pharma AG/<br />

Otsuka Pharmaceutical<br />

Co Ltd<br />

agonist/5-HT1A<br />

agonist<br />

Phase III Neuroprotective [41,42,43••,<br />

44]<br />

Phase III - [45]<br />

Phase III Antidepressant [46]<br />

D2 agonist Pre-registered Neuroprotective [47]


Table 1. Examples of antipark<strong>in</strong>sonian agents (cont<strong>in</strong>ued).<br />

Compound Develop<strong>in</strong>g company/<br />

<strong>in</strong>stitution<br />

Piribedil<br />

(Trivastal)<br />

Zonisamide<br />

(Zonegran)<br />

Rasagil<strong>in</strong>e<br />

(TVP-1012/Agilect (US)/Azilect<br />

(Europe)<br />

<strong>Drugs</strong> <strong>in</strong> development for Park<strong>in</strong>son's disease: An update Johnston & Brotchie 27<br />

Class of<br />

compound<br />

Servier D2/3 agonist/α2<br />

antagonist<br />

Da<strong>in</strong>ippon Sumitomo<br />

Pharma Co Ltd/<br />

Donga Pharmaceutical<br />

Co Ltd/Eisai Co Ltd<br />

Teva Pharmaceutical<br />

Industries Ltd/<br />

Eisai Co Ltd/<br />

H Lundbeck A/S<br />

Complex<br />

dopam<strong>in</strong>ergic<br />

Irreversible MAO-<br />

B <strong>in</strong>hibitor<br />

Zandopa<br />

Zandu Complex<br />

(HP-200/Mucuna pruriens)<br />

dopam<strong>in</strong>ergic<br />

SPD-451 Shire plc Monam<strong>in</strong>e<br />

reuptake <strong>in</strong>hibitor<br />

Brasofens<strong>in</strong>e<br />

(NS-2214)<br />

C<br />

H 3<br />

N<br />

H<br />

SPD-473<br />

(BTS-74398)<br />

O CH 3<br />

N Cl<br />

Cl<br />

O<br />

O<br />

OH<br />

OH<br />

NeuroSearch A/S Monam<strong>in</strong>e<br />

reuptake <strong>in</strong>hibitor<br />

Shire plc Monam<strong>in</strong>e<br />

reuptake <strong>in</strong>hibitor<br />

Phase of<br />

cl<strong>in</strong>ical<br />

development<br />

Launched but<br />

new adjunct<br />

trials underway<br />

Other potential<br />

actions<br />

Reference<br />

- [48]<br />

Launched Neuroprotective [49-51]<br />

Launched Neuroprotective [52]<br />

Launched Neuroprotective [53-56]<br />

No development<br />

reported<br />

Cognitive<br />

enhancement.<br />

Antidepressant<br />

Discont<strong>in</strong>ued Cognitive<br />

enhancement.<br />

Antidepressant<br />

Discont<strong>in</strong>ued Cognitive<br />

enhancement.<br />

Antidepressant<br />

Sumanirole<br />

(PNU-95666)<br />

Non-dopam<strong>in</strong>ergic<br />

Pfizer Inc D2 agonist Discont<strong>in</strong>ued - [3]<br />

Adenos<strong>in</strong>e A2A blocker Adenos<strong>in</strong>e<br />

Therapeutics LLC<br />

A2A antagonist Precl<strong>in</strong>ical Neuroprotective [58]<br />

Adenos<strong>in</strong>e A2A receptor<br />

Neurocr<strong>in</strong>e<br />

A2A antagonist Precl<strong>in</strong>ical Neuroprotective [59]<br />

antagonists<br />

Biosciences Inc/<br />

Almirall Prodesfarma<br />

SA<br />

V-2006 Biogen IDEC Inc A2A antagonist Phase I Neuroprotective [25]<br />

AVE-1625 sanofi-aventis CB1 antagonist Phase I - [60]<br />

Sch-58261 analogs Scher<strong>in</strong>g-Plough Corp A2A antagonist Phase II Neuroprotective [61]<br />

Istradefyll<strong>in</strong>e<br />

Kyowa Hakko Kogyo A2A antagonist Phase III Neuroprotective [62-64]<br />

(KW-6002)<br />

Co Ltd<br />

CH 3<br />

O<br />

N<br />

C<br />

H 3<br />

O CH 3<br />

N<br />

Aricept<br />

(Donepezil/E-2020)<br />

N<br />

N<br />

Alt<strong>in</strong>icl<strong>in</strong>e<br />

(SIB-1508Y)<br />

HC<br />

N<br />

H<br />

CH 3<br />

N<br />

O<br />

CH 3<br />

O<br />

CH 3<br />

Eisai Co Ltd/Pfizer Inc AchE <strong>in</strong>hibitor Launched<br />

(pre-registered<br />

for PD-related<br />

dementia)<br />

SIBIA Neurosciences<br />

Inc<br />

α4β2 selective<br />

nicot<strong>in</strong>ic agonist<br />

No development<br />

reported<br />

Cognitive<br />

enhancement<br />

Cognitive<br />

enhancement<br />

AchE acetylchol<strong>in</strong>esterase, CB cannab<strong>in</strong>oid, COMT catechol-O-methyltransferase, MAO monoam<strong>in</strong>e oxidase, PD Park<strong>in</strong>son's disease.<br />

[10]<br />

[57]<br />

[11]<br />

[65]<br />

[66]


28 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

Table 2. Examples of antidysk<strong>in</strong>etic agents for Park<strong>in</strong>son's disease.<br />

Compound Develop<strong>in</strong>g<br />

company/<br />

<strong>in</strong>stitution<br />

Fipamezole<br />

(JP-1730)<br />

F<br />

CH 3<br />

Talampanel<br />

(K<strong>in</strong>ampa/LY-300164)<br />

C<br />

H 3<br />

BP-897<br />

(ST-280)<br />

O<br />

C<br />

H 3<br />

O<br />

N<br />

N<br />

N<br />

H<br />

Sarizotan<br />

(EMD-128130)<br />

F<br />

N<br />

NH 2<br />

HCl<br />

N<br />

H<br />

N<br />

NH<br />

O<br />

O<br />

N<br />

HCl<br />

C<br />

H 3<br />

O<br />

O<br />

N<br />

Class of<br />

compound<br />

Phase of<br />

development<br />

Other potential<br />

actions<br />

Juvantia Pharma Ltd α2 antagonist Phase II Extended 'on'<br />

time<br />

Reference<br />

IVAX Corp AMPA antagonist Phase II Neuroprotective [68]<br />

Bioprojet Pharma D3 partial agonist Phase II - [69]<br />

Merck KGaA 5-HT1A agonist Phase II Extended 'on'<br />

time<br />

Seletracetam<br />

(UCB-44212)<br />

UCB SA SV2A modulator Phase II - [29]<br />

ACP-103<br />

ACADIA<br />

Pharmaceuticals Inc<br />

5-HT2A <strong>in</strong>verse<br />

agonist<br />

Phase II Antipsychotic [70,71]<br />

E-2007 Eisai Co Ltd AMPA antagonist Phase II Neuroprotective [72]<br />

Seroquel<br />

(Quetiap<strong>in</strong>e)<br />

AstraZeneca plc 5-HT2A/C/D2/3<br />

antagonist<br />

Phase II for PD<br />

(launched for<br />

schizophrenia)<br />

Antipsychotic [73,74]<br />

AMPA α-am<strong>in</strong>o-3-hydroxy-5-methyl-4-isoxazolepropionic acid.<br />

Intense <strong>in</strong>terest is now focused on the area of monoam<strong>in</strong>e oxidase<br />

(MAO) <strong>in</strong>hibitors. In the past year, many data have accrued with<br />

regard to the antipark<strong>in</strong>sonian actions of the MAO-B <strong>in</strong>hibitor<br />

rasagil<strong>in</strong>e [11-15,16••], which has now been launched <strong>in</strong> the UK.<br />

Also approved for launch across Europe under the brand name<br />

Azilect, the results of two large cl<strong>in</strong>ical trials have demonstrated<br />

that rasagil<strong>in</strong>e is efficacious both as a monotherapy <strong>in</strong> early-stage<br />

Park<strong>in</strong>son's disease (PD) patients [16••,17••], and as an adjunct to<br />

L-DOPA therapy <strong>in</strong> advanced PD patients with motor<br />

fluctuations [18,19]. Precl<strong>in</strong>ical data suggest a potential<br />

neuroprotective action of rasagil<strong>in</strong>e [20] that might be reflected <strong>in</strong><br />

the f<strong>in</strong>d<strong>in</strong>gs of the TVP-1012 <strong>in</strong> Early Monotherapy for<br />

Park<strong>in</strong>son's disease Outpatients (TEMPO) study. In TEMPO,<br />

early-stage PD patients who commence treatment with rasagil<strong>in</strong>e<br />

as adjunctive therapy are associated with better outcomes at one<br />

year than those patients who delay the start of treatment [21].<br />

However, equally plausible explanations that are unrelated to<br />

neuroprotection could underlie the f<strong>in</strong>d<strong>in</strong>gs of TEMPO.<br />

Whatever the explanation, evidence is accumulat<strong>in</strong>g for the<br />

<strong>in</strong>itiation of rasagil<strong>in</strong>e therapy early after diagnosis.<br />

[67]<br />

[26••]<br />

In the field of non-dopam<strong>in</strong>ergic anti-park<strong>in</strong>sonian agents, the<br />

spotlight rema<strong>in</strong>s on harness<strong>in</strong>g the undoubted potential of<br />

adenos<strong>in</strong>e A2A antagonists. Progress with istradefyll<strong>in</strong>e (Kyowa<br />

Hakko Kogyo Co Ltd) rema<strong>in</strong>s relatively slow, although new<br />

f<strong>in</strong>d<strong>in</strong>gs show<strong>in</strong>g that its action is ma<strong>in</strong>ta<strong>in</strong>ed have been<br />

presented [22], and several phase III trials are now underway<br />

[23,24]. Biogen Idec Inc is develop<strong>in</strong>g the non-xanth<strong>in</strong>e A2A<br />

antagonist V-2006 under license from Vernalis plc [25].<br />

Development by both companies represents a potentially<br />

powerful comb<strong>in</strong>ation that could drive the development of<br />

V-2006 so that it is at the same level as istradefyll<strong>in</strong>e with<strong>in</strong> the<br />

next year. New entrants to this field <strong>in</strong>clude Adenos<strong>in</strong>e<br />

Therapeutics, Neurocr<strong>in</strong>e Biosciences and Almirall Prodesfarma,<br />

although little is known about their developmental candidates<br />

at this stage. It is not clear how the adenos<strong>in</strong>e A2A field will<br />

develop; istradefyll<strong>in</strong>e has prime-mover advantage at present,<br />

but if one of the emerg<strong>in</strong>g molecules can build on the lessons<br />

learned from the development of istradefyll<strong>in</strong>e, or prove useful<br />

as a monotherapy and not just an adjunct to dopam<strong>in</strong>e<br />

replacement (as seems likely to be the case with istradefyll<strong>in</strong>e),<br />

then this advantage could rapidly be negated.


Table 3. Examples of neuroprotective/neurorestorative agents for Park<strong>in</strong>son's disease.<br />

C<br />

H 3<br />

C<br />

H 3<br />

OH<br />

<strong>Drugs</strong> <strong>in</strong> development for Park<strong>in</strong>son's disease: An update Johnston & Brotchie 29<br />

Compound Develop<strong>in</strong>g company/<br />

Class of<br />

Phase of Other potential Reference<br />

<strong>in</strong>stitution<br />

compound development actions<br />

PAN-408 and PAN-527 Panacea Pharmaceuticals Inc α-Synucle<strong>in</strong><br />

oligomerization<br />

<strong>in</strong>hibitors<br />

Precl<strong>in</strong>ical -<br />

[75]<br />

Sonic hedgehog prote<strong>in</strong><br />

Curis Inc/<br />

Hh agonist Precl<strong>in</strong>ical -<br />

[76]<br />

agonists<br />

Wyeth Pharmaceuticals<br />

GYKI-47261 IVAX Corp AMPA antagonist Precl<strong>in</strong>ical Anti-dysk<strong>in</strong>etic [77]<br />

FR-255595 Astellas Pharma Inc PARP-1 <strong>in</strong>hibitor Precl<strong>in</strong>ical - [78]<br />

CERE-120<br />

(Neurtur<strong>in</strong>)<br />

Ceregene Inc GDNF analog Phase I - [79]<br />

MX-4509<br />

(MITO-4509)<br />

MIGENIX Inc Estrogen analog Phase I/II - [80]<br />

Cereact<br />

Ono Pharmaceutical Co Ltd/ Astrocyte modulator Phase II for PD<br />

-<br />

[81,82]<br />

(ONO-2506/arundic acid)<br />

Merck & Co Inc<br />

(phase III for<br />

O<br />

cerebral<br />

<strong>in</strong>farction)<br />

PYM-50028<br />

(P-63)<br />

Phytopharm plc Not known Phase II - [83]<br />

GPI-1485 MGI Pharma Inc/Symphony Neuroimmunophil<strong>in</strong> Phase II -<br />

[84]<br />

Neuro Development Co<br />

ligand<br />

SR-57667 sanofi-aventis Non-peptide<br />

neurotrophic<br />

Phase IIb Neuroprotective [85]<br />

Creat<strong>in</strong>e<br />

Avicena Group Inc Mitochondrial<br />

Phase III<br />

[86]<br />

NH<br />

permeability<br />

-<br />

H N 2 N<br />

OH<br />

transition pore<br />

<strong>in</strong>hibitor<br />

CH 3<br />

Liaterm<strong>in</strong>e<br />

(GDNF)<br />

Omigapil<br />

(CGP-3466/TCH-346)<br />

H C 3<br />

N<br />

O<br />

O<br />

CH<br />

Amgen Inc Endogenous<br />

neurotrophic factor<br />

Discont<strong>in</strong>ued -<br />

[30]<br />

Novartis AG GAPDH <strong>in</strong>hibitor Discont<strong>in</strong>ued - [87]<br />

AMPA α-am<strong>in</strong>o-3-hydroxy-5-methyl-4-isoxazolepropionic acid, GAPDH glyceraldehyde-3-phosphate dehydrogenase, GDNF glial-derived<br />

neurotrophic factor, PARP poly(ADP-ribose) polymerase, PD Park<strong>in</strong>son's disease.<br />

Antidysk<strong>in</strong>etic agents<br />

Developments <strong>in</strong> the field of non-dopam<strong>in</strong>ergic<br />

antidysk<strong>in</strong>etic drugs have generally been positive. Two<br />

agents, the α2 adrenoceptor antagonist fipamezole<br />

(Juvantia Pharma Ltd) and the 5-hydroxytryptam<strong>in</strong>e (5-<br />

HT)1A agonist sarizotan (Merck KGaA) [26••], have both<br />

successfully demonstrated antidysk<strong>in</strong>etic efficacy <strong>in</strong> phase<br />

IIa studies. Preparations for phase III trials of sarizotan are<br />

now underway [27]. It is unclear as to how UCB SA<br />

<strong>in</strong>tends to develop the anticonvulsant levetiracetam for L-<br />

DOPA-<strong>in</strong>duced dysk<strong>in</strong>esia, s<strong>in</strong>ce it has been suggested<br />

that there will be significant issues of tolerability ow<strong>in</strong>g to<br />

somnolence [28]; however, if it can be tolerated <strong>in</strong> an<br />

<strong>in</strong>dividual, antidysk<strong>in</strong>etic actions are achievable.<br />

Precl<strong>in</strong>ical data on a next-generation analog of<br />

levetiracetam, seletracetam (UCB SA), have been reported<br />

[29], demonstrat<strong>in</strong>g the apparent commitment of UCB to<br />

both the target and therapeutic area.<br />

Neuroprotective/neurorestorative agents<br />

In the research of disease-modify<strong>in</strong>g compounds, many<br />

potential agents cont<strong>in</strong>ue to vie for the opportunity to<br />

demonstrate efficacy. The field rema<strong>in</strong>s characterized by a<br />

lack of any s<strong>in</strong>gle target recognized as be<strong>in</strong>g more favorable<br />

than another, and the likelihood that several classes of<br />

compounds will eventually occupy this space may become a<br />

reality. The logistics of conduct<strong>in</strong>g cl<strong>in</strong>ical trials of diseasemodify<strong>in</strong>g<br />

agents rema<strong>in</strong> challeng<strong>in</strong>g [30], and development<br />

of some compounds for PD has been discont<strong>in</strong>ued, for<br />

example, the glial-derived neurotrophic factor, liaterm<strong>in</strong>e<br />

(Amgen Inc) [31]; the neurotroph<strong>in</strong> synthesis-enhancer,<br />

mixed l<strong>in</strong>eage k<strong>in</strong>ase <strong>in</strong>hibitor CEP-1347 (Cephalon Inc/H<br />

Lundbeck A/S/ Kyowa Hakko Kogyo Co Ltd) [32]; and the<br />

glyceraldehyde-3-phosphate dehydrogenase <strong>in</strong>hibitor<br />

TCH-346 (Novartis AG) [33]. In a similar manner to<br />

rasagil<strong>in</strong>e, much attention has also been focused on the<br />

neuroprotective potential of other pre-exist<strong>in</strong>g symptomatic


30 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

antipark<strong>in</strong>sonian agents. For example, data were recently<br />

presented <strong>in</strong> support of a protective action of rotigot<strong>in</strong>e<br />

whereby the progression of disability was attenuated <strong>in</strong> those<br />

patients with early-stage PD who received this agent [34].<br />

Conclusion<br />

In conclusion, the area of drug development <strong>in</strong> PD rema<strong>in</strong>s<br />

active and there is realistic hope of new therapies reach<strong>in</strong>g<br />

the market <strong>in</strong> the short to mid term.<br />

References<br />

1. Johnston TH, Brotchie JM: <strong>Drugs</strong> <strong>in</strong> development for Park<strong>in</strong>son's<br />

disease. Curr Op<strong>in</strong> Investig <strong>Drugs</strong> (2004) 5(7):720-726.<br />

2. Teva Pharmaceutical Ltd: Teva & Lundbeck announce phase III trials<br />

did not demonstrate etilevodopa superiority over standard<br />

levodopa. Press Release (2003):January 06.<br />

www.tevapharm.com/pr/2003/pr_371.asp<br />

3. Pfizer Inc: Pfizer announces the discont<strong>in</strong>uation of sumanirole<br />

development. F<strong>in</strong>ancial Report (2004) July.<br />

www.pfizer.com/pfizer/annualreport/2004/f<strong>in</strong>ancial/pr<strong>in</strong>t/r6.pdf<br />

4. Sethy VH, Ellerbrock BR, Wu H: U-95666E: A potential antipark<strong>in</strong>sonian<br />

drug with anxiolytic activity. Prog<br />

Neuropsychopharmacol Biol Psychiatry (1997) 21(5):873-883.<br />

5. Rascol O, Payoux P, Ory F, Ferreira JJ, Brefel-Courbon C, Montastruc<br />

JL: Limitations of current Park<strong>in</strong>son's disease therapy. Ann Neurol<br />

(2003) 53(Suppl 3):S3-S12; discussion S12-S15.<br />

6. DuChane J, Jenk<strong>in</strong>son C: Changes <strong>in</strong> quality of life result<strong>in</strong>g from<br />

treatment for persons with advanced Park<strong>in</strong>son's disease:<br />

Sumanirole versus placebo. International Congress on Park<strong>in</strong>son's<br />

Disease and Movement Disorders, Miami, FL, USA (2002):P309.<br />

7. Gomez-Mancilla B, Selzer K, Chapman K, Wang M, Simpson S:<br />

Sumanirole is a promis<strong>in</strong>g new agent <strong>in</strong> the treatment of<br />

Park<strong>in</strong>son's disease. International Congress on Park<strong>in</strong>son's Disease<br />

and Movement Disorders, Miami, FL, USA (2002):P323.<br />

8. Pearce RK, Smith LA, Jackson MJ, Banerji T, Scheel-Kruger J, Jenner<br />

P: The monoam<strong>in</strong>e reuptake blocker brasofens<strong>in</strong>e reverses<br />

ak<strong>in</strong>esia without dysk<strong>in</strong>esia <strong>in</strong> MPTP-treated and levodopa-primed<br />

common marmosets. Mov Disord (2002) 17(5):877-886.<br />

9. Hansard MJ, Smith LA, Jackson MJ, Cheetham SC, Jenner P: Dopam<strong>in</strong>e,<br />

but not norep<strong>in</strong>ephr<strong>in</strong>e or seroton<strong>in</strong>, reuptake <strong>in</strong>hibition reverses motor<br />

deficits <strong>in</strong> 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrid<strong>in</strong>e-treated primates.<br />

J Pharmacol Exp Ther (2002) 303(3):952-958.<br />

10. Shire Pharmaceuticals Inc: Shire: A focused global pharmaceutical<br />

company. Focus<strong>in</strong>g on a bright future. Annual Review (2003).<br />

www.shire.com/shire/uploads/reports/AR_2003.pdf<br />

11. Hansard MJ, Smith LA, Jackson MJ, Cheetham SC, Jenner P: The<br />

monoam<strong>in</strong>e reuptake <strong>in</strong>hibitor BTS 74 398 fails to evoke<br />

established dysk<strong>in</strong>esia but does not synergise with levodopa <strong>in</strong><br />

MPTP-treated primates. Mov Disord (2004) 19(1):15-21.<br />

12. Neurosearch Inc: NeuroSearch's partner Boehr<strong>in</strong>ger Ingelheim has<br />

concluded the enrollment of patients <strong>in</strong> three cl<strong>in</strong>ical phase II<br />

studies with NS2330 for the treatment of Alzheimer's and<br />

Park<strong>in</strong>son's diseases. Annual Report (2004):November 09.<br />

http://neurosearch.com/pub/pdf/20041109_uk.pdf<br />

13. Sepracor Inc: Therapeutic areas: CNS, SEP-226330. Company Web Site<br />

(2005).<br />

http://www.sepracor.com/therap/sep226330.html<br />

14. Prestwick Pharmaceuticals Form S1. FORM S-1 (2005):April 22.<br />

15. GlaxoSmithKl<strong>in</strong>e Inc: GlaxoSmithKl<strong>in</strong>e announces phase III trial of<br />

controlled release rop<strong>in</strong>irole. Press Release (2005):April 12.<br />

http://science.gsk.com/pipel<strong>in</strong>e/pipel<strong>in</strong>e-march2005.pdf<br />

16. Stern MB, Marek KL, Friedman J, Hauser RA, LeWitt PA, Tarsy D,<br />

Olanow CW: Double-bl<strong>in</strong>d, randomized, controlled trial of rasagil<strong>in</strong>e<br />

as monotherapy <strong>in</strong> early Park<strong>in</strong>son's disease patients. Mov Disord<br />

(2004) 19(8):916-923.<br />

•• This paper describes one of two large studies demonstrat<strong>in</strong>g that oncedaily<br />

adm<strong>in</strong>istration of rasagil<strong>in</strong>e can significantly <strong>in</strong>crease the time dur<strong>in</strong>g<br />

which patients receive antipark<strong>in</strong>sonian benefit from L-DOPA without<br />

troublesome dysk<strong>in</strong>esia.<br />

17. Lew M, Hauser RA, Hurtig H, Ondo W, Wojcieszek J: Long-term efficacy of<br />

rasagil<strong>in</strong>e <strong>in</strong> Park<strong>in</strong>son's disease. Mov Disord (2005) 20:P250.<br />

•• The second of two large studies demonstrat<strong>in</strong>g that once-daily adm<strong>in</strong>istration of<br />

rasagil<strong>in</strong>e can significantly <strong>in</strong>crease the time dur<strong>in</strong>g which patients receive<br />

antipark<strong>in</strong>sonian benefit from L-DOPA without troublesome dysk<strong>in</strong>esia.<br />

18. Rascol O, Brooks DJ, Melamed E, Oertel W, Poewe W, Stocchi F, Tolosa E:<br />

Rasagil<strong>in</strong>e as an adjunct to levodopa <strong>in</strong> patients with Park<strong>in</strong>son's<br />

disease and motor fluctuations (LARGO, last<strong>in</strong>g effect <strong>in</strong> adjunct<br />

therapy with rasagil<strong>in</strong>e given once daily, study): A randomised, doublebl<strong>in</strong>d,<br />

parallel-group trial. Lancet (2005) 365(9463):947-954.<br />

19. Park<strong>in</strong>son Study Group: A randomized placebo-controlled trial of<br />

rasagil<strong>in</strong>e <strong>in</strong> levodopa-treated patients with Park<strong>in</strong>son disease and<br />

motor fluctuations: The PRESTO study. Arch Neurol (2005)<br />

62(2):241-248.<br />

20. Mandel S, We<strong>in</strong>reb O, Amit T, Youdim MB: Mechanism of<br />

neuroprotective action of the anti-Park<strong>in</strong>son drug rasagil<strong>in</strong>e and its<br />

derivatives. Bra<strong>in</strong> Res Bra<strong>in</strong> Res Rev (2005) 48(2):379-387.<br />

21. Hauser RA, Lew M, Hurtig H, Ondo W, Wojcieszek J: Early treatment<br />

with rasagil<strong>in</strong>e is more beneficial than delayed treatment start <strong>in</strong><br />

the long-term management of Park<strong>in</strong>son's disease. Mov Disord<br />

(2005) 20:P251.<br />

22. Mark MH: Long-term efficacy of istradefyll<strong>in</strong>e <strong>in</strong> patients with<br />

advanced Park<strong>in</strong>son's disease. Mov Disord (2005) 20:P310.<br />

23. Kyowa Hakko to focus on biotechnology. Pharma Jpn (2004) 1920: P6.<br />

24. Kyowa Hakko Kogyo Co Ltd: Overseas R&D activities. Company<br />

World Wide Web Site (2004):November 18.<br />

25. Biogen IDEC Inc: Vernalis and Biogen Idec to collaborate on<br />

research for Park<strong>in</strong>son's disease. Press Release (2004):June 24.<br />

http://biogen.com/news/BiogenIDECPR_045.htm<br />

26. Bara-Jimenez W, Bibbiani F, Morris MJ, Dimitrova T, Sherzai A,<br />

Mouradian MM, Chase TN: Effects of seroton<strong>in</strong> 5-HT1A agonist <strong>in</strong><br />

advanced Park<strong>in</strong>son's disease. Mov Disord (2005) 20(8):932-936.<br />

•• This study was the first demonstration <strong>in</strong> humans that 5HT1A agonists can<br />

reduce L-DOPA-<strong>in</strong>duced dysk<strong>in</strong>esia, and confirms f<strong>in</strong>d<strong>in</strong>gs from MPTPlesioned<br />

monkeys.<br />

27. EMD Pharmaceuticals: Sarizotan HCl <strong>in</strong> patients with Park<strong>in</strong>son's<br />

disease suffer<strong>in</strong>g from treatment-associated dysk<strong>in</strong>esia. (2005):August<br />

01.<br />

http://www.cl<strong>in</strong>icaltrials.gov/ct/show/NCT00105508<br />

28. Meco G, Fabrizio E, Epifanio A, Raimondo GD, Vanacore N, Morgante<br />

L: Levetiracetam <strong>in</strong> L-DOPA-<strong>in</strong>duced dysk<strong>in</strong>esia. Cl<strong>in</strong><br />

Neuropharmacol (2005) 28(2):102-103.<br />

29. Michel A, Ravenscroft P, Hill MP, Bezard E, Crossman AR, Klitgaard H:<br />

Seletracetam (UCB 44212) reduces L-DOPA-<strong>in</strong>duced dysk<strong>in</strong>esia <strong>in</strong><br />

the MPTP-lesioned marmoset model of Park<strong>in</strong>son's disease. Mov<br />

Disord (2005) 20:S102.<br />

30. Meissner W, Hill MP, Tison F, Gross CE, Bezard E: Neuroprotective<br />

strategies for Park<strong>in</strong>son's disease: Conceptual limits of animal models<br />

and cl<strong>in</strong>ical trials. Trends Pharmacol Sci (2004) 25(5):249-253.<br />

31. Amgen Inc: Follow<strong>in</strong>g complete review of phase 2 trial data Amgen<br />

confirms decision to halt GDNF study; Comprehensive review of<br />

scientific f<strong>in</strong>d<strong>in</strong>gs, patient safety, drove decision. Press Release<br />

(2005):February 11.<br />

http://www.amgen.com/media/media_pr_detail.jsp?year=2005&releaseI<br />

D=673490<br />

32. Lundbeck Inc: Cephalon and Lundbeck announce discont<strong>in</strong>uation of<br />

CEP-1347 cl<strong>in</strong>ical trial <strong>in</strong> Park<strong>in</strong>son's disease. Press Release<br />

(2005):May 11.<br />

http://www.lundbeck.com/<strong>in</strong>vestor/releases/ReleaseDetails/Release_158_<br />

EN.asp


33. Novartis AG: Novartis shows dynamic momentum <strong>in</strong> <strong>in</strong>dustrylead<strong>in</strong>g<br />

pipel<strong>in</strong>e. Press Release (2005):January 20.<br />

34. Watts R, LeWitt P, Giladi N, Sommerville K, Boroojerdi B: Treatment<br />

with rotigot<strong>in</strong>e transdermal system may attenuate progression of<br />

disability <strong>in</strong> patients with early-stage Park<strong>in</strong>son's disease. In:<br />

Annual Meet<strong>in</strong>g of the American Academy of Neurology, Miami Beach,<br />

FL, USA (2005):57.<br />

35. Bartus RT, Emerich D, Snodgrass-Belt P, Fu K, Salzberg-Brenhouse H,<br />

Lafreniere D, Novak L, Lo ES, Cooper T, Basile AS: A pulmonary<br />

formulation of L-DOPA enhances its effectiveness <strong>in</strong> a rat model of<br />

Park<strong>in</strong>son's disease. J Pharmacol Exp Ther (2004) 310(2):828-835.<br />

• This paper describes early precl<strong>in</strong>ical use of a novel approach to deliver<strong>in</strong>g<br />

L-DOPA via the pulmonary route.<br />

36. Boston Life Sciences Inc: Boston Life Sciences Inc product pipel<strong>in</strong>e.<br />

O-1369, novel DAT blocker for the treatment of Park<strong>in</strong>son's<br />

disease. Company Web Site (2005):W<strong>in</strong>ter.<br />

http://www.bostonlifesciences.com/productpipel<strong>in</strong>e.html<br />

37. Schwarz Pharma Inc: Schwarz Pharma's results exceed<br />

expectations. Press Release (2004): February 18.<br />

http://cms.schwarzpharma.com/_uploads/assets/3268_PR_Prelim<strong>in</strong>ary<br />

%20Report%202003_e.pdf<br />

38. Almeida L, Vaz-da-Silva M, Silveira P, Falcao A, Maia J, Loureiro A,<br />

Torrao L, Machado R, Wright L, Soares-da-Silva P: Pharmacok<strong>in</strong>eticpharmacodynamic<br />

<strong>in</strong>teraction between BIA 3-202, a novel COMT<br />

<strong>in</strong>hibitor, and levodopa/carbidopa. Cl<strong>in</strong> Neuropharmacol (2004)<br />

27(1):17-24.<br />

39. Watts RL, Raiser CD, Stover NP, Cornfeldt ML, Schweikert AW, Allen RC,<br />

Subramanian T, Doudet D, Honey CR, Bakay RA: Stereotaxic <strong>in</strong>trastriatal<br />

implantation of human ret<strong>in</strong>al pigment epithelial (hRPE) cells attached<br />

to gelat<strong>in</strong> microcarriers: A potential new cell therapy for Park<strong>in</strong>son's<br />

disease. J Neural Transm Suppl (2003) 65:215-227.<br />

40. Neurosearch A/S: NeuroSearch's partner Boehr<strong>in</strong>ger Ingelheim has<br />

concluded the enrollment of patients <strong>in</strong> three cl<strong>in</strong>ical phase II<br />

studies with NS2330 for the treatment of Alzheimer's and<br />

Park<strong>in</strong>son's diseases. Press Release (2004):November 09.<br />

http://www.neurosearch.com/pub/pdf/20041109_uk.pdf<br />

41. Chazot PL: Saf<strong>in</strong>amide (Newron Pharmaceuticals). Curr Op<strong>in</strong> Investig<br />

<strong>Drugs</strong> (2001) 2(6):809-813.<br />

42. Maj R, Fariello RG, Ukmar G, Varasi M, Pevarello P, McArthur RA,<br />

Salvati P: PNU-151774E protects aga<strong>in</strong>st ka<strong>in</strong>ate-<strong>in</strong>duced status<br />

epilepticus and hippocampal lesions <strong>in</strong> the rat. Eur J Pharmacol<br />

(1998) 359(1):27-32.<br />

43. Stocchi F, Arnold G, Onofrj M, Kwiec<strong>in</strong>ski H, Szczudlik A, Thomas A,<br />

Bonuccelli U, Van Dijk A, Cattaneo C, Sala P, Fariello RG:<br />

Improvement of motor function <strong>in</strong> early Park<strong>in</strong>son's disease by<br />

saf<strong>in</strong>amide. Neurology (2004) 63(4):746-748.<br />

•• This was the first demonstration <strong>in</strong> humans that saf<strong>in</strong>amide may have value<br />

<strong>in</strong> the treatment of Park<strong>in</strong>son's disease, by <strong>in</strong>creas<strong>in</strong>g the time dur<strong>in</strong>g which<br />

patients can receive antipark<strong>in</strong>sonian benefits of L-DOPA.<br />

44. Newron Pharmaceuticals SpA: Newron <strong>in</strong>itiates Park<strong>in</strong>son's disease<br />

phase III trial with saf<strong>in</strong>amide. Press Release (2004):September 13.<br />

http://www.newron.com/press.asp?Action=news&<strong>in</strong>tNewsID=17<br />

45. H Lundbeck A/S: Bifeprunox enters cl<strong>in</strong>ical phase III. Press Release<br />

(2003):September 02.<br />

http://www.lundbeck.com/<strong>in</strong>vestor/releases/ReleaseDetails/Release_10<br />

5_EN.asp<br />

46. Solvay SA: Park<strong>in</strong>son's: Solvay Pharmaceuticals moves SLV 308<br />

compound <strong>in</strong>to phase III cl<strong>in</strong>ical development. Press Release<br />

(2005):February 03.<br />

http://www.solvayhealthcare.co.uk/news/newsitems/0,,27259-2-0,00.htm<br />

47. Pharma Inc: Schwarz Pharma's NDA for rotigot<strong>in</strong>e transdermal<br />

system is filed by FDA. Press Release (2005):March 29.<br />

http://www.schwarzpharma.com/?node_id=2402<br />

48. Servier Inc: Details of adjunct trials for Trivastal (Piribedil). Company<br />

Web Site (2005). http://www.servier.com/<br />

49. Gluck MR, Santana LA, Granson H, Yahr MD: Novel dopam<strong>in</strong>e<br />

releas<strong>in</strong>g response of an anti-convulsant agent with possible anti-<br />

Park<strong>in</strong>son's activity. J Neural Transm (2004) 111(6):713-724.<br />

<strong>Drugs</strong> <strong>in</strong> development for Park<strong>in</strong>son's disease: An update Johnston & Brotchie 31<br />

50. Murata M: Novel therapeutic effects of the anti-convulsant, zonisamide,<br />

on Park<strong>in</strong>son's disease. Curr Pharm Des (2004) 10(6):687-693.<br />

51. Murata M, Horiuchi E, Kanazawa I: Zonisamide has beneficial effects<br />

on Park<strong>in</strong>son's disease patients. Neurosci Res (2001) 41(4):397-399.<br />

52. Teva Pharmaceutical Industries Ltd: Teva and Lundbeck announce<br />

European approval for AZILECT (rasagil<strong>in</strong>e) 1mg for Park<strong>in</strong>son's<br />

disease. Press Release (2005):February 22.<br />

http://www.tevapharm.com/pr/2005/pr_514.asp<br />

53. Katzenschlager R, Evans A, Manson A, Patsalos PN, Ratnaraj N, Watt<br />

H, Timmermann L, Van der Giessen R, Lees AJ: Mucuna pruriens <strong>in</strong><br />

Park<strong>in</strong>son's disease: A double bl<strong>in</strong>d cl<strong>in</strong>ical and pharmacological<br />

study. J Neurol Neurosurg Psychiatry (2004) 75(12):1672-1677.<br />

54. Manyam BV, Dhanasekaran M, Hare TA: Neuroprotective effects of<br />

the antipark<strong>in</strong>son drug Mucuna pruriens. Phytother Res (2004)<br />

18(9):706-712.<br />

55. Misra L, Wagner H: Alkaloidal constituents of Mucuna pruriens<br />

seeds. Phytochemistry (2004) 65(18):2565-2567.<br />

56. Manyam BV, Dhanasekaran M, Hare TA: Effect of antipark<strong>in</strong>son drug<br />

HP-200 (Mucuna pruriens) on the central monoam<strong>in</strong>ergic<br />

neurotransmitters. Phytother Res (2004) 18(2):97-101.<br />

57. Neurosearch A/S: Neurosearch research and development status<br />

May 2005 show<strong>in</strong>g discont<strong>in</strong>uation of NS-2214. Company Web Site<br />

(2005) May.<br />

http://www.neurosearch.com/pub/pdf/capitalmarket-RD%20may%202005.pdf<br />

58. Adenos<strong>in</strong>e Therapeutics LLC: Product pipel<strong>in</strong>e for 2005. Company<br />

Web Site (2005): March.<br />

http://www.adenrx.com/pipe.html<br />

59. Neurocr<strong>in</strong>e Biosciences Inc: Research program for 2005. Company<br />

Web Site (2005).<br />

http://www.neurocr<strong>in</strong>e.com/html/res_researchMa<strong>in</strong>.html<br />

60. sanofi-aventis Inc: Development status of central nervous system<br />

drugs. Company Web Site (2005):August 31.<br />

http://en.sanofi-aventis.com/rd/portfolio/p_rd_portfolio_snc.asp<br />

61. Scher<strong>in</strong>g-Plough Corp: Scher<strong>in</strong>g-Plough Product pipel<strong>in</strong>e: Worldwide<br />

prescription products. Company Web Site (2005):November.<br />

http://www.sch-plough.com/pdf/productpipel<strong>in</strong>e.pdf<br />

62. Hauser RA, Hubble JP, Truong DD: Randomized trial of the<br />

adenos<strong>in</strong>e A2A receptor antagonist istradefyll<strong>in</strong>e <strong>in</strong> advanced PD.<br />

Neurology (2003) 61(3):297-303.<br />

63. Schwarzschild MA, Xu K, Oztas E, Petzer JP, Castagnoli K, Castagnoli<br />

N Jr, Chen JF: Neuroprotection by caffe<strong>in</strong>e and more specific A2A<br />

receptor antagonists <strong>in</strong> animal models of Park<strong>in</strong>son's disease.<br />

Neurology (2003) 61(11 Suppl 6):S55-S61.<br />

64. Bara-Jimenez W, Sherzai A, Dimitrova T, Favit A, Bibbiani F, Gillespie<br />

M, Morris MJ, Mouradian MM, Chase TN: Adenos<strong>in</strong>e A2A receptor<br />

antagonist treatment of Park<strong>in</strong>son's disease. Neurology (2003)<br />

61(3):293-296.<br />

65. Eisai Inc: Two new studies showed Alzheimer's disease treatment<br />

beneficial <strong>in</strong> other types of memory-related conditions. Press<br />

Release (2003):April 04.<br />

http://www.eisai.com/view_press_release.asp?ID=210&press=67<br />

66. Schneider JS, Pope-Coleman A, Van Velson M, Menzaghi F, Lloyd GK:<br />

Effects of SIB-1508Y, a novel neuronal nicot<strong>in</strong>ic acetylchol<strong>in</strong>e<br />

receptor agonist, on motor behavior <strong>in</strong> park<strong>in</strong>sonian monkeys. Mov<br />

Disord (1998) 13(4):637-642.<br />

67. Juvantia Pharma Ltd: Juvantia Pharma announces positive results<br />

of phase IIa study <strong>in</strong> Park<strong>in</strong>son's disease. Press Release<br />

(2004):June 28.<br />

http://www.juvantia.com/eng/news/newsarchive/?nid=35<br />

68. Ivax Corp: Central nervous system: IVAX is develop<strong>in</strong>g new drugs to<br />

treat diseases of the bra<strong>in</strong> and sp<strong>in</strong>al cord. Company Web Site (2005).<br />

http://www.ivax.com/jsps/rd_<strong>in</strong>itiatives/cns.jsp<br />

69. Bezard E, Ferry S, Mach U, Stark H, Leriche L, Boraud T, Gross C,<br />

Sokoloff P: Attenuation of levodopa-<strong>in</strong>duced dysk<strong>in</strong>esia by<br />

normaliz<strong>in</strong>g dopam<strong>in</strong>e D3 receptor function. Nat Med (2003)<br />

9(6):762-767.


32 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

70. Acadia Pharmaceuticals Inc: ACADIA Pharmaceuticals announces<br />

encourag<strong>in</strong>g <strong>in</strong>terim results from ongo<strong>in</strong>g phase II trial of ACP-103<br />

for treatment-<strong>in</strong>duced psychosis <strong>in</strong> patients with Park<strong>in</strong>son's<br />

disease. Press Release (2005): June 22.<br />

http://news.acadia-pharm.com/phoenix.zhtml?c=125180&p=irolnews<br />

71. Acadia Pharmaceuticals Inc: ACADIA Pharmaceuticals announces<br />

encourag<strong>in</strong>g <strong>in</strong>terim results from phase II study of ACP-103 <strong>in</strong><br />

schizophrenia patients with haloperidol-<strong>in</strong>duced akathisia. Press<br />

Release (2004):January 12.<br />

http://news.acadia-pharm.com/phoenix.zhtml?c=125180&p=irolnews<br />

72. Eisai Co Ltd: Eisai annual report 2004 describ<strong>in</strong>g cl<strong>in</strong>ical trial status<br />

of E2007. Annual Report (2004).<br />

http://www.eisai.co.jp/pdf/eannual/epdf2004an.pdf<br />

73. Oh JD, Bibbiani F, Chase TN: Quetiap<strong>in</strong>e attenuates levodopa<strong>in</strong>duced<br />

motor complications <strong>in</strong> rodent and primate park<strong>in</strong>sonian<br />

models. Exp Neurol (2002) 177(2):557-564.<br />

74. Katzenschlager R, Manson AJ, Evans A, Watt H, Lees AJ: Low dose<br />

quetiap<strong>in</strong>e for drug <strong>in</strong>duced dysk<strong>in</strong>esias <strong>in</strong> Park<strong>in</strong>son's disease: A<br />

double bl<strong>in</strong>d cross over study. J Neurol Neurosurg Psychiatry (2004)<br />

75(2):295-297.<br />

75. Panacea Pharmaceuticals Inc: Panacea describe pre-cl<strong>in</strong>ical status<br />

of PAN-408 and PAN-527. Company Web Site (2005).<br />

http://www.panaceapharma.com/technology/park<strong>in</strong>son.aspx<br />

76. Dass B, Iravani MM, Huang C, Barsoum J, Engber TM, Galdes A,<br />

Jenner P: Sonic hedgehog delivered by an adeno-associated virus<br />

protects dopam<strong>in</strong>ergic neurones aga<strong>in</strong>st 6-OHDA toxicity <strong>in</strong> the rat.<br />

J Neural Transm (2005) 112(6):763-778.<br />

77. IVAX Inc: IVAX laboratories pipel<strong>in</strong>e. A pipel<strong>in</strong>e that spans a wide<br />

spectrum. Company Web Site (2005).<br />

http://www.ivaxlaboratories.com/jsps/pipel<strong>in</strong>e.jsp<br />

78. Iwashita A, Yamazaki S, Mihara K, Hattori K, Yamamoto H, Ishida J,<br />

Matsuoka N, Mutoh S: Neuroprotective effects of a novel poly(ADPribose)<br />

polymerase-1 <strong>in</strong>hibitor, 2-[3-[4-(4-chlorophenyl)-1-piperaz<strong>in</strong>yl]<br />

propyl]-4( 3 H)-qu<strong>in</strong>azol<strong>in</strong>one (FR255595), <strong>in</strong> an <strong>in</strong> vitro model of cell<br />

death and <strong>in</strong> mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrid<strong>in</strong>e<br />

model of Park<strong>in</strong>son's disease. J Pharmacol Exp Ther (2004)<br />

309(3):1067-1078.<br />

79. Ceregene Inc: Ceregene reports <strong>in</strong>itiation of phase 1 cl<strong>in</strong>ical trial of<br />

novel gene therapy for patients with Park<strong>in</strong>son's disease. PRESS<br />

RELEASE (2005):September 21.<br />

80. Migenix Inc: Migenix receives approval to <strong>in</strong>itiate MX-4509 phase I/II<br />

study. Press Release (2005): April 28.<br />

http://www.migenix.com/newsreleases/042805.pdf<br />

81. Kato H, Araki T, Imai Y, Takahashi A, Itoyama Y: Protection of<br />

dopam<strong>in</strong>ergic neurons with a novel astrocyte modulat<strong>in</strong>g agent<br />

(R)-(-)-2-propyloctanoic acid (ONO-2506) <strong>in</strong> an MPTP-mouse model<br />

of Park<strong>in</strong>son's disease. J Neurol Sci (2003) 208(1-2):9-15.<br />

82. Ono Pharmaceutical Co Ltd: Development status of ONO-2506 for<br />

<strong>in</strong>jection/PROGLIA. Press Release (2005):May 26.<br />

83. Phytopharm plc: Commences phase II proof of pr<strong>in</strong>ciple study <strong>in</strong><br />

Alzheimer's disease. Press Release (2003):December 09.<br />

84. NINDS: NINDS Park<strong>in</strong>son's disease neuroprotection trial of CoQ10<br />

and GPI 1485. Press Release (2005):August 01.<br />

http://www.cl<strong>in</strong>icaltrials.gov/ct/gui/show/NCT00076492?order=1<br />

85. sanofi-aventis Inc: Molecules of tomorrow: sanofi-aventis describe<br />

the cl<strong>in</strong>ical trial status of SR 57667. Press Release (2005):November<br />

15.<br />

http://en.sanofi-aventis.com/rd/molecules/p_rd_molecules.asp<br />

86. NINDS: A multi-center, double-bl<strong>in</strong>d, pilot study of m<strong>in</strong>ocycl<strong>in</strong>e and<br />

creat<strong>in</strong>e <strong>in</strong> subjects with early untreated Park<strong>in</strong>son's disease.<br />

NINDS Park<strong>in</strong>son's disease neuroprotection trial (2003):May.<br />

http://www.cl<strong>in</strong>icaltrials.gov/ct/show/NCT00063193?order=1<br />

87. Novartis AG: Novartis shows dynamic momentum <strong>in</strong> <strong>in</strong>dustrylead<strong>in</strong>g<br />

pipel<strong>in</strong>e. Press Release (2005):January 20.


The mechanism of action of gabapent<strong>in</strong> <strong>in</strong> neuropathic pa<strong>in</strong><br />

J Kenneth Baillie* & Ian Power<br />

Address<br />

Department of Anaesthesia, Critical Care and Pa<strong>in</strong> Medic<strong>in</strong>e<br />

University of Ed<strong>in</strong>burgh<br />

Royal Infirmary of Ed<strong>in</strong>burgh<br />

51 Little France Street<br />

Ed<strong>in</strong>burgh<br />

EH16 4SA<br />

UK<br />

Email: j.k.baillie@doctors.org.uk<br />

*To whom correspondence should be addressed<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):33-39<br />

© The Thomson Corporation ISSN 1472-4472<br />

Neuropathic pa<strong>in</strong> is a common and potentially treatable cause<br />

of considerable lifelong morbidity. Effective pharmacological<br />

treatments are scarce, but one group of drugs that has shown<br />

promise is the antiepileptics. Gabapent<strong>in</strong> has become popular as<br />

a first-l<strong>in</strong>e treatment for neuropathic pa<strong>in</strong> because of its<br />

efficacy as an ant<strong>in</strong>europathic agent and relatively benign sideeffect<br />

profile. However, its mechanism of action is far from<br />

clear. This review discusses the available evidence for the<br />

postulated mechanisms of action of gabapent<strong>in</strong>. Understand<strong>in</strong>g<br />

the mechanism of action of this agent may well lead to the<br />

development of safer and more effective ant<strong>in</strong>europathic drugs.<br />

Keywords Allodynia, hyperalgesia, gabapent<strong>in</strong>,<br />

γ-am<strong>in</strong>obutyric acid, mechanism of action, neuropathic pa<strong>in</strong>,<br />

voltage-gated calcium channel<br />

Introduction<br />

Neuropathic pa<strong>in</strong> results from abnormal fir<strong>in</strong>g of damaged<br />

peripheral nerves, often associated with direct nerve <strong>in</strong>jury<br />

or nerve damage from diabetic, post-herpetic or alcoholic<br />

neuropathy. It has a considerable socioeconomic impact [1],<br />

affect<strong>in</strong>g more than 500,000 people <strong>in</strong> the UK alone [2], the<br />

great majority of whom will require lifelong drug treatment<br />

to control otherwise <strong>in</strong>tolerable suffer<strong>in</strong>g. There has been<br />

much recent <strong>in</strong>terest <strong>in</strong> novel anti-epileptic agents as<br />

potentially useful treatments for neuropathic pa<strong>in</strong>. This<br />

review will summarize the available evidence regard<strong>in</strong>g the<br />

mechanism of action of one such anti-epileptic drug,<br />

gabapent<strong>in</strong> (Figure 1).<br />

The etiologies of neuropathic pa<strong>in</strong> are dist<strong>in</strong>ct from<br />

nociceptive pa<strong>in</strong>, and several drugs that are effective for one<br />

type of pa<strong>in</strong> are relatively <strong>in</strong>effective for the other.<br />

Neuropathic pa<strong>in</strong> may be entirely <strong>in</strong>dependent of any<br />

peripheral nerve stimulus, or it may be manifest as an<br />

abnormal sensation of pa<strong>in</strong> <strong>in</strong> response to stimulation of<br />

other sensory modalities. A series of gene transcription<br />

factors are activated lead<strong>in</strong>g to a wide range of phenotypic<br />

alterations, <strong>in</strong>clud<strong>in</strong>g a reduction <strong>in</strong> the <strong>in</strong>hibitory<br />

neurotransmitter γ-am<strong>in</strong>obutyric acid (GABA), downregulation<br />

of GABA receptors [3••], and loss of GABAergic neurons [4].<br />

At a cellular level, there are many physiological and<br />

biochemical similarities with epilepsy. Direct <strong>in</strong>jury to the<br />

peripheral nerves leads to recurrent abnormal ectopic<br />

33<br />

discharges [5,6], and many of the excitatory neurotransmitters<br />

released <strong>in</strong> neuropathic pa<strong>in</strong> are also implicated <strong>in</strong> the<br />

propagation of seizure activity. Alterations <strong>in</strong> membrane ion<br />

channels can be found <strong>in</strong> both conditions, predispos<strong>in</strong>g the<br />

membranes to abnormal depolarization [7••]. Furthermore,<br />

anti-epileptic medications are often also effective <strong>in</strong> the<br />

treatment of neuropathic pa<strong>in</strong> [8].<br />

Designed as an analog of GABA that would cross the bloodbra<strong>in</strong><br />

barrier [9], gabapent<strong>in</strong> (1-(am<strong>in</strong>omethyl)-cyclohexane<br />

acetic acid) was orig<strong>in</strong>ally marketed worldwide as an antiepileptic.<br />

Other anti-epileptics, such as carbamazep<strong>in</strong>e and<br />

phenyto<strong>in</strong>, have also been effective treatments for neuropathic<br />

pa<strong>in</strong> [8]. The ma<strong>in</strong> problem with the use of these older antiepileptics<br />

is the wide range of side effects. When gabapent<strong>in</strong><br />

was also found to have ant<strong>in</strong>europathic activity, it quickly<br />

became popular because of its relatively mild and dosedependent<br />

side-effect profile, and annual worldwide sales<br />

are now <strong>in</strong> excess of US $2 billion [10•]. Other new<br />

anticonvulsants, such as pregabal<strong>in</strong> (Figure 1), a structural<br />

analog of gabapent<strong>in</strong>, may also prove to be useful<br />

treatments <strong>in</strong> neuropathic pa<strong>in</strong> [11].<br />

Figure 1. The structures of gabapent<strong>in</strong> and pregabal<strong>in</strong>.<br />

NH 2<br />

O<br />

OH<br />

C<br />

H 3<br />

N<br />

H 2<br />

CH 3<br />

gabapent<strong>in</strong> pregabal<strong>in</strong><br />

Efficacy, safety and pharmacok<strong>in</strong>etics<br />

Gabapent<strong>in</strong> is effective <strong>in</strong> reduc<strong>in</strong>g pa<strong>in</strong>-related behavior<br />

patterns <strong>in</strong> a variety of animal models of neuropathic pa<strong>in</strong>,<br />

<strong>in</strong>clud<strong>in</strong>g static allodynia [12], mechanical hyperalgesia [13],<br />

thermal hyperalgesia [13], mechanical allodynia [14,15] and<br />

thermal allodynia [16]. In humans, gabapent<strong>in</strong> reduces<br />

neuropathic pa<strong>in</strong> caused by diabetes mellitus [17], postherpetic<br />

neuralgia [18], cancer [19] and a variety of other<br />

neuropathic pa<strong>in</strong> syndromes [20]. Gabapent<strong>in</strong> is <strong>in</strong>effective<br />

<strong>in</strong> acute post-operative pa<strong>in</strong> follow<strong>in</strong>g mastectomy [21] and,<br />

<strong>in</strong>terest<strong>in</strong>gly, the analgesic efficacy of this agent is<br />

dependent on the presence of some pathological state, such<br />

as nerve <strong>in</strong>jury or <strong>in</strong>flammation [22]. A recent systematic<br />

meta analysis of randomized, controlled trials of gabapent<strong>in</strong><br />

yielded a comb<strong>in</strong>ed number of patients needed to treat<br />

(NNT) with the drug for an improvement <strong>in</strong> neuropathic<br />

pa<strong>in</strong> of 4.3 [10•], comparable with those for carbamazep<strong>in</strong>e<br />

and phenyto<strong>in</strong> [8].<br />

There is also encourag<strong>in</strong>g evidence of an additive effect of<br />

gabapent<strong>in</strong> with other ant<strong>in</strong>europathic and analgesic agents<br />

<strong>in</strong> rat models of neuropathic pa<strong>in</strong> [12,23,24] and healthy<br />

human volunteers [25]. Furthermore, gabapent<strong>in</strong> prevents<br />

the development of opiate tolerance <strong>in</strong> rats [26]. In an<br />

elegantly designed cl<strong>in</strong>ical trial, Gilron et al showed that the<br />

O<br />

OH


34 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

comb<strong>in</strong>ation of gabapent<strong>in</strong> and morph<strong>in</strong>e achieves a<br />

significant further reduction <strong>in</strong> pa<strong>in</strong> scores <strong>in</strong> a large<br />

majority of patients with neuropathic pa<strong>in</strong> [27•].<br />

Importantly, gabapent<strong>in</strong> has relatively m<strong>in</strong>or side effects<br />

and, as supported by the data from the available trials,<br />

withdrawal of treatment ow<strong>in</strong>g to side effects has not been<br />

significantly more common than <strong>in</strong> placebo groups. The<br />

numbers needed to harm (NNH) for m<strong>in</strong>or harm (tolerable<br />

adverse effects) was 3.7. The relative frequencies of adverse<br />

effects <strong>in</strong>cluded dizz<strong>in</strong>ess (24%), somnolence (20%),<br />

headache (10%), diarrhea (10%), confusion (7%) and nausea<br />

(8%) [18]. Dose titrations up to 3600 mg/day have been used<br />

<strong>in</strong> trials, although the maximum licensed dose <strong>in</strong> the UK is<br />

1800 mg/day. The available evidence suggests little<br />

potential for adverse <strong>in</strong>teractions with other agents.<br />

Although gabapent<strong>in</strong> exists at physiological pH as a<br />

zwitterion, and hence would be expected to exhibit limited<br />

permeability across membrane barriers, radiolabel<strong>in</strong>g<br />

studies have shown that it accumulates rapidly with<strong>in</strong><br />

neuronal cytosol [28]. This accumulation may be expla<strong>in</strong>ed<br />

by the carriage of gabapent<strong>in</strong> by system L am<strong>in</strong>o acid<br />

transporters, which operate across gut membranes [29] and<br />

neuronal and glial cell membranes [30]. This system<br />

becomes saturated at higher doses, which accounts for the<br />

non-l<strong>in</strong>ear relationship between oral doses and plasma<br />

concentration [29]. Gabapent<strong>in</strong> competes with am<strong>in</strong>o acids<br />

such as L-leuc<strong>in</strong>e, L-phenylalan<strong>in</strong>e and L-val<strong>in</strong>e at this<br />

transporter [30], although this is unlikely to be directly<br />

related to its mechanism of action [15].<br />

Gabapent<strong>in</strong> exhibits very little prote<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g [31] and is<br />

excreted unchanged by the kidneys, with a first-order<br />

elim<strong>in</strong>ation pattern. Its plasma half-life is predictable and<br />

correlates with creat<strong>in</strong><strong>in</strong>e clearance [32].<br />

Anatomical site of action<br />

B<strong>in</strong>d<strong>in</strong>g sites for gabapent<strong>in</strong> are concentrated <strong>in</strong> the outer layer<br />

of the rat cerebral cortex [33] and <strong>in</strong> the superficial lam<strong>in</strong>ae of<br />

the dorsal horn [34••]. Peak anti-epileptic activity <strong>in</strong> rats occurs<br />

approximately 2 h after peak bra<strong>in</strong> <strong>in</strong>terstitial concentration<br />

[28]. The time course of ant<strong>in</strong>europathic activity after<br />

<strong>in</strong>trathecal <strong>in</strong>jection is similar [35], suggest<strong>in</strong>g that <strong>in</strong>traneural<br />

transport is prerequisite for both actions of gabapent<strong>in</strong>.<br />

In isolated slices of rat bra<strong>in</strong>stem, gabapent<strong>in</strong> <strong>in</strong>hibits<br />

substance P-mediated release of the excitatory neurotransmitter<br />

Figure 2. The structures of anti-epileptic drugs used to treat neuropathic pa<strong>in</strong>.<br />

O<br />

H<br />

N<br />

N<br />

H<br />

O<br />

N<br />

H N 2 O H N N<br />

2<br />

Cl<br />

Cl<br />

N<br />

N<br />

glutamate [36]. Furthermore, <strong>in</strong> vivo experiments have<br />

shown that gabapent<strong>in</strong> prevents the release of excitatory<br />

neurotransmitters, <strong>in</strong>clud<strong>in</strong>g glutamate, <strong>in</strong> sp<strong>in</strong>al cord<br />

microdialysate follow<strong>in</strong>g nociceptive stimulation by<br />

<strong>in</strong>traperitoneal acetic acid [37] or neuropathic pa<strong>in</strong> caused<br />

by sciatic nerve ligation [13].<br />

Possible mechanisms of action<br />

Does the mechanism of ant<strong>in</strong>europathic action of gabapent<strong>in</strong><br />

differ from its anti-epileptic action? Until both mechanisms<br />

are elucidated, we can <strong>in</strong>fer from the widely differ<strong>in</strong>g<br />

chemical structures of those anti-epileptic drugs that are<br />

used for neuropathic pa<strong>in</strong> (gabapent<strong>in</strong>, phenyto<strong>in</strong>,<br />

carbamazep<strong>in</strong>e, lamotrig<strong>in</strong>e, clonazepam and valproate;<br />

Figure 2) [10•] that it is unlikely that they all act at the same<br />

site. It would therefore be unlikely that all of these drugs<br />

each act at two dist<strong>in</strong>ct sites to produce two different, but<br />

common, effects; control of seizures and relief of<br />

neuropathic pa<strong>in</strong>. Given the relative specificity of these<br />

agents for neuropathic pa<strong>in</strong>, and the epileptiform activity<br />

observed <strong>in</strong> damaged sensory afferent fibers [5], it seems<br />

more plausible that both effects are mediated through a<br />

s<strong>in</strong>gle mechanism of action.<br />

Receptor-mediated actions<br />

Although gabapent<strong>in</strong> was orig<strong>in</strong>ally designed as an analog of<br />

the central <strong>in</strong>hibitory neurotransmitter GABA [9], no conclusive<br />

evidence has been found of a direct <strong>in</strong>teraction with any of the<br />

key receptors <strong>in</strong> central pa<strong>in</strong> transmission. Initial studies<br />

demonstrated that it has no direct agonist activity at GABA<br />

receptors [38] and does not b<strong>in</strong>d with high aff<strong>in</strong>ity to any<br />

GABA receptor subtype [39••]. More recent <strong>in</strong>vestigations<br />

us<strong>in</strong>g cloned receptors have found evidence of selective agonist<br />

activity at a subtype of presynaptic GABAB receptors on<br />

excitatory neurons [40•] (discussed below).<br />

Although D-ser<strong>in</strong>e, which acts as an agonist at the <strong>in</strong>hibitory<br />

glyc<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g site on N-methyl-D-aspartate (NMDA)<br />

receptors, reverses some of the actions of gabapent<strong>in</strong> [41], it<br />

has been shown that gabapent<strong>in</strong> itself does not directly<br />

<strong>in</strong>teract with the glyc<strong>in</strong>e-NMDA complex [39••,42] and<br />

gabapent<strong>in</strong> reduces downstream excitatory neurotransmitter<br />

release from rat bra<strong>in</strong> slices, even after NMDA receptorblock<strong>in</strong>g<br />

drugs have been adm<strong>in</strong>istered [43]. F<strong>in</strong>ally,<br />

gabapent<strong>in</strong> exhibits a profound synergistic anti-allodynic<br />

action with the AMPA receptor antagonist 6-cyano-7nitroqu<strong>in</strong>oxal<strong>in</strong>e-2,3-dione<br />

(CNQX) [35], suggest<strong>in</strong>g that the<br />

two drugs do not act at the same site.<br />

NH 2<br />

H<br />

N<br />

N N +<br />

O<br />

phenyto<strong>in</strong> carbamazep<strong>in</strong>e lamotrig<strong>in</strong>e clonazepam valproate<br />

O<br />

Cl<br />

O<br />

C<br />

H 3<br />

O<br />

OH<br />

CH 3


A specific b<strong>in</strong>d<strong>in</strong>g site on voltage-gated Ca 2+<br />

channels<br />

The search for the site of action of the new anti-epileptic<br />

agent was significantly advanced by Suman-Chauhan et al,<br />

who identified a new, high-aff<strong>in</strong>ity b<strong>in</strong>d<strong>in</strong>g site for<br />

gabapent<strong>in</strong> <strong>in</strong> rat bra<strong>in</strong> homogenate [39••]. Interest<strong>in</strong>gly,<br />

the b<strong>in</strong>d<strong>in</strong>g of gabapent<strong>in</strong> to this site was dependent on<br />

the system L transporter, suggest<strong>in</strong>g that gabapent<strong>in</strong> may<br />

have to cross a cell membrane <strong>in</strong> order to take effect. The<br />

b<strong>in</strong>d<strong>in</strong>g site has been identified as the α2δ subunit of<br />

voltage-gated Ca 2+ channels [34••]. This auxiliary subunit<br />

is upregulated after nerve <strong>in</strong>jury [44-46] and, when coexpressed<br />

with the α1 subunit, br<strong>in</strong>gs about a substantial<br />

<strong>in</strong>crease <strong>in</strong> transmembrane Ca 2+ current [47]. The <strong>in</strong>flux of<br />

Ca 2+ ions through voltage-gated Ca 2+ channels is<br />

necessary for excitatory neurotransmitter release (see<br />

Figure 3) [48-50]. The α2δ subunit has been the subject of<br />

much recent <strong>in</strong>terest as a potential target for novel drug<br />

development [51].<br />

Figure 3. Relevant mechanisms of pa<strong>in</strong> transmission <strong>in</strong> dorsal columns.<br />

GABA γ-am<strong>in</strong>obutyric acid, NMDA N-methyl-D-aspartate [7••,40•,49,57••,60••,82].<br />

The mechanism of action of gabapent<strong>in</strong> <strong>in</strong> neuropathic pa<strong>in</strong> Baillie & Power 35<br />

A gabapent<strong>in</strong> analog, 3-methyl gabapent<strong>in</strong>, has one isomeric<br />

form with high aff<strong>in</strong>ity at α2δ subunits and another with much<br />

lower aff<strong>in</strong>ity. Field et al have shown that the high-aff<strong>in</strong>ity<br />

isomer is an effective ant<strong>in</strong>europathic agent, whereas the lowaff<strong>in</strong>ity<br />

isomer did not have ant<strong>in</strong>europathic activity <strong>in</strong> two<br />

different rat models [52].<br />

Gabapent<strong>in</strong> b<strong>in</strong>ds to α2δ subunits [34••,53] and <strong>in</strong>hibits highthreshold<br />

neuronal Ca 2+ currents [54,55], and <strong>in</strong> cultured dorsal<br />

root ganglion cells, whole-cell Ca 2+ current is reduced by this<br />

agent [56]. Gabapent<strong>in</strong>-mediated Ca 2+ channel blockade<br />

appears to preferentially affect presynaptic P/Q-type voltagegated<br />

Ca 2+ channels, reduc<strong>in</strong>g the release of the excitatory<br />

am<strong>in</strong>o acids glutamate and aspartate; this effect occurs at<br />

therapeutically relevant concentrations <strong>in</strong> rat [57••] and human<br />

bra<strong>in</strong> [43]. As the α2δ subunit is expressed <strong>in</strong> all subtypes of<br />

voltage-gated Ca 2+ channels [58], the apparent selectivity of<br />

gabapent<strong>in</strong> for P/Q-type channels [57••] does not fit with the<br />

hypothesis that gabapent<strong>in</strong> acts by directly <strong>in</strong>hibit<strong>in</strong>g Ca 2+<br />

channels, and has yet to be expla<strong>in</strong>ed.


36 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

Several studies have shown that magnesium chloride and the<br />

synthetic polyam<strong>in</strong>e sperm<strong>in</strong>e <strong>in</strong>hibit the b<strong>in</strong>d<strong>in</strong>g of gabapent<strong>in</strong><br />

to high-aff<strong>in</strong>ity b<strong>in</strong>d<strong>in</strong>g sites, presumably α2δ subunits, <strong>in</strong> rats<br />

[39••], mice [59] and pigs [42]. Intrathecal <strong>in</strong>fusion of<br />

magnesium chloride effectively attenuates the anti-allodynic<br />

effect of gabapent<strong>in</strong> <strong>in</strong> a rat model [60••]. Nevertheless, the role<br />

of the α2δ subunit <strong>in</strong> the ant<strong>in</strong>europathic action of gabapent<strong>in</strong> is<br />

far from clear. Sperm<strong>in</strong>e had no effect on the efficacy of<br />

gabapent<strong>in</strong> <strong>in</strong> the same study [60••]. Furthermore, both<br />

magnesium chloride and sperm<strong>in</strong>e can promote gabapent<strong>in</strong><br />

b<strong>in</strong>d<strong>in</strong>g to purified α2δ subunit prote<strong>in</strong> and appear to have a<br />

temperature-dependent effect on the drug <strong>in</strong> mice, stimulat<strong>in</strong>g<br />

b<strong>in</strong>d<strong>in</strong>g at 30°C, and <strong>in</strong>hibit<strong>in</strong>g b<strong>in</strong>d<strong>in</strong>g at 4°C [59]. F<strong>in</strong>ally, both<br />

magnesium chloride and sperm<strong>in</strong>e are allosteric modulators of<br />

NMDA receptors and could <strong>in</strong>teract with gabapent<strong>in</strong> through a<br />

different site altogether [61].<br />

K + channel activation<br />

There have been some reports that gabapent<strong>in</strong> activates<br />

<strong>in</strong>wardly rectify<strong>in</strong>g K + channels, result<strong>in</strong>g <strong>in</strong> membrane<br />

hyperpolarization and decreased excitability [40•,62]. Ng et<br />

al found that gabapent<strong>in</strong> activates post-synaptic K + currents<br />

<strong>in</strong> rat bra<strong>in</strong> slices and Xenopus oocytes [40•]. However, this<br />

activation was dependent on expression of a specific cloned<br />

GABAB receptor subtype (gb1a-gb2). Furthermore, GABA<br />

had a similar effect on Xenopus oocytes express<strong>in</strong>g GABAB<br />

receptors, suggest<strong>in</strong>g that activation of K + currents is a<br />

receptor-mediated effect.<br />

Selective agonism at GABAB receptors (gb1a-gb2)<br />

GABA receptors are of two types; the multi-subunit chloride<br />

channel receptor GABAA subtype, at which gabapent<strong>in</strong> does<br />

not b<strong>in</strong>d <strong>in</strong> significant quantities [39••], and the G-prote<strong>in</strong>coupled<br />

GABAB receptor [63]. Although several studies have<br />

not found that gabapent<strong>in</strong> b<strong>in</strong>ds to any subtype of GABAB<br />

receptors to a significant degree [39••,64••,65], one group has<br />

provided evidence that expression of gb1a-gb2 GABAB<br />

receptors is prerequisite for gabapent<strong>in</strong> to alter membrane ion<br />

permeability [40•,66]. This is of particular <strong>in</strong>terest because<br />

agonism at GABAB receptors may account for both the<br />

gabapent<strong>in</strong>-mediated <strong>in</strong>hibition of voltage-gated Ca 2+ channels<br />

and activation of <strong>in</strong>wardly rectify<strong>in</strong>g K + channels [67••,68].<br />

A recent pharmacological study provides further evidence<br />

that an important <strong>in</strong>teraction occurs between gabapent<strong>in</strong><br />

and the subtype of GABAB receptors constitutively<br />

expressed on pre-synaptic regions of excitatory <strong>in</strong>terneurons<br />

to <strong>in</strong>hibit excitatory neurotransmitter release [69••].<br />

Importantly, GABAergic neurons were spared, and the<br />

effect of gabapent<strong>in</strong> on excitatory neurotransmitter release<br />

was sensitive to specific GABAB receptor antagonists. It is<br />

possible that GABAB receptor blockade prevented<br />

gabapent<strong>in</strong> action by <strong>in</strong>direct physiological antagonism [70],<br />

as residual GABA is likely to have been present <strong>in</strong> the rat<br />

bra<strong>in</strong> slices used for this experiment. However, this<br />

postulation does not expla<strong>in</strong> the direct effect of gabapent<strong>in</strong><br />

on a GABAB subtype expressed on Xenopus oocytes [40•].<br />

Increased GABA synthesis or release<br />

GABA is an important <strong>in</strong>hibitory neurotransmitter with<br />

numerous pharmacological <strong>in</strong>teractions [71]. Blockade of<br />

GABA causes hypersensitivity and allodynia consistent with<br />

neuropathic pa<strong>in</strong> [72], and partial nerve <strong>in</strong>jury reduces<br />

dorsal horn synaptic <strong>in</strong>hibition ow<strong>in</strong>g to apoptosis of<br />

GABAergic <strong>in</strong>terneurons [4]. As discussed previously,<br />

gabapent<strong>in</strong> does not have a direct action at GABAA receptors<br />

[38], GABA-receptor-block<strong>in</strong>g drugs do not alter the<br />

ant<strong>in</strong>europathic efficacy of gabapent<strong>in</strong> [73], and gabapent<strong>in</strong><br />

has no effect on GABA reuptake [74]. However, synthesis<br />

and release of GABA <strong>in</strong> the bra<strong>in</strong> are <strong>in</strong>creased by<br />

gabapent<strong>in</strong> [75,76], and magnetic resonance imag<strong>in</strong>g<br />

spectroscopy of epileptic patients tak<strong>in</strong>g gabapent<strong>in</strong><br />

demonstrated a global <strong>in</strong>crease <strong>in</strong> bra<strong>in</strong> GABA [77]. This<br />

observation may be because of <strong>in</strong>hibition of GABAtransam<strong>in</strong>ase<br />

[78], activation of glutamic acid decarboxylase<br />

[79] that is sufficient to <strong>in</strong>crease GABA synthesis by 50 to<br />

100% [80], or promotion of non-vesicular GABA release [81].<br />

In an <strong>in</strong>terest<strong>in</strong>g contrast with the f<strong>in</strong>d<strong>in</strong>g of Parker et al that<br />

gabapent<strong>in</strong> acts on pre-synaptic GABAB receptors to <strong>in</strong>hibit<br />

excitatory neurotransmitter release while spar<strong>in</strong>g<br />

GABAergic neurons [69••], gabapent<strong>in</strong> <strong>in</strong>creased the<br />

extrasynaptic NMDA-mediated current <strong>in</strong> GABAergic, but<br />

not non-GABAergic, neurons <strong>in</strong> a rat model of <strong>in</strong>flammatory<br />

pa<strong>in</strong> [82,83]. This action may <strong>in</strong>crease activity <strong>in</strong> <strong>in</strong>hibitory<br />

sp<strong>in</strong>al cord <strong>in</strong>terneurons, thus releas<strong>in</strong>g GABA under<br />

conditions associated with neuropathic pa<strong>in</strong>. However,<br />

neither NMDA receptor modulation [60••] nor GABA<br />

receptor blockade [73] significantly alters the efficacy of<br />

gabapent<strong>in</strong> <strong>in</strong> rat models of pa<strong>in</strong>.<br />

Increase <strong>in</strong> peripheral whole-blood seroton<strong>in</strong><br />

Mood has a profound effect on perception of pa<strong>in</strong> [84], so it<br />

is a realistic possibility that some of the analgesic effects of<br />

gabapent<strong>in</strong> <strong>in</strong> humans may be mediated by global<br />

serotonergic activation [85]. Indeed, gabapent<strong>in</strong> has been<br />

used to treat a variety of mood and anxiety disorders,<br />

although randomized cl<strong>in</strong>ical trials have so far been<br />

disappo<strong>in</strong>t<strong>in</strong>g [86]. Direct evidence from rats has<br />

contradicted this postulated mechanism; neither pretreatment<br />

of rats with a central nervous system seroton<strong>in</strong>deplet<strong>in</strong>g<br />

compound [73] nor blockade of seroton<strong>in</strong><br />

receptors [87] had any effect on the antihyperalgesic efficacy<br />

of gabapent<strong>in</strong>. We conclude that seroton<strong>in</strong> is unlikely to be<br />

central to the mechanism of action of gabapent<strong>in</strong>.<br />

Conclusions<br />

Despite its orig<strong>in</strong>al conception as a drug designed to mimic<br />

a specific neurotransmitter, gabapent<strong>in</strong> has become widely<br />

established <strong>in</strong> cl<strong>in</strong>ical practice without a satisfactory<br />

explanation of how it works. As summarized above, debate<br />

regard<strong>in</strong>g its mechanisms of action now centers on the<br />

apparent discrepancy between the high-aff<strong>in</strong>ity b<strong>in</strong>d<strong>in</strong>g site<br />

on α2δ subunits of voltage-gated Ca 2+ channels [34••], and<br />

persuasive evidence of a direct action at GABAB receptors<br />

[40•].<br />

It has been difficult to dist<strong>in</strong>guish between direct effects of<br />

the drug at Ca 2+ channels and receptor-mediated <strong>in</strong>hibition<br />

of Ca 2+ current because of an apparently ubiquitous<br />

physiological <strong>in</strong>terdependence. Both actions occur at<br />

therapeutically relevant concentrations, and both may


prevent the release of excitatory neurotransmitters and thus<br />

account for the mechanism of action of gabapent<strong>in</strong> <strong>in</strong><br />

neuropathic pa<strong>in</strong>. The presence of a high-aff<strong>in</strong>ity b<strong>in</strong>d<strong>in</strong>g site<br />

for gabapent<strong>in</strong> on Ca 2+ channels, and the fact that the<br />

obliteration of the effect of gabapent<strong>in</strong> when b<strong>in</strong>d<strong>in</strong>g at this site<br />

is prevented [60••], constitute persuasive evidence <strong>in</strong> favor of a<br />

direct effect on Ca 2+ channel activity. However, the deliberate<br />

structural similarity with GABA, and the demonstration that<br />

gabapent<strong>in</strong> can mimic the effect of GABA on a cloned subtype<br />

of GABAB receptors to alter membrane ion permeability [66],<br />

suggest that the mechanism of action of gabapent<strong>in</strong> may be<br />

much closer to that for which it was orig<strong>in</strong>ally designed. Even<br />

before the mechanism of action of gabapent<strong>in</strong> has been fully<br />

elucidated, the candidate mechanisms described here may<br />

become rich resources for novel drug development.<br />

References<br />

1. Chapman CR, Gavr<strong>in</strong> J: Suffer<strong>in</strong>g: The contributions of persistent<br />

pa<strong>in</strong>. Lancet (1999) 353(9171):2233-2237.<br />

2. Allen S: Pharmacotherapy of neuropathic pa<strong>in</strong>. Cont<strong>in</strong> Educ Anaesth<br />

Crit Care Pa<strong>in</strong> (2005) 5(4):134-137.<br />

3. Woolf CJ, Mannion RJ: Neuropathic pa<strong>in</strong>: Aetiology, symptoms,<br />

mechanisms, and management. Lancet (1999) 353(9168):1959-1964.<br />

4. Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ:<br />

Partial peripheral nerve <strong>in</strong>jury promotes a selective loss of<br />

GABAergic <strong>in</strong>hibition <strong>in</strong> the superficial dorsal horn of the sp<strong>in</strong>al<br />

cord. J Neurosci (2002) 22(15):6724-6731.<br />

5. Ochoa J, Torebjork HE, Culp WJ, Schady W: Abnormal spontaneous<br />

activity <strong>in</strong> s<strong>in</strong>gle sensory nerve fibers <strong>in</strong> humans. Muscle Nerv<br />

(1982) 5(9S):S74-S77.<br />

6. Wall PD, Gutnick M: Ongo<strong>in</strong>g activity <strong>in</strong> peripheral nerves: The<br />

physiology and pharmacology of impulses orig<strong>in</strong>at<strong>in</strong>g from a<br />

neuroma. Exp Neurol (1974) 43(3):580-593.<br />

7. Woolf CJ, Salter MW: Neuronal plasticity: Increas<strong>in</strong>g the ga<strong>in</strong> <strong>in</strong> pa<strong>in</strong>.<br />

Science (2000) 288(5472):1765-1769.<br />

•• This is a review of the mechanisms of sp<strong>in</strong>al transmission of chronic neuropathic<br />

pa<strong>in</strong>.<br />

8. Wiffen P, Coll<strong>in</strong>s S, McQuay H, Carroll D, Jadad A, Moore A:<br />

Anticonvulsant drugs for acute and chronic pa<strong>in</strong>. Cochrane<br />

Database Syst Rev (2005) (3):CD001133.<br />

9. Satz<strong>in</strong>ger G: Antiepileptics from γ-am<strong>in</strong>obutyric acid.<br />

Arzneimittelforschung (1994) 44(3):261-266.<br />

10. Wiffen P, McQuay H, Edwards J, Moore R: Gabapent<strong>in</strong> for acute and<br />

chronic pa<strong>in</strong>. Cochrane Database Syst Rev (2005) (3):CD005452.<br />

• This paper constitutes a comprehensive and authoritative meta-analysis of<br />

randomized controlled cl<strong>in</strong>ical trials of gabapent<strong>in</strong>.<br />

11. Sabatowski R, Galvez R, Cherry DA, Jacquot F, V<strong>in</strong>cent E, Maisonobe<br />

P, Versavel M: Pregabal<strong>in</strong> reduces pa<strong>in</strong> and improves sleep and<br />

mood disturbances <strong>in</strong> patients with post-herpetic neuralgia:<br />

Results of a randomised, placebo-controlled cl<strong>in</strong>ical trial. Pa<strong>in</strong><br />

(2004) 109(1-2):26-35.<br />

12. Field MJ, Gonzalez MI, Tallarida RJ, S<strong>in</strong>gh L: Gabapent<strong>in</strong> and the<br />

neurok<strong>in</strong><strong>in</strong>1 receptor antagonist CI-1021 act synergistically <strong>in</strong> two rat<br />

models of neuropathic pa<strong>in</strong>. J Pharmacol Exp Ther (2002) 303(2):730-735.<br />

13. Coderre TJ, Kumar N, Lefebvre CD, Yu JS: Evidence that gabapent<strong>in</strong><br />

reduces neuropathic pa<strong>in</strong> by <strong>in</strong>hibit<strong>in</strong>g the sp<strong>in</strong>al release of<br />

glutamate. J Neurochem (2005) 94(4):1131-1139.<br />

14. Hwang JH, Yaksh TL: Effect of subarachnoid gabapent<strong>in</strong> on tactileevoked<br />

allodynia <strong>in</strong> a surgically <strong>in</strong>duced neuropathic pa<strong>in</strong> model <strong>in</strong><br />

the rat. Reg Anesth (1997) 22(3):249-256.<br />

15. Cheng JK, Pan HL, Eisenach JC: Antiallodynic effect of <strong>in</strong>trathecal<br />

gabapent<strong>in</strong> and its <strong>in</strong>teraction with clonid<strong>in</strong>e <strong>in</strong> a rat model of<br />

postoperative pa<strong>in</strong>. Anesthesiology (2000) 92(4):1126-1131.<br />

The mechanism of action of gabapent<strong>in</strong> <strong>in</strong> neuropathic pa<strong>in</strong> Baillie & Power 37<br />

16. Chen SR, Pan HL: Effect of systemic and <strong>in</strong>trathecal gabapent<strong>in</strong> on<br />

allodynia <strong>in</strong> a new rat model of postherpetic neuralgia. Bra<strong>in</strong> Res<br />

(2005) 1042(1):108-113.<br />

17. Backonja M, Beydoun A, Edwards KR, Schwartz SL, Fonseca V, Hes M,<br />

LaMoreaux L, Garofalo E: Gabapent<strong>in</strong> for the symptomatic treatment<br />

of pa<strong>in</strong>ful neuropathy <strong>in</strong> patients with diabetes mellitus: A<br />

randomized controlled trial. J Am Med Assoc (1998) 280(21):1831-<br />

1836.<br />

18. Rowbotham M, Harden N, Stacey B, Bernste<strong>in</strong> P, Magnus-Miller L:<br />

Gabapent<strong>in</strong> for the treatment of postherpetic neuralgia: A<br />

randomized controlled trial. J Am Med Assoc (1998) 280(21):1837-<br />

1842.<br />

19. Caraceni A, Zecca E, Bonezzi C, Arcuri E, Yaya Tur R, Maltoni M,<br />

Visent<strong>in</strong> M, Gorni G, Mart<strong>in</strong>i C, Tirelli W, Barbieri M, De Conno F:<br />

Gabapent<strong>in</strong> for neuropathic cancer pa<strong>in</strong>: A randomized controlled<br />

trial from the Gabapent<strong>in</strong> Cancer Pa<strong>in</strong> Study Group. J Cl<strong>in</strong> Oncol<br />

(2004) 22(14):2909-2917.<br />

20. Serpell MG: Gabapent<strong>in</strong> <strong>in</strong> neuropathic pa<strong>in</strong> syndromes: A<br />

randomised, double-bl<strong>in</strong>d, placebo-controlled trial. Pa<strong>in</strong> (2002)<br />

99(3):557-566.<br />

21. Dirks J, Fredensborg BB, Christensen D, Fomsgaard JS, Flyger H, Dahl<br />

JB: A randomized study of the effects of s<strong>in</strong>gle-dose gabapent<strong>in</strong><br />

versus placebo on postoperative pa<strong>in</strong> and morph<strong>in</strong>e consumption<br />

after mastectomy. Anesthesiology (2002) 97(3):560-564.<br />

22. Stanfa LC, S<strong>in</strong>gh L, Williams RG, Dickenson AH: Gabapent<strong>in</strong>,<br />

<strong>in</strong>effective <strong>in</strong> normal rats, markedly reduces C-fibre evoked<br />

responses after <strong>in</strong>flammation. Neuroreport (1997) 8(3):587-590.<br />

23. Shimoyama N, Shimoyama M, Davis AM, Inturrisi CE, Elliott KJ: Sp<strong>in</strong>al<br />

gabapent<strong>in</strong> is ant<strong>in</strong>ociceptive <strong>in</strong> the rat formal<strong>in</strong> test. Neurosci Lett<br />

(1997) 222(1):65-67.<br />

24. Matthews EA, Dickenson AH: A comb<strong>in</strong>ation of gabapent<strong>in</strong> and<br />

morph<strong>in</strong>e mediates enhanced <strong>in</strong>hibitory effects on dorsal horn<br />

neuronal responses <strong>in</strong> a rat model of neuropathy. Anesthesiology<br />

(2002) 96(3):633-640.<br />

25. Eckhardt K, Ammon S, Hofmann U, Riebe A, Gugeler N, Mikus G:<br />

Gabapent<strong>in</strong> enhances the analgesic effect of morph<strong>in</strong>e <strong>in</strong> healthy<br />

volunteers. Anesth Analg (2000) 91(1):185-191.<br />

26. Gilron I, Biederman J, Jhamandas K, Hong M: Gabapent<strong>in</strong> blocks and<br />

reverses ant<strong>in</strong>ociceptive morph<strong>in</strong>e tolerance <strong>in</strong> the rat pawpressure<br />

and tail-flick tests. Anesthesiology (2003) 98(5):1288-1292.<br />

27. Gilron I, Bailey JM, Tu D, Holden RR, Weaver DF, Houlden RL:<br />

Morph<strong>in</strong>e, gabapent<strong>in</strong>, or their comb<strong>in</strong>ation for neuropathic pa<strong>in</strong>. N<br />

Engl J Med (2005) 352(13):1324-1334.<br />

• This paper describes a recent trial that demonstrated the efficacy of<br />

gabapent<strong>in</strong> <strong>in</strong> comb<strong>in</strong>ation with morph<strong>in</strong>e.<br />

28. Welty DF, Schielke GP, Vartanian MG, Taylor CP: Gabapent<strong>in</strong><br />

anticonvulsant action <strong>in</strong> rats: Disequilibrium with peak drug<br />

concentrations <strong>in</strong> plasma and bra<strong>in</strong> microdialysate. Epilepsy Res<br />

(1993) 16(3):175-181.<br />

29. Stewart BH, Kugler AR, Thompson PR, Bockbrader HN: A saturable<br />

transport mechanism <strong>in</strong> the <strong>in</strong>test<strong>in</strong>al absorption of gabapent<strong>in</strong> is<br />

the underly<strong>in</strong>g cause of the lack of proportionality between<br />

<strong>in</strong>creas<strong>in</strong>g dose and drug levels <strong>in</strong> plasma. Pharm Res (1993)<br />

10(2):276-281.<br />

30. Su TZ, Lunney E, Campbell G, Oxender DL: Transport of gabapent<strong>in</strong>,<br />

a γ-am<strong>in</strong>o acid drug, by system 1 α-am<strong>in</strong>o acid transporters: A<br />

comparative study <strong>in</strong> astrocytes, synaptosomes, and CHO cells. J<br />

Neurochem (1995) 64(5):2125-2131.<br />

31. Vollmer KO, von Hodenberg A, Kolle EU: Pharmacok<strong>in</strong>etics and<br />

metabolism of gabapent<strong>in</strong> <strong>in</strong> rat, dog and man. Arzneimittelforschung<br />

(1986) 36(5):830-839.<br />

32. Blum RA, Comstock TJ, Sica DA, Schultz RW, Keller E, Reetze P,<br />

Bockbrader H, Tuerck D, Busch JA, Reece PA: Pharmacok<strong>in</strong>etics of<br />

gabapent<strong>in</strong> <strong>in</strong> subjects with various degrees of renal function. Cl<strong>in</strong><br />

Pharmacol Ther (1994) 56(2):154-159.<br />

33. Hill DR, Suman-Chauhan N, Woodruff GN: Localization of<br />

[ 3 H]gabapent<strong>in</strong> to a novel site <strong>in</strong> rat bra<strong>in</strong>: Autoradiographic<br />

studies. Eur J Pharmacol (1993) 244(3):303-309.


38 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

34. Gee NS, Brown JP, Dissanayake VU, Offord J, Thurlow R, Woodruff GN:<br />

The novel anticonvulsant drug, gabapent<strong>in</strong> (Neuront<strong>in</strong>), b<strong>in</strong>ds to the α2δ<br />

subunit of a calcium channel. J Biol Chem (1996) 271(10):5768-5776.<br />

•• Identification of the gabapent<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g site discovered by Suman-Chauhan<br />

and co-workers.<br />

35. Chen SR, Eisenach JC, McCasl<strong>in</strong> PP, Pan HL: Synergistic effect<br />

between <strong>in</strong>trathecal non-NMDA antagonist and gabapent<strong>in</strong> on<br />

allodynia <strong>in</strong>duced by sp<strong>in</strong>al nerve ligation <strong>in</strong> rats. Anesthesiology<br />

(2000) 92(2):500-506.<br />

36. Maneuf YP, Hughes J, McKnight AT: Gabapent<strong>in</strong> <strong>in</strong>hibits the<br />

substance P-facilitated K + -evoked release of [ 3 H]glutamate from rat<br />

caudial trigem<strong>in</strong>al nucleus slices. Pa<strong>in</strong> (2001) 93(2):191-196.<br />

37. Feng Y, Cui M, Willis WD: Gabapent<strong>in</strong> markedly reduces acetic acid<strong>in</strong>duced<br />

visceral nociception. Anesthesiology (2003) 98(3):729-733.<br />

38. Taylor CP: Emerg<strong>in</strong>g perspectives on the mechanism of action of<br />

gabapent<strong>in</strong>. Neurology (1994) 44(6 Suppl 5):S10-S16.<br />

39. Suman-Chauhan N, Webdale L, Hill DR, Woodruff GN: Characterisation of<br />

[ 3 H]gabapent<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g to a novel site <strong>in</strong> rat bra<strong>in</strong>: Homogenate b<strong>in</strong>d<strong>in</strong>g<br />

studies. Eur J Pharmacol (1993) 244(3):293-301.<br />

•• This is a description of the discovery of a high-aff<strong>in</strong>ity b<strong>in</strong>d<strong>in</strong>g site for<br />

gabapent<strong>in</strong>, subsequently identified by Gee and co-workers.<br />

40. Ng GY, Bertrand S, Sullivan R, Ethier N, Wang J, Yergey J, Belley M,<br />

Trimble L, Bateman K, Alder L, Smith A et al: γ-Am<strong>in</strong>obutyric acid type B<br />

receptors with specific heterodimer composition and postsynaptic<br />

actions <strong>in</strong> hippocampal neurons are targets of anticonvulsant<br />

gabapent<strong>in</strong> action. Mol Pharmacol (2001) 59(1):144-152.<br />

• This paper describes an important demonstration of gabapent<strong>in</strong> agonism at<br />

GABAB receptors.<br />

41. S<strong>in</strong>gh L, Field MJ, Ferris P, Hunter JC, Oles RJ, Williams RG, Woodruff<br />

GN: The antiepileptic agent gabapent<strong>in</strong> (Neuront<strong>in</strong>) possesses<br />

anxiolytic-like and ant<strong>in</strong>ociceptive actions that are reversed by Dser<strong>in</strong>e.<br />

Psychopharmacology (Berl) (1996) 127(1):1-9.<br />

42. Dissanayake VU, Gee NS, Brown JP, Woodruff GN: Sperm<strong>in</strong>e<br />

modulation of specific [ 3 H]-gabapent<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g to the detergentsolubilized<br />

porc<strong>in</strong>e cerebral cortex α2δ calcium channel subunit. Br<br />

J Pharmacol (1997) 120(5):833-840.<br />

43. F<strong>in</strong>k K, Dooley DJ, Meder WP, Suman-Chauhan N, Duffy S, Clusmann<br />

H, Gothert M: Inhibition of neuronal Ca 2+ <strong>in</strong>flux by gabapent<strong>in</strong> and<br />

pregabal<strong>in</strong> <strong>in</strong> the human neocortex. Neuropharmacology (2002)<br />

42(2):229-236.<br />

44. Costigan M, Befort K, Karchewski L, Griff<strong>in</strong> RS, D'Urso D, Allchorne A,<br />

Sitarski J, Mannion JW, Pratt RE, Woolf CJ: Replicate high-density rat<br />

genome oligonucleotide microarrays reveal hundreds of regulated<br />

genes <strong>in</strong> the dorsal root ganglion after peripheral nerve <strong>in</strong>jury. BMC<br />

Neurosci (2002) 3:16.<br />

45. Li CY, Song YH, Higuera ES, Luo ZD: Sp<strong>in</strong>al dorsal horn calcium channel<br />

α2δ-1 subunit upregulation contributes to peripheral nerve <strong>in</strong>jury<strong>in</strong>duced<br />

tactile allodynia. J Neurosci (2004) 24(39):8494-8499.<br />

46. Luo ZD, Chaplan SR, Higuera ES, Sork<strong>in</strong> LS, Stauderman KA, Williams ME,<br />

Yaksh TL: Upregulation of dorsal root ganglion α2δ calcium channel<br />

subunit and its correlation with allodynia <strong>in</strong> sp<strong>in</strong>al nerve-<strong>in</strong>jured rats. J<br />

Neurosci (2001) 21(6):1868-1875.<br />

47. Felix R: Voltage-dependent Ca 2+ channel α2δ auxiliary subunit:<br />

Structure, function and regulation. Receptors Channels (1999) 6(5):351-<br />

362.<br />

48. Suszkiw JB, Murawsky MM, Shi M: Further characterization of phasic<br />

calcium <strong>in</strong>flux <strong>in</strong> rat cerebrocortical synaptosomes: Inferences<br />

regard<strong>in</strong>g calcium channel type(s) <strong>in</strong> nerve end<strong>in</strong>gs. J Neurochem<br />

(1989) 52(4):1260-1269.<br />

49. Kato A, Ohkubo T, Kitamura K: Algogen-specific pa<strong>in</strong> process<strong>in</strong>g <strong>in</strong><br />

mouse sp<strong>in</strong>al cord: Differential <strong>in</strong>volvement of voltage-dependent Ca 2+<br />

channels <strong>in</strong> synaptic transmission. Br J Pharmacol (2002) 135(5):1336-<br />

1342.<br />

50. Nachshen DA: Regulation of cytosolic calcium concentration <strong>in</strong><br />

presynaptic nerve end<strong>in</strong>gs isolated from rat bra<strong>in</strong>. J Physiol (1985)<br />

363:87-101.<br />

51. Schwarz JB, Gibbons SE, Graham SR, Colbry NL, Guzzo PR, Le VD,<br />

Vartanian MG, K<strong>in</strong>sora JJ, Lotarski SM, Li Z, Dickerson MR et al: Novel<br />

cyclopropyl β-am<strong>in</strong>o acid analogues of pregabal<strong>in</strong> and gabapent<strong>in</strong><br />

that target the α2δ prote<strong>in</strong>. J Med Chem (2005) 48(8):3026-3035.<br />

52. Field MJ, Hughes J, S<strong>in</strong>gh L: Further evidence for the role of the α2δ<br />

subunit of voltage dependent calcium channels <strong>in</strong> models of<br />

neuropathic pa<strong>in</strong>. Br J Pharmacol (2000) 131(2):282-286.<br />

53. Brown JP, Gee NS: Clon<strong>in</strong>g and deletion mutagenesis of the α2δ<br />

calcium channel subunit from porc<strong>in</strong>e cerebral cortex. Expression<br />

of a soluble form of the prote<strong>in</strong> that reta<strong>in</strong>s [ 3 H]gabapent<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g<br />

activity. J Biol Chem (1998) 273(39):25458-25465.<br />

54. Stefani A, Spadoni F, Giacom<strong>in</strong>i P, Lavaroni F, Bernardi G: The effects<br />

of gabapent<strong>in</strong> on different ligand- and voltage-gated currents <strong>in</strong><br />

isolated cortical neurons. Epilepsy Res (2001) 43(3):239-248.<br />

55. Stefani A, Spadoni F, Bernardi G: Gabapent<strong>in</strong> <strong>in</strong>hibits calcium<br />

currents <strong>in</strong> isolated rat bra<strong>in</strong> neurons. Neuropharmacology (1998)<br />

37(1):83-91.<br />

56. Sutton KG, Mart<strong>in</strong> DJ, P<strong>in</strong>nock RD, Lee K, Scott RH: Gabapent<strong>in</strong><br />

<strong>in</strong>hibits high-threshold calcium channel currents <strong>in</strong> cultured rat<br />

dorsal root ganglion neurones. Br J Pharmacol (2002) 135(1):257-<br />

265.<br />

57. F<strong>in</strong>k K, Meder W, Dooley DJ, Gothert M: Inhibition of neuronal Ca 2+<br />

<strong>in</strong>flux by gabapent<strong>in</strong> and subsequent reduction of neurotransmitter<br />

release from rat neocortical slices. Br J Pharmacol (2000)<br />

130(4):900-906.<br />

•• This study was an elegant demonstration of gabapent<strong>in</strong>-mediated <strong>in</strong>hibition<br />

of pre-synaptic P/Q-type voltage-gated Ca 2+ channels.<br />

58. Isom LL, De Jongh KS, Catterall WA: Auxiliary subunits of voltagegated<br />

ion channels. Neuron (1994) 12(6):1183-1194.<br />

59. Taylor MT, Bonhaus DW: Allosteric modulation of [ 3 H]gabapent<strong>in</strong><br />

b<strong>in</strong>d<strong>in</strong>g by ruthenium red. Neuropharmacology (2000) 39(7):1267-<br />

1273.<br />

60. Cheng JK, Lai YJ, Chen CC, Cheng CR, Chiou LC: Magnesium<br />

chloride and ruthenium red attenuate the antiallodynic effect of<br />

<strong>in</strong>trathecal gabapent<strong>in</strong> <strong>in</strong> a rat model of postoperative pa<strong>in</strong>.<br />

Anesthesiology (2003) 98(6):1472-1479.<br />

•• This was an important pharmacological study demonstrat<strong>in</strong>g that agents<br />

that reduce gabapent<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g at voltage-gated Ca 2+ channels prevent the<br />

ant<strong>in</strong>europathic effect of gabapent<strong>in</strong>.<br />

61. Foster AC, Fagg GE: Neurobiology. Tak<strong>in</strong>g apart NMDA receptors.<br />

Nature (1987) 329(6138):395-396.<br />

62. Freiman TM, Kukolja J, He<strong>in</strong>emeyer J, Eckhardt K, Aranda H, Rom<strong>in</strong>ger<br />

A, Dooley DJ, Zentner J, Feuerste<strong>in</strong> TJ: Modulation of K + -evoked [ 3 H]noradrenal<strong>in</strong>e<br />

release from rat and human bra<strong>in</strong> slices by<br />

gabapent<strong>in</strong>: Involvement of KATP channels. Naunyn Schmiedebergs<br />

Arch Pharmacol (2001) 363(5):537-542.<br />

63. Misgeld U, Bijak M, Jarolimek W: A physiological role for GABAB<br />

receptors and the effects of baclofen <strong>in</strong> the mammalian central<br />

nervous system. Prog Neurobiol (1995) 46(4):423-462.<br />

64. Jensen AA, Mosbacher J, Elg S, L<strong>in</strong>genhoehl K, Lohmann T, Johansen<br />

TN, Abrahamsen B, Mattsson JP, Lehmann A, Bettler B, Brauner-<br />

Osborne H: The anticonvulsant gabapent<strong>in</strong> (Neuront<strong>in</strong>) does not act<br />

through γ-am<strong>in</strong>obutyric acid-B receptors. Mol Pharmacol (2002)<br />

61(6):1377-1384.<br />

65. Lanneau C, Green A, Hirst WD, Wise A, Brown JT, Donnier E, Charles<br />

KJ, Wood M, Davies CH, Pangalos MN: Gabapent<strong>in</strong> is not a GABAB<br />

receptor agonist. Neuropharmacology (2001) 41(8):965-975.<br />

66. Bertrand S, Ng GY, Purisai MG, Wolfe SE, Severidt MW, Nouel D,<br />

Robitaille R, Low MJ, O'Neill GP, Metters K, Lacaille JC et al: The<br />

anticonvulsant, antihyperalgesic agent gabapent<strong>in</strong> is an agonist at<br />

bra<strong>in</strong> γ-am<strong>in</strong>obutyric acid type B receptors negatively coupled to<br />

voltage-dependent calcium channels. J Pharmacol Exp Ther (2001)<br />

298(1):15-24.<br />

67. Vacher CM, Bettler B: GABAB receptors as potential therapeutic<br />

targets. Curr Drug Targets CNS Neurol Disord (2003) 2(4):248-259.<br />

•• A review of GABAB receptor pharmacology.


68. Bertrand S, Nouel D, Mor<strong>in</strong> F, Nagy F, Lacaille JC: Gabapent<strong>in</strong> actions<br />

on Kir3 currents and N-type Ca 2+ channels via GABAB receptors <strong>in</strong><br />

hippocampal pyramidal cells. Synapse (2003) 50(2):95-109.<br />

69. Parker DA, Ong J, Mar<strong>in</strong>o V, Kerr DI: Gabapent<strong>in</strong> activates<br />

presynaptic GABAB heteroreceptors <strong>in</strong> rat cortical slices. Eur J<br />

Pharmacol (2004) 495(2-3):137-143.<br />

•• This paper describes an <strong>in</strong>terest<strong>in</strong>g comparison of the effects of gabapent<strong>in</strong><br />

and some known GABAB receptor antagonists <strong>in</strong> a rat model of excitatory<br />

transmission.<br />

70. Sills GJ: Not another gabapent<strong>in</strong> mechanism! Epilepsy Curr (2005)<br />

5(2):75-77.<br />

71. Macdonald RL, Olsen RW: GABAA receptor channels. Annu Rev<br />

Neurosci (1994) 17:569-602.<br />

72. Sivilotti L, Woolf CJ: The contribution of GABAA and glyc<strong>in</strong>e<br />

receptors to central sensitization: Dis<strong>in</strong>hibition and touch-evoked<br />

allodynia <strong>in</strong> the sp<strong>in</strong>al cord. J Neurophysiol (1994) 72(1):169-179.<br />

73. Dixit RK, Bhargava VK: Neurotransmitter mechanisms <strong>in</strong> gabapent<strong>in</strong><br />

ant<strong>in</strong>ociception. Pharmacology (2002) 65(4):198-203.<br />

74. Suzdak PD, Jansen JA: A review of the precl<strong>in</strong>ical pharmacology of<br />

tiagab<strong>in</strong>e: A potent and selective anticonvulsant GABA uptake<br />

<strong>in</strong>hibitor. Epilepsia (1995) 36(6):612-626.<br />

75. Kocsis JD, Honmou O: Gabapent<strong>in</strong> <strong>in</strong>creases GABA-<strong>in</strong>duced<br />

depolarization <strong>in</strong> rat neonatal optic nerve. Neurosci Lett (1994)<br />

169(1-2):181-184.<br />

76. Kuzniecky R, Ho S, Pan J, Mart<strong>in</strong> R, Gilliam F, Faught E, Hether<strong>in</strong>gton<br />

H: Modulation of cerebral GABA by topiramate, lamotrig<strong>in</strong>e, and<br />

gabapent<strong>in</strong> <strong>in</strong> healthy adults. Neurology (2002) 58(3):368-372.<br />

77. Petroff OA, Rothman DL, Behar KL, Lamoureux D, Mattson RH: The<br />

effect of gabapent<strong>in</strong> on bra<strong>in</strong> γ-am<strong>in</strong>obutyric acid <strong>in</strong> patients with<br />

epilepsy. Ann Neurol (1996) 39(1):95-99.<br />

The mechanism of action of gabapent<strong>in</strong> <strong>in</strong> neuropathic pa<strong>in</strong> Baillie & Power 39<br />

78. Goldlust A, Su TZ, Welty DF, Taylor CP, Oxender DL: Effects of<br />

anticonvulsant drug gabapent<strong>in</strong> on the enzymes <strong>in</strong> metabolic<br />

pathways of glutamate and GABA. Epilepsy Res (1995) 22(1):1-11.<br />

79. Taylor CP, Vartanian MG, Andruszkiewicz R, Silverman RB: 3-Alkyl<br />

GABA and 3-alkylglutamic acid analogues: Two new classes of<br />

anticonvulsant agents. Epilepsy Res (1992) 11(2):103-110.<br />

80. Loscher W, Honack D, Taylor CP: Gabapent<strong>in</strong> <strong>in</strong>creases<br />

am<strong>in</strong>ooxyacetic acid-<strong>in</strong>duced GABA accumulation <strong>in</strong> several<br />

regions of rat bra<strong>in</strong>. Neurosci Lett (1991) 128(2):150-154.<br />

81. Honmou O, Oyelese AA, Kocsis JD: The anticonvulsant gabapent<strong>in</strong><br />

enhances promoted release of GABA <strong>in</strong> hippocampus: A field<br />

potential analysis. Bra<strong>in</strong> Res (1995) 692(1-2):273-277.<br />

82. Gu Y, Huang LY: Gabapent<strong>in</strong> potentiates N-methyl-D-aspartate<br />

receptor mediated currents <strong>in</strong> rat GABAergic dorsal horn neurons.<br />

Neurosci Lett (2002) 324(3):177-180.<br />

83. Gu Y, Huang LY: Gabapent<strong>in</strong> actions on N-methyl-D-aspartate<br />

receptor channels are prote<strong>in</strong> k<strong>in</strong>ase C-dependent. Pa<strong>in</strong> (2001)<br />

93(1):85-92.<br />

84. Price DD: Psychological and neural mechanisms of the affective<br />

dimension of pa<strong>in</strong>. Science (2000) 288(5472):1769-1772.<br />

85. Rao ML, Clarenbach P, Vahlensieck M, Kratzschmar S: Gabapent<strong>in</strong><br />

augments whole blood seroton<strong>in</strong> <strong>in</strong> healthy young men. J Neural<br />

Transm (1988) 73(2):129-134.<br />

86. Yatham LN: Newer anticonvulsants <strong>in</strong> the treatment of bipolar<br />

disorder. J Cl<strong>in</strong> Psychiatry (2004) 65(Suppl 10):28-35.<br />

87. Yoon MH, Choi JI, Jeong SW: Sp<strong>in</strong>al gabapent<strong>in</strong> and<br />

ant<strong>in</strong>ociception: Mechanisms of action. J Korean Med Sci (2003)<br />

18(2):255-261.


40 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

5-HT1A receptor activation: New molecular and neuroadaptive mechanisms<br />

of pa<strong>in</strong> relief<br />

Francis C Colpaert<br />

Address<br />

Institut de Recherche Pierre Fabre<br />

3 rue des Satellites<br />

BP 94244<br />

31432 Toulouse Cedex 4<br />

France<br />

Email: francis.colpaert@pierre-fabre.com<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):40-47<br />

© The Thomson Corporation ISSN 1472-4472<br />

Guided by an understand<strong>in</strong>g of signal transduction <strong>in</strong> pa<strong>in</strong>process<strong>in</strong>g<br />

systems, high-efficacy 5-hydroxytryptam<strong>in</strong>e (5-<br />

HT)1A receptor activation, by means of F-13640, has been<br />

discovered as a new molecular mechanism of pa<strong>in</strong> relief <strong>in</strong><br />

laboratory animals, <strong>in</strong>duc<strong>in</strong>g two neuroadaptive phenomena.<br />

Firstly, this activation cooperates with nociceptive stimulation,<br />

paradoxically caus<strong>in</strong>g analgesia, and secondly, <strong>in</strong>verse<br />

tolerance develops so that the result<strong>in</strong>g analgesia grows rather<br />

than decays. As an apparent result of these novel<br />

neuroadaptive mechanisms, F-13640 exerts an analgesic action<br />

<strong>in</strong> rat models of acute, tonic and chronic nociceptive pa<strong>in</strong> that<br />

is rivaled only by large doses of high-efficacy µ-opioid receptor<br />

agonists. In models of neuropathic allodynia of peripheral or<br />

central orig<strong>in</strong>, chronic F-13640 adm<strong>in</strong>istration causes an<br />

analgesia that surpasses that observed with morph<strong>in</strong>e or other<br />

agents exemplify<strong>in</strong>g other central nervous system drug<br />

mechanisms of pa<strong>in</strong> relief (eg, ketam<strong>in</strong>e, imipram<strong>in</strong>e and<br />

gabapent<strong>in</strong>). Indeed, F-13640 produces long-last<strong>in</strong>g, preemptive<br />

and, most remarkably, curative-like actions <strong>in</strong><br />

neuropathic allodynia. Although await<strong>in</strong>g proof-of-concept<br />

evidence <strong>in</strong> humans, high-efficacy 5-HT1A receptor activation<br />

may uniquely challenge the opioids for pa<strong>in</strong> therapy.<br />

Keywords 5-HT1A receptors, analgesia, neuropathic pa<strong>in</strong>,<br />

nociceptive pa<strong>in</strong>, opioids, tolerance<br />

Introduction<br />

Neuroanatomical and physiological studies have long<br />

implicated seroton<strong>in</strong> (5-hydroxytryptam<strong>in</strong>e; 5-HT) <strong>in</strong> the<br />

central nervous system (CNS) control of pa<strong>in</strong> (eg, descend<strong>in</strong>g<br />

<strong>in</strong>hibition) [1], and while a host of 5-HT receptors are known to<br />

mediate the cellular actions of seroton<strong>in</strong> [2], the 5-HT1A<br />

seroton<strong>in</strong> receptor subtype has not traditionally been<br />

considered as a molecular target for pa<strong>in</strong> therapy [3-8].<br />

However, it will be argued here that high-efficacy activation of<br />

CNS 5-HT1A receptors may perhaps now beg<strong>in</strong> to challenge the<br />

opioids as an option for the treatment of pa<strong>in</strong>, although the<br />

latter have been the ma<strong>in</strong>stay treatment of pa<strong>in</strong> for over<br />

thousands of years. Somewhat ironically, this stark<br />

development results from studies <strong>in</strong>to opioid tolerance <strong>in</strong> the<br />

1970s, and from a well-accepted concept that attempted to<br />

account for tolerance to opioid analgesia.<br />

Signal transduction <strong>in</strong> pa<strong>in</strong>-process<strong>in</strong>g systems<br />

The concept account<strong>in</strong>g for opioid analgesia tolerance specifies<br />

that any <strong>in</strong>put to pa<strong>in</strong>-process<strong>in</strong>g systems causes not a s<strong>in</strong>gle<br />

effect, but dual effects that are bidirectional, or opposite, <strong>in</strong> sign<br />

[9,10•,11,12]. Thus, morph<strong>in</strong>e causes not only analgesia as a<br />

'first-order' effect, but also a 'second-order' hyperalgesia that<br />

outlasts opioid receptor activation for some time. The first-order<br />

analgesia results directly from receptor activation, but the<br />

second-order effect is an <strong>in</strong>direct consequence of this analgesia<br />

and follows <strong>in</strong> time. Upon chronic opioid exposure, the secondorder<br />

pa<strong>in</strong>, or sensitization to nociceptive <strong>in</strong>put, grows and<br />

counteracts the first-order analgesia. Thus, opioid tolerance is<br />

due, paradoxically, to opioid pa<strong>in</strong> [10•,13,14].<br />

Intrigu<strong>in</strong>gly, the concept of high-efficacy activation of 5-HT1A<br />

receptors as an option for the treatment of pa<strong>in</strong> suggested that a<br />

mechanism wholly different from opioid receptor activation<br />

could possibly exist, whereby analgesia could be produced.<br />

Indeed, accord<strong>in</strong>g to this concept, the stimulation of peripheral<br />

nociceptors would <strong>in</strong>itially produce pa<strong>in</strong> as a first-order effect,<br />

but also hypoalgesia as a second-order effect; with chronicity,<br />

this second-order hypoalgesia should grow, counteract the firstorder<br />

pa<strong>in</strong> and, remarkably, develop <strong>in</strong>to an <strong>in</strong>creas<strong>in</strong>gly<br />

powerful analgesia (ie, <strong>in</strong>verse tolerance). Of equal importance,<br />

accord<strong>in</strong>g to the concept, is that one nociceptive stimulation<br />

should cooperate with another, concomitant stimulation of<br />

nociceptors to paradoxically <strong>in</strong>duce second-order hypoalgesia<br />

[4,9]. The potential of such an <strong>in</strong>tervention is considerable; it<br />

would be most effective <strong>in</strong> the treatment of severe pa<strong>in</strong> and<br />

would resolve <strong>in</strong>accessible, opioid-resistant, chronic pa<strong>in</strong>s.<br />

Thus, s<strong>in</strong>ce the 1970s, researchers currently at Pierre Fabre SA<br />

have employed an <strong>in</strong>creas<strong>in</strong>g array of neuropharmacological<br />

tools <strong>in</strong> an attempt to identify a mammalian prote<strong>in</strong> and a<br />

molecular action by which the central effects of peripheral<br />

nociceptive stimulation can be mimicked. This prote<strong>in</strong> should<br />

<strong>in</strong>itiate the neuroadaptive mechanisms of <strong>in</strong>verse tolerance and<br />

nociceptor cooperation, and its effects should constitute the<br />

opposite of those of opioids. 5-HT1A receptor activation has<br />

now been identified as the neuropharmacological <strong>in</strong>tervention<br />

whereby those neuroadaptive and therapeutic objectives can<br />

possibly be achieved [15•].<br />

F-13640<br />

F-13640 (Pierre Fabre SA; Figure 1) is a newly synthesized<br />

methylam<strong>in</strong>o-pyrid<strong>in</strong>e that has nanomolar and selective aff<strong>in</strong>ity<br />

for both rat and human G-prote<strong>in</strong>-coupled 5-HT1A receptors; at<br />

1000-fold higher concentrations the compound does not <strong>in</strong>teract<br />

with many other neurotransmitter receptors, uptake sites, ion<br />

channels and enzymes. Importantly, F-13640 has strong activity<br />

at 5-HT1A receptors and stimulates [ 35S]GTPγS b<strong>in</strong>d<strong>in</strong>g by a<br />

magnitude far greater than that observed with the 5-HT1A<br />

agonists buspirone and 8-hydroxy-2-di-n-propylam<strong>in</strong>o-tetral<strong>in</strong><br />

(8-OH-DPAT), and more recently identified selective 5-HT1A<br />

agonists [15•,16,17]. This comb<strong>in</strong>ation of potency, selectivity<br />

and high efficacy can also be observed <strong>in</strong> vivo; after<br />

<strong>in</strong>traperitoneal <strong>in</strong>jection <strong>in</strong> rat, F-13640 readily penetrates the<br />

bra<strong>in</strong> [18], <strong>in</strong>hibits sp<strong>in</strong>al-cord-wide dynamic neuron and<br />

s<strong>in</strong>gle motor unit responses to nociceptive electrical<br />

stimulation [19], and exerts analgesia from (ED50) doses of<br />

0.029 mg/kg upwards [20•]. Its effects are consistently


antagonized by the selective 5-HT1A antagonist WAY-100636<br />

[15•,20•,21,22] and the amplitude of its 5-HT1A receptormediated<br />

actions is unrivaled by other selective 5-HT1A<br />

receptor ligands [15•,20•].<br />

Figure 1. The structure of F-13640.<br />

C<br />

H 3<br />

N<br />

N<br />

H<br />

O<br />

F-13640<br />

(Pierre Fabre)<br />

Cooperation and <strong>in</strong>verse tolerance: Acute<br />

actions<br />

Studies have probed the sensitivity of normal rats to<br />

nociceptive stimulation by means of the Randall-Selitto<br />

technique, which determ<strong>in</strong>es the threshold mechanical<br />

stimulation of the h<strong>in</strong>dpaw required to <strong>in</strong>duce vocalization<br />

[15•]. While a subcutaneous <strong>in</strong>jection of 5 mg/kg morph<strong>in</strong>e<br />

produced an <strong>in</strong>itial hypoalgesia followed by hyperalgesia, 0.63<br />

mg/kg of <strong>in</strong>traperitoneal F-13640 caused hyperalgesia followed<br />

by hypoalgesia; these data <strong>in</strong>dicate bidirectional signal<br />

transduction and 5-HT1A receptor activation-produc<strong>in</strong>g effects<br />

that are the <strong>in</strong>verse of µ-opioid receptor activation. Repeated<br />

<strong>in</strong>jection of morph<strong>in</strong>e caused hyperalgesia and tolerance to its<br />

analgesic effect; repeated F-13640 <strong>in</strong>jection caused hypoalgesia<br />

and tolerance to its pro-algesic effect. After a 2-week<br />

subcutaneous <strong>in</strong>fusion of either 5 mg/day morph<strong>in</strong>e or 0.63<br />

mg/day F-13640, rats demonstrated a normal sensitivity to the<br />

mechanical stimulation. In morph<strong>in</strong>e-<strong>in</strong>fused animals, acute<br />

<strong>in</strong>jection of the opioid antagonist naloxone at this po<strong>in</strong>t caused<br />

hyperalgesia; mirror<strong>in</strong>g this action, the <strong>in</strong>jection of the 5-HT1A<br />

antagonist WAY-100635 <strong>in</strong> F-13640-<strong>in</strong>fused animals caused<br />

powerful hypoalgesia [15•]. The latter f<strong>in</strong>d<strong>in</strong>g offers a stark<br />

demonstration of the second-order nature of the analgesic effect<br />

of F-13640 and <strong>in</strong>itial evidence that high-efficacy 5-HT1A<br />

receptor stimulation may exert a pre-emptive action on pa<strong>in</strong> of<br />

nociceptive orig<strong>in</strong>.<br />

As discussed, an acute, <strong>in</strong>traperitoneal <strong>in</strong>jection of F-13640<br />

<strong>in</strong>itially produces hyperalgesia. Remarkably, and<br />

demonstrat<strong>in</strong>g cooperation, at the same time after the <strong>in</strong>jection<br />

of the same dose of F-13640, the compound produces analgesia<br />

<strong>in</strong> rats receiv<strong>in</strong>g an <strong>in</strong>traplantar formal<strong>in</strong> <strong>in</strong>jection <strong>in</strong> a model of<br />

tonic nociceptive pa<strong>in</strong>. Similar pro- and hypoalgesic effects<br />

occur with a host of other 5-HT1A receptor ligands [15•] <strong>in</strong> a<br />

manner that is behaviorally specific [23]. However, the<br />

magnitude of both of these effects depends on the extent to<br />

which the ligands activate the receptor; thus, the low-efficacy<br />

5-HT1A agonist buspirone is essentially <strong>in</strong>active, and<br />

F-13640 produces profound effects. These agents and another<br />

seven 5-HT1A receptor ligands produced pro- and hypoalgesic<br />

effects with a rank order that correlates highly (p < 0.001) with<br />

the extent to which they stimulate [ 35S]GTP-γS b<strong>in</strong>d<strong>in</strong>g [15•].<br />

Indeed, with the exception of the high-efficacy opioid agonist<br />

morph<strong>in</strong>e, none of the available analgesics exert<strong>in</strong>g their actions<br />

by peripheral or central mechanisms rivals the magnitude of<br />

N<br />

F<br />

Cl<br />

F<br />

5-HT1A receptor activation Colpaert 41<br />

analgesia that F-13640 produces <strong>in</strong> this model [20•]. Tables 1<br />

and 2 provide comparative data on the ability of various agents<br />

to <strong>in</strong>hibit formal<strong>in</strong>-<strong>in</strong>duced paw lick<strong>in</strong>g and paw elevation,<br />

respectively [20•]. Although several agents <strong>in</strong>hibited paw<br />

lick<strong>in</strong>g to vary<strong>in</strong>g degrees, only F-13640 fully <strong>in</strong>hibited both<br />

behaviors at the early and late phases after formal<strong>in</strong> <strong>in</strong>jection.<br />

Formal<strong>in</strong> <strong>in</strong>jection causes c-Fos prote<strong>in</strong> expression <strong>in</strong> sp<strong>in</strong>al<br />

cord dorsal horn neurons as well as pa<strong>in</strong> behaviors; an<br />

<strong>in</strong>traperitoneal dose of morph<strong>in</strong>e as high as 20 mg/kg is<br />

required to match the extent to which 0.63 mg/kg of<br />

<strong>in</strong>traperitoneal F-13640 suppresses formal<strong>in</strong>-<strong>in</strong>duced c-Fos<br />

prote<strong>in</strong> expression [24].<br />

The exceptionally powerful analgesia that F-13640 produces <strong>in</strong><br />

the formal<strong>in</strong> model of tonic nociceptive pa<strong>in</strong> led the research<br />

group to exam<strong>in</strong>e its possible effectiveness for <strong>in</strong>tra- and postoperative<br />

pa<strong>in</strong> associated with orthopedic surgery <strong>in</strong> rats that<br />

received an <strong>in</strong>cision of the sk<strong>in</strong>, fascia and plantar muscle of the<br />

foot [25], and underwent drill<strong>in</strong>g of a hole <strong>in</strong> the calcaneus [26].<br />

As with a pre-operative <strong>in</strong>traperitoneal <strong>in</strong>jection of the shortact<strong>in</strong>g<br />

opioid remifentanil (0.63 mg/kg), the same dose of<br />

<strong>in</strong>traperitoneal F-13640 lowered the requirement for <strong>in</strong>traoperative<br />

isoflurane anesthesia, <strong>in</strong>dicat<strong>in</strong>g that the<br />

5-HT1A agonist exerted analgesia equivalent to that of the<br />

opioid <strong>in</strong> this model. When adm<strong>in</strong>istered after surgery, F-13640<br />

suppressed post-operative pa<strong>in</strong> behaviors (ie, paw flexion and<br />

elevation) <strong>in</strong> a last<strong>in</strong>g manner; <strong>in</strong> contrast, remifentanil<br />

produced a short-lived analgesia that was followed by a longerlived<br />

hyperalgesia [22]. The peri-operative use of opioids <strong>in</strong><br />

humans often produces a hyperalgesia and tolerance that have<br />

been well documented <strong>in</strong> the immediate postoperative episode<br />

[27-29]. However, surgery conducted under opioid analgesia<br />

may also be followed by a chronic pa<strong>in</strong> state [30,31] that may<br />

perhaps result from long-last<strong>in</strong>g opioid (second-order)<br />

hyperalgesia. Thus, high-efficacy 5-HT1A receptor activation<br />

might rival the <strong>in</strong>tra- and post-operative analgesia that is offered<br />

by opioids and also obviate (and pre-empt) the short- and longterm<br />

<strong>in</strong>creases <strong>in</strong> post-operative pa<strong>in</strong> that opioids may <strong>in</strong>duce.<br />

Long-term neuroadaptive actions<br />

The studies considered here exam<strong>in</strong>ed the effects of agents that<br />

were cont<strong>in</strong>uously <strong>in</strong>fused by means of subcutaneously<br />

implanted osmotic pumps, for 2 weeks or longer, <strong>in</strong> rats that<br />

were subjected to manipulations that model chronic pa<strong>in</strong> of<br />

nociceptive or neuropathic orig<strong>in</strong>.<br />

Chronic nociceptive pa<strong>in</strong><br />

The oral self adm<strong>in</strong>istration of a fentanyl solution offers a<br />

measure of the spontaneous, persistent and severe chronic<br />

nociceptive pa<strong>in</strong> that is associated with adjuvant arthritis <strong>in</strong> the<br />

rat [32]. While normal rats demonstrate hyperalgesia early after<br />

F-13640 (0.63 mg/day) pump implantation, the agent produces<br />

a dose-dependent, full analgesia <strong>in</strong> arthritic rats that is at least<br />

equivalent to that found with 5 mg/day of morph<strong>in</strong>e [15•],<br />

the dose at which morph<strong>in</strong>e produces dependence. The<br />

f<strong>in</strong>d<strong>in</strong>g that 2 weeks of morph<strong>in</strong>e treatment produces<br />

analgesia is surpris<strong>in</strong>g, because <strong>in</strong> normal rats the same<br />

treatment results <strong>in</strong> complete analgesic tolerance with<strong>in</strong> 8 h<br />

of pump implantation [15•]. However, the concept that<br />

guided this research also suggests that nociceptive<br />

stimulation hampers the development of opioid tolerance <strong>in</strong>


42 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

Table 1. Quantification of the ability of various analgesic agents to <strong>in</strong>hibit formal<strong>in</strong>-<strong>in</strong>duced paw lick<strong>in</strong>g dur<strong>in</strong>g the early and late phases follow<strong>in</strong>g <strong>in</strong>traplantar formal<strong>in</strong> <strong>in</strong>jection <strong>in</strong><br />

rats.<br />

Drug Dose range Inhibition of formal<strong>in</strong>-<strong>in</strong>duced paw lick<strong>in</strong>g<br />

Early phase Late phase<br />

ED50 95% CL MSD Lowest mean score ED50 95% CL MSD Lowest mean score<br />

Morph<strong>in</strong>e 1.25 to 40 2.4 1.1 to 5.4 10 1 ± 0.49 (10) < 1.25 - 1.25 0 ± 0 (10)<br />

Buprenorph<strong>in</strong>e 0.01 to 10 0.25 0.051 to 1.1 0.63 0.86 ± 0.46 (2.5) 0.051 0.0075 to 0.35 0.16 0.43 ± 0.3 (0.63)<br />

Imipram<strong>in</strong>e 2.5 to 40 7.6 2.5 to 23 10 0 ± 0 (40) 3.6 1.5 to 8.6 10 0 ± 0 (40)<br />

Amitryptyl<strong>in</strong>e 2.5 to 40 15 7.5 to 30 10 0 ± 0 (40) 5.1 3 to 8.7 10 0 ± 0 (40)<br />

Paroxet<strong>in</strong>e 2.5 to 40 13 6 to 28 10 0.57 ± 0.29 (40) 4.4 1.2 to 16 10 0 ± 0 (40)<br />

Aspir<strong>in</strong> 160 > 160 - > 160 5 ± 0.62 (160) > 160 - 160 5.8 ± 0.59 (160)<br />

Diclofenac 40 to 160 > 160 - 160 0.86 ± 0.34 (160) > 160 - 160 0 ± 0 (160)<br />

Paracetamol 10 to 160 > 160 - > 160 4.7 ± 0.61 (160) 93.1 a 9.9 to 872 160 4.0 ± 1.2 (160)<br />

Rofecoxib 40 to 160 > 160 - > 160 5.7 ± 0.42 (40) > 160 - > 160 6.7 ± 0.57 (40)<br />

Celecoxib 40 to 160 > 160 - > 160 5.1 ± 0.7 (40) > 160 - > 160 5.4 ± 0.78 (40)<br />

Gabapent<strong>in</strong> 10 to 640 > 640 - 40 4.1 ± 0.86 (40) < 10 - 10 2.3 ± 0.68 (160)<br />

Baclofen 0.63 to 2.5 > 2.5 - > 2.5 3.1 ± 1.3 (2.5) > 2.5 - 2.5 2.6 ± 1.3 (2.5)<br />

Carbamazep<strong>in</strong>e 40 > 40 - > 40 5.7 ± 1.1 (40) < 40 - > 40 5 ± 1.4 (40)<br />

Ketam<strong>in</strong>e 10 to 40 22 a<br />

ND 40 0.57 ± 0.57 (40) 22 a<br />

ND 40 1.6 ± 1.0 (40)<br />

Sumatriptan<br />

40 > 40 - 40 5.7 ± 0.64 (40) > 40 - 40 6.5 ± 0.3 (40)<br />

ABT-594 0.01 to 0.16 0.033 0.012 to 0.092 0.16 0.57 ± 0.57 (0.16) 0.013 0.0021 to 0.086 0.16 1.4 ± 1.4 (0.16)<br />

F-13640 0.01 to 2.5 0.081 0.051 to 0.13 0.16 0 ± 0 (0.16) 0.081 0.051 to 0.13 0.16 0 ± 0 (0.16)<br />

All compounds were <strong>in</strong>jected <strong>in</strong>traperitoneally 15 m<strong>in</strong> before formal<strong>in</strong> <strong>in</strong>jection. ED50 values, confidence limits (CL) and all drug doses are <strong>in</strong> mg/kg. The maximal drug effect is represented by the<br />

lowest mean (± SEM) score found with any dose (dose between brackets). a the ED50 was not calculated but was found by l<strong>in</strong>ear <strong>in</strong>terpolation. MSD m<strong>in</strong>imal significant dose, ND not determ<strong>in</strong>ed<br />

because of <strong>in</strong>sufficient data.<br />

42 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1


5-HT1A receptor activation Colpaert 43<br />

Table 2. Quantification of the ability of various analgesic agents to <strong>in</strong>hibit formal<strong>in</strong>-<strong>in</strong>duced paw elevation dur<strong>in</strong>g the early and late phases follow<strong>in</strong>g <strong>in</strong>traplantar formal<strong>in</strong> <strong>in</strong>jection <strong>in</strong><br />

rats.<br />

Drug Dose range Inhibition of formal<strong>in</strong>-<strong>in</strong>duced paw elevation<br />

Early phase Late phase<br />

ED50 95% CL MSD Lowest mean score ED50 95% CL MSD Lowest mean score<br />

Morph<strong>in</strong>e 1.25 to 40 4.2 2.2 to 7.8 10 3.1 ± 1.2 (40) 2.1 1.1 to 3.7 10 0 ± 0 (10)<br />

Buprenorph<strong>in</strong>e 0.01 to 10 > 10 - > 10 9.1 ± 0.7 (10) 5.8 0.51 to 70 0.63 5.4 ± 1.9 (0.63)<br />

Imipram<strong>in</strong>e 2.5 to 40 14 3.9 to 48 40 3.4 ± 1.3 (40) 7.2 2.8 to 19 10 0 ± 0 (40)<br />

Amitryptyl<strong>in</strong>e 2.5 to 40 18 9.2 to 36 40 0 ± 0 (40) 18 9.2 to 36 40 0 ± 0 (40)<br />

Paroxet<strong>in</strong>e 2.5 to 40 > 40 - > 40 9.3 ± 0.47 (40) 16 6.1 to 41 40 2.7 ± 1.8 (40)<br />

Aspir<strong>in</strong> 160 > 160 - > 160 8.8 ± 0.55 (160) > 160 - > 160 9.8 ± 0.14 (160)<br />

Diclofenac 40 to 160 > 160 - 160 4.1 ± 0.77 (160) > 160 - 160 0.43 ± 0.43 (160)<br />

Paracetamol 10 to 160 > 160 - > 160 9.7 ± 0.29 (160) 55 16 to 192 160 5.2 ± 1.5 (160)<br />

Rofecoxib 40 to 160 > 160 - > 160 9.6 ± 0.2 (160) > 160 - > 160 9.4 ± 0.43 (40)<br />

Celecoxib 40 to 160 > 160 - > 160 9.7 ± 0.18 (160) > 160 - > 160 10 ± 0 (160)<br />

Gabapent<strong>in</strong> 10 to 640 > 640 - > 640 9.5 ± 0.3 (40) > 640 - > 640 8.5 ± 1.2 (160)<br />

Baclofen 0.63 to 2.5 > 2.5 - > 2.5 7 ± 1.6 (2.5) > 2.5 - 2.5 4.3 ± 1.4 (2.5)<br />

Carbamazep<strong>in</strong>e 40 > 40 - > 40 10 ± 0 (40) > 40 - > 40 10 ± 0 (40)<br />

Ketam<strong>in</strong>e 10 to 40 > 40 - > 40 9.7 ± 0.29 (40) > 40 - 40 5.7 ± 2 (40)<br />

Sumatriptan 40 > 40 - > 40 9.7 ± 0.29 (40) > 40 - > 40 10 ± 0 (40)<br />

ABT-594 0.01 to 0.16 0.041 0.014 to 0.12 0.16 1.4 ± 1.4 (0.16) 0.068 0.027 to 0.18 0.16 1.4 ± 1.4 (0.16)<br />

F-13640 0.01 to 2.5 0.029 0.0075 to 0.11 0.16 0 ± 0 (0.63) 0.081 0.051 to 0.13 0.16 0 ± 0 (0.16)<br />

All compounds were <strong>in</strong>jected <strong>in</strong>traperitoneally 15 m<strong>in</strong> before formal<strong>in</strong> <strong>in</strong>jection. ED50 values, confidence limits (CL) and all drug doses are <strong>in</strong> mg/kg. The maximal drug effect is represented by the<br />

lowest mean (± SEM) score found with any dose (dose between brackets). MSD m<strong>in</strong>imal significant dose.<br />

Table 3. Comparative data on the effects of F-13640 and four other centrally act<strong>in</strong>g analgesics <strong>in</strong> rat models of chronic nociceptive or neuropathic pa<strong>in</strong>.<br />

Parameter (unit) Treatment (mg/rat/day)<br />

Vehicle<br />

Morph<strong>in</strong>e<br />

Ketam<strong>in</strong>e<br />

Imipram<strong>in</strong>e Gabapent<strong>in</strong> (10) F-13640<br />

(0)<br />

Chronic nociceptive pa<strong>in</strong> (adjuvant arthritis)<br />

(5)<br />

(20)<br />

(2.5)<br />

(0.63)<br />

FSA (g) 60 (40 to 72) 42* (21 to 63) 52 (34 to 88) 47* (18 to 51) 49 (36 to 70) 35** (20 to 54)<br />

Chronic neuropathic pa<strong>in</strong> (sp<strong>in</strong>al cord <strong>in</strong>jury)<br />

Response to brush (score) 2.2 (0.07) 2.7 (0.07) 2.5 (0.09) 2.3 (0.12) 2.2 (0.10) 1.0*** (0.11)<br />

Response to cold (score) 2.7 (0.05) 2.8 (0.07) 2.7 (0.07) 2.8 (0.05) 2.5 (0.07) 2.0** (0.09)<br />

von Frey threshold (g) 1.4 (0.05) 3.7 (0.04) 4.3 (0.03) 3.9 (0.04) 4.6 (0.05) 5.7* (0.07)<br />

Chronic neuropathic pa<strong>in</strong> (sciatic nerve constriction)<br />

von Frey threshold (g) 17 (0.89) 20 (1.30) 20 (3.80) 22 (3.80) 23* (4.40) 24** (2.30)<br />

Data are based on observations that were made dur<strong>in</strong>g 2 weeks after the subcutaneous implantation of osmotic m<strong>in</strong>ipumps that <strong>in</strong>fused vehicle or agents at a constant rate. Doses (expressed <strong>in</strong><br />

mg/rat/day) for the four reference analgesics correspond to the highest dose (concentration) that could be adm<strong>in</strong>istered <strong>in</strong> the experimental conditions. Results are expressed as the median (and<br />

<strong>in</strong>ter-quartile range for fentanyl self adm<strong>in</strong>istered; FSA) or the mean (+SEM for other parameters). (*p < 0.05; **p < 0.01; ***p < 0.001).<br />

5-HT1A receptor activation Colpaert 43


44 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

both an <strong>in</strong>tensity- and duration-dependent manner [10•]. Thus,<br />

the susta<strong>in</strong>ed, <strong>in</strong>tense nociception associated with adjuvant<br />

arthritis may have sufficiently <strong>in</strong>hibited opioid analgesia<br />

tolerance development for morph<strong>in</strong>e analgesia to have<br />

rema<strong>in</strong>ed significant, at least over the 2-week period. Agents<br />

exemplify<strong>in</strong>g other central mechanisms of analgesia (eg, the 5-<br />

HT and noradrenal<strong>in</strong>e re-uptake <strong>in</strong>hibitor imipram<strong>in</strong>e (2.5<br />

mg/day), the excitatory am<strong>in</strong>o acid antagonist ketam<strong>in</strong>e (20<br />

mg/day), and the anticonvulsant gabapent<strong>in</strong> (10 mg/day))<br />

were <strong>in</strong>active (Table 3). Similar to tonic nociceptive pa<strong>in</strong>, the<br />

data suggest that high-efficacy 5-HT1A receptor activation<br />

produces an analgesia with chronic nociceptive pa<strong>in</strong> that is<br />

rivaled only, if at all, by morph<strong>in</strong>e-like opioids.<br />

Chronic neuropathic pa<strong>in</strong><br />

In a model of peripheral neuropathic pa<strong>in</strong>, rats undergo a<br />

unilateral chronic constriction <strong>in</strong>jury of the common sciatic<br />

nerve and demonstrate a lowered threshold for von Frey<br />

filament stimulation to <strong>in</strong>duce paw withdrawal [33]. A 2-week<br />

<strong>in</strong>fusion of morph<strong>in</strong>e, ketam<strong>in</strong>e or imipram<strong>in</strong>e produced a<br />

slight, non-significant <strong>in</strong>crease of the ipsilateral reduced<br />

threshold <strong>in</strong> sal<strong>in</strong>e-treated rats (17 g), while gabapent<strong>in</strong> exerted<br />

a significant effect (Table 3). F-13640 produced a larger, highly<br />

significant <strong>in</strong>crease, suggest<strong>in</strong>g robust efficacy <strong>in</strong> this model<br />

[15•]. This effect on ipsilateral threshold was behaviorally<br />

specific, <strong>in</strong> that F-13640 did not modify the contralateral<br />

threshold <strong>in</strong> sal<strong>in</strong>e-treated rats (69 g).<br />

In a model of central neuropathic pa<strong>in</strong>, rats received a<br />

photochemical, ischemic <strong>in</strong>jury of sp<strong>in</strong>al cord dorsal segments<br />

L3 to L5 and developed allodynic responses to cutaneous<br />

stimulations such as von Frey filament application, a gentle<br />

brush or a cold spray [34]. Interest<strong>in</strong>gly, and as with sciatic<br />

nerve constriction, subcutaneously <strong>in</strong>fused morph<strong>in</strong>e,<br />

ketam<strong>in</strong>e, imipram<strong>in</strong>e and gabapent<strong>in</strong> <strong>in</strong>creased the von Frey<br />

threshold to some extent, although not significantly so; these<br />

agents also exerted no significant effect <strong>in</strong> response to a gentle<br />

brush or a cold spray (Table 3). In contrast, F-13640 robustly<br />

<strong>in</strong>hibited all three responses [15•]. The effects of F-13640 grew<br />

<strong>in</strong> the course of the 2-week treatment period, demonstrat<strong>in</strong>g<br />

<strong>in</strong>verse analgesic tolerance.<br />

The acute <strong>in</strong>jection of F-13640, as well as that of morph<strong>in</strong>e,<br />

can counteract allodynic responses to von Frey filament<br />

stimulation <strong>in</strong> rats susta<strong>in</strong><strong>in</strong>g a chronic constriction <strong>in</strong>jury of<br />

the <strong>in</strong>fra-orbital nerve (IoN-CCI), a model of trigem<strong>in</strong>al<br />

neuropathic pa<strong>in</strong> [35]. The effects of F-13640 <strong>in</strong> this model<br />

are aga<strong>in</strong> behaviorally specific [36]. In these rats, morph<strong>in</strong>e<br />

<strong>in</strong>fusion <strong>in</strong>itially produces a robust, significant analgesia to<br />

which complete tolerance develops after 2 weeks; the effects<br />

of F-13640 <strong>in</strong>creased rather than decl<strong>in</strong>ed dur<strong>in</strong>g the 2-week<br />

period, aga<strong>in</strong> demonstrat<strong>in</strong>g <strong>in</strong>verse tolerance [37•,38,39,40•].<br />

Collectively, these data suggest that high-efficacy 5-HT1A<br />

receptor activation may produce exceptionally powerful and<br />

susta<strong>in</strong>ed, 'symptomatic' analgesia with chronic neuropathic<br />

pa<strong>in</strong> of peripheral or central orig<strong>in</strong>.<br />

Pre-emptive and curative-like analgesia<br />

Much as opioids <strong>in</strong>duce a hyperalgesia and tolerance that<br />

may outlast µ-opioid receptor activation for a long time (eg,<br />

a year [10•,41]), the signal-transduction concept suggests<br />

that a neuropharmacological manipulation that generates<br />

the <strong>in</strong>verse of opioid actions should <strong>in</strong>duce analgesia (and<br />

cont<strong>in</strong>ue to demonstrate <strong>in</strong>verse tolerance) long after its<br />

implementation has been discont<strong>in</strong>ued.<br />

Rats were <strong>in</strong>fused with 0.63 mg/day of F-13640 for 8 weeks<br />

start<strong>in</strong>g 24 h before the sp<strong>in</strong>al cord <strong>in</strong>jury described<br />

previously; with all three cutaneous stimulations the<br />

treatment effect persisted unabated for 2 months follow<strong>in</strong>g<br />

discont<strong>in</strong>uation of treatment [42]. These data, together with<br />

the consideration that F-13640 is effective <strong>in</strong> neuropathic<br />

pa<strong>in</strong> regardless of its peripheral or central orig<strong>in</strong>, suggest<br />

that high-efficacy 5-HT1A receptor activation may<br />

powerfully 'pre-empt' pa<strong>in</strong> ensu<strong>in</strong>g from neuronal damage,<br />

such as that result<strong>in</strong>g from surgical nerve <strong>in</strong>jury or diabetes.<br />

To explore this suggestion, rats hav<strong>in</strong>g susta<strong>in</strong>ed sp<strong>in</strong>al cord<br />

<strong>in</strong>jury and hav<strong>in</strong>g fully developed allodynia were then<br />

<strong>in</strong>fused with F-13640 (0.63 mg/day) for 56 days. The<br />

treatment <strong>in</strong>creas<strong>in</strong>gly alleviated and eventually normalized<br />

the allodynic responses, thereby demonstrat<strong>in</strong>g <strong>in</strong>verse<br />

tolerance. More importantly, dur<strong>in</strong>g the 70-day period that<br />

ensued, the effects of F-13640 persisted, demonstrat<strong>in</strong>g an<br />

unprecedented 'curative-like' action on allodynic pa<strong>in</strong> [40•].<br />

It rema<strong>in</strong>s to be determ<strong>in</strong>ed whether these pre-emptive and<br />

curative-like actions are mediated by the neuron-protective<br />

and astroglial reaction-<strong>in</strong>hibitory effects that 5-HT1A<br />

agonists may produce <strong>in</strong> ischemic bra<strong>in</strong> tissue [43].<br />

Although it might be of <strong>in</strong>terest to similarly exam<strong>in</strong>e the<br />

potential pre-emptive and curative-like actions of morph<strong>in</strong>e,<br />

ketam<strong>in</strong>e, imipram<strong>in</strong>e and gabapent<strong>in</strong>, the absence of<br />

significant symptomatic effects with these agents <strong>in</strong> the<br />

sp<strong>in</strong>al cord <strong>in</strong>jury model has prevented the research group<br />

from do<strong>in</strong>g so. Indeed, any such pre-emptive actions<br />

reported so far have concerned pa<strong>in</strong> parameters that<br />

respond <strong>in</strong> a symptomatic manner to the agents be<strong>in</strong>g<br />

considered [44,45]. Prom<strong>in</strong>ent among these agents are<br />

opioids, and the largest symptomatic effects observed to<br />

date with cont<strong>in</strong>uous, 2-week <strong>in</strong>fusion of any comparable<br />

analgesic <strong>in</strong> any model of neuropathic pa<strong>in</strong> were obta<strong>in</strong>ed<br />

with 5 mg/day of morph<strong>in</strong>e <strong>in</strong> the IoN-CCI model [37•,38].<br />

As <strong>in</strong>dicated, soon after the <strong>in</strong>itiation of morph<strong>in</strong>e <strong>in</strong>fusion,<br />

a robust analgesia occurs <strong>in</strong> this model, to which tolerance<br />

develops with<strong>in</strong> 2 weeks. At that stage, discont<strong>in</strong>uation of<br />

morph<strong>in</strong>e <strong>in</strong>fusion does not afford analgesia, and <strong>in</strong> fact<br />

causes hyperallodynia [53].<br />

Tolerability<br />

Although the data discussed previously allow assessment of<br />

the comparative therapeutic potential of F-13640 relative to<br />

currently available treatments to a considerable extent, the<br />

evidence available so far offers only little <strong>in</strong> the way of an<br />

evaluation of the relative tolerability of the compound.<br />

Regard<strong>in</strong>g the opioids, however, one issue stands out; it is<br />

now recognized that the chronic use of opioids <strong>in</strong>duces an<br />

analgesic tolerance that not only limits, or dissipates their<br />

therapeutic usefulness, but is also accompanied by<br />

hyperalgesia and opioid-<strong>in</strong>duced pa<strong>in</strong> [10•,13,14]. In<br />

addition to the well-known side effects of opioids, this drug<strong>in</strong>duced<br />

pa<strong>in</strong> may become 'excruciat<strong>in</strong>g', thus severely


compromis<strong>in</strong>g the tolerability of opioids; <strong>in</strong>deed, the<br />

discont<strong>in</strong>uation of opioid treatment <strong>in</strong> these conditions may<br />

act to alleviate pa<strong>in</strong> [46]. The precl<strong>in</strong>ical data discussed<br />

suggest that, <strong>in</strong> contrast, chronic adm<strong>in</strong>istration of F-13640<br />

produces an analgesia that grows rather than decays. Of<br />

particular concern, is that agents that <strong>in</strong>teract with<br />

serotonergic neurotransmission (eg, 5-HT re-uptake<br />

<strong>in</strong>hibitors and opioids) may <strong>in</strong>duce 'seroton<strong>in</strong> syndrome' <strong>in</strong><br />

humans [47]. In several animal species, 5-HT1A agonists,<br />

<strong>in</strong>clud<strong>in</strong>g F-13640, <strong>in</strong>duce behavioral effects such as the<br />

retraction of the lower lip and postural movements <strong>in</strong> rats,<br />

forepaw tread<strong>in</strong>g, splayed h<strong>in</strong>dlimbs, flat body posture and<br />

locomotion [48-50]. Among the agents that <strong>in</strong>duce at least<br />

some of those signs <strong>in</strong> rats are antidepressant uptake<br />

<strong>in</strong>hibitors of 5-HT and noradrenal<strong>in</strong>e and buspirone [49,51],<br />

yet while the occurrence of seroton<strong>in</strong> syndrome is<br />

sporadically reported with several 5-HT and noradrenal<strong>in</strong>e<br />

uptake <strong>in</strong>hibitors and opioids [47], no such occurrence has<br />

been observed with buspirone, <strong>in</strong> spite of the considerable<br />

evidence of the syndrome that has now accumulated with<br />

regard to this agent <strong>in</strong> humans. However, no cl<strong>in</strong>ical data<br />

are currently available regard<strong>in</strong>g selective, higher-efficacy<br />

5-HT1A agonists such as F-13640.<br />

Clearly, however, with repeated or cont<strong>in</strong>uous adm<strong>in</strong>istration,<br />

the analgesic action of F-13640 grows, while at the same time<br />

tachyphylaxis develops to the ability of the drug to <strong>in</strong>duce<br />

behavioral and other signs, for example, hypothermia<br />

[15•,37•,38,39,40•,42], <strong>in</strong>dicat<strong>in</strong>g that, <strong>in</strong> the rat, the<br />

tolerability of 5-HT1A agonists <strong>in</strong>creases considerably <strong>in</strong><br />

conditions of chronic drug adm<strong>in</strong>istration.<br />

Neurobiology of hyper- and hypoalgesia<br />

The evidence discussed <strong>in</strong> this review is consistent with<br />

recent data <strong>in</strong>dicat<strong>in</strong>g that both 5-HT1A and µ-opioid<br />

receptor agonists produce apparently complex, paradoxical<br />

hypo- and hyperalgesic actions (see references [10•,11-14]<br />

for reviews). To a considerable extent, this apparent<br />

complexity is likely resolved by tak<strong>in</strong>g <strong>in</strong>to account the<br />

'base-l<strong>in</strong>e' stimulation to which pa<strong>in</strong>-process<strong>in</strong>g systems are<br />

exposed. Thus, both 5-HT1A receptor-mediated and opioid<br />

hyperalgesia are counteracted <strong>in</strong> a duration- and <strong>in</strong>tensitydependent<br />

manner by nociceptive stimulation, which<br />

enhances the analgesia produced by both 5-HT1A and opioid<br />

receptor agonists [10•]. Thus, while 5-HT1A agonists may<br />

counteract opioid hypoalgesia <strong>in</strong> animals that are exposed to<br />

limited nociceptive stimulation [52], F-13640 counteracts the<br />

hyper-allodynia that develops follow<strong>in</strong>g long-term opioid<br />

treatment <strong>in</strong> IoN-CCI-lesioned, chronically allodynic rats<br />

[53].<br />

The 5-HT1A receptor, like µ-opioid receptors, is an <strong>in</strong>hibitory<br />

G-prote<strong>in</strong>-coupled receptor. It is located with high density<br />

post-synaptically to 5-HT neurons <strong>in</strong> the hippocampus and<br />

neocortex and, as a pre-synaptic autoreceptor, <strong>in</strong> the raphe<br />

nuclei from where projections descend to pa<strong>in</strong>-process<strong>in</strong>g<br />

neurons <strong>in</strong> the sp<strong>in</strong>al cord dorsal horn where 5-HT1A<br />

receptors are located post-synaptically [2,54]. Marked<br />

regional differences <strong>in</strong> the functional adaptation of 5-HT1A<br />

receptors occur after long-term stimulation; chronic<br />

exposure to direct or <strong>in</strong>direct (ie, 5-HT uptake <strong>in</strong>hibitors)<br />

5-HT1A receptor activation Colpaert 45<br />

agonists desensitizes 5-HT1A presynaptic autoreceptors <strong>in</strong><br />

the raphe nuclei without alter<strong>in</strong>g the response properties of<br />

post-synaptic 5-HT1A receptors <strong>in</strong> the projection areas (eg,<br />

the sp<strong>in</strong>al cord dorsal horn) of raphe neurons [55]. Thus,<br />

with chronic exposure, the 5-HT1A autoreceptor-mediated<br />

<strong>in</strong>hibitory feedback control of serotonergic neurotransmission<br />

decays, enabl<strong>in</strong>g serotonergic signal<strong>in</strong>g at post-synaptic<br />

5-HT1A receptors [55]. This desensitization of presynaptic<br />

5-HT1A autoreceptors may conceivably play a role <strong>in</strong> the<br />

tachyphylaxis that develops to 5-HT1A agonist-<strong>in</strong>duced<br />

hyperalgesia, but further research is required to elucidate<br />

this po<strong>in</strong>t.<br />

Conclusions<br />

The precl<strong>in</strong>ical evidence summarized here suggests that<br />

high-efficacy 5-HT1A receptor stimulation presents a new<br />

molecular and neuroadaptive approach to the treatment of<br />

acute and chronic, nociceptive and neuropathic pa<strong>in</strong> states,<br />

as well as achiev<strong>in</strong>g pa<strong>in</strong> relief <strong>in</strong> conditions that have<br />

rema<strong>in</strong>ed <strong>in</strong>accessible, even after opioid or other treatment.<br />

Hav<strong>in</strong>g never been studied <strong>in</strong> humans, cl<strong>in</strong>ical<br />

<strong>in</strong>vestigations are now <strong>in</strong> order to assess the efficacy of<br />

compounds such as F-13640 <strong>in</strong> patients.<br />

References<br />

1. Hamon M, Bourgo<strong>in</strong> S: Seroton<strong>in</strong> and its receptors <strong>in</strong> pa<strong>in</strong> control.<br />

In: Novel Aspects of Pa<strong>in</strong> Management: Opioids and Beyond. Sawynok<br />

J, Cowan A (Eds), Wiley, New York, NY, USA (1999):203-228.<br />

2. Barnes NM, Sharp T: A review of central 5-HT receptors and their<br />

function. Neuropharmacology (1999) 38(8):1083-1152.<br />

3. Dickensen AH, Besson JM: Pharmacological control of pa<strong>in</strong>: Nonopioid<br />

targets. In: The Paths of Pa<strong>in</strong>. Merskey H, Loeser JD, Dubner R<br />

(Eds), IASP Press, Seattle, WA, USA (2005):191-208.<br />

4. Dray A, Rang H: The how and why of chronic pa<strong>in</strong> states and the<br />

what of new analgesia therapies. Trends Neurosci (1998) 21(8):315-<br />

317.<br />

5. Haegerstrand A: Trends and targets for treatment of pa<strong>in</strong>, a<br />

pharmaceutical <strong>in</strong>dustry perspective. Acta Anesthesiol Scand (1998)<br />

42(Suppl 113):31-33.<br />

6. Hunt SP, Mantyh PW: The molecular dynamics of pa<strong>in</strong> control. Nat<br />

Rev Neurosci (2001) 2(2):83-91.<br />

7. Kowaluk EA, Arneric SP, Williams M: Opportunities <strong>in</strong> pa<strong>in</strong> therapy:<br />

Beyond the opioids and NSAIDS. Exp Op<strong>in</strong> Emerg <strong>Drugs</strong> (1998) 3(1):1-38.<br />

8. Sah DWY, Ossipo MH, Porreca F: Neurotrophic factors as novel<br />

therapeutics for neuropathic pa<strong>in</strong>. Nat Rev Drug Discov (2003)<br />

2(6):460-472.<br />

9. Colpaert FC: Narcotic cue, narcotic analgesia, and the tolerance<br />

problem: The regulation of sensitivity to drug cues and to pa<strong>in</strong> by an<br />

<strong>in</strong>ternal cue process<strong>in</strong>g model. In: Stimulus Properties of <strong>Drugs</strong>: Ten<br />

Years of Progress. Colpaert FC, Rosecrans JA (Eds), Elsevier/North Holland<br />

Biomedical Press, Amsterdam, the Netherlands (1978):301-321.<br />

10. Colpaert FC: System theory of pa<strong>in</strong> and of opiate analgesia: No<br />

tolerance to opiates. Pharmacol Rev (1996) 48(3):355-402.<br />

• This paper describes a concept of paradoxical signal transduction <strong>in</strong> pa<strong>in</strong>process<strong>in</strong>g<br />

systems.<br />

11. Colpaert FC, Frégnac Y: Paradoxical signal transduction <strong>in</strong><br />

neurobiological systems. Mol Neurobiol (2001) 24(1-3):145-168.<br />

12. Xu XJ, Colpaert FC, Wiesenfeld-Hall<strong>in</strong> Z: Opioid hyperalgesia and<br />

tolerance versus 5-HT1A receptor-mediated <strong>in</strong>verse tolerance.<br />

Trends Pharmacol Sci (2003) 24(12):634-639.<br />

13. Mao J: Opioid-<strong>in</strong>duced abnormal pa<strong>in</strong> sensitivity: Implications <strong>in</strong><br />

cl<strong>in</strong>ical opioid therapy. Pa<strong>in</strong> (2002) 100(3):213-217.


46 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

14. Ossipov MH, Lai J, Vanderah TW, Porreca F: Induction of pa<strong>in</strong><br />

facilitation by susta<strong>in</strong>ed opioid exposure: Relationship to opioid<br />

ant<strong>in</strong>ociceptive tolerance. Life Sci (2003) 73(6):783-800.<br />

15. Colpaert FC, Tarayre JP, Koek W, Pauwels PJ, Bard<strong>in</strong> L, Xu XJ,<br />

Wiesenfeld-Hall<strong>in</strong> Z, Cosi C, Carilla-Durand E, Assié MB, Vacher B:<br />

Large-amplitude 5-HT1A receptor activation: A new mechanism of<br />

profound central analgesia. Neuropharmacology (2002) 43(6):945-<br />

958.<br />

• This paper reports the discovery of cooperation and <strong>in</strong>verse tolerance as<br />

novel neuroadaptive mechanisms of pa<strong>in</strong> relief, achiev<strong>in</strong>g unprecedented<br />

analgesia <strong>in</strong> chronic conditions.<br />

16. Pauwels PJ, Colpaert FC: Ca 2+ responses <strong>in</strong> Ch<strong>in</strong>ese hamster ovary-<br />

K1 cells demonstrate an atypical pattern of ligand-<strong>in</strong>duced 5-HT1A<br />

receptor activation. J Pharmacol Exp Ther (2003) 307(2):608-614.<br />

17. Wurch T, Colpaert FC, Pauwels PJ: Mutation <strong>in</strong> a prote<strong>in</strong> k<strong>in</strong>ase C<br />

phosphorylation site of the 5-HT1A receptor preferentially<br />

attenuates Ca 2+ responses to partial as opposed to higher-efficacy<br />

5-HT1A agonists. Neuropharmacology (2003) 44(7):873-881.<br />

18. Bard<strong>in</strong> L, Assié M-B, Pélissou M, Royer-Urios I, Newman-Tancredi A,<br />

Ribet J-P, Sautel F, Koek W, Colpaert FC: Dual, hyperalgesic and<br />

analgesic effects of the high-efficacy 5-hydroxytryptam<strong>in</strong>e1A<br />

(5-HT1A) agonist F 13640 [(3-chloro-4-fluoro-phenyl)-[4-fluoro-4-{[(5methyl-pyrid<strong>in</strong>-2-ylmethyl)-am<strong>in</strong>o]-methyl}piperid<strong>in</strong>-1-yl]methanone,<br />

fumaric acid salt]: Relationship with 5-HT1A receptor occupancy<br />

and k<strong>in</strong>etic parameters. J Pharmacol Exp Ther (2005) 312(3):1034-<br />

1042.<br />

19. You H-J, Colpaert FC, Arendt-Nielsen L: The novel analgesic and<br />

high-efficacy 5-HT1A receptor agonist F 13640 <strong>in</strong>hibits nociceptive<br />

responses, w<strong>in</strong>d-up, and after-discharges <strong>in</strong> sp<strong>in</strong>al neurons and<br />

withdrawal reflexes. Exp Neurol (2005) 191(1):174-183.<br />

20. Bard<strong>in</strong> L, Tarayre JP, Malfetes N, Koek W, Colpaert FC: Profound,<br />

non-opioid analgesia produced by the high-efficacy 5-HT1A agonist<br />

F 13640 <strong>in</strong> the formal<strong>in</strong> model of tonic nociceptive pa<strong>in</strong>.<br />

Pharmacology (2003) 67(4):182-194.<br />

• This study demonstrated the remarkable comparative magnitude of 5-HT1A<br />

agonist-<strong>in</strong>duced analgesia <strong>in</strong> a model of tonic nociceptive pa<strong>in</strong>.<br />

21. Buritova J, Tarayre JP, Besson JM, Colpaert F: The novel analgesic<br />

and high-efficacy 5-HT1A receptor agonist, F 13640 <strong>in</strong>duces c-Fos<br />

prote<strong>in</strong> expression <strong>in</strong> sp<strong>in</strong>al cord dorsal horn neurons. Bra<strong>in</strong> Res<br />

(2003) 974(1-2):212-221.<br />

22. Kiss I, Degryse AD, Bard<strong>in</strong> L, Gomez de Segura IA, Colpaert FC: The<br />

novel analgesic, F13640, produces <strong>in</strong>tra- and postoperative<br />

analgesia <strong>in</strong> a rat model of surgical pa<strong>in</strong>. Eur J Pharmacol (2005)<br />

523(1-3):29-39.<br />

23. Bard<strong>in</strong> L, Tarayre JP, Koek W, Colpaert FC: In the formal<strong>in</strong> model of<br />

tonic nociceptive pa<strong>in</strong>, 8-OH-DPAT produces 5-HT1A receptormediated,<br />

behaviorally specific analgesia. Eur J Pharmacol (2001)<br />

421(2):109-114.<br />

24. Buritova J, Larrue S, Aliaga M, Besson JM, Colpaert FC: Effects of the<br />

high-efficacy 5-HT1A receptor agonist, F 13640 <strong>in</strong> the formal<strong>in</strong> pa<strong>in</strong><br />

model: A c-Fos study. Eur J Pharmacol (2005) 514(2-3):121-130.<br />

25. Brennan TJ, Vandermeulen EP, Gebhart GF: Characterisation of a rat<br />

model of <strong>in</strong>cisional pa<strong>in</strong>. Pa<strong>in</strong> (1996) 64(3):493-501.<br />

26. Houghton AK, Hewitt E, Westlund KN: Enhanced withdrawal<br />

responses to mechanical and thermal stimuli after bone <strong>in</strong>jury. Pa<strong>in</strong><br />

(1997) 73(3):325-337.<br />

27. Chia YY, Liu K, Wang JJ, Kuo MC, Ho ST: Intraoperative high dose<br />

fentanyl <strong>in</strong>duces postoperative fentanyl tolerance. Can J Anaesth<br />

(1999) 46(9):872-877.<br />

28. Cooper DW, L<strong>in</strong>dsay SL, Ryall DM, Kokri MS, Eldabe SS, Lear GA:<br />

Does <strong>in</strong>trathecal fentanyl produce acute cross-tolerance to i.v.<br />

morph<strong>in</strong>e? Br J Anesth (1997) 78(3):311-313.<br />

29. Guignard B, Bossard AE, Coste C, Sessler DI, Lebrault C, Alfonsi P,<br />

Fletcher D, Chauv<strong>in</strong> M: Acute opioid tolerance: Intraoperative<br />

remifentanil <strong>in</strong>creases postoperative pa<strong>in</strong> and morph<strong>in</strong>e<br />

requirement. Anesthesiology (2000) 93(2):409-417.<br />

30. Macrae WA: Chronic pa<strong>in</strong> after surgery. Br J Anesth (2001) 87(1):88-98.<br />

31. Perk<strong>in</strong>s FM, Kehlet H: Chronic pa<strong>in</strong> as an outcome of surgery. A<br />

review of predictive factors. Anesthesiology (2000) 93(4):1123-1133.<br />

32. Colpaert FC: Evidence that adjuvant arthritis <strong>in</strong> the rat is associated<br />

with chronic pa<strong>in</strong>. Pa<strong>in</strong> (1987) 28(2):201-222.<br />

33. Bennett GJ, Xie YK: A peripheral mononeuropathy <strong>in</strong> rat that<br />

produces disorders of pa<strong>in</strong> sensation like those seen <strong>in</strong> man. Pa<strong>in</strong><br />

(1988) 33(1):87-107.<br />

34. Hao JX, Wiesenfeld-Hall<strong>in</strong> Z, Xu XJ: Treatment of chronic allodynia <strong>in</strong><br />

sp<strong>in</strong>ally <strong>in</strong>jured rats: Effects of <strong>in</strong>trathecal selective opoid receptor<br />

agonists. Pa<strong>in</strong> (1998) 75(2-3):209-217.<br />

35. Vos BP, Strassman AM, Maciewicz RJ: Behavioral evidence of<br />

trigem<strong>in</strong>al neuropathic pa<strong>in</strong> follow<strong>in</strong>g chronic constriction <strong>in</strong>jury to<br />

the rat's <strong>in</strong>fraorbital nerve. J Neurosci (1994) 14(5 Pt 1):2708-2723.<br />

36. Deseure K, Koek W, Colpaert FC, Adriaensen H: The 5-HT1A receptor<br />

agonist F 13640 attenuates mechanical allodynia <strong>in</strong> a rat model of<br />

trigem<strong>in</strong>al neuropathic pa<strong>in</strong>. Eur J Pharmacol (2002) 456(1-3):51-57.<br />

37. Deseure K, Koek W, Adriaensen H, Colpaert FC: Cont<strong>in</strong>uous<br />

adm<strong>in</strong>istration of the 5-hydroxytryptam<strong>in</strong>e1A agonist (3-chloro-4fluoro-phenyl)-[4-fluoro-4-[[(5-methyl-pyrid<strong>in</strong>-2-ylmethyl)-am<strong>in</strong>o]methyl]piperid<strong>in</strong>-1-yl]-methanone<br />

(F 13640) attenuates allodynialike<br />

behavior <strong>in</strong> a rat model of trigem<strong>in</strong>al neuropathic pa<strong>in</strong>. J<br />

Pharmacol Exp Ther (2003) 306(2):505-514.<br />

• This paper reports how tolerance develops to morph<strong>in</strong>e <strong>in</strong> a model of<br />

neuropathic allodynia, and <strong>in</strong>verse tolerance develops with 5-HT1A receptor<br />

activation.<br />

38. Deseure KR, Adriaensen HF, Colpaert FC: Effects of the comb<strong>in</strong>ed<br />

cont<strong>in</strong>uous adm<strong>in</strong>istration of morph<strong>in</strong>e and the high-efficacy 5-<br />

HT1A agonist, F 13640 <strong>in</strong> a rat model of trigem<strong>in</strong>al neuropathic pa<strong>in</strong>.<br />

Eur J Pa<strong>in</strong> (2004) 8(6):547-554.<br />

39. Bru<strong>in</strong>s Slot LA, Koek W, Tarayre JP, Colpaert FC: Tolerance and<br />

<strong>in</strong>verse tolerance to the hyperalgesic and analgesic actions,<br />

respectively, of the novel analgesic, F 13640. Eur J Pharmacol<br />

(2003) 466(3):271-279.<br />

40. Colpaert FC, Wu WP, Hao J-X, Royer I, Sautel F, Wiesenfeld-Hall<strong>in</strong> Z,<br />

Xu XJ: High-efficacy 5-HT1A receptor activation causes a curativelike<br />

action on allodynia <strong>in</strong> rats with sp<strong>in</strong>al cord <strong>in</strong>jury. Eur J<br />

Pharmacol (2004) 497(1):29-33.<br />

• First evidence of a curative-like drug action on chronic neuropathic pa<strong>in</strong>.<br />

41. Coch<strong>in</strong> J, Kornetsky C: Development and loss of tolerance to<br />

morph<strong>in</strong>e <strong>in</strong> the rat after s<strong>in</strong>gle and multiple <strong>in</strong>jections. J Pharmacol<br />

Exp Ther (1964) 145:1-10.<br />

42. Wu WP, Hao JX, Xu XJ, Wiesenfeld-Hall<strong>in</strong> Z, Koek W, Colpaert FC: The<br />

very-high-efficacy 5-HT1A receptor agonist, F 13640, preempts the<br />

development of allodynia-like behaviors <strong>in</strong> rats with sp<strong>in</strong>al cord<br />

<strong>in</strong>jury. Eur J Pharmacol (2003) 478(2-3):131-137.<br />

43. Ramos AJ, Rubio MD, Defagot C, Hischberg L, Villar MJ, Brusco A: The<br />

5-HT1A receptor agonist, 8-OH-DPAT, protects neurons and reduces<br />

astroglial reaction after ischemic damage caused by cortical<br />

devascularization. Bra<strong>in</strong> Res (2004) 1030(2):201-220.<br />

44. Kiss<strong>in</strong> I: Preemptive analgesia. Anesthesiology (2000) 93(4):1138-<br />

1143.<br />

45. Mon<strong>in</strong>iche S, Kehlet H, Dahl JB: A qualitative and quantitative<br />

systematic review of preemptive analgesia for postoperative pa<strong>in</strong><br />

relief: The role of tim<strong>in</strong>g of analgesia. Anaesthesiology (2002)<br />

96(3):725-741.<br />

46. Bru<strong>in</strong>s Slot LA, Pauwels PJ, Colpaert FC: Sign-reversal dur<strong>in</strong>g<br />

persistent activation <strong>in</strong> µ-opioid signal transduction. J Theor Biol<br />

(2002) 215(2):169-182.<br />

47. Boyer EW, Shannon M: The seroton<strong>in</strong> syndrome. N Engl J Med<br />

(2005) 352(11):1112-1120.<br />

48. Berendsen HH, Jenck F, Broekkamp CL: Selective activation of 5-<br />

HT1A receptors <strong>in</strong>duces lower lip retraction <strong>in</strong> the rat. Pharmacol<br />

Biochem Behav (1989) 33(4):821-827.<br />

49. Green AR: 5-HT-mediated behaviour. Animal studies.<br />

Neuropharmacology (1984) 23(12B):1521-1528.


50. Tricklebank MD: The behavioural response to 5-HT receptor<br />

agonists and subtype of the central 5-HT receptor. Trends<br />

Pharmacol Sci (1985) 14:403-407.<br />

51. Smith LM, Peroutka SJ: Differential effects of 5-hydroxytryptam<strong>in</strong>e1A<br />

selective drugs on the 5-HT behavioral syndrome. Pharmacol<br />

Biochem Behav (1986) 24(6):1513-1519.<br />

52. Millan MJ, Bervoets K, Colpaert, FC: 5-Hydroxytryptam<strong>in</strong>e (5-HT)1A<br />

receptors and the tail flick response. II. High efficacy 5-HT1A<br />

agonists attenuate morph<strong>in</strong>e-<strong>in</strong>duced ant<strong>in</strong>oception <strong>in</strong> mice <strong>in</strong> a<br />

competitive-like manner. J Pharmacol Exp Ther (1991) 256(3):938-<br />

992.<br />

5-HT1A receptor activation Colpaert 47<br />

53. Colpaert FC, Deseure K, St<strong>in</strong>us L, Adriaensen H: High-efficacy 5-HT1A<br />

receptor activation counteracts opioid hyperallodynia and affective<br />

condition<strong>in</strong>g. J Pharmacol Exp Ther (2005) 316:1-8.<br />

54. Hamon M, Bourgo<strong>in</strong> S: Seroton<strong>in</strong> and its receptors <strong>in</strong> pa<strong>in</strong> control.<br />

In: Novel Aspects of Pa<strong>in</strong> Management: Opioids and Beyond. Sawynok<br />

J, Cowan A (Eds), Wiley, New York, NY, USA (1999):203-228.<br />

55. Lanfumey L, Hamon M: 5-HT1 receptors. Curr Drug Targets - CNS<br />

Neurol Disord (2004) 3:1-10.


48<br />

Glyc<strong>in</strong>e receptors: A new therapeutic target <strong>in</strong> pa<strong>in</strong> pathways<br />

Joseph W Lynch 1 * & Robert J Callister 2<br />

Addresses<br />

1 School of Biomedical Sciences<br />

University of Queensland<br />

Brisbane<br />

QLD 4072<br />

Australia<br />

Email: j.lynch@uq.edu.au<br />

2School of Biomedical Sciences<br />

Faculty of Health and Hunter Medical Research Institute<br />

University of Newcastle<br />

Callaghan<br />

NSW 2308<br />

Australia<br />

*To whom correspondence should be addressed<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):48-53<br />

© The Thomson Corporation ISSN 1472-4472<br />

Although glyc<strong>in</strong>e receptor Cl − channels (GlyRs) have long been<br />

known to mediate <strong>in</strong>hibitory neurotransmission onto sp<strong>in</strong>al<br />

nociceptive neurons, their therapeutic potential for peripheral<br />

analgesia has received little attention. However, it has been shown<br />

that α3-subunit-conta<strong>in</strong><strong>in</strong>g GlyRs are concentrated <strong>in</strong>to regions of<br />

the sp<strong>in</strong>al cord dorsal horn where nociceptive afferents term<strong>in</strong>ate.<br />

Furthermore, <strong>in</strong>flammatory mediators specifically <strong>in</strong>hibit α3conta<strong>in</strong><strong>in</strong>g<br />

GlyRs, and deletion of the mur<strong>in</strong>e α3 gene confers<br />

<strong>in</strong>sensitivity to chronic <strong>in</strong>flammatory pa<strong>in</strong>. This strongly<br />

implicates GlyRs <strong>in</strong> the <strong>in</strong>flammation-mediated dis<strong>in</strong>hibition of<br />

centrally project<strong>in</strong>g nociceptive neurons. Future therapies aimed<br />

at specifically <strong>in</strong>creas<strong>in</strong>g current flux through α3-conta<strong>in</strong><strong>in</strong>g<br />

GlyRs may prove effective <strong>in</strong> provid<strong>in</strong>g analgesia.<br />

Keywords Analgesia, chloride channel, drug discovery,<br />

<strong>in</strong>flammatory pa<strong>in</strong>, <strong>in</strong>hibitory neurotransmission,<br />

neuropathic pa<strong>in</strong>, sp<strong>in</strong>al cord<br />

Introduction<br />

Pa<strong>in</strong> is a complex and highly modifiable sensory experience.<br />

Over the past 50 years our view of pa<strong>in</strong> mechanisms and<br />

treatment has changed considerably. The current paradigm<br />

is that pa<strong>in</strong> results from the complex <strong>in</strong>teraction of a variety<br />

of synaptic <strong>in</strong>puts <strong>in</strong> a pathway that beg<strong>in</strong>s at peripheral<br />

receptors, ascends the neural axis, and f<strong>in</strong>ally reaches the<br />

cerebral cortex and limbic structures, such as the amygdala<br />

[1•]. The majority of current approaches to treat<strong>in</strong>g pa<strong>in</strong> are<br />

based on the idea that <strong>in</strong>creas<strong>in</strong>g the level of <strong>in</strong>hibitory drive<br />

or tone at key central nervous system (CNS) regions <strong>in</strong> the<br />

pa<strong>in</strong> pathway can alter pa<strong>in</strong> perception [2-4,5•]. Because<br />

γ-am<strong>in</strong>obutyric acid (GABA)A and glyc<strong>in</strong>e receptor Cl −<br />

channels (GABAARs and GlyRs) mediate <strong>in</strong>hibitory<br />

neurotransmission <strong>in</strong> the CNS, they represent key targets for<br />

pharmacologically manipulat<strong>in</strong>g <strong>in</strong>hibitory drive.<br />

Until recently, <strong>in</strong>vestigation of <strong>in</strong>hibitory mechanisms <strong>in</strong><br />

pa<strong>in</strong> process<strong>in</strong>g focused on the role of GABAARs <strong>in</strong> various<br />

regions of the pa<strong>in</strong> pathway, particularly <strong>in</strong> the dorsal horn<br />

of the sp<strong>in</strong>al cord and <strong>in</strong> the bra<strong>in</strong>stem [2,3,5•,6]. The role of<br />

GlyRs <strong>in</strong> pa<strong>in</strong> process<strong>in</strong>g has largely been ignored because<br />

of the lack of pharmaceutical agents that specifically<br />

modulate them <strong>in</strong> a therapeutically useful way. However, this<br />

situation has changed with the demonstration that α3 subunitconta<strong>in</strong><strong>in</strong>g<br />

GlyRs expressed <strong>in</strong> sp<strong>in</strong>al cord dorsal horn synapses<br />

are specifically <strong>in</strong>hibited by <strong>in</strong>flammatory mediators [7••].<br />

These GlyRs, which are sparsely expressed outside the sp<strong>in</strong>al<br />

cord dorsal horn, represent a new analgesic target. Molecules<br />

that can specifically enhance (or potentiate) Cl − current flow<br />

through this particular GlyR isoform offer promise as<br />

therapeutic lead compounds. The challenge now is to identify<br />

such molecules. This review summarizes our current<br />

understand<strong>in</strong>g of GlyRs <strong>in</strong> terms of their distribution <strong>in</strong> regions<br />

of the CNS important <strong>in</strong> pa<strong>in</strong> process<strong>in</strong>g, their subunit<br />

composition, and mechanisms by which they may be<br />

modulated.<br />

The ascend<strong>in</strong>g pa<strong>in</strong> pathway<br />

Although there is much conjecture and disagreement regard<strong>in</strong>g<br />

the specific details of ascend<strong>in</strong>g pa<strong>in</strong> pathways [1•,8-11], any<br />

approach to the treatment of pa<strong>in</strong>ful conditions requires an<br />

understand<strong>in</strong>g of the elements and circuitry of the pathway.<br />

The classic pa<strong>in</strong>-process<strong>in</strong>g pathway <strong>in</strong>volves numerous<br />

neuron clusters (hereafter termed 'nodes') located <strong>in</strong><br />

anatomically discrete regions of the CNS (Figure 1A). The<br />

nodes, especially those <strong>in</strong> the sp<strong>in</strong>al cord and bra<strong>in</strong>stem, are<br />

known to conta<strong>in</strong> sub-synaptic GlyRs and GABAARs that<br />

participate <strong>in</strong> Cl − -mediated fast <strong>in</strong>hibitory synaptic<br />

transmission [12,13,14•,15-17]. Immunohistochemical and<br />

electrophysiological studies have also shown that cortical and<br />

sub-cortical centers conta<strong>in</strong> extra-synaptic GlyRs (for examples,<br />

see below). Because these extra-synaptic receptors are located <strong>in</strong><br />

bra<strong>in</strong> regions known to be important <strong>in</strong> pa<strong>in</strong> process<strong>in</strong>g, the<br />

specific target<strong>in</strong>g of extra-synaptic GlyRs may, <strong>in</strong> pr<strong>in</strong>cipal,<br />

offer a therapeutic route for the treatment of pa<strong>in</strong>. However, as<br />

the role of non-synaptic GlyRs <strong>in</strong> bra<strong>in</strong> function is not yet<br />

understood, we focus on synaptic GlyRs as potential targets for<br />

pa<strong>in</strong> therapies.<br />

Nociceptors located <strong>in</strong> the sk<strong>in</strong>, deep tissues and viscera signal<br />

the presence of potentially harmful (or noxious) stimuli (Figure<br />

1B and C) [1•]. Central projections from these peripheral<br />

receptors enter the sp<strong>in</strong>al cord dorsal horn via small-diameter<br />

(Aδ- and C-fiber) primary afferents [18•,19•]. Other sensory<br />

receptors also provide signals to the dorsal horn regard<strong>in</strong>g nonnoxious<br />

stimuli <strong>in</strong> both cutaneous and deep tissues, via largediameter,<br />

myel<strong>in</strong>ated Aβ fibers [1•]. Inputs from both small-<br />

and large-diameter afferents make synaptic connections with<br />

various neuronal types <strong>in</strong> specific stratified zones (or lam<strong>in</strong>ae)<br />

of the dorsal horn (Figure 1C). Neurons <strong>in</strong> lam<strong>in</strong>ae I and II (the<br />

outermost strata) receive both monosynaptic and polysynaptic<br />

<strong>in</strong>put from Aδ- and C-fibers. Neurons <strong>in</strong> lam<strong>in</strong>ae III to IV<br />

receive <strong>in</strong>put almost exclusively from large-diameter Aβ-fibers,<br />

and neurons <strong>in</strong> lam<strong>in</strong>a V receive <strong>in</strong>put from Aδ-, C- and Aβfibers.<br />

Projection neurons <strong>in</strong> lam<strong>in</strong>ae I and V relay this<br />

<strong>in</strong>formation onto ascend<strong>in</strong>g pa<strong>in</strong> pathways [8].<br />

Classic textbook views of dorsal horn circuitry overly focus<br />

on projection neurons because they are the output neurons<br />

of the dorsal horn, contribute to ascend<strong>in</strong>g pathways, and


Figure 1. Important components of the pa<strong>in</strong> pathway.<br />

A<br />

Cortex<br />

Thalamus<br />

PAG, LC<br />

PB<br />

RVM<br />

DH<br />

B<br />

C<br />

Glyc<strong>in</strong>e receptors Lynch & Callister 49<br />

(A) Key process<strong>in</strong>g nodes <strong>in</strong> the pa<strong>in</strong> pathway. Spike tra<strong>in</strong>s carry<strong>in</strong>g <strong>in</strong>formation regard<strong>in</strong>g noxious and <strong>in</strong>nocuous stimuli are processed <strong>in</strong><br />

the dorsal horn (DH) of the sp<strong>in</strong>al cord and further processed <strong>in</strong> various nodes (ellipses) as they ascend the neural axis to eventually reach<br />

the thalamus and cortical regions. Midbra<strong>in</strong> nodes, such as the periaqueductal gray (PAG), locus coeruleus (LC), and para-brachial nucleus<br />

(PB), exert powerful descend<strong>in</strong>g modulatory effects on the DH via their projections to another pa<strong>in</strong> node, the rostral ventromedial medulla<br />

(RVM sp<strong>in</strong>al projection: thick arrow). (B) Sp<strong>in</strong>al cord cross-section show<strong>in</strong>g peripheral sensory afferents enter<strong>in</strong>g the DH, the first process<strong>in</strong>g<br />

node <strong>in</strong> the pa<strong>in</strong> pathway. Projection neurons (black stars) provide the output of the dorsal horn and are located <strong>in</strong> lam<strong>in</strong>ae I and V. (C)<br />

Expanded view (region circled <strong>in</strong> B) of the DH emphasis<strong>in</strong>g the role of excitatory (gray circles) and <strong>in</strong>hibitory (white circles) <strong>in</strong>terneurons <strong>in</strong><br />

DH circuitry. In the superficial strata (lam<strong>in</strong>ae I and II) of the DH, Aδ- and C-fibers contact projection neurons (black stars) as well as<br />

excitatory and <strong>in</strong>hibitory <strong>in</strong>terneurons. These <strong>in</strong>terneurons contact other <strong>in</strong>terneurons and also receive <strong>in</strong>put from descend<strong>in</strong>g pathways (not<br />

shown; see Figure 1A). Neurons <strong>in</strong> deeper lam<strong>in</strong>ae (IV to VI) receive <strong>in</strong>put from Aδ- and C-fibers <strong>in</strong> addition to large-diameter Aβ-fibers. In<br />

some chronic pa<strong>in</strong> states, it is believed that sp<strong>in</strong>al cord circuits are altered so that the <strong>in</strong>fluence of large-diameter afferents on the excitability<br />

of projection neurons <strong>in</strong>creases. Numerous studies have shown that reduced <strong>in</strong>hibition <strong>in</strong> DH circuits plays a key role, however, the exact<br />

circuitry and mechanisms are unknown.<br />

provide different qualities to pa<strong>in</strong> perception [8,20].<br />

However, it must be emphasized that the neuron population<br />

of the dorsal horn is highly heterogeneous. Most neurons<br />

are, <strong>in</strong> fact, excitatory or <strong>in</strong>hibitory <strong>in</strong>terneurons [21••,22].<br />

The <strong>in</strong>hibitory <strong>in</strong>terneurons can be broadly grouped <strong>in</strong>to<br />

those that express GABAARs and those that express both<br />

GABAARs and GlyRs [12,13]. Importantly, their activity can<br />

dramatically alter the excitability of projection neurons<br />

[14•,21••,22-25]. Thus, understand<strong>in</strong>g <strong>in</strong>hibitory <strong>in</strong>terneuron<br />

function is central to pa<strong>in</strong> mechanisms, pa<strong>in</strong> perception and<br />

pa<strong>in</strong> therapy (Figure 1C).<br />

Descend<strong>in</strong>g pathways<br />

A major pr<strong>in</strong>ciple of sensory system neurobiology is that the<br />

CNS itself exerts powerful control over the flow of<br />

<strong>in</strong>formation from peripheral receptors [2,3,8]. The first<br />

experimental evidence for such an 'endogenous pa<strong>in</strong> control<br />

mechanism' came <strong>in</strong> the late 1960s, when it was reported<br />

that stimulation of the midbra<strong>in</strong> periaqueductal gray (PAG)<br />

reduced responses to pa<strong>in</strong>ful stimuli <strong>in</strong> rats [26]. Subsequent<br />

studies have reported that stimulation of analogous bra<strong>in</strong><br />

regions <strong>in</strong> humans can produce analgesia <strong>in</strong> patients<br />

suffer<strong>in</strong>g from <strong>in</strong>tractable cancer pa<strong>in</strong> [27]. Accord<strong>in</strong>gly,<br />

there has been considerable cl<strong>in</strong>ical <strong>in</strong>terest <strong>in</strong> this<br />

mechanism [28]. Indeed, opiate adm<strong>in</strong>istration, currently a<br />

major therapeutic approach to the treatment of both acute<br />

C<br />

Aδ<br />

Aβ<br />

and chronic pa<strong>in</strong>, relies on the recruitment of endogenous<br />

(<strong>in</strong>hibitory) pa<strong>in</strong> control mechanisms [29,30].<br />

The importance of descend<strong>in</strong>g pathways <strong>in</strong> blunt<strong>in</strong>g or<br />

<strong>in</strong>hibit<strong>in</strong>g responses to pa<strong>in</strong>ful stimuli is now well accepted<br />

[2,6,29]. Unfortunately, some studies <strong>in</strong> animal models of<br />

chronic pa<strong>in</strong> have shown that activation of descend<strong>in</strong>g<br />

pathways can also enhance pa<strong>in</strong> responses [31,32]. Thus, the<br />

role of descend<strong>in</strong>g <strong>in</strong>puts is more complex than previously<br />

thought and this could help expla<strong>in</strong> why the treatment of<br />

chronic pa<strong>in</strong> has been so problematic.<br />

Several bra<strong>in</strong>stem nuclei are well recognized as midbra<strong>in</strong><br />

pa<strong>in</strong> process<strong>in</strong>g nodes (Figure 1A). These <strong>in</strong>clude the PAG,<br />

the locus coeruleus (LC), the parabrachial nucleus (PB) and<br />

the rostral ventromedial medulla (RVM) [2,3]. Although<br />

these regions conta<strong>in</strong> GlyRs [33,34••,35-37], the exact<br />

circuitry and synaptic l<strong>in</strong>kages <strong>in</strong>volved are extremely<br />

complex and are poorly understood. The available<br />

electrophysiological, anatomical and behavioral data suggest<br />

that the more rostral nuclei exert their modulatory effects on<br />

sp<strong>in</strong>al cord process<strong>in</strong>g via relays to the RVM (Figure 1A).<br />

RVM <strong>in</strong>puts arrive at all cell types <strong>in</strong> the dorsal horn of the<br />

sp<strong>in</strong>al cord [19•,34••,38]; however, little is known about<br />

specific descend<strong>in</strong>g connections with glyc<strong>in</strong>ergic<br />

<strong>in</strong>terneurons.


50 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

Inhibitory mechanisms <strong>in</strong> the sp<strong>in</strong>al cord and<br />

the gate theory of pa<strong>in</strong><br />

In 1965, Melzack and Wall proposed the 'gate control' theory<br />

of pa<strong>in</strong> [39••]. At the time there was great <strong>in</strong>terest <strong>in</strong><br />

descend<strong>in</strong>g <strong>in</strong>hibitory pathways and their capacity to <strong>in</strong>hibit<br />

sp<strong>in</strong>al reflexes [40]. Simplistically, this theory stated that<br />

<strong>in</strong>hibitory synaptic mechanisms <strong>in</strong> the sp<strong>in</strong>al cord dorsal<br />

horn play a key role <strong>in</strong> determ<strong>in</strong><strong>in</strong>g whether peripheral<br />

stimuli on small-diameter afferent fibers (Aδ- and C-fibers)<br />

can raise the level of excitability <strong>in</strong> projection neurons and<br />

subsequently be perceived as pa<strong>in</strong>ful. Even though the<br />

orig<strong>in</strong>al theory has been criticized, its <strong>in</strong>fluence has persisted<br />

because it emphasized the importance of <strong>in</strong>hibitory<br />

mechanisms.<br />

Under normal conditions, <strong>in</strong>hibitory drive <strong>in</strong> sp<strong>in</strong>al<br />

projection and local circuit neurons is mediated by both<br />

GABAAergic and glyc<strong>in</strong>ergic synapses [5•,14•,25,34••,35,41].<br />

Although the exact contribution of these two forms of<br />

<strong>in</strong>hibition is unknown, the faster k<strong>in</strong>etics of glyc<strong>in</strong>ergic<br />

<strong>in</strong>hibitory post-synaptic currents implies that they have<br />

dist<strong>in</strong>ct roles <strong>in</strong> synaptic <strong>in</strong>tegration [12,13,42]. It is also<br />

important to note that these receptors may cease to be<br />

<strong>in</strong>hibitory <strong>in</strong> neuropathic pa<strong>in</strong>; an <strong>in</strong>crease <strong>in</strong> <strong>in</strong>tracellular<br />

Cl − <strong>in</strong> lam<strong>in</strong>a I neurons follow<strong>in</strong>g peripheral nerve <strong>in</strong>jury<br />

results <strong>in</strong> depolarization and action potential generation<br />

follow<strong>in</strong>g GABAAR activation [43].<br />

Follow<strong>in</strong>g both peripheral <strong>in</strong>flammation and nerve <strong>in</strong>jury,<br />

there is an extensive physiological and morphological<br />

reorganization <strong>in</strong> dorsal horn circuitry, which ultimately<br />

leads to a net reduction <strong>in</strong> <strong>in</strong>hibitory tone [5•,44•,45-48] and<br />

<strong>in</strong>creased excitability <strong>in</strong> ascend<strong>in</strong>g pathways. Likewise,<br />

descend<strong>in</strong>g <strong>in</strong>hibitory mechanisms act<strong>in</strong>g via pre- and postsynaptic<br />

mechanisms are known to be important <strong>in</strong> sett<strong>in</strong>g<br />

excitability levels <strong>in</strong> both normal and pathological<br />

conditions [1•,2,8].<br />

GlyR subunit composition and distribution<br />

GlyRs belong to the cyste<strong>in</strong>e-loop family of ligand-gated ion<br />

channel receptors. A total of five GlyR subunits (α1 to α4<br />

and β) plus several splice variants have been identified [49•].<br />

Functional receptors comprise either α homomeric<br />

pentamers or α:β heteromers <strong>in</strong> a 2:3 stoichiometry [50••].<br />

The cytoplasmic prote<strong>in</strong> gephyr<strong>in</strong> b<strong>in</strong>ds only to the βsubunit<br />

and is essential for cluster<strong>in</strong>g GlyRs at post-synaptic<br />

densities [51].<br />

Homomeric α2 GlyRs are abundantly and evenly distributed<br />

over the membrane surface of embryonic neurons [52].<br />

Because <strong>in</strong>tracellular Cl − concentration is high, activation of<br />

embryonic GlyRs <strong>in</strong>duces neuronal depolarization and a<br />

subsequent calcium <strong>in</strong>flux that is important for neuronal<br />

differentiation [53,54]. Glyc<strong>in</strong>ergic synapses beg<strong>in</strong> to form<br />

before birth <strong>in</strong> the rat, with their appearance correlat<strong>in</strong>g with<br />

the expression of the β-subunit [55]. By the third postnatal<br />

week, most α2 homomers have been replaced by α1β<br />

heteromers [52]. This isoform predom<strong>in</strong>ates at sp<strong>in</strong>al cord<br />

<strong>in</strong>hibitory synapses and also mediates <strong>in</strong>hibitory<br />

neurotransmission <strong>in</strong> several bra<strong>in</strong>stem nuclei, as well as at<br />

def<strong>in</strong>ed synapses <strong>in</strong> the cerebellum and ret<strong>in</strong>a [49•]. The α2<br />

and α3 subunits are expressed at lower levels <strong>in</strong> the adult<br />

and exhibit dist<strong>in</strong>ct synaptic expression patterns that are<br />

particularly evident <strong>in</strong> the ret<strong>in</strong>a [56,57•]. The α3 subunit is<br />

also <strong>in</strong>corporated <strong>in</strong>to GlyRs on neurons <strong>in</strong> lam<strong>in</strong>a II of the<br />

dorsal horn [7••]. The α4 subunit is a pseudo-gene <strong>in</strong><br />

humans [58].<br />

Non-synaptic GlyRs are more widely distributed throughout<br />

the adult nervous system. They have so far been found <strong>in</strong><br />

the cortex [53], dorsal midbra<strong>in</strong> [59••], hippocampus [60],<br />

caudatoputamen [61] and basolateral amygdala [62]. As<br />

stated previously, little is known about their roles. However,<br />

one study, published <strong>in</strong> 2005, demonstrated that α3 subunit<br />

transcripts undergo RNA edit<strong>in</strong>g, result<strong>in</strong>g <strong>in</strong> a P185L<br />

substitution <strong>in</strong> the external ligand-b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> [59••].<br />

This mutation dramatically <strong>in</strong>creases glyc<strong>in</strong>e sensitivity,<br />

with the result that non-synaptic α3-conta<strong>in</strong><strong>in</strong>g GlyRs <strong>in</strong> the<br />

superior colliculus are held open by ambient glyc<strong>in</strong>e,<br />

result<strong>in</strong>g <strong>in</strong> strong tonic <strong>in</strong>hibition [59••]. The amount of<br />

mutant transcript <strong>in</strong> immature bra<strong>in</strong> is <strong>in</strong>creased by bra<strong>in</strong><br />

slic<strong>in</strong>g, suggest<strong>in</strong>g that the RNA edit<strong>in</strong>g process may be an<br />

adaptive mechanism to compensate for excessive<br />

excitability. Many questions rema<strong>in</strong> about this mechanism.<br />

For example, its anatomical distribution and subunitspecificity<br />

are not known, and the extent to which it occurs<br />

<strong>in</strong> vivo under physiological or realistic pathological<br />

(<strong>in</strong>clud<strong>in</strong>g pa<strong>in</strong>) conditions also rema<strong>in</strong>s to be elucidated.<br />

GlyR α3 subunits and pa<strong>in</strong><br />

Although GlyR α3 subunits are sparsely distributed, some<br />

research has identified a specific role for them <strong>in</strong> sp<strong>in</strong>al cord<br />

pa<strong>in</strong> process<strong>in</strong>g. First it was shown that the <strong>in</strong>flammatory<br />

mediator prostagland<strong>in</strong> E2 (PGE2) reduced <strong>in</strong>hibitory<br />

glyc<strong>in</strong>ergic neurotransmission onto lam<strong>in</strong>a II neurons [63••].<br />

This effect, mediated via activation of the EP2 receptor,<br />

<strong>in</strong>volved the activation of a cholera-tox<strong>in</strong>-sensitive G prote<strong>in</strong><br />

and a cAMP-dependent prote<strong>in</strong> k<strong>in</strong>ase. This important<br />

f<strong>in</strong>d<strong>in</strong>g implied that <strong>in</strong>flammatory pa<strong>in</strong> sensitization is<br />

mediated, at least <strong>in</strong> part, by an <strong>in</strong>hibition of sp<strong>in</strong>al<br />

glyc<strong>in</strong>ergic neurotransmission.<br />

A subsequent study demonstrated that α1 and α3 subunits<br />

were equally represented at glyc<strong>in</strong>ergic synapses <strong>in</strong> lam<strong>in</strong>a<br />

II neurons [7••]. Recomb<strong>in</strong>antly expressed α3 GlyRs were<br />

<strong>in</strong>hibited by PGE2 via a prote<strong>in</strong> k<strong>in</strong>ase (PK)A-dependent<br />

phosphorylation [7••]. However, α1 GlyRs, which do not<br />

have PKA-dependent phosphorylation sites, were not<br />

affected. This prompted the hypothesis that the α3 subunit<br />

was specifically modulated by <strong>in</strong>flammatory stimuli. A GlyR<br />

α3 knockout mouse was used to test this theory further.<br />

Although the mice displayed no overt behavioral<br />

phenotype, the PGE2-dependent decrease of lam<strong>in</strong>a II<br />

glyc<strong>in</strong>ergic currents was abolished [7••]. Behaviorally,<br />

normal and GlyR α3 -/- mice responded similarly to acute<br />

pa<strong>in</strong> stimuli. However, peripheral <strong>in</strong>flammation produced<br />

pa<strong>in</strong> sensitization <strong>in</strong> normal animals, but not <strong>in</strong> the GlyR α3<br />

-/- animals [7••]. These f<strong>in</strong>d<strong>in</strong>gs show that the currents<br />

carried by α3-conta<strong>in</strong><strong>in</strong>g GlyRs are specifically <strong>in</strong>hibited <strong>in</strong><br />

an animal model of <strong>in</strong>flammatory pa<strong>in</strong>. Such an effect would


educe the <strong>in</strong>hibitory drive onto nociceptive projection<br />

neurons, thereby <strong>in</strong>creas<strong>in</strong>g the transmission of nociceptive<br />

stimuli to the bra<strong>in</strong>.<br />

The GlyR α3 subunit as a therapeutic target<br />

In pr<strong>in</strong>cipal, there are several ways to compensate for the<br />

effects of <strong>in</strong>flammation on α3-conta<strong>in</strong><strong>in</strong>g GlyRs. One is to<br />

<strong>in</strong>crease the magnitude or slow the decay rate of glyc<strong>in</strong>ergic<br />

synaptic currents <strong>in</strong> lam<strong>in</strong>a II neurons (Figure 1C), and<br />

another is to <strong>in</strong>crease the magnitude of non-synaptic GlyRs<br />

(or other Cl − channels) <strong>in</strong> these neurons. Although<br />

<strong>in</strong>creas<strong>in</strong>g the current through α1-conta<strong>in</strong><strong>in</strong>g GlyRs should<br />

compensate for the decrease <strong>in</strong> current through α3conta<strong>in</strong><strong>in</strong>g<br />

GlyRs, the risk of side effects is higher given that<br />

α1 subunits are more widespread outside lam<strong>in</strong>a II. Ideally,<br />

therapeutic <strong>in</strong>terventions should selectively <strong>in</strong>crease current<br />

through the downregulated (ie, phosphorylated) α3conta<strong>in</strong><strong>in</strong>g<br />

GlyRs.<br />

Unfortunately, very little is known about the pharmacology of<br />

α3-conta<strong>in</strong><strong>in</strong>g GlyRs. Until publication of the study by Harvey<br />

et al [7••], this subunit was virtually ignored because of its low<br />

expression and limited distribution. The physiology and<br />

molecular pharmacology of α1, α2, α1β and α2β GlyRs have<br />

been studied <strong>in</strong> much more detail, and several classes of<br />

compounds (eg, trope<strong>in</strong>es, alcohols and volatile anesthetics,<br />

butyrolactones, neurosteroids and dihydropyrid<strong>in</strong>es) are<br />

known to potentiate these receptors <strong>in</strong> a subunit-specific<br />

manner [49•]. These compound families may provide a start<strong>in</strong>g<br />

po<strong>in</strong>t for identify<strong>in</strong>g α3-specific potentiat<strong>in</strong>g agents.<br />

An alternative therapeutic approach might <strong>in</strong>volve <strong>in</strong>terfer<strong>in</strong>g<br />

with post-translational modifications that affect the magnitude<br />

or sensitivity of glyc<strong>in</strong>ergic currents. One potential mechanism<br />

<strong>in</strong>volves the previously described RNA edit<strong>in</strong>g process that<br />

leads to the α3 subunit P185L mutation. If the glyc<strong>in</strong>e sensitivity<br />

of sp<strong>in</strong>al α3 GlyRs could be <strong>in</strong>creased via this mechanism, the<br />

result<strong>in</strong>g enhanced <strong>in</strong>hibition may effect some degree of relief<br />

from chronic pa<strong>in</strong> syndromes.<br />

Conclusion<br />

Pa<strong>in</strong>-process<strong>in</strong>g circuitry <strong>in</strong>creases <strong>in</strong> complexity as it<br />

ascends the neural axis. A great deal is now known<br />

regard<strong>in</strong>g the neuronal types and distribution of GlyR<br />

subunits <strong>in</strong> sp<strong>in</strong>al cord pa<strong>in</strong>-process<strong>in</strong>g circuits, but rather<br />

less is known about their role <strong>in</strong> higher bra<strong>in</strong> regions. Thus,<br />

the sp<strong>in</strong>al cord dorsal horn would appear to be the best<br />

place to focus efforts on us<strong>in</strong>g GlyR modulation to alter pa<strong>in</strong><br />

process<strong>in</strong>g. As sp<strong>in</strong>al GlyR α3 subunits are specifically<br />

<strong>in</strong>hibited by <strong>in</strong>flammatory mediators <strong>in</strong> an animal model of<br />

chronic pa<strong>in</strong>, this receptor provides an excellent candidate<br />

therapeutic target.<br />

References<br />

1. Willis WD, Coggeshall RE: Sensory mechanisms of the sp<strong>in</strong>al cord, Third<br />

Edition. Kluwer Academic/Plenum Publishers, New York, NY, USA (2004).<br />

• This classic text summarizes the anatomy, physiology and pharmacology of<br />

the sp<strong>in</strong>al cord dorsal horn.<br />

2. Millan MJ: Descend<strong>in</strong>g control of pa<strong>in</strong>. Prog Neurobiol (2002)<br />

66(6):355-474.<br />

Glyc<strong>in</strong>e receptors Lynch & Callister 51<br />

3. Gebhart GF: Descend<strong>in</strong>g modulation of pa<strong>in</strong>. Neurosci Biobehav Rev<br />

(2004) 27(8):729-737.<br />

4. Woolf CJ, Salter MW: Neuronal plasticity: Increas<strong>in</strong>g the ga<strong>in</strong> <strong>in</strong><br />

pa<strong>in</strong>. Science (2000) 288(5472):1765-1769.<br />

5. Sivilotti L, Woolf CJ: The contribution of GABAA and glyc<strong>in</strong>e<br />

receptors to central sensitization: Dis<strong>in</strong>hibition and touch-evoked<br />

allodynia <strong>in</strong> the sp<strong>in</strong>al cord. J Neurophysiol (1994) 72(1):169-179.<br />

• This study showed that reduc<strong>in</strong>g the level of <strong>in</strong>hibitory tone <strong>in</strong> the sp<strong>in</strong>al cord<br />

by <strong>in</strong>troduc<strong>in</strong>g antagonists of GABAA and GlyRs, exaggerated responses to<br />

pa<strong>in</strong>ful cutaneous <strong>in</strong>puts. Moreover, responses to normally <strong>in</strong>nocuous stimuli<br />

(carried on Aβ-fibers) were exaggerated under these conditions.<br />

6. Basbaum AI, Fields HL: Endogenous pa<strong>in</strong> control systems:<br />

Bra<strong>in</strong>stem sp<strong>in</strong>al pathways and endorph<strong>in</strong> circuitry. Annu Rev<br />

Neurosci (1984) 7:309-338.<br />

7. Harvey RJ, Depner UB, Wassle H, Ahmadi S, He<strong>in</strong>dl C, Re<strong>in</strong>old H,<br />

Smart TG, Harvey K, Schutz B, Abo-Salem OM, Zimmer A et al: GlyR<br />

α3: An essential target for sp<strong>in</strong>al PGE2-mediated <strong>in</strong>flammatory pa<strong>in</strong><br />

sensitization. Science (2004) 304(5672):884-887.<br />

•• This is a landmark paper implicat<strong>in</strong>g the GlyR α3 subunit as a therapeutic<br />

target for <strong>in</strong>flammatory pa<strong>in</strong>.<br />

8. Willis WD, Westlund KN: Neuroanatomy of the pa<strong>in</strong> system and of<br />

the pathways that modulate pa<strong>in</strong>. J Cl<strong>in</strong> Neurophysiol (1997) 14(1):2-<br />

31.<br />

9. Price DD: Central neural mechanisms that <strong>in</strong>terrelate sensory and<br />

affective dimensions of pa<strong>in</strong>. Mol Interv (2002) 2(6):392-403.<br />

10. Craig AD: How do you feel? Interoception: The sense of the<br />

physiological condition of the body. Nat Rev Neurosci (2002)<br />

3(8):655-666.<br />

11. Craig AD: Pa<strong>in</strong> mechanisms: Labeled l<strong>in</strong>es versus convergence <strong>in</strong><br />

central process<strong>in</strong>g. Annu Rev Neurosci (2003) 26(1):1-30.<br />

12. Chery N, de Kon<strong>in</strong>ck Y: Junctional versus extrajunctional glyc<strong>in</strong>e<br />

and GABAA receptor-mediated IPSCs <strong>in</strong> identified lam<strong>in</strong>a I neurons<br />

of the adult rat sp<strong>in</strong>al cord. J Neurosci (1999) 19(17):7342-7355.<br />

13. Graham BA, Schofield PR, Sah P, Callister RJ: Altered <strong>in</strong>hibitory<br />

synaptic transmission <strong>in</strong> superficial dorsal horn neurones <strong>in</strong><br />

spastic and oscillator mice. J Physiol (2003) 551(3):905-916.<br />

14. Cron<strong>in</strong> JN, Bradbury EJ, Lidierth M: Lam<strong>in</strong>ar distribution of GABAA- and<br />

glyc<strong>in</strong>e-receptor mediated tonic <strong>in</strong>hibition <strong>in</strong> the dorsal horn of the rat<br />

lumbar sp<strong>in</strong>al cord: Effects of picrotox<strong>in</strong> and strychn<strong>in</strong>e on expression<br />

of Fos-like immunoreactivity. Pa<strong>in</strong> (2004) 112(1-2):156-163.<br />

• This study showed that block<strong>in</strong>g tonic <strong>in</strong>hibitory drive <strong>in</strong> the dorsal horn<br />

leads to <strong>in</strong>creased activity (based on c-Fos expression) of neurons <strong>in</strong> both the<br />

superficial and deep dorsal horn.<br />

15. Baccei ML, Fitzgerald M: Development of GABAergic and glyc<strong>in</strong>ergic<br />

transmission <strong>in</strong> the neonatal rat dorsal horn. J Neurosci (2004)<br />

24(20):4749-4757.<br />

16. Todd AJ, Watt C, Spike RC, Sieghart W: Colocalization of GABA,<br />

glyc<strong>in</strong>e, and their receptors at synapses <strong>in</strong> the rat sp<strong>in</strong>al cord. J<br />

Neurosci (1996) 16(3):974-982.<br />

17. Maxwell DJ, Todd AJ, Kerr R: Colocalization of glyc<strong>in</strong>e and GABA <strong>in</strong><br />

synapses on sp<strong>in</strong>omedullary neurons. Bra<strong>in</strong> Res (1995) 690(1):127-<br />

132.<br />

18. Sugiura Y, Lee CL, Perl ER: Central projections of identified,<br />

unmyel<strong>in</strong>ated (C) afferent fibers <strong>in</strong>nervat<strong>in</strong>g mammalian sk<strong>in</strong>.<br />

Science (1986) 234(4774):358-361.<br />

• Us<strong>in</strong>g anatomical trac<strong>in</strong>g methods, this paper showed that C-fiber afferents<br />

carry<strong>in</strong>g <strong>in</strong>formation from mechanically and temperature-sensitive nociceptors<br />

term<strong>in</strong>ate <strong>in</strong> the superficial dorsal horn.<br />

19. Light AR, Perl ER: Sp<strong>in</strong>al term<strong>in</strong>ation of functionally identified<br />

primary afferent neurons with slowly conduct<strong>in</strong>g myel<strong>in</strong>ated fibers.<br />

J Comp Neurol (1979) 186(2):133-150.<br />

• This study showed that term<strong>in</strong>als of Aδ-fibers carry<strong>in</strong>g <strong>in</strong>formation about<br />

noxious cutaneous stimuli ramified extensively <strong>in</strong> lam<strong>in</strong>ae I and II of the cat<br />

and monkey sp<strong>in</strong>al cord.<br />

20. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK: Human bra<strong>in</strong><br />

mechanisms of pa<strong>in</strong> perception and regulation <strong>in</strong> health and<br />

disease. Eur J Pa<strong>in</strong> (2005) 9(4):463-484.


52 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

21. Lu Y, Perl ER: A specific <strong>in</strong>hibitory pathway between substantia<br />

gelat<strong>in</strong>osa neurons receiv<strong>in</strong>g direct C-fiber <strong>in</strong>put. J Neurosci (2003)<br />

23(25):8752-8758.<br />

•• This is a landmark and a technically heroic study us<strong>in</strong>g simultaneous patchclamp<br />

record<strong>in</strong>g from pairs of synaptically l<strong>in</strong>ked <strong>in</strong>terneurons <strong>in</strong> the superficial<br />

dorsal horn. It showed that <strong>in</strong>hibitory <strong>in</strong>terneurons received monosynaptic<br />

<strong>in</strong>put from C-fibers. Additional studies are needed to unravel the precise role<br />

of <strong>in</strong>hibitory circuits <strong>in</strong> the dorsal horn.<br />

22. Lu Y, Perl ER: Modular organization of excitatory circuits between<br />

neurons of the sp<strong>in</strong>al superficial dorsal horn (lam<strong>in</strong>ae I and II). J<br />

Neurosci (2005) 25(15):3900-3907.<br />

23. Yoshimura M, Jessell T: Am<strong>in</strong>o acid-mediated EPSPs at primary<br />

afferent synapses with substantia gelat<strong>in</strong>osa neurones <strong>in</strong> the rat<br />

sp<strong>in</strong>al cord. J Physiol (1990) 430:315-335.<br />

24. Cervero F, Iggo A: The substantia gelat<strong>in</strong>osa of the sp<strong>in</strong>al cord: A<br />

critical review. Bra<strong>in</strong> (1980) 103(4):717-772.<br />

25. Light AR, Kavookjian AM: Morphology and ultrastructure of<br />

physiologically identified substantia gelat<strong>in</strong>osa (lam<strong>in</strong>a II) neurons<br />

with axons that term<strong>in</strong>ate <strong>in</strong> deeper dorsal horn lam<strong>in</strong>ae (III-V). J<br />

Comp Neurol (1988) 267(2):172-189.<br />

26. Reynolds DV: Surgery <strong>in</strong> the rat dur<strong>in</strong>g electrical analgesia <strong>in</strong>duced<br />

by focal bra<strong>in</strong> stimulation. Science (1969) 164(878):444-445.<br />

27. Young RF, Brechner T: Electrical stimulation of the bra<strong>in</strong> for relief of<br />

<strong>in</strong>tractable pa<strong>in</strong> due to cancer. Cancer (1986) 57(6):1266-1272.<br />

28. Ren K, Dubner R: Descend<strong>in</strong>g modulation <strong>in</strong> persistent pa<strong>in</strong>: An<br />

update. Pa<strong>in</strong> (2002) 100(1-2):1-6.<br />

29. Fields HL: Pa<strong>in</strong> modulation: Expectation, opioid analgesia and<br />

virtual pa<strong>in</strong>. Prog Bra<strong>in</strong> Res (2000) 122:245-253.<br />

30. Pan ZZ, Fields HL: Endogenous opioid-mediated <strong>in</strong>hibition of<br />

putative pa<strong>in</strong>-modulat<strong>in</strong>g neurons <strong>in</strong> rat rostral ventromedial<br />

medulla. Neuroscience (1996) 74(3):855-862.<br />

31. Urban MO, Gebhart GF: Suprasp<strong>in</strong>al contributions to hyperalgesia.<br />

Proc Natl Acad Sci USA (1999) 96(14):7687-7692.<br />

32. Urban MO, Gebhart GF: Central mechanisms <strong>in</strong> pa<strong>in</strong>. Med Cl<strong>in</strong> North<br />

Am (1999) 83(3):585-596.<br />

33. Somogyi J, Llewellyn-Smith IJ: Patterns of colocalization of GABA,<br />

glutamate and glyc<strong>in</strong>e immunoreactivities <strong>in</strong> term<strong>in</strong>als that<br />

synapse on dendrites of noradrenergic neurons <strong>in</strong> rat locus<br />

coeruleus. Eur J Neurosci (2001) 14(2):219-228.<br />

34. Peng YB, L<strong>in</strong> Q, Willis WD: Effects of GABA and glyc<strong>in</strong>e receptor<br />

antagonists on the activity and PAG-<strong>in</strong>duced <strong>in</strong>hibition of rat<br />

dorsal horn neurons. Bra<strong>in</strong> Res (1996) 736(1-2):189-201.<br />

•• This study showed that descend<strong>in</strong>g <strong>in</strong>hibition, <strong>in</strong>duced by PAG stimulation,<br />

of dorsal horn neuron activity <strong>in</strong>volves GABA and/or glyc<strong>in</strong>e release <strong>in</strong> the<br />

sp<strong>in</strong>al cord and that there is tonic release of these <strong>in</strong>hibitory<br />

neurotransmitters.<br />

35. L<strong>in</strong> Q, Peng Y, Willis WD: Glyc<strong>in</strong>e and GABAA antagonists reduce<br />

the <strong>in</strong>hibition of primate sp<strong>in</strong>othalamic tract neurons produced by<br />

stimulation <strong>in</strong> periaqueductal gray. Bra<strong>in</strong> Res (1994) 654(2):286-302.<br />

36. Araki T, Yamano M, Murakami T, Wanaka A, Betz H, Tohyama M:<br />

Localization of glyc<strong>in</strong>e receptors <strong>in</strong> the rat central nervous system:<br />

An immunocytochemical analysis us<strong>in</strong>g monoclonal antibody.<br />

Neuroscience (1988) 25(2):613-624.<br />

37. Sato K, Zhang JH, Saika T, Sato M, Tada K, Tohyama M: Localization<br />

of glyc<strong>in</strong>e receptor α 1 subunit mRNA-conta<strong>in</strong><strong>in</strong>g neurons <strong>in</strong> the rat<br />

bra<strong>in</strong>: An analysis us<strong>in</strong>g <strong>in</strong> situ hybridization histochemistry.<br />

Neuroscience (1991) 43(2-3):381-395.<br />

38. Light AR, Casale EJ, Menetrey DM: The effects of focal stimulation <strong>in</strong><br />

nucleus raphe magnus and periaqueductal gray on <strong>in</strong>tracellularly<br />

recorded neurons <strong>in</strong> sp<strong>in</strong>al lam<strong>in</strong>ae I and II. J Neurophysiol (1986)<br />

56(3):555-571.<br />

39. Melzack R, Wall PD: Pa<strong>in</strong> mechanisms: A new theory. Science (1965)<br />

150(699):971-979.<br />

•• This is a classic paper propos<strong>in</strong>g the importance of <strong>in</strong>hibitory mechanisms<br />

<strong>in</strong> the sp<strong>in</strong>al cord dorsal horn for understand<strong>in</strong>g the treatment of pa<strong>in</strong>. It also<br />

provides an historical account of arguments for 'specificity' and 'patterned<br />

activity' theories of pa<strong>in</strong> process<strong>in</strong>g and perception.<br />

40. Lundberg A, Norrssell U, Voorhoeve P: Effects from the sensory<br />

motor cortex on ascend<strong>in</strong>g sp<strong>in</strong>al pathways. Acta Physiol Scand<br />

(1963) 59:462-473.<br />

41. Yoshimura M, Nishi S: Primary afferent-evoked glyc<strong>in</strong>e- and GABAmediated<br />

IPSPs <strong>in</strong> substantia gelat<strong>in</strong>osa neurones <strong>in</strong> the rat sp<strong>in</strong>al<br />

cord <strong>in</strong> vitro. J Physiol (1995) 482(1):29-38.<br />

42. Keller AF, Coull JA, Chery N, Poisbeau P, De Kon<strong>in</strong>ck Y: Regionspecific<br />

developmental specialization of GABA-glyc<strong>in</strong>e cosynapses<br />

<strong>in</strong> lam<strong>in</strong>as I-II of the rat sp<strong>in</strong>al dorsal horn. J Neurosci (2001)<br />

21(20):7871-7880.<br />

43. Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, De<br />

Kon<strong>in</strong>ck P, De Kon<strong>in</strong>ck Y: Trans-synaptic shift <strong>in</strong> anion gradient <strong>in</strong><br />

sp<strong>in</strong>al lam<strong>in</strong>a I neurons as a mechanism of neuropathic pa<strong>in</strong>.<br />

Nature (2003) 424(6951):938-942.<br />

44. Sork<strong>in</strong> LS, Puig S: Neuronal model of tactile allodynia produced by<br />

sp<strong>in</strong>al strychn<strong>in</strong>e: Effects of excitatory am<strong>in</strong>o acid receptor antagonists<br />

and a µ-opiate receptor agonist. Pa<strong>in</strong> (1996) 68(2-3):283-292.<br />

• This study showed the importance of GlyR-mediated <strong>in</strong>hibitory tone <strong>in</strong><br />

chronic pa<strong>in</strong> syndromes, such as tactile allodynia.<br />

45. Sork<strong>in</strong> LS, Puig S, Jones DL: Sp<strong>in</strong>al bicucull<strong>in</strong>e produces<br />

hypersensitivity of dorsal horn neurons: Effects of excitatory<br />

am<strong>in</strong>o acid antagonists. Pa<strong>in</strong> (1998) 77(2):181-190.<br />

46. Wall PD, Lidierth M, Hillman P: Brief and prolonged effects of Lissauer<br />

tract stimulation on dorsal horn cells. Pa<strong>in</strong> (1999) 83(3):579-589.<br />

47. Baba H, Doubell TP, Woolf CJ: Peripheral <strong>in</strong>flammation facilitates Aβ<br />

fiber-mediated synaptic <strong>in</strong>put to the substantia gelat<strong>in</strong>osa of the<br />

adult rat sp<strong>in</strong>al cord. J Neurosci (1999) 19(2):859-867.<br />

48. Kont<strong>in</strong>en VK, Stanfa LC, Basu A, Dickenson AH: Electrophysiologic<br />

evidence for <strong>in</strong>creased endogenous gabaergic but not glyc<strong>in</strong>ergic<br />

<strong>in</strong>hibitory tone <strong>in</strong> the rat sp<strong>in</strong>al nerve ligation model of neuropathy.<br />

Anesthesiology (2001) 94(2):333-339.<br />

49. Lynch JW: Molecular structure and function of the glyc<strong>in</strong>e receptor<br />

chloride channel. Physiol Rev (2004) 84(4):1051-1095.<br />

• This paper <strong>in</strong>cludes a reasonably comprehensive review of GlyR molecular<br />

pharmacology.<br />

50. Grudz<strong>in</strong>ska J, Schemm R, Haeger S, Nicke A, Schmalz<strong>in</strong>g G, Betz H,<br />

Laube B: The β subunit determ<strong>in</strong>es the ligand b<strong>in</strong>d<strong>in</strong>g properties of<br />

synaptic glyc<strong>in</strong>e receptors. Neuron (2005) 45(5):727-739.<br />

•• This paper calls <strong>in</strong>to question two long-stand<strong>in</strong>g dogmas <strong>in</strong> the GlyR field.<br />

First, it shows that the α subunit conta<strong>in</strong>s high-aff<strong>in</strong>ity glyc<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g sites.<br />

Second, it makes a strong case for revis<strong>in</strong>g the heteromeric GlyR<br />

stoichiometry from 3α:2β to 2α:3β.<br />

51. Kneussel M, Betz H: Receptors, gephyr<strong>in</strong> and gephyr<strong>in</strong>-associated<br />

prote<strong>in</strong>s: Novel <strong>in</strong>sights <strong>in</strong>to the assembly of <strong>in</strong>hibitory<br />

postsynaptic membrane specializations. J Physiol (2000) 525(1):1-9.<br />

52. Becker CM, Hoch W, Betz H: Glyc<strong>in</strong>e receptor heterogeneity <strong>in</strong> rat<br />

sp<strong>in</strong>al cord dur<strong>in</strong>g postnatal development. EMBO J (1988)<br />

7(12):3717-3726.<br />

53. Fl<strong>in</strong>t AC, Liu X, Kriegste<strong>in</strong> AR: Nonsynaptic glyc<strong>in</strong>e receptor<br />

activation dur<strong>in</strong>g early neocortical development. Neuron (1998)<br />

20(1):43-53.<br />

54. Tapia JC, Mentis GZ, Navarrete R, Nualart F, Figueroa E, Sanchez A,<br />

Aguayo LG: Early expression of glyc<strong>in</strong>e and GABAA receptors <strong>in</strong><br />

develop<strong>in</strong>g sp<strong>in</strong>al cord neurons. Effects on neurite outgrowth.<br />

Neuroscience (2001) 108(3):493-506.<br />

55. Aguayo LG, van Zundert B, Tapia JC, Carrasco MA, Alvarez FJ:<br />

Changes on the properties of glyc<strong>in</strong>e receptors dur<strong>in</strong>g neuronal<br />

development. Bra<strong>in</strong> Res Bra<strong>in</strong> Res Rev (2004) 47(1-3):33-45.<br />

56. Haverkamp S, Muller U, Harvey K, Harvey RJ, Betz H, Wassle H:<br />

Diversity of glyc<strong>in</strong>e receptors <strong>in</strong> the mouse ret<strong>in</strong>a: Localization of<br />

the α3 subunit. J Comp Neurol (2003) 465(4):524-539.<br />

57. Haverkamp S, Muller U, Zeilhofer HU, Harvey RJ, Wassle H: Diversity<br />

of glyc<strong>in</strong>e receptors <strong>in</strong> the mouse ret<strong>in</strong>a: Localization of the α2<br />

subunit. J Comp Neurol (2004) 477(4):399-411.<br />

• This paper and reference [56] provide detailed, high-quality analyses of the<br />

differential distribution patterns of GlyR α1, α2 and α3 subunits <strong>in</strong> the ret<strong>in</strong>ae<br />

of normal and GlyR α3 knockout mice.


58. Simon J, Wakimoto H, Fujita N, Lalande M, Barnard EA: Analysis of<br />

the set of GABAA receptor genes <strong>in</strong> the human genome. J Biol Chem<br />

(2004) 279(40):41422-41435.<br />

59. Meier JC, Henneberger C, Melnick I, Racca C, Harvey RJ, He<strong>in</strong>emann<br />

U, Schmieden V, Grantyn R: RNA edit<strong>in</strong>g produces glyc<strong>in</strong>e receptor<br />

α3(P185L), result<strong>in</strong>g <strong>in</strong> high agonist potency. Nat Neurosci (2005)<br />

8(6):736-744.<br />

•• This study not only shows that RNA edit<strong>in</strong>g results <strong>in</strong> a mutation affect<strong>in</strong>g<br />

the agonist sensitivity of α3 GlyR subunit, but it demonstrates a physiological<br />

role for this mechanism.<br />

60. Mori M, Gahwiler BH, Gerber U: β-Alan<strong>in</strong>e and taur<strong>in</strong>e as<br />

endogenous agonists at glyc<strong>in</strong>e receptors <strong>in</strong> rat hippocampus <strong>in</strong><br />

vitro. J Physiol (2002) 539(1):191-200.<br />

Glyc<strong>in</strong>e receptors Lynch & Callister 53<br />

61. Darste<strong>in</strong> M, Landwehrmeyer GB, Kl<strong>in</strong>g C, Becker CM, Feuerste<strong>in</strong> TJ:<br />

Strychn<strong>in</strong>e-sensitive glyc<strong>in</strong>e receptors <strong>in</strong> rat caudatoputamen are<br />

expressed by chol<strong>in</strong>ergic <strong>in</strong>terneurons. Neuroscience (2000)<br />

96(1):33-39.<br />

62. McCool BA, Farroni JS: Subunit composition of strychn<strong>in</strong>e-sensitive<br />

glyc<strong>in</strong>e receptors expressed by adult rat basolateral amygdala<br />

neurons. Eur J Neurosci (2001) 14(7):1082-1090.<br />

63. Ahmadi S, Lippross S, Neuhuber WL, Zeilhofer HU: PGE2 selectively<br />

blocks <strong>in</strong>hibitory glyc<strong>in</strong>ergic neurotransmission onto rat<br />

superficial dorsal horn neurons. Nat Neurosci (2002) 5(1):34-40.<br />

•• This study provided the first evidence that <strong>in</strong>flammatory mediators<br />

specifically downregulate glyc<strong>in</strong>ergic synaptic currents <strong>in</strong> the superficial dorsal<br />

horn.


54<br />

Does VEGF represent a potential treatment for amyotrophic lateral<br />

sclerosis?<br />

Joanna Iłżecka<br />

Address<br />

Department of Neurology<br />

Medical University<br />

Jaczewskiego 8<br />

20-954 Lubl<strong>in</strong><br />

Poland<br />

Email: ilzecka@onet.pl<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):54-59<br />

© The Thomson Corporation ISSN 1472-4472<br />

Amyotrophic lateral sclerosis (ALS) is a progressive<br />

neurodegenerative disease. The pathogenesis of ALS is unclear<br />

and there is no effective treatment. Vascular endothelial growth<br />

factor (VEGF) is a cytok<strong>in</strong>e that has a protective function via<br />

angiogenic, neurotrophic, gliotrophic and anti-apoptotic<br />

activity. Data <strong>in</strong>dicate that VEGF can <strong>in</strong>hibit neurodegeneration<br />

<strong>in</strong> ALS and may have therapeutic potential <strong>in</strong> this disease. The<br />

use of gene therapy to deliver VEGF <strong>in</strong>to the central nervous<br />

system is be<strong>in</strong>g evaluated.<br />

Keywords Amyotrophic lateral sclerosis, neurodegeneration,<br />

neuroprotection, therapy, vascular endothelial growth factor<br />

Introduction<br />

Amyotrophic lateral sclerosis (ALS) is a progressive<br />

neurodegenerative disease affect<strong>in</strong>g motor neurons <strong>in</strong> the<br />

sp<strong>in</strong>al cord, bra<strong>in</strong> stem and motor cortex. The pathogenesis<br />

of ALS is still obscure, but there is evidence that oxidative<br />

stress, glutamate-<strong>in</strong>duced toxicity and withdrawal of trophic<br />

factors may play an important role [1]. It was previously<br />

revealed that mutations <strong>in</strong> the superoxide dismutase<br />

(SOD)1 gene are implicated <strong>in</strong> pathogenesis of familial ALS<br />

[2] and <strong>in</strong>vestigations have shown that apoptosis appears to<br />

be the primary mechanism of cell death <strong>in</strong> this disease. In<br />

the past few years, attention has been paid to the potential<br />

role of vascular endothelial growth factor (VEGF) <strong>in</strong> the<br />

pathogenesis of ALS. Data from the literature <strong>in</strong>dicate that<br />

VEGF can play a protective and reparative function <strong>in</strong> the<br />

central nervous system (CNS) via angiogenic, neurotrophic,<br />

gliotrophic and anti-apoptotic activity.<br />

VEGF is a glycoprote<strong>in</strong> act<strong>in</strong>g via receptors VEGFR1 (Flt-1),<br />

VEGFR2 (KDR/Flk-1), VEGFR3 (Flt-4) and neuropil<strong>in</strong>-1 and<br />

-2 [3,4]. Spliet et al demonstrated an altered expression of<br />

VEGFRs <strong>in</strong> human sp<strong>in</strong>al cord <strong>in</strong> ALS, <strong>in</strong>dicat<strong>in</strong>g their<br />

significant role <strong>in</strong> sp<strong>in</strong>al cord pathology [5]. VEGF-1<br />

expression is <strong>in</strong>creased <strong>in</strong> reactive astroglial cells and <strong>in</strong> the<br />

blood vessels of ALS sp<strong>in</strong>al cord. The higher expression of<br />

VEGFR2 <strong>in</strong> blood vessels of sp<strong>in</strong>al cord and lower<br />

expression of VEGF-3 <strong>in</strong> neuropil was also observed.<br />

The <strong>in</strong>teractions between neuronal, astrocytic and<br />

endothelial cells are important for metabolic bra<strong>in</strong> functions.<br />

Blood vessels can modulate the activity of neurons and the<br />

<strong>in</strong>fluence of neurons on blood vessel function. The vascular<br />

tone of the blood vessels is regulated through excitatory<br />

signal transmissions, and astrocytes play a critically<br />

important role <strong>in</strong> this process. It is known that VEGF is a<br />

major regulator of angiogenesis, and both angiogenesis and<br />

neurogenesis are regulated by systemic coord<strong>in</strong>ations.<br />

Neuroangiogenic factors, <strong>in</strong>clud<strong>in</strong>g VEGF, <strong>in</strong>fluence the<br />

proliferation and differentiation of neuronal and endothelial<br />

cells [6]. This growth factor <strong>in</strong>duces endothelial regeneration<br />

and <strong>in</strong>fluences nitric oxide and prostacycl<strong>in</strong> production,<br />

result<strong>in</strong>g <strong>in</strong> vasodilatation, <strong>in</strong>hibition of vascular smoothmuscle<br />

cell proliferation and aggregation of platelets [7,8].<br />

VEGF <strong>in</strong>fluences vascularization and reduces retrograde<br />

degeneration of transected corticosp<strong>in</strong>al tract axons [9]. It<br />

can promote collateral vessel growth <strong>in</strong> animal models of<br />

ischemia [10]. VEGF can also protect regression of vasa<br />

nervorum, which improves the function of peripheral nerves<br />

[11]. A previous study revealed that local production of<br />

VEGF by microvessels supports the survival and<br />

regeneration of motor nerves [12].<br />

VEGF and neuroprotection<br />

Previous data have shown that VEGF may <strong>in</strong>fluence<br />

neuronal and glial cells [13], and it was demonstrated that<br />

VEGF expressed by neurons can serve both paracr<strong>in</strong>e and<br />

autocr<strong>in</strong>e functions <strong>in</strong> the CNS [14]. Studies have shown that<br />

VEGF and its receptors, localized on neurons and astrocytes,<br />

play a neuroprotective role aga<strong>in</strong>st ischemia and sp<strong>in</strong>al cord<br />

<strong>in</strong>jury. The functions of vascular and nervous tissue are<br />

l<strong>in</strong>ked because VEGF shares common receptor signal<strong>in</strong>g<br />

with SEMA3A [15].<br />

Accord<strong>in</strong>g to Sun and Guo, the mechanisms by which VEGF<br />

exerts neuroprotection <strong>in</strong>clude the modulation of the<br />

phosphatidyl<strong>in</strong>ositol 3'-k<strong>in</strong>ase (PI3K)/Akt/nuclear factor<br />

(NF)κB signal<strong>in</strong>g pathway, <strong>in</strong>duction of neural progenitor<br />

proliferation, activation of neuron maturation <strong>in</strong> adult rat<br />

bra<strong>in</strong> and <strong>in</strong>hibition of apoptosis [16]. However, these<br />

neuroprotective mechanisms have not been confirmed <strong>in</strong><br />

human studies and it is difficult to assess the molecular<br />

activity of VEGF <strong>in</strong> ALS patients. Thus far, it is still<br />

uncerta<strong>in</strong> whether apoptosis plays a role <strong>in</strong> cell death <strong>in</strong><br />

ALS, or if the <strong>in</strong>hibition of apoptosis by VEGF has a<br />

protective effect <strong>in</strong> this disease. Studies have demonstrated<br />

that VEGF is a mitogen for astrocytes [17], and VEGF has<br />

been shown to stimulate neurogenesis <strong>in</strong> the proliferative<br />

zones of the human bra<strong>in</strong> [18]. VEGF also has a neurotrophic<br />

effect, via <strong>in</strong>duction of motor neurons that confer protection<br />

aga<strong>in</strong>st hypoxia [19•], and can reduce the hypoxic death of<br />

cultured cerebral cortical neurons via activation of VEGFR2<br />

[20]. In endothelial cells, VEGF attenuates oxidative <strong>in</strong>jury<br />

through <strong>in</strong>hibition of reactive species production and by<br />

<strong>in</strong>duction of SOD2 expression [21,22]. It was also observed<br />

that VEGF has a neuroprotective effect on hippocampal<br />

neurons [23,24]. Another <strong>in</strong>vestigation showed that the<br />

<strong>in</strong>activation of VEGF <strong>in</strong> the nervous system leads to<br />

dim<strong>in</strong>ish<strong>in</strong>g vessel density, result<strong>in</strong>g <strong>in</strong> ischemia and severe<br />

degeneration [25]. It is also known that manganese<br />

superoxide dismutase (Mn-SOD) plays a protective role


aga<strong>in</strong>st oxidative stress <strong>in</strong>jury. VEGF can stimulate<br />

expression of Mn-SOD through the negative PI3K/Aktforkhead<br />

pathway and the positive prote<strong>in</strong> k<strong>in</strong>ase C-NFκB<br />

pathway [26]. VEGFR and Akt offer protection <strong>in</strong><br />

experimental models of hypoxic cerebellar granule neurons<br />

[27], and VEGF also protects motor neurons aga<strong>in</strong>st<br />

glutamate and N-methyl-D-aspartate toxicity. VEGF <strong>in</strong>hibits<br />

glutamate-mediated toxicity through PI3K/Akt and<br />

MEK/ERK anti-apoptotic pathways [28••], and it has also<br />

been revealed that VEGF plays an important role <strong>in</strong> the<br />

growth and structural stability of neurons [29]. A protective<br />

effect was observed <strong>in</strong> hippocampal, cortical, cerebellar,<br />

dopam<strong>in</strong>ergic and other neurons, along with a<br />

neuroprotective role <strong>in</strong> cerebral ischemic stroke [30,31],<br />

offer<strong>in</strong>g protection via enhanc<strong>in</strong>g angiogenesis <strong>in</strong> the<br />

penumbra and reduc<strong>in</strong>g <strong>in</strong>farct volume [32,33]. Previous<br />

studies demonstrated that VEGF <strong>in</strong>fluences apoptosis,<br />

exert<strong>in</strong>g anti-apoptotic activity through <strong>in</strong>hibition of<br />

caspase-3 pathways and via VEGFR2-mediated activation of<br />

PI3K, Akt and NFκB pathways [34,35]. One study,<br />

conducted on cerebral cortical neurons and other cell l<strong>in</strong>es,<br />

showed that VEGF <strong>in</strong>hibits apoptosis through the activation<br />

<strong>in</strong>hibitor of apoptosis prote<strong>in</strong> (XIAP) and Bcl-2 [36]. VEGF<br />

has a protective role aga<strong>in</strong>st oxidative stress and mutant<br />

SOD1-mediated motor neuron death via activation of the<br />

PI3K/Akt pathway [37].<br />

It has been observed that glia may have an important role <strong>in</strong><br />

neurodegeneration <strong>in</strong> ALS. VEGF <strong>in</strong>fluences the growth and<br />

differentiation of astrocytes <strong>in</strong> the CNS; it has gliotrophic<br />

effects via the mitogen-activated prote<strong>in</strong> k<strong>in</strong>ase/<br />

extracellular signal-related k<strong>in</strong>ase and PI3K signal<strong>in</strong>g pathways<br />

[38]. Krum and Khaibull<strong>in</strong>a demonstrated that <strong>in</strong>hibition of<br />

endogenous VEGF <strong>in</strong>fluences the revascularization and<br />

proliferation of astroglia <strong>in</strong> the bra<strong>in</strong> [39]. This f<strong>in</strong>d<strong>in</strong>g<br />

<strong>in</strong>dicates a significant role for VEGF <strong>in</strong> the repair of CNS<br />

tissue after <strong>in</strong>jury. VEGF also <strong>in</strong>duces the proliferation of<br />

microglial cells <strong>in</strong> the bra<strong>in</strong> [40]. The ma<strong>in</strong> problem with the<br />

above <strong>in</strong>vestigations is that they were conducted on<br />

experimental animal models and all of the protective<br />

functions of VEGF have not yet been confirmed <strong>in</strong> humans.<br />

The activities of VEGF warrant further cl<strong>in</strong>ical research<br />

and/or neuropathological studies of human ALS because it<br />

is not certa<strong>in</strong> that VEGF has a protective effect <strong>in</strong> this<br />

context.<br />

It appears that migration of neural progenitors is an<br />

important process for repair<strong>in</strong>g the CNS. VEGF can<br />

<strong>in</strong>fluence stem cells, <strong>in</strong>clud<strong>in</strong>g neural progenitors, and it is<br />

also known that VEGF mRNA and its receptors are<br />

expressed <strong>in</strong> neural stem cells [41]. Zhang et al showed that<br />

progenitor cells may express VEGF receptors and that<br />

VEGFR2 mediates the effect of VEGF on progenitor<br />

migration [42]. Accord<strong>in</strong>g to Brusselmans et al, VEGF is a<br />

survival factor for embryonic stem cells dur<strong>in</strong>g hypoxia [43].<br />

Experiments showed that hypoxia <strong>in</strong>creases the expression<br />

of VEGF and its receptor <strong>in</strong> neural stem cells, result<strong>in</strong>g <strong>in</strong> the<br />

<strong>in</strong>hibition of apoptosis [44]. Additionally, it has been<br />

demonstrated that the gene transfer of VEGF <strong>in</strong>to neural<br />

stem cells reduces apoptosis caused by hypoxia [45]. This<br />

f<strong>in</strong>d<strong>in</strong>g <strong>in</strong>dicates that VEGF has a protective role on neural<br />

Does VEGF represent a potential treatment for amyotrophic lateral sclerosis? Iłżecka 55<br />

stem cells and neurogenesis <strong>in</strong> the adult nervous system.<br />

The <strong>in</strong>vestigation of VEGF function <strong>in</strong> the develop<strong>in</strong>g bra<strong>in</strong><br />

showed that the <strong>in</strong>activation of this growth factor leads to<br />

neural damage of the bra<strong>in</strong> tissue [46].<br />

Judg<strong>in</strong>g by these protective effects of VEGF, this growth factor<br />

may have cl<strong>in</strong>ical utility <strong>in</strong> the treatment of different diseases,<br />

<strong>in</strong>clud<strong>in</strong>g ischemic disorders such as stroke or myocardial<br />

<strong>in</strong>farction. It may also have an application <strong>in</strong> the therapy of<br />

different neurodegenerative diseases, <strong>in</strong>clud<strong>in</strong>g ALS. However,<br />

there are some concerns with the cl<strong>in</strong>ical use of this growth<br />

factor and, furthermore, the protective effects of VEGF<br />

described above have not yet been confirmed <strong>in</strong> humans.<br />

VEGF and ALS<br />

There is evidence to suggest that VEGF may play a<br />

protective role <strong>in</strong> ALS. It is known that the expression of<br />

VEGF is upregulated by hypoxia, which <strong>in</strong>creases<br />

transcription because of the higher stability of VEGF mRNA,<br />

and through the b<strong>in</strong>d<strong>in</strong>g of the transcription factor hypoxia<strong>in</strong>ducible<br />

factor-1 to the 5'-promoter region [47]. In contrast,<br />

it has been demonstrated that the hypoxic <strong>in</strong>duction of<br />

VEGF <strong>in</strong> SOD1 transgenic mice (an animal model of ALS) is<br />

selectively impaired from a very early stage. The high<br />

basel<strong>in</strong>e and the low hypoxia-<strong>in</strong>duced expression of VEGF<br />

has been observed <strong>in</strong> the sp<strong>in</strong>al cord of SOD1 mutant mice<br />

[48]. Downregulation of VEGF expression <strong>in</strong> the sp<strong>in</strong>al cord<br />

of G93A SOD1 rats has also been shown [49]. One study<br />

showed that deletion of the hypoxia-responsive element <strong>in</strong><br />

the promoter region of the VEGF gene <strong>in</strong> transgenic mice<br />

leads to degeneration of motor neurons [50••]. The <strong>in</strong>crease<br />

<strong>in</strong> reactive oxygen species production observed <strong>in</strong> ALS can<br />

activate hypoxia-<strong>in</strong>ducible factors, result<strong>in</strong>g <strong>in</strong> the <strong>in</strong>creased<br />

transcription of VEGF [51]. As previously described,<br />

glutamate-mediated toxicity may play an important role <strong>in</strong><br />

the pathogenesis of ALS. It is possible that the impairment of<br />

VEGF expression <strong>in</strong> ALS caused by hypoxia can augment<br />

sensitivity of motor neurons for glutamate-mediated<br />

toxicity. It is also known that glial cells <strong>in</strong>fluence VEGF<br />

expression, and a high basel<strong>in</strong>e VEGF level observed <strong>in</strong><br />

transgenic SOD1 mice might be the result of astrogliosis or<br />

changes <strong>in</strong> pro-<strong>in</strong>flammatory cytok<strong>in</strong>es <strong>in</strong> the ALS sp<strong>in</strong>al<br />

cord [52]. Thus, changes <strong>in</strong> VEGF may be due to the<br />

pathomorphological status of glia caused by the <strong>in</strong>fluence of<br />

harmful factors, <strong>in</strong>clud<strong>in</strong>g ischemia and <strong>in</strong>flammation.<br />

Human genetic studies have shown that there is an<br />

association between VEGF and ALS; two at-risk VEGF<br />

genotypes <strong>in</strong>fluence risk for ALS. Moreover, the human<br />

haplotypes that are associated with low VEGF levels<br />

<strong>in</strong>crease the risk for ALS [53••]. Huez et al determ<strong>in</strong>ed two<br />

homozygous recessive haplotypes of VEGF that are def<strong>in</strong>ed<br />

by s<strong>in</strong>gle nucleotide polymorphisms <strong>in</strong> the promoter and <strong>in</strong><br />

the 5'-untranslated region (5'-UTR) of exon 1 as risk haplotypes<br />

of ALS [54]. Moreover, it was revealed that haplotypes<br />

AAG/AAG and AGG/AGG <strong>in</strong>fluence the expression of<br />

VEGF by <strong>in</strong>hibit<strong>in</strong>g VEGF mRNA transcription and<br />

translation, result<strong>in</strong>g <strong>in</strong> dim<strong>in</strong>ish<strong>in</strong>g VEGF levels that could<br />

lead to motor neuron death. It has also been suggested that<br />

other regulators of the VEGF pathway, such as VEGFR2 and<br />

NRP1 and their effectors, might <strong>in</strong>fluence risk for ALS.


56 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

The results of these genetic studies must be confirmed <strong>in</strong><br />

future experiments as it is not clear whether primary genetic<br />

factors are responsible for the effects of VEGF expression.<br />

The fact that oxidative stress also primarily <strong>in</strong>fluences<br />

expression and levels of VEGF <strong>in</strong> these cases cannot be<br />

excluded. Data have shown decreased VEGF plasma levels<br />

<strong>in</strong> ALS patients compared with controls, but no correlation<br />

was found with the cl<strong>in</strong>ical parameters of the disease. In<br />

contrast, Nygren et al observed that VEGF levels rema<strong>in</strong>ed<br />

unchanged <strong>in</strong> the sp<strong>in</strong>al cord of ALS patients compared<br />

with controls, but that serum VEGF levels were <strong>in</strong>creased <strong>in</strong><br />

ALS patients, probably due to hypoxia [55]. It was observed<br />

that CSF VEGF levels were <strong>in</strong>creased <strong>in</strong> ALS patients with<br />

long duration of disease and <strong>in</strong> limb-onset ALS [56].<br />

Another study showed low cerebrosp<strong>in</strong>al fluid VEGF levels<br />

dur<strong>in</strong>g the first year of ALS, which were <strong>in</strong>dependent of<br />

VEGF promoter polymorphism [57]. Thus, there are<br />

discrepancies <strong>in</strong> the data from human studies and it is<br />

difficult to conclude that changes <strong>in</strong> VEGF levels may lead to<br />

neurodegeneration <strong>in</strong> ALS. It is possible that such diverse<br />

results are caused by different haplotypes <strong>in</strong> the ALS<br />

patients studied. Thus, it is difficult to compare the results<br />

from different studies and to draw the correct conclusions.<br />

The pathomorphological studies conducted on the sp<strong>in</strong>al<br />

cord and bra<strong>in</strong> of ALS patients could provide further<br />

<strong>in</strong>formation concern<strong>in</strong>g VEGF expression and function <strong>in</strong><br />

the CNS.<br />

It was hypothesized that decreased VEGF levels could<br />

<strong>in</strong>fluence the neurotrophic and angiogenic activity of this<br />

growth factor. The mechanism of motor neuron loss <strong>in</strong> ALS<br />

has not been elucidated, but it appears that decreased VEGF<br />

levels could affect blood flow <strong>in</strong> the sp<strong>in</strong>al cord, which<br />

<strong>in</strong>fluences the life span of motor neurons. It is possible that<br />

reduced neural perfusion caused by decreased VEGF levels<br />

may be due to affected vasoregulation, possibly via nitric<br />

oxide activity. Conversely, decreased VEGF levels may also<br />

affect the activity of perivascular autonomic nerves that can<br />

lead to the impairment of vascular tone and sp<strong>in</strong>al cord<br />

perfusion [58•]. Additionally, decreased VEGF levels might<br />

dim<strong>in</strong>ish its neurotrophic activity on motor neurons. There<br />

is evidence that impaired VEGF regulation <strong>in</strong> mice leads to<br />

reduction of sp<strong>in</strong>al cord VEGF levels, especially dur<strong>in</strong>g<br />

hypoxia, result<strong>in</strong>g <strong>in</strong> a neural blood flow reduction of 50%.<br />

Motor neurons are more vulnerable to hypoperfusion, and<br />

chronic ischemia of the sp<strong>in</strong>al cord can cause motor neuron<br />

degeneration. Decreased regional cerebral blood flow has<br />

been observed <strong>in</strong> ALS patients [59], yet its connection to<br />

VEGF levels has not been <strong>in</strong>vestigated. Accord<strong>in</strong>g to<br />

Lambrechts et al, sufficient VEGF levels <strong>in</strong> humans with high<br />

VEGF-produc<strong>in</strong>g genotypes protect the perfusion of<br />

neurons, but the low levels of this cytok<strong>in</strong>e may be a risk<br />

factor for ALS [60•]. It seems that the above mentioned<br />

mechanism might play a role <strong>in</strong> neurodegeneration <strong>in</strong> ALS,<br />

but this requires further research.<br />

Muscle atrophy is one of the signs of disease <strong>in</strong> ALS. It was<br />

revealed that VEGF stimulates the regeneration of skeletal<br />

muscles via the protection of myogenic cells from apoptosis<br />

and the stimulation of growth of myogenic fibers. On<br />

balance, it was observed that progenitor cells from bone<br />

marrow, which are <strong>in</strong>duced by VEGF, can also <strong>in</strong>fluence the<br />

regeneration of muscle [61]. Thus, theoretically, VEGF could<br />

<strong>in</strong>hibit muscle damage <strong>in</strong> ALS and might be useful for<br />

muscle protection therapy <strong>in</strong> this disease, but no cl<strong>in</strong>ical<br />

studies have yet confirmed this.<br />

The protective effects of VEGF that have been demonstrated<br />

<strong>in</strong> experimental studies have not been confirmed <strong>in</strong> cl<strong>in</strong>ical<br />

trials. Data have shown that treatment with a variety of<br />

different growth factors, <strong>in</strong>clud<strong>in</strong>g ciliary neurotrophic<br />

factor, <strong>in</strong>sul<strong>in</strong> growth factor, glial cell-derived neurotrophic<br />

factor (GDNF) and bra<strong>in</strong>-derived neurotrophic factor, did<br />

not significantly <strong>in</strong>fluence ALS. It was suggested that the<br />

<strong>in</strong>efficiency of treatment us<strong>in</strong>g growth factors was caused by<br />

the subcutaneous route of their adm<strong>in</strong>istration and was the<br />

result of the limited ability of the growth factors to cross the<br />

blood-bra<strong>in</strong> barrier (BBB) [62]. It is possible that the transfer<br />

of VEGF across the BBB us<strong>in</strong>g viral vectors might be the best<br />

route of adm<strong>in</strong>istration, and it is suspected that VEGF<br />

therapy could be most effective <strong>in</strong> the earliest phase after the<br />

cl<strong>in</strong>ical signs of ALS onset. Experiments conducted on a<br />

transgenic mouse model of ALS showed that VEGF may be<br />

an effective treatment after disease onset and can delay<br />

<strong>in</strong>itiation and slow progression of the disease [63••,64••].<br />

Thus, the application of this therapy to humans, especially<br />

<strong>in</strong> the earliest phase of the disease, requires evaluation <strong>in</strong><br />

extensive cl<strong>in</strong>ical studies. Storkebaum et al [65] showed that<br />

<strong>in</strong>tracerebroventricular delivery of recomb<strong>in</strong>ant VEGF <strong>in</strong> the<br />

transgenic SOD1 rat model of ALS delays disease onset and<br />

prolongs survival of animals. Based on available data, the<br />

transplantation of genetically modified cells <strong>in</strong>to the CNS<br />

may be a promis<strong>in</strong>g strategy for the delivery and expression<br />

of different neurotrophic factors, <strong>in</strong>clud<strong>in</strong>g VEGF. It has<br />

been suggested that the specific promoters may control the<br />

gene expression that is required for dose-specific and timespecific<br />

therapy [66]. VEGF can be delivered <strong>in</strong>to the CNS by<br />

several routes, <strong>in</strong>clud<strong>in</strong>g as a recomb<strong>in</strong>ant prote<strong>in</strong>, and<br />

through delivery of the gene as a naked plasmid or via viral<br />

vector [67]; these routes of adm<strong>in</strong>istration are promis<strong>in</strong>g for<br />

cl<strong>in</strong>ical therapy. Studies are cont<strong>in</strong>u<strong>in</strong>g, and it has been<br />

demonstrated that us<strong>in</strong>g adeno-associated virus as a vector<br />

for gene delivery <strong>in</strong>to motor neuron-like cells may be an<br />

important strategy <strong>in</strong> the future treatment of ALS [68]. Kle<strong>in</strong><br />

et al showed GDNF delivery us<strong>in</strong>g human neural progenitor<br />

cells <strong>in</strong> a rat model of ALS [69]. Another potential treatment<br />

option is via the adm<strong>in</strong>istration of the heat shock prote<strong>in</strong> co<strong>in</strong>ducers,<br />

which <strong>in</strong>fluence cell stress response to cell<br />

protection [70]. However, it is difficult to evaluate the effect<br />

of such therapy <strong>in</strong> human ALS.<br />

Stem cells<br />

Human embryonic stem cells and neural stem cells can be<br />

used <strong>in</strong> reparative therapy <strong>in</strong> ALS. Human neural stem-cellderived<br />

chol<strong>in</strong>ergic neurons can <strong>in</strong>nervate muscle <strong>in</strong> motor<br />

neuron-deficient adult rats [71], and Vastag observed<br />

partially reversed paralysis <strong>in</strong> a rat model of ALS after stemcell<br />

therapy [72]. However, there are no data concern<strong>in</strong>g the<br />

<strong>in</strong>fluence of stem cells on cl<strong>in</strong>ical signs <strong>in</strong> human ALS,<br />

although stem-cell transplantation had a protective effect <strong>in</strong><br />

animal models. The mechanisms of stem-cell protection are<br />

unclear, but it has been suggested that cell fusion,


neurotrophic factor release, <strong>in</strong>clud<strong>in</strong>g VEGF, endogenous<br />

stem-cell proliferation and transdifferentiation may all play<br />

a role [73].<br />

Stem-cell therapy may be a promis<strong>in</strong>g treatment for ALS<br />

[74]. It is known that VEGF promotes the maturation of<br />

neurons and endothelial cells by <strong>in</strong>fluenc<strong>in</strong>g stem cells that<br />

support reparative processes <strong>in</strong> the nervous system. The<br />

therapeutic effect exerted by embryonic and neural stem<br />

cells might, at least <strong>in</strong> part, be mediated by the secretion of<br />

VEGF. The protective effect of non-<strong>in</strong>vasive cell-based<br />

therapy of ALS has been observed by us<strong>in</strong>g <strong>in</strong>travenous<br />

adm<strong>in</strong>istration of human umbilical cord blood cells <strong>in</strong> a<br />

mouse model of ALS [75]. It might be <strong>in</strong>terest<strong>in</strong>g to apply<br />

such non-<strong>in</strong>vasive therapy <strong>in</strong> humans, but there are no data<br />

concern<strong>in</strong>g cl<strong>in</strong>ical trials of this nature. The transplantation<br />

of neurons and glia us<strong>in</strong>g human motor neuronal progenitor<br />

cells or xenografts of animal cells has also been proposed.<br />

However, <strong>in</strong> a rat model, Li et al demonstrated that grafted<br />

cells do not migrate and die by apoptosis [76]. One cl<strong>in</strong>ical<br />

study showed that the <strong>in</strong>trasp<strong>in</strong>al cord implantation of<br />

autologous mesenchymal stem cells was safe [77], but this<br />

result needs confirmation <strong>in</strong> other studies. Accord<strong>in</strong>g to<br />

Silani et al, stem-cell therapy should be used <strong>in</strong> comb<strong>in</strong>ation<br />

with other treatments, such as trophic factors, <strong>in</strong>clud<strong>in</strong>g<br />

VEGF [78]. Moreover, it was demonstrated that comb<strong>in</strong>ed<br />

cord blood stem cells and gene therapy <strong>in</strong>duced<br />

angiogenesis and improved cardiac performance <strong>in</strong> a mouse<br />

model of acute myocardial <strong>in</strong>farction [79]. Thus, this<br />

comb<strong>in</strong>ed therapy could be promis<strong>in</strong>g for the future <strong>in</strong> ALS,<br />

although there are no data concern<strong>in</strong>g cl<strong>in</strong>ical trials of such<br />

therapy. However, <strong>in</strong> the past, different comb<strong>in</strong>ed therapies<br />

have been applied <strong>in</strong> ALS patients and their effect did not<br />

br<strong>in</strong>g any significant cl<strong>in</strong>ical improvement.<br />

Prote<strong>in</strong> aggregates<br />

The aggregation of prote<strong>in</strong>s is a typical pathomorphological<br />

hallmark of different neurodegenerative diseases, <strong>in</strong>clud<strong>in</strong>g<br />

ALS [80]. Some publications <strong>in</strong>dicate that the toxicity of prote<strong>in</strong><br />

aggregates may be responsible for neurodegeneration. Yang et<br />

al demonstrated that VEGF dim<strong>in</strong>ishes β-amyloid-<strong>in</strong>duced<br />

neurotoxicity <strong>in</strong> Alzheimer's disease through the <strong>in</strong>hibition<br />

of β-amyloid aggregation and the production of reactive<br />

oxygen species [81]. VEGF may also attenuate toxicity of<br />

prote<strong>in</strong> aggregates <strong>in</strong> ALS. This needs cl<strong>in</strong>ical <strong>in</strong>vestigation,<br />

but it appears that us<strong>in</strong>g VEGF for the <strong>in</strong>hibition of<br />

aggregates <strong>in</strong> ALS might be an <strong>in</strong>terest<strong>in</strong>g therapeutic<br />

strategy. It is also possible that other components of the<br />

VEGF pathway might play a role <strong>in</strong> motor neuron death.<br />

These <strong>in</strong>clude other VEGF receptors and their signal<strong>in</strong>g<br />

effectors [82].<br />

Conclusions<br />

In recent years, attention has been focused on the role of<br />

gene therapy and stem-cell therapy for ALS. Based on<br />

available data, it seems that VEGF could be an important<br />

growth factor for ALS therapy. The protective function that<br />

VEGF exerts via its angiotrophic, neurotrophic and<br />

gliotrophic effects might <strong>in</strong>hibit neurodegeneration <strong>in</strong> ALS.<br />

Additionally, the protective effect of VEGF on stem cells of<br />

adult CNS tissue could support reparative processes <strong>in</strong> ALS<br />

Does VEGF represent a potential treatment for amyotrophic lateral sclerosis? Iłżecka 57<br />

and slow neurodegeneration. It is known that endogenous<br />

precursors or stem cells can differentiate <strong>in</strong>to new<br />

corticosp<strong>in</strong>al motor neurons <strong>in</strong> the adult bra<strong>in</strong> and<br />

molecular modification of their activity by VEGF might<br />

<strong>in</strong>fluence cell death. However, there are some limitations to<br />

us<strong>in</strong>g this cytok<strong>in</strong>e cl<strong>in</strong>ically, <strong>in</strong> that the beneficial effect of<br />

VEGF therapy that has been observed <strong>in</strong> animal models has<br />

not been confirmed <strong>in</strong> cl<strong>in</strong>ical trials. Moreover, there are<br />

some technical difficulties surround<strong>in</strong>g the delivery of VEGF<br />

<strong>in</strong>to the human CNS. It is known that the application of<br />

different growth factors <strong>in</strong> cl<strong>in</strong>ical trials did not have a<br />

significant effect, but gene therapy to deliver VEGF <strong>in</strong>to<br />

sp<strong>in</strong>al cord and bra<strong>in</strong>, or comb<strong>in</strong>ed therapy with stem cells,<br />

should be considered as a future treatment for ALS.<br />

References<br />

1. McGeer EG, McGeer PL: Pharmacologic approaches to the treatment of<br />

amyotrophic lateral sclerosis. Bio<strong>Drugs</strong> (2005) 19(1):31-37.<br />

2. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A,<br />

Donaldson D, Goto J, Oregan JP, Deng H-X, Rahmani Z et al: Mutations <strong>in</strong><br />

Cu/Zn superoxide dismutase gene are associated with familial<br />

amyotrophic lateral sclerosis. Nature (1993) 362(6415):59-62.<br />

3. de Vries C, Esscobedo JA, Ueno K, Houck K, Ferrara N, Williams LT:<br />

The fms-like tyros<strong>in</strong>e k<strong>in</strong>ase, a receptor for vascular endothelial<br />

growth factor. Science (1992) 255(5047):989-991.<br />

4. Millauer B, Wizigmann-Voos S, Schnurch H, Mart<strong>in</strong>ez R, Moller NP,<br />

Risau W, Ullrich A: High aff<strong>in</strong>ity VEGF b<strong>in</strong>d<strong>in</strong>g and developmental<br />

expression suggest Flk-1 as a major regulator of vasculogenesis<br />

and angiogenesis. Cell (1993) 72(6):835-846.<br />

5. Spliet WG, Aronica E, Ramkema M, Witmer AN, Schl<strong>in</strong>gemann RO, de<br />

Jong JM, Troost D: Immunohistochemical localization of vascular<br />

endothelial growth factor receptors -1, -2 and -3 <strong>in</strong> human sp<strong>in</strong>al<br />

cord: Altered expression <strong>in</strong> amyotrophic lateral sclerosis.<br />

Neuropathol Appl Neurobiol (2004) 30(4):351-359.<br />

6. Park JA, Choi KS, Kim SY, Kim KW: Coord<strong>in</strong>ated <strong>in</strong>teraction of the<br />

vascular and nervous systems: From molecule- to cell-based<br />

approaches. Biochem Biophys Res Commun (2003) 311(2):247-253.<br />

7. Wheeler-Jones C, Abu-Ghazaleh R, Cospedal R, Houliston RA, Mart<strong>in</strong><br />

J, Zachary I: Vascular endothelial growth factor stimulates<br />

prostacycl<strong>in</strong> production and activation of cytosolic phospholipase<br />

A2 <strong>in</strong> endothelial cells via p42/p44 mitogen-activated prote<strong>in</strong><br />

k<strong>in</strong>ase. FEBS Lett (1997) 420(1):28-32.<br />

8. Lait<strong>in</strong>en M, Zachary I, Breier G, Pakkanen T, Hakk<strong>in</strong>en T, Luoma J, Abedi H,<br />

Risau W, Soma M, Laakso M, Mart<strong>in</strong> JF, Yla-Herttuala S: VEGF gene<br />

transfer reduces <strong>in</strong>timal thicken<strong>in</strong>g via <strong>in</strong>creased production of nitric<br />

oxide <strong>in</strong> carotid arteries. Hum Gene Ther (1997) 8(15):1737-1744.<br />

9. Facchiano F, Fernandez E, Mancarella S, Maira G, Miscusi M,<br />

D'Arcangelo D, Cim<strong>in</strong>o-Reale G, Falchetti ML, Capogrossi MC, Pall<strong>in</strong>i R:<br />

Promotion of regeneration of corticosp<strong>in</strong>al tract axons <strong>in</strong> rats with<br />

recomb<strong>in</strong>ant vascular endothelial growth factor alone and<br />

comb<strong>in</strong>ed with adenovirus cod<strong>in</strong>g for this factor. J Neurosurg (2002)<br />

97(1):161-168.<br />

10. Ferrara N, Gerber HP, LeCouter J: The biology of VEGF and its<br />

receptors. Nat Med (2003) 9(6):669-676.<br />

11. Schratzbereger P, Walter DH, Rittig K, Bahlmann FH, Pola R, Curry C,<br />

Silver M, Kra<strong>in</strong><strong>in</strong> JG, We<strong>in</strong>berg DH, Ropper AH, Isner JM: Reversal of<br />

experimental diabetic neuropathy by VEGF gene transfer. J Cl<strong>in</strong><br />

Invest (2001) 107(9):1083-1092.<br />

12. Bearden SE, Segal SS: Microvessels promote motor nerve survival<br />

and regeneration through local VEGF release follow<strong>in</strong>g ectopic<br />

reattachment. Microcirculation (2004) 11(8):633-644.<br />

13. Carmeliet P, Storkebaum E: Vascular and neuronal effects of VEGF<br />

<strong>in</strong> the nervous system: Implications for neurological disorders.<br />

Sem<strong>in</strong> Cell Dev Biol (2002) 13(1):39-53.


58 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

14. Ogunshola OO, Antic A, Donoghue MJ, Fan SY, Kim H, Stewart WB,<br />

Madri JA, Ment LR: Paracr<strong>in</strong>e and autocr<strong>in</strong>e functions of neuronal<br />

vascular endothelial growth factor (VEGF) <strong>in</strong> the central nervous<br />

system. J Biol Chem (2002) 277(13):11410-11415.<br />

15. Rosenste<strong>in</strong> JM, Krum JM: New roles for VEGF <strong>in</strong> nervous tissue -<br />

beyond blood vessels. Exp Neurol (2004) 187(2):246-253.<br />

16. Sun FY, Guo X: Molecular and cellular mechanisms of<br />

neuroprotection by vascular endothelial growth factor. J Neurosci<br />

Res (2005) 79(1-2):180-184.<br />

17. Krum JM, Mani N, Rosenste<strong>in</strong> JM: Angiogenic and astroglial<br />

responses to vascular endothelial growth factor adm<strong>in</strong>istration <strong>in</strong><br />

adult rat bra<strong>in</strong>. Neuroscience (2002) 110(4):589-604.<br />

18. J<strong>in</strong> K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA: Vascular<br />

endothelial growth factor (VEGF) stimulates neurogenesis <strong>in</strong> vitro<br />

and <strong>in</strong> vivo. Proc Natl Acad Sci USA (2002) 99(18):11946-11950.<br />

19. Van Den Bosch L, Storkebaum E, Vlem<strong>in</strong>ckx V, Moons L,<br />

Vanopdenbosch L, Scheveneels W, Carmeliet P, Robberecht W:<br />

Effects of vascular endothelial growth factor (VEGF) on motor<br />

neuron degeneration. Neurobiol Dis (2004) 17(1):21-28.<br />

• This paper describes how VEGF has a neurotrophic effect on motor neurons<br />

<strong>in</strong> vitro.<br />

20. J<strong>in</strong> KL, Mao XO, Greenberg DA: Vascular endothelial growth factor:<br />

Direct neuroprotective effect on <strong>in</strong> vitro ischemia. Proc Natl Acad<br />

Sci USA (2000) 97(18):10242-10247.<br />

21. Yang W, de Bono DP: A new role for vascular endothelial growth<br />

factor and fibroblast growth factors: Increas<strong>in</strong>g endothelial<br />

resistance to oxidative stress. FEBS Lett (1997) 403(2):139-142.<br />

22. Abid MR, Tsai JC, Spokes KC, Deshpande SS, Irani K, Aird WC: Vascular<br />

endothelial growth factor <strong>in</strong>duces manganese-superoxide dismutase<br />

expression <strong>in</strong> endothelial cells by a Rac1-regulated NADPH oxidasedependent<br />

mechanism. FASEB J (2001) 15(13):2548-2550.<br />

23. Matsuzaki H, Tamatani M, Yamaguchi A, Namikawa K, Kiyama H, Vitek<br />

MP, Mitsuda N, Tohyama M: Vascular endothelial growth factor<br />

rescues hippocampal neurons from glutamate-<strong>in</strong>duced toxicity:<br />

Signal transduction cascades. FASEB J (2001) 15(7):1218-1220.<br />

24. Svensson B, Peters M, Konig HG, Poppe M, Levkau B, Rothermundt M,<br />

Arolt V, Kogel D, Prehn JH: Vascular endothelial growth factor<br />

protects cultured rat hippocampal neurons aga<strong>in</strong>st hypoxic <strong>in</strong>jury<br />

via an antiexcitotoxic, caspase-<strong>in</strong>dependent mechanism. J Cereb<br />

Blood Flow Metab (2002) 22(10):1170-1175.<br />

25. Haigh JJ, Morelli PI, Gerhardt H, Haigh K, Tsien J, Damert A, Miquerol<br />

L, Muhlner U, Kle<strong>in</strong> R, Ferrara N, Wagner EF et al: Cortical and ret<strong>in</strong>al<br />

defects caused by dosage-dependent reductions <strong>in</strong> VEGF-A<br />

paracr<strong>in</strong>e signal<strong>in</strong>g. Dev Biol (2003) 262(2):225-241.<br />

26. Abid MR, Schoots IG, Spokes KC, Wu SQ, Mawh<strong>in</strong>ney Ch, Aird WC:<br />

Vascular endothelial growth factor-mediated <strong>in</strong>duction of<br />

manganese superoxide dismutase occurs through redoxdependent<br />

regulation of forkhead and IκB/NFκB. J Biol Chem (2004)<br />

279(42):44030-44038.<br />

27. Wick A, Wick W, Waltenberger J, Weller M, Dichgans J, Schulz JB:<br />

Neuroprotection by hypoxic precondition<strong>in</strong>g requires sequential<br />

activation of vascular endothelial growth factor receptor and Akt. J<br />

Neurosci (2002) 22(15):6401-6407.<br />

28. Greenberg DA, J<strong>in</strong> K: VEGF and ALS: The luckiest growth factor?<br />

Trends Mol Med (2004) 10(1):1-3.<br />

•• A review describ<strong>in</strong>g the role of VEGF <strong>in</strong> neuroprotection and ALS.<br />

29. Rosenste<strong>in</strong> JM, Mani N, Khaibull<strong>in</strong>a A, Krum JM: Neurotrophic effects of<br />

vascular endothelial growth factor on organotypic cortical explants and<br />

primary cortical neurons. J Neurosci (2003) 23(35):11036-11044.<br />

30. Hayashi T, Abe K, Itoyama Y: Reduction of ischemic damage by<br />

application of vascular endothelial growth factor <strong>in</strong> rat bra<strong>in</strong> after<br />

transient ischemia. J Cereb Blood Flow Metab (1998) 18(8):887-895.<br />

31. Sun Y, J<strong>in</strong> K, Xie L, Childs J, Mao XO, Logv<strong>in</strong>ova A, Greenberg DA:<br />

VEGF-<strong>in</strong>duced neuroprotection, neurogenesis and angiogenesis<br />

after focal cerebral ischemia. J Cl<strong>in</strong> Invest (2003) 111(12):1843-1851.<br />

32. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, Bruggen<br />

N, Chopp M: VEGF enhances angiogenesis and promotes bloodbra<strong>in</strong><br />

leakage <strong>in</strong> the ischemic bra<strong>in</strong>. J Cl<strong>in</strong> Invest (2000) 106(7):829-<br />

838.<br />

33. Harrigan MR, Ennis SR, Sullivan SE, Keep RF: Effects of<br />

<strong>in</strong>traventricular <strong>in</strong>fusion of vascular endothelial growth factor on<br />

cerebral blood flow, edema, and <strong>in</strong>farct volume. Acta Neurochir<br />

(Wien) (2003) 145(1):49-53.<br />

34. J<strong>in</strong> K, Mao XO, Batteur SP, McEachron E, Leahy A, Greenberg DA:<br />

Caspase-3 and the regulation of hypoxic neuronal death by<br />

vascular endothelial growth factor. Neuroscience (2001) 108(2):351-<br />

358.<br />

35. Sondell M, Lundborg G, Kanje M: Vascular endothelial growth factor<br />

has neurotrophic activity and stimulates axonal outgrowth,<br />

enhanc<strong>in</strong>g cell survival and Schwann cell proliferation <strong>in</strong> the<br />

peripheral nervous system. J Neurosci (1999) 19(14):5731-5740.<br />

36. Tran J, Rak J, Sheehan C, Saibil SD, La Casse E, Korneluk RG, Kerbel<br />

RS: Marked <strong>in</strong>duction of the IAP family antiapoptotic prote<strong>in</strong>s<br />

surviv<strong>in</strong> and XIAP by VEGF <strong>in</strong> vascular endothelial cells. Biochem<br />

Biophys Res Commun (1999) 264(3):781-788.<br />

37. Li B, Xu W, Luo C, Gozal D, Liu R: VEGF-<strong>in</strong>duced activation of the<br />

PI3-K/Akt pathway reduces mutant SOD1-mediated motor neuron<br />

cell. Bra<strong>in</strong> Res Mol Bra<strong>in</strong> Res (2003) 111(1-2):155-164.<br />

38. Mani N, Khaibull<strong>in</strong>a A, Krum JM, Rosenste<strong>in</strong> JM: Astrocyte growth<br />

effects of vascular endothelial growth factor (VEGF) application to<br />

per<strong>in</strong>atal neocortical explants: Receptor mediation and signal<br />

transduction pathways. Exp Neurol (2005) 192(2):394-406.<br />

39. Krum JM, Khaibull<strong>in</strong>a A: Inhibition of endogenous VEGF impedes<br />

revascularization and astroglial proliferation: Roles for VEGF <strong>in</strong><br />

bra<strong>in</strong> repair. Exp Neurol (2003) 181(2):241-257.<br />

40. Forstreuter F, Lucius R, Mentle<strong>in</strong> R: Vascular endothelial growth<br />

factor <strong>in</strong>duces chemotaxis and proliferation of microglial cells. J<br />

Neuroimmunol (2002) 132(1-2): 93-98.<br />

41. Maurer MH, Tripps WK, Feldmann RE Jr, Kusch<strong>in</strong>sky W: Expression of<br />

vascular endothelial growth factor and its receptors <strong>in</strong> rat neural<br />

stem cells. Neurosci Lett (2003) 344(3):165-168.<br />

42. Zhang H, Vutskits L, Pepper MS, Kiss JZ: VEGF is a chemoattractant<br />

for FGF-2-stimulated neural progenitors. J Cell Biol (2003)<br />

163(6):1375-1384.<br />

43. Brusselmans K, Bono F, Collen D, Herbert JM, Carmeliet P, Dewerch<strong>in</strong><br />

M: A novel role for vascular endothelial growth factor as an<br />

autocr<strong>in</strong>e survival factor for embryonic stem cells dur<strong>in</strong>g hypoxia.<br />

J Biol Chem (2005) 280(5):3493-3499.<br />

44. Schanzer A, Wachs FP, Wilhelm D, Acker T, Cooper-Kuhn C, Beck H,<br />

W<strong>in</strong>kler J, Aigner L, Plate KH, Kuhn HG: Direct stimulation of adult<br />

neural stem cells <strong>in</strong> vitro and neurogenesis <strong>in</strong> vivo by vascular<br />

endothelial growth factor. Bra<strong>in</strong> Pathol (2004) 14(3):237-248.<br />

45. Shen QY, Lu RY, Li M, Wang LM, Xiao SH, X<strong>in</strong>g YG: Recomb<strong>in</strong>ant<br />

adenovirus-mediated vascular endothelial growth factor gene<br />

transfer attenuates hypoxia-<strong>in</strong>duced apoptosis of neural stem cells<br />

<strong>in</strong> vitro. Di Yi Jun Yi Da Xue Xue Bao (2005) 25(4):366-370.<br />

46. Raab S, Beck H, Gaumann A, Yuce A, Gerber HP, Plate K, Hammes<br />

HP, Ferrara N, Breier G: Impaired bra<strong>in</strong> angiogenesis and neuronal<br />

apoptosis <strong>in</strong>duced by conditional homozygous <strong>in</strong>activation of<br />

vascular endothelial growth factor. Thromb Haemost (2004)<br />

91(3):595-605.<br />

47. Zachary I: Vascular endothelial growth factor. Int J Biochem Cell Biol<br />

(1998) 30(11):1169-1174.<br />

48. Murakami T, Ilieva H, Shiote M, Nagata M, Nagano I, Shoji M, Abe K:<br />

Hypoxic <strong>in</strong>duction of vascular endothelial growth factor is<br />

selectively impaired <strong>in</strong> mice carry<strong>in</strong>g the mutant SOD1 gene. Bra<strong>in</strong><br />

Res (2003) 989(2):231-237.<br />

49. Xie Y, Weydt P, Howland DS, Kliot M, Moller T: Inflammatory<br />

mediators and growth factors <strong>in</strong> the sp<strong>in</strong>al cord of G93A SOD1<br />

rats. Neuroreport (2004) 15(16):2513-2516.


50. Oosthuyse B, Moons L, Storkebaum E, Beck H, Nuyens D, Brusselmans<br />

K, Van Dorpe J, Hell<strong>in</strong>gs P, Gorsel<strong>in</strong>k M, Heymans S, Theilmeier G et<br />

al: Deletion of the hypoxia-response element <strong>in</strong> the vascular<br />

endothelial growth factor promoter causes motor neuron<br />

degeneration. Nat Genet (2001) 28(2):131-138.<br />

•• This paper describes how deletion of the hypoxia-response element <strong>in</strong> the<br />

VEGF promoter lowered expression of this cytok<strong>in</strong>e <strong>in</strong> the sp<strong>in</strong>al cord,<br />

result<strong>in</strong>g <strong>in</strong> motor neuron degeneration.<br />

51. Agani FH, Pichiule P, Chavez JC, LaManna JC: The role of<br />

mitochondria <strong>in</strong> the regulation of hypoxia-<strong>in</strong>ducible factor 1<br />

expression dur<strong>in</strong>g hypoxia. J Biol Chem (2000) 275(46):35863-35867.<br />

52. Nguyen MD, Julien JP, Rivest S: Induction of pro<strong>in</strong>flammatory<br />

molecules <strong>in</strong> mice with amyotrophic lateral sclerosis: No<br />

requirement for proapoptotic <strong>in</strong>terleuk<strong>in</strong>-1β <strong>in</strong> neurodegeneration.<br />

Ann Neurol (2001) 50(5):630-639.<br />

53. Lambrechts D, Storkebaum E, Morimoto M, Del-Favero J, Desmet F,<br />

Marklund SL, Wyns S, Thijs V, Andersson J, van Marion I, Al-Chalabi A<br />

et al: VEGF is a modifier of amyotrophic lateral sclerosis <strong>in</strong> mice<br />

and humans and protects motor neurons aga<strong>in</strong>st ischemic death.<br />

Nat Genet (2003) 34(4):383-394.<br />

•• This paper reports that haplotypes that decrease plasma VEGF levels may<br />

<strong>in</strong>fluence neurodegeneration <strong>in</strong> ALS.<br />

54. Huez I, Bornes S, Bresson D, Creancier L, Prats H: New vascular<br />

endothelial growth factor isoform generated by <strong>in</strong>ternal ribosome<br />

entry site - driven CUG translation <strong>in</strong>itiation. Mol Endocr<strong>in</strong>ol (2001)<br />

15(12):2197-2210.<br />

55. Nygren I, Larsson A, Johansson A, Askmark H: VEGF is <strong>in</strong>creased <strong>in</strong><br />

serum but not <strong>in</strong> sp<strong>in</strong>al cord from patients with amyotrophic lateral<br />

sclerosis. Neuroreport (2002) 13(17):2199-2201.<br />

56. Ilzecka J: Cerebrosp<strong>in</strong>al fluid vascular endothelial growth factor<br />

levels <strong>in</strong> patients with amyotrophic lateral sclerosis. Cl<strong>in</strong> Neurol<br />

Neurosurg (2004) 106(4):289-293.<br />

57. Devos D, Moreau C, Lassale P, Perez T, De Seze J, Brunand-Danel V,<br />

Destee A, Tonnel AB, Just N: Low level of the vascular endothelial<br />

growth factor <strong>in</strong> CSF from early ALS patients. Neurology (2004)<br />

62(11):2127-2129.<br />

58. Storkebaum E, Carmeliet P: VEGF: A critical player <strong>in</strong><br />

neurodegeneration. J Cl<strong>in</strong> Invest (2004) 113(1):14-18.<br />

• A review of the role of VEGF <strong>in</strong> neurodegeneration, and its potential<br />

application <strong>in</strong> neuroprotection.<br />

59. Kobari M, Obara K, Watanabe S, Dembo T, Fukuuchi Y: Local cerebral<br />

blood flow <strong>in</strong> motor neuron disease: Correlation with cl<strong>in</strong>ical<br />

f<strong>in</strong>d<strong>in</strong>gs. J Neurol Sci (1996) 144(1-2):64-69.<br />

60. Lambrechts D, Storkebaum E, Carmeliet P: VEGF: Necessary to<br />

prevent motoneuron degeneration, sufficient to treat ALS? Trends<br />

Mol Med (2004) 10(6):275-282.<br />

• A review of VEGF activity as an angiogenic and neurotrophic factor, and its<br />

role <strong>in</strong> neurodegeneration and therapy of ALS.<br />

61. Arsic N, Zacchigna S, Zentil<strong>in</strong> L, Ramirez-Correa G, Pattar<strong>in</strong>i L, Salvi A,<br />

S<strong>in</strong>agra G, Giacca M: Vascular endothelial growth factor stimulates<br />

skeletal muscle regeneration <strong>in</strong> vivo. Mol Ther (2004) 10(5):844-854.<br />

62. Bruijn LI: Amyotrophic lateral sclerosis: From disease mechanisms<br />

to therapies. Biotechniques (2002) 32(5):1112-1121.<br />

63. Zheng C, Nennesmo I, Fadeel B, Henter JI: Vascular endothelial<br />

growth factor prolongs survival <strong>in</strong> a transgenic mouse model of<br />

ALS. Ann Neurol (2004) 56(4): 564-567.<br />

•• This paper describes how VEGF delays progression of ALS symptoms and<br />

prolongs survival <strong>in</strong> a Cu/Zn SOD1 transgenic model of ALS.<br />

64. Azzouz M, Ralph GS, Storkebaum E, Walmsley LE, Mitrophanous KA,<br />

K<strong>in</strong>gsman SM, Carmeliet P, Mazarakis ND: VEGF delivery with<br />

retrogradely transported lentivector prolongs survival <strong>in</strong> a mouse<br />

ALS model. Nature (2004) 429(6990):413-417.<br />

•• This paper describes how the <strong>in</strong>jection of VEGF-express<strong>in</strong>g lentiviral vector<br />

<strong>in</strong>to the muscles of G93A SOD1 transgenic mice can delay onset and <strong>in</strong>hibit<br />

progression of ALS.<br />

Does VEGF represent a potential treatment for amyotrophic lateral sclerosis? Iłżecka 59<br />

65. Storkebaum E, Lambrechts D, Dewerch<strong>in</strong> M, Moreno-Murciano MP,<br />

Appelmans S, Oh H, Van Damme P, Rutten B, Man WY, De Mol M,<br />

Wyns S et al: Treatment of motoneuron degeneration by<br />

<strong>in</strong>tracerebroventricular delivery of VEGF <strong>in</strong> a rat model of ALS. Nat<br />

Neurosci (2005) 8(1):85-92.<br />

66. Wyman T, Rohrer D, Kirigiti P, Nichols H, Pilcher K, Nilaver G, Machida<br />

C: Promoter-activated expression of nerve growth factor for<br />

treatment of neurodegenerative diseases. Gene Ther (1999)<br />

6(10):1648-1660.<br />

67. Shah PB, Losordo DW: Non-viral vectors for gene therapy: Cl<strong>in</strong>ical<br />

trials <strong>in</strong> cardiovascular disease. Adv Genet (2005) 54:339-361.<br />

68. Keir SD, Xiao X, Li J, Kennedy PG: Adeno-associated virus-mediated<br />

delivery of glial cell l<strong>in</strong>e-derived neurotrophic factor protects motor<br />

neuron-like cells from apoptosis. J Neurovirol (2001) 7(5):437-446.<br />

69. Kle<strong>in</strong> SM, Behrstock S, McHugh J, Hoffmann K, Wallace K, Suzuki M,<br />

Aebischer P, Svendsen CN: GDNF delivery us<strong>in</strong>g human neural<br />

progenitor cells <strong>in</strong> a rat model of ALS. Hum Gene Ther (2005)<br />

16(4):509-521.<br />

70. Nirmalananthan N, Greensmith L: Amyotrophic lateral sclerosis:<br />

Recent advances and future therapies. Curr Op<strong>in</strong> Neurol (2005)<br />

18(6):712-719.<br />

71. Gao J, Coggeshall RE, Tarasenko YI, Wu P: Human neural stem cellderived<br />

chol<strong>in</strong>ergic neurons <strong>in</strong>nervate muscle <strong>in</strong> motoneuron<br />

deficient adult rats. Neuroscience (2005) 131(2):257-262.<br />

72. Vastag B: Stem cells step closer to the cl<strong>in</strong>ic: Paralysis partially<br />

reversed <strong>in</strong> rats with ALS-like disease. J Am Med Assoc (2001)<br />

285(13):1691-1693.<br />

73. Silani V, Corbo M: Cell-replacement therapy with stem cells <strong>in</strong><br />

neurodegenerative diseases. Curr Neurovasc Res (2004) 1(3):283-<br />

289.<br />

74. Silani V, Leigh N: Stem therapy for ALS: Hope and reality. Amyotroph<br />

Lateral Scler Other Motor Neuron Disord (2003) 4(1):8-10.<br />

75. Garbuzova-Davis S, Will<strong>in</strong>g AE, Zigova T, Saporta S, Justen EB, Lane<br />

JC, Hudson JE, Chen N, Davis CD, Sanberg PR: Intravenous<br />

adm<strong>in</strong>istration of human umbilical cord blood cells <strong>in</strong> a mouse<br />

model of amyotrophic lateral sclerosis: Distribution, migration, and<br />

differentiation. J Hematother Stem Cell Res (2003) 12(3):255-270.<br />

76. Li P, Tessler A, Han SS, Fischer I, Rao MS, Selzer ME: Fate of<br />

immortalized human neuronal progenitor cells transplanted <strong>in</strong> rat<br />

sp<strong>in</strong>al cord. Arch Neurol (2005) 62(2):223-229.<br />

77. Mazz<strong>in</strong>i L, Fagioli F, Boccaletti R, Mareschi K, Oliveri G, Olivieri C,<br />

Pastore I, Marasso R, Madon E: Stem cell therapy <strong>in</strong> amyotrophic<br />

lateral sclerosis: A methodological approach <strong>in</strong> humans. Amyotroph<br />

Lateral Scler Other Motor Neuron Disord (2003) 4(3):158-161.<br />

78. Silani V, Cova L, Corbo M, Ciammola A, Polli E: Stem-cell therapy for<br />

amyotrophic lateral sclerosis. Lancet (2004) 364(9429):200-202.<br />

79. Chen HK, Hung HF, Shyu KG, Wang BW, Sheu JR, Liang YJ, Chang<br />

CC, Kuan P: Comb<strong>in</strong>ed cord blood stem cells and gene therapy<br />

enhances angiogenesis and improves cardiac performance <strong>in</strong><br />

mouse after acute myocardial <strong>in</strong>farction. Eur J Cl<strong>in</strong> Invest (2005)<br />

35(11):677-686.<br />

80. Wood JD, Beaujeux TP, Shaw PJ: Prote<strong>in</strong> aggregation <strong>in</strong> motor<br />

neuron disorders. Neuropathol Appl Neurobiol (2003) 29(6):529-545.<br />

81. Yang SP, Kwon BO, Gho YS, Chae CB: Specific <strong>in</strong>teraction of<br />

VEGF165 with β-amyloid, and its protective effect on β-amyloid<strong>in</strong>duced<br />

neurotoxicity. J Neurochem (2005) 93(1):118-127.<br />

82. Cleveland JL: A new piece of the ALS puzzle. Nat Genet (2003)<br />

34(4):357-358.


60<br />

Ispronicl<strong>in</strong>e Targacept<br />

Hugo Geerts<br />

Address<br />

In Silico Biosciences Inc<br />

3741 Walnut Street #609<br />

Philadelphia<br />

PA 19104<br />

USA<br />

Email: Hugo-Geerts@In-Silico-Biosciences.com<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):60-69<br />

© The Thomson Corporation ISSN 1472-4472<br />

Targacept (formerly a subsidiary of RJ Reynolds) is develop<strong>in</strong>g<br />

ispronicl<strong>in</strong>e, the lead <strong>in</strong> a series of nicot<strong>in</strong>ic acetylchol<strong>in</strong>e<br />

(nACh) ligands, as a potential oral treatment for cognitive<br />

impairment, <strong>in</strong>clud<strong>in</strong>g a variety of non-Alzheimer's dementias.<br />

In July 2005, Targacept was prepar<strong>in</strong>g for a phase II study <strong>in</strong><br />

patients with mild-to-moderate Alzheimer's disease.<br />

Introduction<br />

With the observation that a nicot<strong>in</strong>ic acetylchol<strong>in</strong>e receptor<br />

(nAChR) deficit occurs <strong>in</strong> neurodegenerative conditions,<br />

such as Alzheimer's disease (AD), and <strong>in</strong> psychiatric<br />

conditions, such as schizophrenia, there came a considerable<br />

<strong>in</strong>terest <strong>in</strong> develop<strong>in</strong>g nicot<strong>in</strong>ic receptor modulators with a<br />

less addictive and toxic profile than nicot<strong>in</strong>e [624142],<br />

[624143]. Although different nAChR subtypes exist <strong>in</strong> the<br />

central nervous system (CNS) as hetero- or homomeric<br />

assemblies of α and β subunits, there is evidence that α7<br />

homomeric and β2-conta<strong>in</strong><strong>in</strong>g (β2*) receptor subunits<br />

predom<strong>in</strong>ate <strong>in</strong> the human bra<strong>in</strong>, as do α3β4 subunits to a<br />

lesser extent [638395], [638396], [638398]. The majority of the<br />

β2* subunits are of the α4β2 nAChR subtype and positron<br />

emission tomography (PET) imag<strong>in</strong>g data <strong>in</strong> humans have<br />

<strong>in</strong>dicated a high density of this subtype <strong>in</strong> the cortex and<br />

thalamus [638427]. Although the majority of data suggest<br />

that β2* nAChR subtypes are selectively affected <strong>in</strong> AD,<br />

other results suggest that α7 nAChR subtypes are also<br />

<strong>in</strong>volved. It is of particular <strong>in</strong>terest to note that <strong>in</strong><br />

schizophrenic patients, both genetic and neuropathological<br />

f<strong>in</strong>d<strong>in</strong>gs suggest that the cognitive deficit is sensitive to<br />

nicot<strong>in</strong>ic receptor modulation. The National Institutes of<br />

Health-sponsored MATRICS (Measurement And Treatment<br />

Research to Improve Cognition <strong>in</strong> Schizophrenia) project<br />

developed a standardized battery of cognitive tests and<br />

identified a number of pharmacological approaches,<br />

<strong>in</strong>clud<strong>in</strong>g nAChR modulation [624144], [624147]. The<br />

follow-up project, called TURNS (Treatment Units for<br />

Research on Neurocognition <strong>in</strong> Schizophrenia), selected<br />

ispronicl<strong>in</strong>e (TC-1734; Targacept Inc) for a pilot phase II<br />

study as an add-on medication with a neuroleptic agent<br />

[631107]. Ispronicl<strong>in</strong>e is currently undergo<strong>in</strong>g phase II<br />

trials by Targacept for the potential treatment of ageassociated<br />

memory impairment (AAMI) and mild<br />

cognitive impairment (MCI) [545766]. A phase II study <strong>in</strong><br />

AD has also commenced [611220]. Targacept is consider<strong>in</strong>g<br />

ispronicl<strong>in</strong>e for cl<strong>in</strong>ical development <strong>in</strong> <strong>in</strong>dications such as<br />

cognitive impairment (associated with schizophrenia and<br />

follow<strong>in</strong>g coronary artery bypass graft<strong>in</strong>g), attention<br />

deficit hyperactivity disorder (ADHD) and some forms of<br />

dementia [624033].<br />

Orig<strong>in</strong>ator Targacept Inc<br />

Status Phase II Cl<strong>in</strong>ical<br />

.<br />

Indication Cognitive disorder<br />

.<br />

Actions Neuroprotectant, Nicot<strong>in</strong>ic ACh agonist, Nootropic<br />

agent<br />

Synonyms & Analogs CLZ-52, CLZ-59, nicot<strong>in</strong>ic ACh<br />

ligands (cognitive disorder), nicot<strong>in</strong>ic ACh ligands (memory<br />

enhancers), RJR-1594, RJR-1595, RJR-1734, RJR-2559,<br />

TC-01695, TC-1698, TC-1707, TC-1709, TC-1734, TC-<br />

2248, TC-2258, TC-01706, TC-01707, TC-01714, TC-<br />

01893, TC-02116, TC-02123, TC-02248, TC-02258, TC-<br />

02531<br />

Registry No: 252870-53-4<br />

C<br />

H 3<br />

CH 3<br />

O<br />

N<br />

It has also been proposed that nicot<strong>in</strong>ic receptor stimulation can<br />

provide neuroprotection aga<strong>in</strong>st some aspects of AD (βamyloid<br />

and glutamate pathology) [622041]. The fact that<br />

galantam<strong>in</strong>e, a chol<strong>in</strong>ergic drug that also has an allosteric<br />

potentiat<strong>in</strong>g ligand effect on nAChRs, is used to treat AD<br />

patients, opens a w<strong>in</strong>dow onto the possible cl<strong>in</strong>ical potential of<br />

nicot<strong>in</strong>ic receptor modulation. As a consequence, the<br />

modulation of nicot<strong>in</strong>ic receptors is an <strong>in</strong>terest<strong>in</strong>g therapeutic<br />

approach that is be<strong>in</strong>g pursued by a number of laboratories<br />

because, <strong>in</strong> pr<strong>in</strong>ciple, it comb<strong>in</strong>es symptomatic treatment with<br />

neuroprotection [516203], [634638].<br />

Synthesis and SAR<br />

Compounds modulat<strong>in</strong>g nAChRs were identified us<strong>in</strong>g<br />

Targacept's proprietary Pentad <strong>in</strong> silico technology [430095],<br />

[512600]. A number of compounds with low nanomolar<br />

aff<strong>in</strong>ities for the nAChR were identified, but the <strong>in</strong> vivo halflives<br />

of these compounds were estimated to be too short. An αmethyl<br />

group was identified as be<strong>in</strong>g essential for <strong>in</strong>creas<strong>in</strong>g<br />

the half-life of these compounds from 0.5 to 1.4 h <strong>in</strong> rodents, as<br />

illustrated by the fact that RJR-2403 (Targacept Inc/Dr Falk<br />

Pharma GmbH), a neuronal nicot<strong>in</strong>ic receptor ligand <strong>in</strong><br />

development for the treatment of ulcerative colitis, was rapidly<br />

metabolized through N-demethylation and oxidation. As a<br />

result of a 'use-patent' problem, cl<strong>in</strong>ical development of RJR-<br />

2403 was suspended and the <strong>in</strong> vitro nicot<strong>in</strong>ic receptor α4β2<br />

specificity of ispronicl<strong>in</strong>e was <strong>in</strong>vestigated. Ispronicl<strong>in</strong>e is the 3isopropoxy-pyrid<strong>in</strong>e<br />

analog of RJR-2403 synthesized to prevent<br />

N-demethylation. It conferred potent neuroprotection and<br />

dopam<strong>in</strong>e release <strong>in</strong> rat striatum, without react<strong>in</strong>g with any<br />

other ganglionic or muscle receptors [345007], [557048].<br />

In order to prepare ispronicl<strong>in</strong>e, (S)-N-methyl-N-(tertbutoxycarbonyl)-4-penten-2-am<strong>in</strong>e<br />

and 3-bromo-5-isopropoxy-<br />

CH 3<br />

H<br />

N<br />

CH 3


pyrid<strong>in</strong>e were coupled via a palladium-catalyzed Heck<br />

coupl<strong>in</strong>g reaction. The result<strong>in</strong>g <strong>in</strong>termediate, (S)-(E)-Nmethyl-N-(tert-butoxycarbonyl)-5-[3-(5-isopropoxy-pyrid<strong>in</strong>)yl]-4-penten-2-am<strong>in</strong>e,<br />

was subsequently treated with 6 M<br />

hydrochloric acid <strong>in</strong> dimethylformamide to give the free<br />

base of ispronicl<strong>in</strong>e [559979].<br />

Precl<strong>in</strong>ical development<br />

Ispronicl<strong>in</strong>e is a high-aff<strong>in</strong>ity (Ki = 11 nM) agonist of nicot<strong>in</strong>ic<br />

receptors <strong>in</strong> rat bra<strong>in</strong> membrane preparations (nicot<strong>in</strong>e Ki = 4<br />

nM) [306443], [363337] and reportedly has specificity for α4β2<br />

nAChRs [306443]; <strong>in</strong> one study <strong>in</strong> rat hippocampal membranes,<br />

ispronicl<strong>in</strong>e was <strong>in</strong>effective at displac<strong>in</strong>g [ 125I]α-bungarotox<strong>in</strong><br />

b<strong>in</strong>d<strong>in</strong>g to α7 nAChRs (Ki > 50,000 nM) [559979]. No further<br />

data on the aff<strong>in</strong>ities for other bra<strong>in</strong> nAChR subtypes are<br />

available.<br />

Ispronicl<strong>in</strong>e did not b<strong>in</strong>d to muscle-type (α1β1δγ) or<br />

ganglion-type (α3β4) peripheral nAChRs at concentrations<br />

up to 100 µM, as determ<strong>in</strong>ed by isotopic ion efflux <strong>in</strong> the<br />

human TE671/RD and rat pheochromocytoma PC12 cell<br />

l<strong>in</strong>es, which express the respective receptors. Conversely,<br />

nicot<strong>in</strong>e activated nAChRs <strong>in</strong> the human and rat cells with<br />

EC50 values of 60 and 20 µM, respectively, suggest<strong>in</strong>g that<br />

ispronicl<strong>in</strong>e has considerable CNS/peripheral nervous<br />

system specificity [306443], [376757]. No other data were<br />

provided regard<strong>in</strong>g human nAChRs.<br />

Induction of dopam<strong>in</strong>e release <strong>in</strong> rat striatal synaptosomes<br />

showed that ispronicl<strong>in</strong>e had a profile comparable to that of<br />

nicot<strong>in</strong>e at these receptors (EC50 = 106 nM and Emax = 85%).<br />

In thalamic synaptosomes, ispronicl<strong>in</strong>e <strong>in</strong>creased ion <strong>in</strong>flux<br />

to an Emax of 58% with an EC50 value of 220 nM, compared<br />

with an Emax of 100% and an EC50 value of 590 nM for<br />

nicot<strong>in</strong>e [306443], [376757]. These data are <strong>in</strong> agreement with<br />

observations that striatal dopam<strong>in</strong>e release is regulated by<br />

β2* nAChRs [636359] and confirm the preference of<br />

ispronicl<strong>in</strong>e for the α4β2 nAChR subtype. Given the<br />

preferential localization of α4β2 nAChRs <strong>in</strong> the thalamus<br />

[638427], the effect of ispronicl<strong>in</strong>e on thalamic synaptosomes<br />

is also very likely mediated via these receptor subtypes.<br />

Ispronicl<strong>in</strong>e improved performance <strong>in</strong> a rat radial arm maze<br />

model <strong>in</strong> vivo, and significant improvements <strong>in</strong> cognition were<br />

observed follow<strong>in</strong>g oral adm<strong>in</strong>istration of ispronicl<strong>in</strong>e (0.1, 0.3,<br />

0.6, 3.0 and 6.0 µmol/kg) <strong>in</strong> both acute (presumed to be s<strong>in</strong>gledose)<br />

and chronic (daily for 6 days) schedules [306443]. The<br />

effects on short- and long-term memory <strong>in</strong> this model<br />

reportedly lasted for 18 to > 24 h [325629], [363337], [363536].<br />

In a mur<strong>in</strong>e behavioral despair model, ispronicl<strong>in</strong>e showed<br />

significant activity follow<strong>in</strong>g <strong>in</strong>traperitoneal adm<strong>in</strong>istration of 1<br />

and 3 µmol/kg, but not 10 µmol/kg, and was more effective<br />

than the dibenzazep<strong>in</strong>e antidepressant imipram<strong>in</strong>e (40<br />

µmol/kg ip), show<strong>in</strong>g its potential for additional beneficial<br />

effects as an antidepressant [559979].<br />

Ispronicl<strong>in</strong>e (0.6, 1.0 and 3.0 µmol/kg) [559979] reversed<br />

scopolam<strong>in</strong>e-<strong>in</strong>duced cognitive deficits <strong>in</strong> a rat passive<br />

avoidance model (ED50 = 0.89 µmol/kg) with an <strong>in</strong>verted Ushaped<br />

dose response. This result suggests a possible effect<br />

Ispronicl<strong>in</strong>e Geerts 61<br />

on pre-synaptic ACh release and the subsequent stimulation<br />

of post-synaptic muscar<strong>in</strong>ic receptors, because scopolam<strong>in</strong>e<br />

is not documented to have any effect on nicot<strong>in</strong>ic receptors.<br />

This f<strong>in</strong>d<strong>in</strong>g is corroborated by the observation that a<br />

synergistic effect was achieved <strong>in</strong> this model when a suboptimal<br />

dose of ispronicl<strong>in</strong>e (0.6 µmol/kg) was comb<strong>in</strong>ed<br />

with <strong>in</strong>effective doses of the acetyl chol<strong>in</strong>esterase (AChE)<br />

<strong>in</strong>hibitors tacr<strong>in</strong>e and donepezil. Ispronicl<strong>in</strong>e comb<strong>in</strong>ed with<br />

each <strong>in</strong>hibitor resulted <strong>in</strong> an enhanced step-through latency<br />

compared with sole ispronicl<strong>in</strong>e adm<strong>in</strong>istration. Stepthough<br />

latencies (as % of control) were as follows:<br />

unlesioned, 69%; scopolam<strong>in</strong>e lesioned, 8%; ispronicl<strong>in</strong>e (1.0<br />

µmol/kg), 55%; tacr<strong>in</strong>e (12 µmol/kg), 36%; donepezil (1.0<br />

µmol/kg), 53%; suboptimal ispronicl<strong>in</strong>e (0.6 µmol/kg),<br />

tacr<strong>in</strong>e (1.2 µmol/kg) or donepezil (0.1 µmol/kg), 21, 6 and<br />

21%, respectively; and suboptimal ispronicl<strong>in</strong>e plus tacr<strong>in</strong>e<br />

or donepezil: 37 and 39%, respectively [345774], [559979].<br />

Ispronicl<strong>in</strong>e (7 to 14 days at an unstated dose) reduced<br />

spontaneous locomotor activity <strong>in</strong> rats <strong>in</strong> a monophasic<br />

manner, unlike the biphasic activity of nicot<strong>in</strong>e, for the<br />

duration of the test (90 m<strong>in</strong>). Chronic adm<strong>in</strong>istration of the<br />

compound resulted <strong>in</strong> rapid tolerance [345791]. This<br />

property might necessitate <strong>in</strong>novative dosage schedul<strong>in</strong>g <strong>in</strong><br />

the cl<strong>in</strong>ic.<br />

Acute oral adm<strong>in</strong>istration of ispronicl<strong>in</strong>e dose-dependently<br />

<strong>in</strong>creased levels of free ACh <strong>in</strong> the cortex of rats [475601],<br />

[557048]. The lowest active dose was 5 mg/kg and the<br />

maximally effective dose was 10 mg/kg, and these yielded<br />

<strong>in</strong>creases of 36 and 70% over the basal ACh values,<br />

respectively. The maximal effect was observed at the 10mg/kg<br />

dose. A larger dose of ispronicl<strong>in</strong>e (20 mg/kg)<br />

<strong>in</strong>creased the duration of ACh release (to 4 h), but did not<br />

<strong>in</strong>crease the amplitude significantly (84%). With different<br />

doses of nicot<strong>in</strong>e (1.0, 2.5 and 5.0 mg/kg po), the amplitude<br />

of the stimulated ACh response did not change, and the<br />

maximal <strong>in</strong>creases over the basal levels of ACh were 47, 44<br />

and 56%, respectively, 40 to 80 m<strong>in</strong> after treatment. The nonselective<br />

nAChR antagonist mecamylam<strong>in</strong>e (Targacept Inc),<br />

which is <strong>in</strong> development for the potential treatment of<br />

various neuropsychiatric disorders, <strong>in</strong>hibited the ACh<br />

release <strong>in</strong>duced by ispronicl<strong>in</strong>e and nicot<strong>in</strong>e (maximal<br />

effective doses) at a dose of 1 mg/kg when adm<strong>in</strong>istered<br />

subcutaneously 40 m<strong>in</strong> before dos<strong>in</strong>g with ispronicl<strong>in</strong>e and<br />

nicot<strong>in</strong>e. Oral adm<strong>in</strong>istration of ispronicl<strong>in</strong>e improved object<br />

recognition <strong>in</strong> mice after 24 h. The recognition <strong>in</strong>dex (RI) <strong>in</strong><br />

mice treated with the vehicle was 72 ± 5 after 3 h and 45 ± 2<br />

after 24 h; however, after treatment with 0.5 and 1 mg/kg<br />

ispronicl<strong>in</strong>e, the RI at 24 h improved to 72 ± 3 and 55 ± 3,<br />

respectively. Both these effects, the <strong>in</strong>creases <strong>in</strong> ACh<br />

concentration and improved object recognition, were also<br />

countered by mecamylam<strong>in</strong>e [475601]. After a repeated<br />

treatment of 4 days with ispronicl<strong>in</strong>e (10 mg/kg) or nicot<strong>in</strong>e<br />

(1 mg/kg), no tolerance was observed regard<strong>in</strong>g ACh<br />

release [376757].<br />

Ispronicl<strong>in</strong>e was neuroprotective <strong>in</strong> an N-methyl-D-aspartate<br />

(NMDA)-<strong>in</strong>duced cell-death paradigm and may be<br />

synergistic with current AD therapies [325629]. In a<br />

hippocampal slice model (a mature culture of fetal rat<br />

neurons) subjected to a 15-m<strong>in</strong> hypoxia/glucose deprivation


62 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

episode, ispronicl<strong>in</strong>e prevented the loss of synaptic<br />

transmission <strong>in</strong> a concentration-dependent manner, with a<br />

maximal effect of > 70% protection at 10 µM. The effect was<br />

mediated through nAChRs because mecamylam<strong>in</strong>e, blocked<br />

the neuroprotective effect [583306]. This effect is somewhat<br />

unexpected given the proposed l<strong>in</strong>k between specific α7<br />

nAChR activation and neuroprotection. Neurotoxicity<br />

stimulated by glutamate is prevented by nicot<strong>in</strong>e <strong>in</strong> primary<br />

cultures of cerebellar neurons and is generally thought to be<br />

mediated by α7 nAChR activation. However <strong>in</strong> acutely<br />

dissociated slices, neuroprotection by nicot<strong>in</strong>e can be mediated<br />

by activation of α4β2 nAChRs and <strong>in</strong>hibition of α7 nAChRs<br />

[638430]. Therefore, neuroprotection by ispronicl<strong>in</strong>e can be<br />

expla<strong>in</strong>ed by its preferential activation of the α4β2 nAChR.<br />

The mechanism of ispronicl<strong>in</strong>e neuroprotection reportedly<br />

utilizes a signal transduction pathway <strong>in</strong>volv<strong>in</strong>g JAK2, PI3<br />

k<strong>in</strong>ase, Akt and Bcl-2 [467878]. Ispronicl<strong>in</strong>e (unstated dosage)<br />

was orally active <strong>in</strong> vivo and <strong>in</strong>duced susta<strong>in</strong>ed ACh release<br />

from the cortex, show<strong>in</strong>g potency <strong>in</strong> animal models of cognition<br />

and attention, and additivity/synergy with AChE <strong>in</strong>hibitors. It<br />

demonstrated neuroprotective effects <strong>in</strong> chemically <strong>in</strong>duced<br />

neuronal excitotoxicity models and <strong>in</strong> hypoxia/glucose<br />

deprivation models. Additionally, ispronicl<strong>in</strong>e showed<br />

antidepressant activity; however, no details were provided for<br />

these studies [513286].<br />

Metabolism and pharmacok<strong>in</strong>etics<br />

Metabolism studies conducted <strong>in</strong> vitro with liver microsome<br />

preparations from mice, rats, gu<strong>in</strong>ea pigs, dogs, monkeys<br />

and humans identified five metabolites; the O-dealkyl<br />

derivative endogenous conjugate was the primary<br />

metabolite <strong>in</strong> humans and monkeys, while the N-oxide<br />

metabolite was present <strong>in</strong> all other species [559979]. The<br />

aff<strong>in</strong>ities of the 3-alkylcarbonate and N-desalkylated<br />

metabolites for α4β2 nAChRs were approximately 20- and<br />

40-fold higher than for ispronicl<strong>in</strong>e; other metabolites had<br />

aff<strong>in</strong>ities > 100-fold over ispronicl<strong>in</strong>e. In Sprague Dawley<br />

rats that were adm<strong>in</strong>istered 20 mg/kg of ispronicl<strong>in</strong>e, mass<br />

spectroscopy identified 12 metabolites <strong>in</strong> the plasma, the Odealkyl<br />

derivative be<strong>in</strong>g the major metabolite. No<br />

metabolites were detected <strong>in</strong> fecal extracts, although a small<br />

amount of the parent compound was present [559979].<br />

Ispronicl<strong>in</strong>e had a half-life of 1 to 2 h <strong>in</strong> rodents [557048],<br />

[634416]; however, given that the beneficial effect of a s<strong>in</strong>gle<br />

oral adm<strong>in</strong>istration of ispronicl<strong>in</strong>e on cognition <strong>in</strong> precl<strong>in</strong>ical<br />

models persisted for 18 to 48 h [363337], [634416], this halflife<br />

does not seem to present much of a problem for efficacy.<br />

This unexpected long-term potentiation effect might be<br />

because of a much higher retention of the compound <strong>in</strong> the<br />

bra<strong>in</strong>, an elaborate downstream effect lead<strong>in</strong>g to transient<br />

<strong>in</strong>tracellular plasticity changes, or both. In Sprague Dawley<br />

rats, oral adm<strong>in</strong>istration of ispronicl<strong>in</strong>e (10 mg/kg)<br />

produced high systemic levels, with a maximal plasma<br />

concentration (Cpmax) of 370 ng/ml and Tmax value of 0.25 h.<br />

The compound was cleared rapidly, with a term<strong>in</strong>ation halflife<br />

of 1.1 h. The bioavailability of ispronicl<strong>in</strong>e was 73.3%.<br />

Whole-bra<strong>in</strong> ispronicl<strong>in</strong>e levels at this dose were high<br />

(maximal bra<strong>in</strong> concentration (Cbmax) = 659 ng/g; Tmax = 0.5<br />

to 2 h), show<strong>in</strong>g that the drug readily penetrated the bra<strong>in</strong>.<br />

After <strong>in</strong>travenous adm<strong>in</strong>istration of 1 mg/kg, ispronicl<strong>in</strong>e had<br />

a half-life of 0.8 h and was cleared rapidly (7.1 l/h/kg<br />

compared with the hepatic plasma flow of 2 to 4 l/h/kg)<br />

[559979].<br />

In dogs, ispronicl<strong>in</strong>e had a half-life of 2 h follow<strong>in</strong>g a 1mg/kg<br />

<strong>in</strong>travenous dose. A high total plasma clearance of<br />

3.2 l/h/kg was achieved compared with the hepatic plasma<br />

flow of 1.2 to 2.4 l/h/kg. Follow<strong>in</strong>g oral adm<strong>in</strong>istration of 1<br />

mg/kg ispronicl<strong>in</strong>e, low systemic plasma levels were<br />

achieved (Cpmax = 35 ng/ml at 0.5 to 2 h). The elim<strong>in</strong>ation<br />

half-life of ispronicl<strong>in</strong>e was 1.3 h and its estimated<br />

bioavailability was 31.4% [559979].<br />

In a crossover study <strong>in</strong> six healthy male volunteers,<br />

ispronicl<strong>in</strong>e (2 to 320 mg po) had a Tmax at 2 h and an<br />

elim<strong>in</strong>ation half-life of 4 h; follow<strong>in</strong>g a 320-mg dose,<br />

ispronicl<strong>in</strong>e had a Cmax of 120 ng/ml, a plasma concentration<br />

5- to 10-fold greater than that expected to produce maximal<br />

cognitive effects [559979].<br />

In elderly AAMI patients (> 60 years of age), a 50-mg oral dose<br />

of ispronicl<strong>in</strong>e gave rise to a plasma Cmax range of 4 to 25 ng/ml<br />

[612281], and oral doses of 25 to 75 mg ispronicl<strong>in</strong>e produced<br />

plasma Cmax values <strong>in</strong> the range of 4 to 55 ng/ml [634952].<br />

These low Cmax values might be due to extensive metabolism,<br />

high plasma clearance or low bioavailability. A complete<br />

pharmacok<strong>in</strong>etic study of a s<strong>in</strong>gle 80-mg dose of ispronicl<strong>in</strong>e<br />

was performed <strong>in</strong> six elderly volunteers to assess its absorption,<br />

distribution, metabolism and excretion properties. Cognitive<br />

improvement was evident after 36 to 48 h, which was<br />

comparable to the long duration of action observed <strong>in</strong> animal<br />

models, thus <strong>in</strong>dicat<strong>in</strong>g the suitability of a once-daily dos<strong>in</strong>g<br />

schedule [615362]. The study showed that ispronicl<strong>in</strong>e had a<br />

half-life of 5 to 7 h <strong>in</strong> humans [634416]. Another study <strong>in</strong> six<br />

fed/fasted volunteers exam<strong>in</strong>ed food <strong>in</strong>teraction follow<strong>in</strong>g an<br />

80-mg dose of ispronicl<strong>in</strong>e, although the results from this study<br />

have apparently not yet been reported [615362].<br />

Toxicity<br />

The results of studies <strong>in</strong> rats, dogs and rabbits <strong>in</strong>dicated that<br />

ispronicl<strong>in</strong>e was free from toxic effects at the doses tested. In<br />

rats, no effect was observed on diaphragm contraction,<br />

respiratory function or gastric empty<strong>in</strong>g after oral<br />

adm<strong>in</strong>istration of up to 50, 250 and 500 mg/kg, respectively.<br />

In rats and dogs that were chronically adm<strong>in</strong>istered<br />

ispronicl<strong>in</strong>e for 13 weeks (50 and 30 mg/kg, respectively),<br />

the only side effect was slight and transient bradycardia <strong>in</strong><br />

dogs at the highest dose, possibly mediated by autonomic<br />

nerve stimulation [512176]. Overall, ispronicl<strong>in</strong>e was well<br />

tolerated <strong>in</strong> animals and there was no <strong>in</strong>dication of<br />

reproductive, cellular or genetic toxicity [513286].<br />

Other prelim<strong>in</strong>ary toxicology studies showed a low toxicity<br />

for ispronicl<strong>in</strong>e, with observable adverse effects occurr<strong>in</strong>g <strong>in</strong><br />

normal male and female rats at doses of 5 to 200 mg/kg,<br />

compared with cognitive enhancement at 0.034 mg/kg. At a<br />

dose of 1400 mg/kg, significant toxicity was produced<br />

without caus<strong>in</strong>g death <strong>in</strong> rats [325629]. Thus, the therapeutic<br />

effects of ispronicl<strong>in</strong>e <strong>in</strong> animals are dissociated from its side<br />

effects by four to five orders of magnitude [467878].


In a study conducted <strong>in</strong> rats tra<strong>in</strong>ed to discrim<strong>in</strong>ate nicot<strong>in</strong>e,<br />

ispronicl<strong>in</strong>e and the known addictive properties of nicot<strong>in</strong>e<br />

were compared. Nicot<strong>in</strong>e engaged appropriate respond<strong>in</strong>g <strong>in</strong><br />

70% of animals at a dose of 1.9 µmol/kg compared with<br />

ispronicl<strong>in</strong>e, which engaged an equivalent response only at a<br />

dose of 40 µmol/kg; this result <strong>in</strong>dicates an approximately 20fold-reduced<br />

propensity for dependence of ispronicl<strong>in</strong>e<br />

compared with nicot<strong>in</strong>e [559979].<br />

Cl<strong>in</strong>ical development<br />

Phase I<br />

Four phase I trials of ispronicl<strong>in</strong>e, which assessed safety,<br />

pharmacok<strong>in</strong>etics and cognitive enhancement, have been<br />

completed. One study tested eight escalat<strong>in</strong>g s<strong>in</strong>gle oral doses<br />

of ispronicl<strong>in</strong>e (2, 4, 10, 20, 40, 80, 160 and 320 mg) <strong>in</strong> 48 healthy<br />

volunteers [559979], and a multiple escalat<strong>in</strong>g-dose trial (50, 100<br />

and 200 mg) was conducted <strong>in</strong> 24 healthy volunteers over a 10day<br />

period [511071], [615362]. A pharmacok<strong>in</strong>etic study that<br />

tested food <strong>in</strong>teraction <strong>in</strong> six elderly volunteers was also<br />

completed. The rapid absorption, dose proportionality and<br />

favorable plasma half-life of ispronicl<strong>in</strong>e <strong>in</strong> these trials<br />

suggested the suitability of a once-daily dos<strong>in</strong>g schedule. No<br />

safety issues were reportedly encountered and dose-specific<br />

enhancement of both direct and surrogate measures of memory<br />

and attention was observed. No differences <strong>in</strong> the quality of<br />

work<strong>in</strong>g memory factor were observed. Less pronounced<br />

improvements were observed <strong>in</strong> the 100-mg group, compared<br />

with all other doses, <strong>in</strong>dicative of a possible <strong>in</strong>verted U-shaped<br />

dose-response curve [615362].<br />

In the s<strong>in</strong>gle and multiple escalat<strong>in</strong>g-dose trials, ispronicl<strong>in</strong>e<br />

dose-dependently <strong>in</strong>duced electrical bra<strong>in</strong> activity characteristic<br />

of a nicot<strong>in</strong>e agonist, and electroencephalogram (EEG) analysis<br />

confirmed its CNS penetration and activity. In addition, dosespecific<br />

effects were observed on direct and surrogate measures<br />

of memory <strong>in</strong> a computerized cognitive test battery [615362]. In<br />

l<strong>in</strong>e with precl<strong>in</strong>ical observations, the compound <strong>in</strong>duced longlast<strong>in</strong>g<br />

cognitive enhancement for up to 48 h <strong>in</strong> elderly<br />

volunteers [592125]. In the s<strong>in</strong>gle and multiple escalat<strong>in</strong>g-dose<br />

trials, EEG analysis showed that orally adm<strong>in</strong>istered<br />

ispronicl<strong>in</strong>e caused a shift <strong>in</strong> relative and absolute power from<br />

lower to higher frequency bands. Specifically, power shifted<br />

from the α1 to the α2 band. The shift <strong>in</strong> dom<strong>in</strong>ant α suggested<br />

that the compound had entered the bra<strong>in</strong> and was typical of a<br />

nicot<strong>in</strong>e agonist. Similar effects were observed <strong>in</strong> both trials on<br />

day 1 and <strong>in</strong> the multiple escalat<strong>in</strong>g-dose trial on day 10. No<br />

tolerance to ispronicl<strong>in</strong>e occurred over the 10-day dos<strong>in</strong>g period<br />

[634416]. In the multiple escalat<strong>in</strong>g-dose trial <strong>in</strong> healthy<br />

volunteers, 10 days of dos<strong>in</strong>g with ispronicl<strong>in</strong>e produced<br />

efficacy <strong>in</strong> the 'power of attention' measure of the cognitive<br />

drug research (CDR) test battery [634952]. The 100-mg dose of<br />

ispronicl<strong>in</strong>e improved memory (notably immediate and<br />

delayed word recall) <strong>in</strong> volunteers, and a 200-mg dose<br />

improved picture and word recognition and enhanced<br />

vigilance [634416].<br />

In elderly volunteers, pharmaco-EEG changes resembled<br />

those seen <strong>in</strong> younger <strong>in</strong>dividuals; the changes were of an<br />

acceleration type, with power shift<strong>in</strong>g from low to high<br />

frequency bands. In CDR cognitive tests, significant<br />

Ispronicl<strong>in</strong>e Geerts 63<br />

differences between ispronicl<strong>in</strong>e and placebo on measures of<br />

immediate and delayed recall, picture recognition and<br />

quality of episodic memory were achieved. There was good<br />

correlation between plasma levels of the drug and<br />

pharmaco-EEG changes [634416]. Correlations of<br />

pharmacodynamic and pharmacok<strong>in</strong>etic data <strong>in</strong>dicated that<br />

plasma Cmax values <strong>in</strong> the range 4 to 55 ng/ml were<br />

associated with greatest cognitive improvement; Cmax values<br />

<strong>in</strong> this range would be achieved with oral doses of 25 to 75<br />

mg, levels at which ispronicl<strong>in</strong>e has tolerability equivalent to<br />

placebo [634952].<br />

Phase II<br />

In a randomized, double-bl<strong>in</strong>d, placebo-controlled, phase<br />

IIa/II study <strong>in</strong> an undisclosed number of AAMI patients<br />

(aged > 60 years), a s<strong>in</strong>gle dose of 80 mg ispronicl<strong>in</strong>e was<br />

superior to placebo <strong>in</strong> improv<strong>in</strong>g quality of episodic<br />

secondary memory factor score up to 48 h after dos<strong>in</strong>g. After 3<br />

weeks of treatment at 50 mg, significant improvements were<br />

observed <strong>in</strong> CDR measures of the power and cont<strong>in</strong>uity of<br />

attention, episodic memory and speed of th<strong>in</strong>k<strong>in</strong>g, compared<br />

with patients receiv<strong>in</strong>g placebo [612281], [634952].<br />

Targacept reports that a phase II trial with ispronicl<strong>in</strong>e has<br />

been completed <strong>in</strong> elderly <strong>in</strong>dividuals with AAMI (n = 76).<br />

Positive effects on various aspects of cognition were<br />

observed and the drug was well tolerated at doses up to 150<br />

mg [624033].<br />

Data were presented recently for the double-bl<strong>in</strong>d, placebocontrolled,<br />

crossover phase II study of ispronicl<strong>in</strong>e <strong>in</strong><br />

volunteers with MCI [641513]. Volunteers (aged > 60 years)<br />

with MCI (m<strong>in</strong>i-mental state exam<strong>in</strong>ation (MMSE) score ≥ 24<br />

and Wechsler memory scale-R, paired associate learn<strong>in</strong>g test<br />

score ≥ 1.5 standard deviations lower than age matched<br />

controls) were randomized <strong>in</strong>to cohorts of 20 to sequentially<br />

receive 3 weeks oral treatment with 50 and 100 mg of<br />

ispronicl<strong>in</strong>e or placebo, with a 2-week washout between<br />

treatments. Cognitive assessment was performed at 0, 2 and 4 h<br />

post-dos<strong>in</strong>g on the CDR test battery. No effect was observed<br />

with 50 mg of ispronicl<strong>in</strong>e (n = 19), at which placebo was<br />

superior to drug on measures of work<strong>in</strong>g memory and memory<br />

speed. The 100-mg dose of ispronicl<strong>in</strong>e (n = 17) was superior to<br />

placebo <strong>in</strong> the power of attention and episodic memory factors<br />

(p < 0.05), and on the work<strong>in</strong>g memory and speed of memory<br />

tests (p < 0.1). Analysis of data from both dose groups showed<br />

that ispronicl<strong>in</strong>e produced greater cognitive improvement <strong>in</strong><br />

more severely impaired (MMSE 23 to 27) volunteers than those<br />

with lesser impairment (MMSE = 28 to 30). Ispronicl<strong>in</strong>e was<br />

well tolerated and demonstrated a favorable safety profile at<br />

both doses [641513].<br />

A randomized, double-bl<strong>in</strong>d, placebo-controlled phase II<br />

cl<strong>in</strong>ical trial of ispronicl<strong>in</strong>e is ongo<strong>in</strong>g <strong>in</strong> elderly <strong>in</strong>dividuals<br />

(aged 50 to 80 years) with AAMI. Recruitment has been<br />

completed (174 participants were expected), and the study is<br />

scheduled for completion <strong>in</strong> February 2006<br />

[www.cl<strong>in</strong>icaltrials.gov]. A further phase II trial is planned for<br />

mid 2006, and is designed to evaluate ispronicl<strong>in</strong>e as a<br />

monotherapy treatment for mild AD or add-on therapy to<br />

approved medications for moderate AD. Cl<strong>in</strong>ical development


64 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

is also be<strong>in</strong>g considered for cognitive impairment associated<br />

with schizophrenia and follow<strong>in</strong>g coronary artery bypass<br />

graft<strong>in</strong>g, ADHD and certa<strong>in</strong> forms of dementia [624033]. In<br />

summary, ispronicl<strong>in</strong>e was well tolerated and demonstrated<br />

cognitive enhanc<strong>in</strong>g effects <strong>in</strong> the phase I and phase II cl<strong>in</strong>ical<br />

trials to date (n = 200) [611220].<br />

Side effects and contra<strong>in</strong>dications<br />

In phase I/II studies assess<strong>in</strong>g the effect of ispronicl<strong>in</strong>e on<br />

central activity and cognitive enhancement, adverse events<br />

were only detected at the maximum tolerated dose of<br />

ispronicl<strong>in</strong>e (150 mg <strong>in</strong> the elderly and 320 mg <strong>in</strong> the young).<br />

These <strong>in</strong>cluded headache, dizz<strong>in</strong>ess and light-headedness<br />

and occasional nausea/vomit<strong>in</strong>g. These side effects were<br />

attributed to the central pharmacology of ispronicl<strong>in</strong>e<br />

because they were not accompanied by changes <strong>in</strong><br />

cardiovascular variables as would be expected if peripheral<br />

nAChR <strong>in</strong>hibition were occurr<strong>in</strong>g [615362].<br />

In phase IIa/b trials, ispronicl<strong>in</strong>e had an effective dose of 50 to<br />

100 mg, and no toxic effects were observed at 320 mg,<br />

suggest<strong>in</strong>g a broad therapeutic w<strong>in</strong>dow [541084]. Ispronicl<strong>in</strong>e<br />

was well tolerated and demonstrated a favorable safety profile<br />

[612281].<br />

In a phase II study of 50 or 100 mg ispronicl<strong>in</strong>e <strong>in</strong> volunteers<br />

with MCI, the drug was well tolerated at both doses. The<br />

most common adverse event was light-headedness. No<br />

significant effects were recorded on biochemical,<br />

hematological or ur<strong>in</strong>ary measures, vital signs or cardiac<br />

monitor<strong>in</strong>g [641513].<br />

Patent summary<br />

In January 2002, Targacept and Aventis Pharma SA<br />

published WO-00205798, a PCT application that covered<br />

salts of ispronicl<strong>in</strong>e and their use <strong>in</strong> the prevention or<br />

treatment of CNS disorders.<br />

Four US patents (US-06432975, US-06624173, US-06440970<br />

and US-06525065) relate to composition of matter of the<br />

chemical family of the hetero-aryl azabicyclo alkanes. In the<br />

composition patents, a broad application doma<strong>in</strong> has been<br />

stated, <strong>in</strong>clud<strong>in</strong>g the treatment of other CNS conditions and<br />

disorders, such as schizophrenia, <strong>in</strong> provid<strong>in</strong>g neuroprotection,<br />

the management of stroke, and <strong>in</strong> treat<strong>in</strong>g patients<br />

susceptible to convulsions, depression, autism and certa<strong>in</strong><br />

neuroendocr<strong>in</strong>e disorders.<br />

WO-2005037832 was published by Targacept <strong>in</strong> April 2005,<br />

and claims the use of ispronicl<strong>in</strong>e for the treatment of<br />

Park<strong>in</strong>son's disease, Tourette's syndrome, ADHD,<br />

schizophrenia, drug/nicot<strong>in</strong>e addiction, pa<strong>in</strong> and obesity. In<br />

addition, appropriately radiolabeled compounds are<br />

claimed for use as selective probes for nAChR subtypes <strong>in</strong><br />

neuroimag<strong>in</strong>g applications <strong>in</strong> US-06432975.<br />

<strong>Current</strong> op<strong>in</strong>ion<br />

Specific stimulation of α4β2 versus α7 nAChRs will likely<br />

lead to different effects on cognitive scales because of the<br />

differential distribution of nAChR subtypes (preferentially<br />

striatal-thalamic versus cortical), and differential sensitivity<br />

to pathological conditions (eg, AD versus psychiatric<br />

diseases). In this regard, perhaps someth<strong>in</strong>g can be learned<br />

from the cl<strong>in</strong>ical expertise ga<strong>in</strong>ed from the study of ABT-418<br />

(an nAChR agonist that was discont<strong>in</strong>ued from<br />

development by Abbott Laboratories <strong>in</strong> 2002 because of<br />

safety concerns) <strong>in</strong> a number of medical conditions<br />

<strong>in</strong>volv<strong>in</strong>g lack of attention and cognitive deficits. The<br />

compounds have a similar profile <strong>in</strong> terms of their nAChR<br />

selectivity. Interest<strong>in</strong>gly, unlike ABT-418, ispronicl<strong>in</strong>e<br />

produces a susta<strong>in</strong>ed cognitive effect <strong>in</strong> both precl<strong>in</strong>ical and<br />

human models long after its clearance from the body. This<br />

prolonged action might be the result of changes <strong>in</strong><br />

<strong>in</strong>tracellular signal<strong>in</strong>g, the nature of which is still unclear. At<br />

the maximal cl<strong>in</strong>ical tolerable dose, ispronicl<strong>in</strong>e will most<br />

probably also stimulate the α7 nAChR. For α7 nAChRmediated<br />

neuroprotection aga<strong>in</strong>st β-amyloid, it has been<br />

shown that Janus k<strong>in</strong>ase/Akt pathways are <strong>in</strong>volved <strong>in</strong><br />

<strong>in</strong>tracellular activation [621830]. As a possible caveat,<br />

precl<strong>in</strong>ical data suggest that as well as possibly reduc<strong>in</strong>g βamyloid<br />

pathology [622041], long-term activation of<br />

nicot<strong>in</strong>ic receptors <strong>in</strong> transgenic animals can exacerbate tau<br />

pathology [621828]. Whether this is the case for ispronicl<strong>in</strong>e<br />

is currently unknown.<br />

The specific activation of neuronal nAChRs is advantageous<br />

because gastro<strong>in</strong>test<strong>in</strong>al side effects, such as vomit<strong>in</strong>g and<br />

diarrhea, currently occur <strong>in</strong> many AD patients dur<strong>in</strong>g the<br />

titration phase of their treatment with AChE <strong>in</strong>hibitors, and<br />

are assumed to be related to peripheral muscar<strong>in</strong>ic receptor<br />

activation. Nausea is a more typical nicot<strong>in</strong>ic-receptormediated<br />

side effect, and whether the effects are a<br />

consequence of central activity is still a matter for debate. In<br />

any case, no data have described the <strong>in</strong>cidence of nausea <strong>in</strong><br />

ispronicl<strong>in</strong>e-treated patients.<br />

The cl<strong>in</strong>ical experience with galantam<strong>in</strong>e <strong>in</strong> AD patients<br />

suggests a superior effect of nAChR modulators <strong>in</strong><br />

enhanc<strong>in</strong>g attention [516203] and work<strong>in</strong>g memory [622036]<br />

over and above that attributable to AChE <strong>in</strong>hibition alone. In<br />

addition, specific behavioral improvements can be expected<br />

<strong>in</strong> agitation/aggression, anxiety, dis<strong>in</strong>hibition and aberrant<br />

motor behaviors [622040]. This f<strong>in</strong>d<strong>in</strong>g is <strong>in</strong> l<strong>in</strong>e with the<br />

observed effects of ispronicl<strong>in</strong>e on CDR battery scales <strong>in</strong><br />

cognitively impaired elderly <strong>in</strong>dividuals. This cl<strong>in</strong>ical effect<br />

is probably because the stimulation of nicot<strong>in</strong>ic receptors,<br />

which diffusely project out of the nucleus basalis of Meynert<br />

and the pedunculopont<strong>in</strong>e nucleus, modulates their<br />

activation <strong>in</strong> a large part of the bra<strong>in</strong>. This is likely mediated<br />

by an <strong>in</strong>crease <strong>in</strong> dopam<strong>in</strong>e, seroton<strong>in</strong>, norep<strong>in</strong>ephr<strong>in</strong>e,<br />

acetylchol<strong>in</strong>e and even glutamate and γ-am<strong>in</strong>obutyric acid<br />

(GABA) levels. As a specific example, β2* nAChR<br />

stimulation <strong>in</strong>creases dopam<strong>in</strong>e release <strong>in</strong> the striatum<br />

[636359]. One could argue that <strong>in</strong>creased dopam<strong>in</strong>e release<br />

<strong>in</strong> a slightly deficient striatum could enhance the saliency of<br />

stimuli and positively <strong>in</strong>fluence reward stimuli. However,<br />

the specific nAChR subtype responsible for the other effects<br />

has not been identified <strong>in</strong> all cases, and specific questions<br />

rema<strong>in</strong> regard<strong>in</strong>g the k<strong>in</strong>etics of activation, desensitization<br />

and reactivation of the nAChRs responsible, result<strong>in</strong>g, for<br />

example, <strong>in</strong> spatial and temporal differences <strong>in</strong> excitatory


glutamatergic and <strong>in</strong>hibitory GABA modulation <strong>in</strong> complex<br />

<strong>in</strong>teract<strong>in</strong>g networks [621790], [621822].<br />

Whether this effect will be sufficient for pure nAChR<br />

agonists to improve cognitive scales such as the Alzheimer's<br />

disease assessment scale cognitive subscale (ADAS-Cog) or<br />

MMSE is at present unknown. Computer simulation of a<br />

virtual synaptic cleft suggests that suboptimal AChE<br />

<strong>in</strong>hibition can be synergistically amplified by nicot<strong>in</strong>ic<br />

receptor stimulation [621742]. This effect was illustrated <strong>in</strong> a<br />

number of <strong>in</strong> vivo precl<strong>in</strong>ical studies <strong>in</strong> which a dose of<br />

galantam<strong>in</strong>e had similar or superior effects on behavior or<br />

neurophysiology compared with an identical dose of<br />

donepezil, a pure AChE <strong>in</strong>hibitor [621831], [621833], despite<br />

the fact that donepezil produces a 3- to 4-fold higher bra<strong>in</strong><br />

AChE <strong>in</strong>hibition under these conditions [621785]. This<br />

f<strong>in</strong>d<strong>in</strong>g suggests that the activation of nAChR through the<br />

comb<strong>in</strong>ation of nAChR modulation with a low bra<strong>in</strong> AChE<br />

<strong>in</strong>hibition can actually lead to the same (or even superior)<br />

behavioral or neurochemical changes as direct stimulation <strong>in</strong><br />

the context of a much higher bra<strong>in</strong> AChE <strong>in</strong>hibition.<br />

There is a high probability that ispronicl<strong>in</strong>e will be tested <strong>in</strong><br />

comb<strong>in</strong>ation with an AChE <strong>in</strong>hibitor dur<strong>in</strong>g cl<strong>in</strong>ical<br />

development. Interest<strong>in</strong>gly, comb<strong>in</strong>ation with a suboptimal<br />

dose of an AChE <strong>in</strong>hibitor could lead to superior cl<strong>in</strong>ical<br />

efficacy on primary endpo<strong>in</strong>ts, such as ADAS-Cog, while<br />

simultaneously limit<strong>in</strong>g the development of tolerance ow<strong>in</strong>g to<br />

the upregulation of the AChE enzyme as a consequence of<br />

high-level cont<strong>in</strong>uous AChE <strong>in</strong>hibition [622031]. Furthermore,<br />

muscar<strong>in</strong>ic receptor stimulation result<strong>in</strong>g from limited AChE<br />

<strong>in</strong>hibition can provide additional benefits for a number of<br />

behavioral problems, as suggested by the cl<strong>in</strong>ical experience<br />

with muscar<strong>in</strong>ic M1 agonists (for a review, see reference<br />

[624153]). In addition, muscar<strong>in</strong>ic M1 receptor stimulation can<br />

provide neuroprotection aga<strong>in</strong>st both amyloid and tau<br />

pathology beyond nicot<strong>in</strong>e receptor activation (reviewed <strong>in</strong><br />

reference [621786]). Because the <strong>in</strong>tracellular pathways of both<br />

approaches differ, there may be the possibility of an additive or<br />

synergistic action.<br />

Ispronicl<strong>in</strong>e Geerts 65<br />

Ispronicl<strong>in</strong>e is also currently <strong>in</strong> development for the<br />

treatment of pre-Alzheimer's conditions such as MCI and<br />

AAMI. A reactive upregulation of ACh-synthesiz<strong>in</strong>g<br />

enzymes has been documented <strong>in</strong> this patient population,<br />

probably as a consequence of dysfunctional chol<strong>in</strong>ergic<br />

nerve term<strong>in</strong>als [622042]. This upregulation might reduce<br />

the beneficial effect of direct nAChR stimulation by<br />

modulators such as ispronicl<strong>in</strong>e. In this regard, it is<br />

<strong>in</strong>terest<strong>in</strong>g to note that <strong>in</strong> terms of delay<strong>in</strong>g the diagnosis<br />

of AD, the cl<strong>in</strong>ical benefits of AChE <strong>in</strong>hibition <strong>in</strong> MCI<br />

patients are, at best, limited [622044]. MCI and AAMI<br />

have not yet been recognized by the Food and Drug<br />

Adm<strong>in</strong>istration as medical conditions, but the regulatory<br />

landscape might change substantially over the next few<br />

years.<br />

An <strong>in</strong>terest<strong>in</strong>g development is the cl<strong>in</strong>ical proof-of-pr<strong>in</strong>ciple<br />

study of ispronicl<strong>in</strong>e as an add-on <strong>in</strong> the treatment of<br />

cognitive deficits <strong>in</strong> schizophrenia. This study was carried<br />

out by the TURNS project, as presented at the 2005<br />

International Conference on Schizophrenia Research<br />

[631107]. Although the neuropathology and genetics of<br />

schizophrenia suggest a specific α7 nAChR deficit <strong>in</strong> this<br />

case, a well-balanced modulation of both major bra<strong>in</strong><br />

nAChR subtypes, such as that provided by ispronicl<strong>in</strong>e,<br />

might be of great value.<br />

In summary, the pharmacological profile of available data<br />

for ispronicl<strong>in</strong>e <strong>in</strong>dicate that this compound may provide<br />

an <strong>in</strong>terest<strong>in</strong>g new mechanism for treat<strong>in</strong>g cognitive<br />

deficits <strong>in</strong> both schizophrenia and AD. Extrapolat<strong>in</strong>g from<br />

the precl<strong>in</strong>ical data for galantam<strong>in</strong>e, a compound with a<br />

similar pharmacology (reviewed <strong>in</strong> reference [634638]), <strong>in</strong><br />

theory we can expect that ispronicl<strong>in</strong>e will comb<strong>in</strong>e<br />

symptomatic cognitive improvement with general<br />

neuroprotection aga<strong>in</strong>st β-amyloid pathology. We believe<br />

that the best effects of the drug will be observed <strong>in</strong><br />

patients with AD and when it is comb<strong>in</strong>ed with a<br />

suboptimal dose of an AChE <strong>in</strong>hibitor.<br />

Development history<br />

Developer Country Status Indication Date Reference<br />

Targacept Inc UK Phase II Cognitive disorder 11-NOV-03 512600<br />

Targacept Inc US Phase II Cognitive disorder 06-JUL-05 611220<br />

Literature classifications<br />

Chemistry<br />

Study type Result Reference<br />

SAR. A number of compounds with low nanomolar aff<strong>in</strong>ity for nAChRs were identified, but were metabolized<br />

through N-demethylation and oxidation, result<strong>in</strong>g <strong>in</strong> a half-life of 30 m<strong>in</strong>. The 3-isopropoxy-pyrid<strong>in</strong>e analog<br />

of RJR-2403 had an improved half-life of 1.4 h <strong>in</strong> rodents, and was later named ispronicl<strong>in</strong>e. An α-methyl<br />

group was identified as be<strong>in</strong>g essential for <strong>in</strong>creas<strong>in</strong>g the half-life.<br />

557048<br />

Synthesis. Ispronicl<strong>in</strong>e was prepared by coupl<strong>in</strong>g (S)-N-methyl-N-(tert-butoxycarbonyl)-4-penten-2-am<strong>in</strong>e and 3bromo-5-isopropoxy-pyrid<strong>in</strong>e<br />

via a palladium-catalyzed Heck coupl<strong>in</strong>g reaction. The result<strong>in</strong>g <strong>in</strong>termediate,<br />

(S)-(E)-N-methyl-N-(tert-butoxycarbonyl)-5-[3-(5-isopropoxy-pyrid<strong>in</strong>)yl]-4-penten-2-am<strong>in</strong>e, was<br />

subsequently treated with 6 M hydrochloric acid <strong>in</strong> dimethylformamide to give the free base of ispronicl<strong>in</strong>e.<br />

559979


66 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

Biology<br />

Study type Effect studied Model Result Reference<br />

In vitro Activity. Rat bra<strong>in</strong> membrane preparations, Ispronicl<strong>in</strong>e was a high-aff<strong>in</strong>ity agonist of<br />

306443<br />

or muscle- or ganglion-type nicot<strong>in</strong>ic receptors <strong>in</strong> rat bra<strong>in</strong> membranes (Ki =<br />

nAChRs.<br />

11 nM; nicot<strong>in</strong>e Ki = 4 nM), and reportedly had<br />

specificity for nAChRs. Ispronicl<strong>in</strong>e did not b<strong>in</strong>d<br />

to the muscle-type (α1β1δγ) or ganglion-type<br />

(α3β4) peripheral nAChRs at concentrations up<br />

to 100 µM. Conversely, nicot<strong>in</strong>e activated<br />

nAChRs <strong>in</strong> human and rat cells, with EC50<br />

values of 60 and 20 µM, respectively, <strong>in</strong>dicat<strong>in</strong>g<br />

greater CNS/peripheral nervous system<br />

specificity for ispronicl<strong>in</strong>e.<br />

In vitro Efficacy. Rat striatal and thalamic<br />

In striatal synaptosomes, ispronicl<strong>in</strong>e had a 306443<br />

synaptosomes treated with<br />

dopam<strong>in</strong>e-release profile comparable to that of<br />

ispronicl<strong>in</strong>e or nicot<strong>in</strong>e (unstated nicot<strong>in</strong>e (EC50 = 106 nM and Emax = 85%). In<br />

concentrations).<br />

thalamic synaptosomes, ispronicl<strong>in</strong>e <strong>in</strong>creased<br />

ion <strong>in</strong>flux to an Emax of 58% with an EC50 value of<br />

220 nM, compared with an Emax of 100% and an<br />

EC50 value of 590 nM for nicot<strong>in</strong>e. Given the<br />

preferential localization of α4β2 nAChRs <strong>in</strong> the<br />

thalamus, this effect is likely mediated by this<br />

receptor subtype.<br />

In vivo Efficacy. Radial arm maze model. Rats were Both schedules of ispronicl<strong>in</strong>e significantly<br />

306443<br />

orally adm<strong>in</strong>istered ispronicl<strong>in</strong>e improved both work<strong>in</strong>g and reference memory<br />

(0.1, 0.3, 0.6, 3.0 and 6.0 µmol/kg)<br />

<strong>in</strong> both acute (presumed to be<br />

s<strong>in</strong>gle-dose) and chronic (daily for 6<br />

days) schedules.<br />

performance.<br />

In vivo Efficacy. Scopolam<strong>in</strong>e-<strong>in</strong>duced deficits <strong>in</strong> the Ispronicl<strong>in</strong>e improved performance both alone 345774<br />

passive avoidance task <strong>in</strong> rats. (ED50 = 0.89 µmol/kg) and at a suboptimal dose<br />

(0.6 µmol/kg) <strong>in</strong> comb<strong>in</strong>ation with tacr<strong>in</strong>e and<br />

donepezil.<br />

Ex vivo Activity. Synaptic transmission after Ispronicl<strong>in</strong>e prevented the loss of synaptic<br />

583306<br />

oxygen/glucose deprivation <strong>in</strong> a rat transmission <strong>in</strong> a concentration-dependent<br />

bra<strong>in</strong> hippocampal slice model manner, with a maximal effect of > 70%<br />

<strong>in</strong>cubated with ispronicl<strong>in</strong>e. protection at 10 µM. The effect was mediated by<br />

nAChRs because mecamylam<strong>in</strong>e, a nonselective<br />

antagonist, blocked the neuroprotective<br />

effect.<br />

Metabolism<br />

Study type Effect studied Model Result Reference<br />

In vivo Pharmacok<strong>in</strong>etics. Sprague Dawley rats adm<strong>in</strong>istered Values for Cpmax and Tmax were 370 ng/ml and 559979<br />

a s<strong>in</strong>gle oral dose of ispronicl<strong>in</strong>e 0.25 h, respectively. The compound was<br />

(10 mg/kg).<br />

cleared rapidly, with a term<strong>in</strong>ation half-life of<br />

1.1 h. The bioavailability was 73.3%. Wholebra<strong>in</strong><br />

ispronicl<strong>in</strong>e levels were high (Cbmax =<br />

659 ng/g; Tmax = 0.5 to 2 h), <strong>in</strong>dicat<strong>in</strong>g ready<br />

bra<strong>in</strong> penetration. After <strong>in</strong>travenous<br />

adm<strong>in</strong>istration of 1 mg/kg, ispronicl<strong>in</strong>e had a<br />

half-life of 0.8 h and was cleared rapidly (7.1<br />

l/h/kg compared with the hepatic plasma flow<br />

of 2 to 4 l/h/kg).<br />

In vivo Pharmacok<strong>in</strong>etics. Dogs adm<strong>in</strong>istered a 1-mg/kg A high total plasma clearance of 3.2 l/h/kg 559979<br />

<strong>in</strong>travenous or oral dose of<br />

was achieved compared with the hepatic<br />

ispronicl<strong>in</strong>e.<br />

plasma flow of 1.2 to 2.4 l/h/kg. Follow<strong>in</strong>g oral<br />

adm<strong>in</strong>istration of 1 mg/kg, low systemic<br />

plasma levels were achieved (Cpmax = 35<br />

ng/ml at 0.5 to 2 h). The elim<strong>in</strong>ation half-life of<br />

ispronicl<strong>in</strong>e was 1.3 h and its estimated<br />

bioavailability was 31.4%.<br />

In vivo Pharmacok<strong>in</strong>etics. Elderly AAMI patients (aged > 60 Plasma Cmax values ranged from 4 to 25<br />

612281<br />

years) adm<strong>in</strong>istered 50 mg of oral<br />

ispronicl<strong>in</strong>e.<br />

ng/ml.<br />

In vivo Pharmacok<strong>in</strong>etics. Elderly volunteers (aged > 60 Plasma Cmax values ranged from 4 to 55<br />

634952<br />

years) orally adm<strong>in</strong>istered<br />

ng/ml. Ispronicl<strong>in</strong>e <strong>in</strong>duced long-last<strong>in</strong>g<br />

ispronicl<strong>in</strong>e (25 to 75 mg).<br />

cognitive enhancement for up to 48 h.


Metabolism (cont<strong>in</strong>ued)<br />

Ispronicl<strong>in</strong>e Geerts 67<br />

Study type Effect studied Model Result Reference<br />

In vivo Pharmacok<strong>in</strong>etics. A food-<strong>in</strong>teraction trial <strong>in</strong> six No food <strong>in</strong>teraction was observed. S<strong>in</strong>gle 615362<br />

fed/fasted elderly volunteers doses of ispronicl<strong>in</strong>e achieved CNS<br />

adm<strong>in</strong>istered an 80-mg oral dose of penetration. The rapid absorption, dose<br />

ispronicl<strong>in</strong>e.<br />

proportionality and favorable plasma half-life<br />

of ispronicl<strong>in</strong>e <strong>in</strong> this trial suggested the<br />

suitability of a once-daily dos<strong>in</strong>g schedule.<br />

Cl<strong>in</strong>ical<br />

Effect studied Model Result Reference<br />

Safety and efficacy. A phase I, 10-day multiple<br />

Ispronicl<strong>in</strong>e was well tolerated and no safety issues were 615362<br />

escalat<strong>in</strong>g-dose study of<br />

encountered up to 200 mg. Dose-specific enhancement of<br />

ispronicl<strong>in</strong>e (50, 100 and 200 mg) <strong>in</strong> both direct and surrogate measures of memory and<br />

young volunteers (n = 24).<br />

attention was observed. No differences were observed on<br />

the quality of work<strong>in</strong>g memory factor. Less pronounced<br />

improvements were seen <strong>in</strong> the 100-mg group, <strong>in</strong>dicative<br />

of an <strong>in</strong>verted U-shaped dose-response curve.<br />

Efficacy and tolerability. A phase I, s<strong>in</strong>gle and multiple Ispronicl<strong>in</strong>e dose-dependently <strong>in</strong>duced electrical bra<strong>in</strong> 634416<br />

escalat<strong>in</strong>g-dose trial of ispronicl<strong>in</strong>e activity on EEG, characteristic of a nicot<strong>in</strong>e agonist,<br />

<strong>in</strong> young volunteers (n = 48 and 24, caus<strong>in</strong>g a shift <strong>in</strong> relative and absolute power from<br />

respectively).<br />

lower to higher frequency bands. No tolerance to<br />

ispronicl<strong>in</strong>e occurred over the 10-day dos<strong>in</strong>g period.<br />

Efficacy and tolerability. A phase I trial of ispronicl<strong>in</strong>e <strong>in</strong> Pharmacodynamic and pharmacok<strong>in</strong>etic data<br />

634952<br />

elderly patients with AAMI (aged > suggested that Cmax values <strong>in</strong> the range of 4 to 55 ng/ml<br />

60 years).<br />

caused the greatest cognitive improvement. Oral doses<br />

of 25 to 75 mg of ispronicl<strong>in</strong>e gave rise to values <strong>in</strong> this<br />

range, at which ispronicl<strong>in</strong>e was tolerated <strong>in</strong> a similar<br />

manner to placebo.<br />

Efficacy. A phase II, randomized, double- A s<strong>in</strong>gle dose of 80 mg ispronicl<strong>in</strong>e was superior to 612281<br />

bl<strong>in</strong>d, placebo-controlled trial <strong>in</strong> placebo <strong>in</strong> improv<strong>in</strong>g quality of episodic secondary<br />

elderly AAMI patients (aged > 60 memory factor score up to 48 h after dos<strong>in</strong>g. Three<br />

years).<br />

weeks of treatment with 50 mg ispronicl<strong>in</strong>e improved<br />

CDR measures of the power and cont<strong>in</strong>uity of attention,<br />

episodic memory and speed of th<strong>in</strong>k<strong>in</strong>g, compared with<br />

patients receiv<strong>in</strong>g placebo.<br />

Efficacy and tolerability. Phase II trials <strong>in</strong> elderly AAMI Positive effects on various aspects of cognition were 624033<br />

patients (n = 76).<br />

observed, and the drug was well tolerated at doses up<br />

to 150 mg.<br />

Associated patent<br />

Title Pharmaceutical compositions and methods for use.<br />

Assignee Targacept Inc; Aventis Pharma SA<br />

Publication WO-00205798 24-JAN-02<br />

Priority US-20000616743 14-JUL-00<br />

Inventors Dull GM, Leconte J-P, Kabir H.<br />

Associated references<br />

306443 RJR-1734: A potent selective nicot<strong>in</strong>ic ligand that improves<br />

cognition acutely and chronically. Lippiello P, Gatto G, Bencherif M, Fowler<br />

K, Caldwell W ABSTR SOC NEUROSCI 1998 24 Pt 1 Abs 39.25<br />

325629 Nicot<strong>in</strong>ic Acetylchol<strong>in</strong>e Receptors - IBC's Second International<br />

Symposium; Advances <strong>in</strong> Molecular Pharmacology and Drug<br />

Development, Annapolis, MD, USA. IDDB MEETING REPORT 1999 May<br />

13-14<br />

345007 Society for Neuroscience 29th Annual Meet<strong>in</strong>g (Part V), Miami<br />

Beach, FL, USA. Kibble A, Nicholls R IDDB MEETING REPORT 1999<br />

October 23-28<br />

345774 Reversal of scopolam<strong>in</strong>e-<strong>in</strong>duced deficits <strong>in</strong> the passive<br />

avoidance task by Targacept (TI) nicot<strong>in</strong>ic agonists alone and <strong>in</strong><br />

comb<strong>in</strong>ation with tacr<strong>in</strong>e and donepezil. Ganto GJ, Lippiello PM, Caldwell<br />

WS, Bencherif M ABSTR SOC NEUROSCI 1999 25 Pt 2 Abs 786.11<br />

345791 Sensitization of locomotor responses can be discrim<strong>in</strong>ated from<br />

activation of striatal synaptosomes. Lippiello PM, Gatto GJ, Caldwell WS,<br />

Bencherif M ABSTR SOC NEUROSCI 1999 25 Pt 2 Abs 786.13<br />

363337 Advances <strong>in</strong> Alzheimer Therapy - Sixth International<br />

Stockholm/Spr<strong>in</strong>gfield Symposium (Part IV) Stockholm, Sweden. IDDB<br />

MEETING REPORT 2000 April 05-08<br />

363536 Advances <strong>in</strong> Alzheimer Therapy - Sixth International<br />

Stockholm/Spr<strong>in</strong>gfield Symposium (Part VI): Nicot<strong>in</strong>ic Receptors,<br />

Stockholm, Sweden. Hellstrom-L<strong>in</strong>dahl E IDDB MEETING REPORT 2000<br />

05-08 April<br />

376757 Bra<strong>in</strong> selective stimulation of nicot<strong>in</strong>ic receptors by RJR<br />

1734 enhances ACh transmission from frontoparietal cortex and<br />

enhances memory <strong>in</strong> rodents. Ob<strong>in</strong>u MC, Miquet JM, Reibaud M,<br />

Pasquet M, Rooney T, Imperato A INT J NEUROPSYCHOPHARMACOL<br />

2000 3 Suppl 1 S361<br />

430095 Stereo-specificity of human muscle-type nicot<strong>in</strong>ic receptor<br />

activation by pyrid<strong>in</strong>yl-substituted aza-adamantanes. Sadieve KS, Schmitt<br />

JD, Kiser M, Bhatti BS, Lippiello PM, Bencherif M ABSTR SOC NEUROSCI<br />

2001 27 1 Abs 486.1<br />

467878 Neurosensory Symposium - First Annual Meet<strong>in</strong>g, Develop<strong>in</strong>g<br />

Therapies for the Treatment of Neurosensory Diseases, Birm<strong>in</strong>gham,<br />

AL, USA. Ramabhadran R IDDB MEETING REPORT 2002 16-17<br />

September<br />

475601 Bra<strong>in</strong>-selective stimulation of nicot<strong>in</strong>ic receptors by TC-1734<br />

enhances ACh transmission from frontoparietal cortex and memory<br />

<strong>in</strong> rodents. Ob<strong>in</strong>u MC, Reibaud M, Miquet JM, Pasquet M, Rooney T<br />

PROG NEURO PSYCHOPHARMACOL BIOL PSYCHIATRY 2002 26 5<br />

913-918<br />

511071 Targacept announces positive cl<strong>in</strong>ical results for TC-1734.<br />

PRESS RELEASE 2003 October 30<br />

512176 Society for Neuroscience - 33rd Annual Meet<strong>in</strong>g (Part IV) -<br />

Overnight Report, New Orleans, LA, USA. IDDB MEETING REPORT 2003<br />

November 08-12


68 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

512600 Targacept presents data on multiple drug candidates at Society<br />

for Neuroscience 33rd Annual Meet<strong>in</strong>g. PRESS RELEASE 2003 November<br />

11<br />

513286 TC-1734: An orally active neuronal nicot<strong>in</strong>ic receptor modulator<br />

with long-last<strong>in</strong>g cognitive effects, anti-depressant effects, and<br />

neuroprotective activity. Letchworth SR, Gatto GJ, Tra<strong>in</strong>a VM, Bohme GA,<br />

Ob<strong>in</strong>u MC, Bencherif M ABSTR SOC NEUROSCI 2003 33 Abs 296.19<br />

516203 A long-term comparison of galantam<strong>in</strong>e and donepezil <strong>in</strong> the<br />

treatment of Alzheimer's disease. Wilcock G, Howe I, Coles H, Lilienfeld S,<br />

Truyen L, Zhu Y, Bullock R, Kershaw P DRUGS AGING 2003 20 10 777-789<br />

541084 Psychiatric Disorders - SMi conference, London, UK. Kibble A<br />

IDDB MEETING REPORT 2004 May 24-25<br />

545766 Form S-1 - Targacept Inc. FORM S-1 2004 May 14<br />

557048 Medic<strong>in</strong>al Chemistry - XVIIIth International Symposium (Part V),<br />

Copenhagen, Denmark and Malmo, Sweden. IDDB MEETING REPORT<br />

2004 August 15-19<br />

559979 TC-1734: An orally active neuronal nicot<strong>in</strong>ic acetylchol<strong>in</strong>e<br />

receptor modulator with antidepressant, neuroprotective and longlast<strong>in</strong>g<br />

cognitive effects. Gatto GJ, Bohme GA, Caldwell WS, Letchworth<br />

SR, Tra<strong>in</strong>a VM, Ob<strong>in</strong>u MC, Laville M, Reibaud M, Pradier L, Dunbar G,<br />

Bencherif M CNS DRUG REV 2004 10 2 147-166<br />

583306 TC-1734, a neuronal nicot<strong>in</strong>ic receptor-selective ligand, protects<br />

hippocampal neurons from hypoxia and glucose deprivation. Bencherif M,<br />

Bohme GA, Pradier L, Laville M ABSTR SOC NEUROSCI 2001 31 Abs 488.5<br />

592125 Targacept presents promis<strong>in</strong>g results at the 7th International<br />

conference on Alzheimer's and Park<strong>in</strong>son's disease. PRESS RELEASE<br />

2005 March 29<br />

611220 Targacept reports positive phase 2 data on ispronicl<strong>in</strong>e, a novel<br />

small molecule be<strong>in</strong>g developed for treatment of Alzheimer's disease<br />

and age associated memory impairment. PRESS RELEASE 2005 July 06<br />

612281 Biological Psychiatry (Part II) - Eighth World Congress, Vienna,<br />

Austria. IDDB MEETING REPORT 2005 June 28 - July 03<br />

615362 TC-1734: A neuronal nicot<strong>in</strong>ic acetylchol<strong>in</strong>e receptor partial<br />

agonist that demonstrated an excellent safety/tolerabililty profile and<br />

cognitive enhancement <strong>in</strong> early studies <strong>in</strong> humans. Dunbar GC<br />

NEUROPSYCHOPHARMACOLOGY 2004 29 Suppl 1 S127<br />

621742 Nicot<strong>in</strong>ic receptor modulation: Advantages for successful<br />

Alzheimer's disease therapy. Geerts H, F<strong>in</strong>kel L, Carr R, Spiros A J<br />

NEURAL TRANSM SUPPL 2002 62 203-216<br />

621785 Bra<strong>in</strong> levels and acetylchol<strong>in</strong>esterase <strong>in</strong>hibition with galantam<strong>in</strong>e<br />

and donepezil <strong>in</strong> rats, mice and rabbits. Geerts H, Guillaumat PO,<br />

Grantham C, Bode W, Anciaux K, Sachak S BRAIN RES 2005 1033 2 186-<br />

193<br />

621786 M1 muscar<strong>in</strong>ic agonists can modulate some of the hallmarks <strong>in</strong><br />

Alzheimer's disease: Implications <strong>in</strong> future therapy. Fisher A, Pittel Z,<br />

Har<strong>in</strong>g R, Bar-Ner N, Kliger-Spatz M, Natan N, Egozi I, Sonego H, Marcovitch<br />

I, Brandeis R J MOL NEUROSCI 2003 20 3 349-356<br />

621790 Synaptic mechanisms underlie nicot<strong>in</strong>e-<strong>in</strong>duced excitability of<br />

bra<strong>in</strong> reward areas. Mansvelder HD, Keath JR, McGehee DS NEURON<br />

2002 33 6 905-919<br />

621822 Nicot<strong>in</strong>ic chol<strong>in</strong>ergic synaptic mechanisms <strong>in</strong> the ventral<br />

tegmental area contribute to nicot<strong>in</strong>e addiction. Pidoplichko VI, Noguchi J,<br />

Areola OO, Liang Y, Peterson J, Zhang T, Dani JA LEARN MEM 2004 11 1<br />

60-69<br />

621828 Chronic nicot<strong>in</strong>e adm<strong>in</strong>istration exacerbates tau pathology <strong>in</strong> a<br />

transgenic model of Alzheimer's disease. Oddo S, Caccamo A, Green KN,<br />

Liang K, Tran L, Chen Y, Leslie FM, LaFerla FM PROC NATL ACAD SCI USA<br />

2005 102 8 3046-3051<br />

621830 Janus k<strong>in</strong>ase 2, an early target of α7 nicot<strong>in</strong>ic acetylchol<strong>in</strong>e<br />

receptor-mediated neuroprotection aga<strong>in</strong>st Aβ-(1-42) amyloid. Shaw S,<br />

Bencherif M, Marrero MB J BIOL CHEM 2002 277 47 44920-44924<br />

621831 Acetylchol<strong>in</strong>e enhancement <strong>in</strong> the nucleus accumbens prevents<br />

addictive behaviors of coca<strong>in</strong>e and morph<strong>in</strong>e. Hikida T, Kitabatake Y,<br />

Pastan I, Nakanishi S PROC NATL ACAD SCI USA 2003 100 10 6169-6173<br />

621833 Mecamylam<strong>in</strong>e <strong>in</strong>teractions with galantam<strong>in</strong>e and donepezil:<br />

Effects on learn<strong>in</strong>g, acetylchol<strong>in</strong>esterase, and nicot<strong>in</strong>ic acetylchol<strong>in</strong>e<br />

receptors. Woodruff-Pak DS, Vogel RW 3rd, Wenk GL NEUROSCIENCE<br />

2003 117 2 439-447<br />

622031 Differential <strong>in</strong>crease <strong>in</strong> cerebrosp<strong>in</strong>al fluid-acetylchol<strong>in</strong>esterase<br />

after treatment with acetylchol<strong>in</strong>esterase <strong>in</strong>hibitors <strong>in</strong> patients with<br />

Alzheimer's disease. Davidsson P, Blennow K, Andreasen N, Eriksson B,<br />

M<strong>in</strong>thon L, Hesse C NEUROSCI LETT 2001 300 3 157-160<br />

622036 Challeng<strong>in</strong>g the chol<strong>in</strong>ergic system <strong>in</strong> mild cognitive impairment:<br />

A pharmacological fMRI study. Goekoop R, Rombouts SA, Jonker C, Hibbel<br />

A, Knol DL, Truyen L, Barkhof F, Scheltens P NEUROIMAGE 2004 23 4<br />

1450-1459<br />

622040 Galantam<strong>in</strong>e treatment of problematic behavior <strong>in</strong> Alzheimer's<br />

disease: Post-hoc analysis of pooled data from three large trials.<br />

Herrmann N, Rabheru K, Wang J, B<strong>in</strong>der C AM J GERIATR PSYCHIAT 2005<br />

13 6 527-534<br />

622041 Reduced levels of Aβ 40 and Aβ 42 <strong>in</strong> bra<strong>in</strong>s of smok<strong>in</strong>g controls<br />

and Alzheimer's patients. Hellstrom-L<strong>in</strong>dahl E, Mousavi M, Ravid R,<br />

Nordberg A NEUROBIOL DIS 2004 15 2 351-360<br />

622042 Chol<strong>in</strong>ergic plasticity <strong>in</strong> hippocampus of <strong>in</strong>dividuals with mild<br />

cognitive impairment: Correlation with Alzheimer's neuropathology.<br />

Ikonomovic MD, Mufson EJ, Wuu J, Cochran EJ, Bennett DA, DeKosky ST J<br />

ALZHEIMER DIS 2003 5 1 39-48<br />

622044 Vitam<strong>in</strong> E and donepezil for the treatment of mild cognitive<br />

impairment. Petersen RC, Thomas RG, Grundman M, Bennett D, Doody R,<br />

Ferris S, Galasko D, J<strong>in</strong> S, Kaye J, Levey A, Pfeiffer E et al N ENGL J MED<br />

2005 352 23 2379-2388<br />

624033 Product Pipel<strong>in</strong>e. Ispronicl<strong>in</strong>e - Cognitive impairement <strong>in</strong> the<br />

elderly. Targacept Inc COMPANY WORLD WIDE WEB SITE 2005<br />

September 20<br />

624142 Nicot<strong>in</strong>ic receptor abnormalities <strong>in</strong> Alzheimer's disease. Court J,<br />

Mart<strong>in</strong>-Ruiz C, Piggott M, Spurden D, Griffiths M, Perry E BIOL PSYCHIATRY<br />

2001 49 3 175-184<br />

624143 Dementia rat<strong>in</strong>g and nicot<strong>in</strong>ic receptor expression <strong>in</strong> the<br />

prefrontal cortex <strong>in</strong> schizophrenia. Mart<strong>in</strong>-Ruiz CM, Haroutunian VH, Long<br />

P, Young AH, Davis KL, Perry EK, Court JA BIOL PSYCHIATRY 2003 54 11<br />

1222-1223<br />

624144 Measurement and treatment research to improve cognition <strong>in</strong><br />

schizophrenia: NIMH MATRICS <strong>in</strong>itiative to support the development of<br />

agents for improv<strong>in</strong>g cognition <strong>in</strong> schizophrenia. Marder SR, Fenton W<br />

SCHIZOPHR RES 2004 72 1 5-9<br />

624147 Alpha-7 nicot<strong>in</strong>ic receptor agonists: Potential new candidates for<br />

the treatment of schizophrenia. Mart<strong>in</strong> LF, Kem WR, Freedman R<br />

PSYCHOPHARMACOLOGY 2005 174 1 54-64<br />

624153 The utility of muscar<strong>in</strong>ic agonists <strong>in</strong> the treatment of Alzheimer's<br />

disease. Messer WS Jr J MOL NEUROSCI 2002 19 1-2 187-193<br />

631107 Cognition <strong>in</strong> schizophrenia: The MATRICS <strong>in</strong>itiative. White RF,<br />

Compton M INT CONGR SCHIZOPH RES 2005 April 4-6 Symposium 4-6<br />

634416 Cognitive enhancement <strong>in</strong> man with ispronicl<strong>in</strong>e a nicot<strong>in</strong>ic<br />

partial agonist us<strong>in</strong>g surrogate markers. Dunbar GC, Kuchibhatla R INT<br />

SYMP CHOLINERGIC MECH 2005 October 01-05 SO33<br />

634638 Indicators of neuroprotection with galantam<strong>in</strong>e. Geerts H BRAIN<br />

RES BULL 2005 64 6 519-524<br />

634952 Cognitive enhancement <strong>in</strong> early studies with TC-1734, a<br />

partial agonist at the NNR receptor. Dunbar GC, Kuchibhatla R,<br />

Wamsley JK INT CONF ALZHEIMER PARKINSONS DIS, Sorrento, Italy<br />

2005 March 9-13<br />

636359 Endogenous nicot<strong>in</strong>ic chol<strong>in</strong>ergic activity regulates dopam<strong>in</strong>e<br />

release <strong>in</strong> the striatum. Zhou FM, Liang Y, Dani JA NAT NEUROSCI 2001 4<br />

12 1224-1229<br />

638395 Nicot<strong>in</strong>ic receptors and schizophrenia. Ripoll N, Bronnec M, Bour<strong>in</strong><br />

M CURR MED RES OPIN 2004 20 7 1057-1074<br />

638396 Nicot<strong>in</strong>ic receptors and Alzheimer's disease. Bour<strong>in</strong> M, Ripoll N,<br />

Dailly E CURR MED RES OPIN 2003 19 3 169-177


638398 The nicot<strong>in</strong>ic acetylchol<strong>in</strong>e receptor subtypes and their function<br />

<strong>in</strong> the hippocampus and cerebral cortex. Alkondon M, Albuquerque EX<br />

PROG BRAIN RES 2004 145 109-120<br />

638427 In vivo imag<strong>in</strong>g of human cerebral nicot<strong>in</strong>ic acetylchol<strong>in</strong>e<br />

receptors with 2-18F-fluoro-A-85380 and PET. Gallezot JD, Bottlaender M,<br />

Gregoire MC, Roumenov D, Deverre JR, Coulon C, Ottaviani M, Dolle F,<br />

Syrota A, Valette H J NUCL MED 2005 46 2 240-247<br />

Ispronicl<strong>in</strong>e Geerts 69<br />

638430 Nicot<strong>in</strong>ic receptors differentially regulate N-methyl-D-aspartate<br />

damage <strong>in</strong> acute hippocampal slices. Ferchm<strong>in</strong> PA, Perez D, Eterovic VA,<br />

de Vellis J J PHARMACOL EXP THER 2003 305 3 1071-1078<br />

641513 Ispronicl<strong>in</strong>e, a neuronal nicot<strong>in</strong>ic receptor partial agonist <strong>in</strong> the<br />

treatment of subjects with mild cognitive impairment (MCI). Dunbar GC,<br />

Kuchibhatla R CONG INT PSYCHOGERIATR ASSOC Stockholm, Sweden<br />

2005 September 21 Abs 105


70<br />

AEOL-10150 Aeolus<br />

Richard W Orrell<br />

Address<br />

Department of Cl<strong>in</strong>ical Neurosciences<br />

Royal Free and University College Medical School<br />

University College London<br />

Rowland Hill Street<br />

London<br />

NW3 2PF<br />

UK<br />

Email: r.orrell@medsch.ucl.ac.uk<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):70-80<br />

© The Thomson Corporation ISSN 1472-4472<br />

AEOL-10150, a small-molecule antioxidant analogous to the<br />

catalytic site of superoxide dismutase, is under development by<br />

Aeolus (formerly Incara) as a potential subcutaneous treatment<br />

for amyotrophic lateral sclerosis (ALS), stroke, sp<strong>in</strong>al cord<br />

<strong>in</strong>jury, lung <strong>in</strong>flammation and mucositis. The compound is<br />

currently undergo<strong>in</strong>g a phase I cl<strong>in</strong>ical trial for ALS. In<br />

October 2005, the company had applied for Fast Track status,<br />

and planned to submit a special protocol assessment for a<br />

pivotal phase II/III trial.<br />

Introduction<br />

AEOL-10150 is a manganese metalloporphyr<strong>in</strong> catalytic<br />

oxidant, a small-molecule antioxidant that has structural and<br />

functional similarities to the catalytic site of superoxide<br />

dismutase (SOD). Metalloporphyr<strong>in</strong>s are a novel class of<br />

antioxidants that 'scavenge' a wide range of oxidative species,<br />

<strong>in</strong>clud<strong>in</strong>g superoxide, peroxide, peroxynitrite and lipid peroxyl<br />

radicals [449960], [625113]. AEOL-10150 is under development<br />

by Aeolus Pharmaceuticals Inc (formerly Incara<br />

Pharmaceuticals) as a potential subcutaneous treatment,<br />

primarily for amyotrophic lateral sclerosis (ALS) [505222], but is<br />

also under <strong>in</strong>vestigation for a range of conditions, <strong>in</strong>clud<strong>in</strong>g<br />

stroke [428437], sp<strong>in</strong>al cord <strong>in</strong>jury [616364], lung <strong>in</strong>flammation<br />

[616377] and mucositis [432294].<br />

ALS is a neurodegenerative disorder affect<strong>in</strong>g men and<br />

women of all ages and ethnic orig<strong>in</strong>s worldwide. ALS may<br />

also be called motor neuron disease. This disorder has an<br />

annual <strong>in</strong>cidence rate of approximately two per 100,000 of<br />

the population, and a prevalence of six per 100,000. The<br />

<strong>in</strong>cidence <strong>in</strong>creases with age, with the mean age of onset<br />

be<strong>in</strong>g approximately 60 years, although it can affect<br />

<strong>in</strong>dividuals from early adulthood (from approximately 20<br />

years) onwards. Men are slightly more likely to be affected<br />

than women (1.4:1) [478835], [638196], [638197]. The<br />

progression of the disease is typically rapid, with the earliest<br />

symptom often be<strong>in</strong>g a muscle weakness <strong>in</strong> the arms or legs<br />

of a patient, co<strong>in</strong>cid<strong>in</strong>g with an <strong>in</strong>creased tendency to drop<br />

objects, stumble, twitch or experience abnormal fatigue <strong>in</strong><br />

the limbs. Further weaken<strong>in</strong>g and paralysis can spread to<br />

the muscles <strong>in</strong>volved <strong>in</strong> breath<strong>in</strong>g, swallow<strong>in</strong>g and speech,<br />

lead<strong>in</strong>g to immobility, an <strong>in</strong>ability to eat, dr<strong>in</strong>k and speak,<br />

and respiratory failure. Early respiratory or bulbar<br />

symptoms are adverse prognostic <strong>in</strong>dicators of the disease.<br />

Respiratory failure is the most common cause of death <strong>in</strong><br />

ALS, and usually occurs with<strong>in</strong> three to five years of onset<br />

[478835], [638197], [638203]. Follow<strong>in</strong>g the onset of<br />

symptoms, over 50% of ALS sufferers will die with<strong>in</strong> three<br />

Orig<strong>in</strong>ator Aeolus Pharmaceuticals Inc<br />

Status Phase I Cl<strong>in</strong>ical<br />

.<br />

Indications Cerebrovascular ischemia, Lung <strong>in</strong>flammation,<br />

Motor neuron disease (amytrophic lateral sclerosis),<br />

Mucositis,.Sp<strong>in</strong>al cord <strong>in</strong>jury.<br />

.<br />

Actions Antioxidant agent, Neuroprotectant<br />

.<br />

Technology Subcutaneous formulation<br />

Registry No: 286475-30-7<br />

C<br />

H 3<br />

C<br />

H 3<br />

N +<br />

N +<br />

N<br />

N<br />

CH 3<br />

N<br />

N<br />

N<br />

N<br />

N N<br />

CH 3<br />

Mn 3+<br />

CH 3<br />

CH 3<br />

N +<br />

N +<br />

Cl Cl Cl Cl Cl<br />

years, with < 10% liv<strong>in</strong>g beyond five years. Disease<br />

progression can be either more rapid or greatly reduced <strong>in</strong><br />

some cases, with around 10% of patients liv<strong>in</strong>g for > 10 years<br />

[634304].<br />

The cause of ALS rema<strong>in</strong>s unknown, although free-radicalmediated<br />

neurotoxicity is one proposed mechanism<br />

[638229], [638230]. Free-radical-mediated toxicity has been<br />

implicated <strong>in</strong> a wide range of diseases, <strong>in</strong>clud<strong>in</strong>g<br />

neurodegenerative diseases, stroke, acute myocardial<br />

<strong>in</strong>farction, <strong>in</strong>flammatory disorders and carc<strong>in</strong>ogenesis<br />

[449960], [638218]. In addition, a proportion of patients with<br />

ALS (approximately 2%) have mutations of the gene<br />

encod<strong>in</strong>g the copper/z<strong>in</strong>c SOD1 enzyme [400330], [638203],<br />

[638220], [638223]. <strong>Current</strong> evidence suggests that <strong>in</strong> patients<br />

with SOD1 mutations, the disease is not related to deficiency<br />

of SOD activity, but is caused by a toxic ga<strong>in</strong> of function,<br />

possibly related to prote<strong>in</strong> accumulation or other<br />

mechanisms [638223], [638233].<br />

<strong>Current</strong> treatment for ALS is largely supportive, and only<br />

one medication has been licensed. Riluzole is orally<br />

adm<strong>in</strong>istered, and is proposed to <strong>in</strong>hibit glutamate release.<br />

Although well tolerated, the drug has limited efficacy.<br />

Glutamate-<strong>in</strong>duced neuronal excitotoxicity is one<br />

hypothesized cause of ALS, hence the <strong>in</strong>itial study of<br />

riluzole. The therapeutic mechanism of action rema<strong>in</strong>s<br />

uncerta<strong>in</strong>, however, and other possibilities <strong>in</strong>clude an effect<br />

on modulation of sodium, potassium or AMPA/ka<strong>in</strong>ate<br />

channels [262608]. Evidence from cl<strong>in</strong>ical trials <strong>in</strong>dicates a<br />

CH 3<br />

CH 3


prolongation of survival of approximately 2 months, after 12<br />

months of riluzole treatment. This represents a 9% ga<strong>in</strong> <strong>in</strong><br />

the probability of surviv<strong>in</strong>g for one year (57% <strong>in</strong> the placebo<br />

and 66% <strong>in</strong> the riluzole group) [625097]. Despite the<br />

prolongation of survival, there is no clear cl<strong>in</strong>ical evidence of<br />

slow<strong>in</strong>g of functional decl<strong>in</strong>e, and the basis of the prolonged<br />

survival is uncerta<strong>in</strong>. Riluzole has not been demonstrated to<br />

alter the rate of disease progression or preserve muscle<br />

strength [636040].<br />

AEOL-10150 has progressed through a series of precl<strong>in</strong>ical<br />

studies <strong>in</strong> models represent<strong>in</strong>g a range of diseases, <strong>in</strong>clud<strong>in</strong>g<br />

ALS, sp<strong>in</strong>al cord <strong>in</strong>jury, islet-cell transplantation for<br />

diabetes, cancer and stroke. The demonstration of a<br />

beneficial effect of AEOL-10150 on survival and delayed<br />

disease progression <strong>in</strong> the SOD1 mutant mouse model of<br />

ALS led to phase I studies <strong>in</strong> patients with ALS, and phase<br />

II/III studies <strong>in</strong> ALS have also been proposed, together with<br />

plans for cl<strong>in</strong>ical studies <strong>in</strong> stroke and radiation-<strong>in</strong>duced<br />

mucositis.<br />

Synthesis and SAR<br />

Metalloporphyr<strong>in</strong>s are low-molecular-weight complexes<br />

that have antioxidant scaveng<strong>in</strong>g properties for superoxide,<br />

peroxynitrite and lipid peroxyl radicals. They are water<br />

soluble, manganese meso-porphyr<strong>in</strong>s that are stable and nontoxic<br />

[616369]. Aeolus synthesized AEOL-10150 as a cationic<br />

manganese porphyr<strong>in</strong>, manganese(III) mesotetrakis(N,N'diethylimidazolium-2-yl)porphyr<strong>in</strong><br />

[625100], which can be<br />

abbreviated as Mn IIITDE-2-ImP 5+ [554429]. Accord<strong>in</strong>g to<br />

Bat<strong>in</strong>ic-Haberle et al [625100], AEOL-10150 has been<br />

erroneously referred to <strong>in</strong> a number of publications as<br />

[5,10,l5,20-tetrakis(1,3-diethylimidazolium-2-yl)porphyr<strong>in</strong>ato]<br />

manganese(III) pentachloride [616156], manganese(III)<br />

mesotetrakis (di-N-ethylimidazole) porphyr<strong>in</strong> [616360], and<br />

manganese(III)meso-tetrakis(N,N'-diethyl-1,3-imidazolium-<br />

2-yl) porphyr<strong>in</strong> [616370]. In these cases the '1' and '3'<br />

<strong>in</strong>dicated the imidazolyl nitrogens, rather than position 2<br />

where the imidazolyl is attached to the porphyr<strong>in</strong> r<strong>in</strong>g<br />

[625100].<br />

AEOL-10150 was produced alongside AEOL-10113, the<br />

other lead compound from Aeolus' catalytic antioxidants<br />

pipel<strong>in</strong>e [465629]. AEOL-10113 (manganese (III) tetrakis (Nethylpyrid<strong>in</strong>ium-2-yl)<br />

porphyr<strong>in</strong> or MnTE-2-PyP 5+) is<br />

composed of several stereoisomers, mak<strong>in</strong>g a pharmaceutically<br />

acceptable formulation difficult to achieve and limit<strong>in</strong>g the<br />

ability to analyze tissue levels and perform pharmacok<strong>in</strong>etic<br />

studies. AEOL-10113 and related compounds were<br />

synthesized through β-chlor<strong>in</strong>ation of 5,10,15,20-tetrakis (2pyridyl)<br />

porphyr<strong>in</strong> (H2T-2-PyP) followed by N-ethylation<br />

and metallation [625109]. In contrast, AEOL-10150 is a<br />

structurally different metalloporphyr<strong>in</strong> catalytic antioxidant,<br />

with imidazole side cha<strong>in</strong> substitutions. AEOL-10150 does<br />

not exist as a stereoisomer, is relatively easy to synthesize,<br />

and can be readily analyzed <strong>in</strong> tissues [465629].<br />

AEOL-10150 was synthesized on the basis of the structureactivity<br />

relationships of AEOL-10113. The metal-centered<br />

redox potential and electrostatics of these compounds have a<br />

key effect on the ability to dismutase superoxides [625100].<br />

AEOL-10150 Orrell 71<br />

AEOL-10150 had a metal-centered redox potential (E1/2)<br />

value of +346 mV, and a catalytic rate constant (log kcat) of<br />

7.83. AEOL-10113 has cationic ortho-N-ethylpyridyl groups<br />

on the meth<strong>in</strong>e bridge carbons of the porphyr<strong>in</strong> r<strong>in</strong>g system<br />

that provides electrostatic guidance for superoxide. The nonplanarity<br />

dim<strong>in</strong>ishes the <strong>in</strong>teraction of AEOL-10113 with<br />

DNA and hence reduces the <strong>in</strong> vivo toxicity of the compound<br />

[413580]. AEOL-10150 has ethyl cha<strong>in</strong>s <strong>in</strong> substitution for<br />

both the ortho-imidazolyl nitrogens of AEOL-10113. This<br />

delocalizes the positive charge over both nitrogens,<br />

provid<strong>in</strong>g greater proximity to the mesoporphyr<strong>in</strong> carbons,<br />

and creates a stronger electron-withdraw<strong>in</strong>g effect than the<br />

positively charged ortho-pyridyl nitrogens [625100].<br />

Separation and detection of these compounds has been<br />

described by high-performance liquid chromatography, with<br />

electrochemical detection apparently offer<strong>in</strong>g greater<br />

quantitative sensitivity than spectrophotometric detection,<br />

although less specificity for <strong>in</strong> vivo applications [625112].<br />

Precl<strong>in</strong>ical development<br />

Mechanism<br />

AEOL-10150 can catalytically decompose biological<br />

oxidants, such as peroxynitrite, by its ability to cycle<br />

between Mn(II) and Mn(IV) states [616156]. The compound<br />

has a +5 charge, with SOD activity between 5000 and 8500<br />

units/g and catalase activity equivalent to approximately<br />

1% of purified bov<strong>in</strong>e catalase (weight/<br />

weight basis) [616360], [616369].<br />

Alternative mechanisms of action have been proposed for<br />

the metallophorphyr<strong>in</strong>s, <strong>in</strong>clud<strong>in</strong>g neuroprotective effects<br />

mediated by suppression of oxygen-glucose deprivation<br />

(OGD) or N-methyl-D-aspartate (NMDA)-<strong>in</strong>duced rises <strong>in</strong><br />

<strong>in</strong>tracellular Ca 2+ concentration [634340], <strong>in</strong>duction of antiapoptotic<br />

prote<strong>in</strong> synthesis [634341], and <strong>in</strong>hibition of lipid<br />

peroxidation [634325]. However, to date, studies of<br />

AEOL-10150 have focused on antioxidant mechanisms, and<br />

the possibility of other mechanisms rema<strong>in</strong>s undef<strong>in</strong>ed.<br />

ALS<br />

The effects of AEOL-10150 were demonstrated <strong>in</strong> mice that<br />

overexpress the human Cu/Zn SOD1 mutant G93A, which<br />

develop a progressive motor neuron disease; this is<br />

currently considered the best animal model of ALS [505222],<br />

[616156]. Three studies were performed and described <strong>in</strong> a<br />

s<strong>in</strong>gle paper [616156]. In the first study, AEOL-10150 (5<br />

mg/kg) was adm<strong>in</strong>istered <strong>in</strong>traperitoneally as a load<strong>in</strong>g<br />

dose after the first day of symptom onset, followed by daily<br />

ma<strong>in</strong>tenance doses of 2.5 mg/kg. A second study<br />

used a similar regime and adm<strong>in</strong>istered <strong>in</strong>traperitoneal<br />

AEOL-10150 (2.5 mg/kg) every day follow<strong>in</strong>g the onset of<br />

symptoms; <strong>in</strong> addition, creat<strong>in</strong>e and the selective COX-2<br />

<strong>in</strong>hibitor rofecoxib were also adm<strong>in</strong>istered (at 2 and 0.005%<br />

<strong>in</strong> the diet, respectively). The third experiment tested the<br />

same dose of AEOL-10150 (2.5 mg/kg/day) via<br />

subcutaneous adm<strong>in</strong>istration. The survival <strong>in</strong>terval was<br />

calculated from the onset of symptoms (typically around 90<br />

days of age) until sacrifice at a predeterm<strong>in</strong>ed late stage of<br />

disease. After calculat<strong>in</strong>g the survival <strong>in</strong>terval of treated<br />

mice relative to sal<strong>in</strong>e-treated controls (the <strong>in</strong>creased<br />

survival result<strong>in</strong>g from treatment), a survival <strong>in</strong>terval ratio


72 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

was determ<strong>in</strong>ed. The mean survival <strong>in</strong>tervals for G93A mice<br />

treated with <strong>in</strong>traperitoneal AEOL-10150 (2.5 mg/kg/day)<br />

<strong>in</strong>traperitoneal AEOL-10150 (2.5 mg/kg/day) plus<br />

creat<strong>in</strong>e and rofecoxib, and subcutaneous AEOL-10150<br />

(2.5 mg/kg/day) were 40.0, 38.8 and 40.5 days, respectively,<br />

<strong>in</strong> the first study; survival ratios <strong>in</strong> the same groups were<br />

2.96, 2.87 and 2.43, respectively [616156].<br />

Specific deficits were absent <strong>in</strong> the AEOL-10150-treated<br />

mice, with an absence of h<strong>in</strong>d-limb paralysis until a late<br />

stage compared with control mice. The relative <strong>in</strong>frequency<br />

of h<strong>in</strong>d-limb paralysis <strong>in</strong> AEOL-10150-treated mice<br />

compared with complete h<strong>in</strong>d-limb paralysis <strong>in</strong> almost all<br />

control mice suggests that AEOL-10150 alters the course of<br />

the disease and helps to ma<strong>in</strong>ta<strong>in</strong> overall motor function<br />

dur<strong>in</strong>g the period of extended survival [616156]. These<br />

effects correlate with the preservation of sp<strong>in</strong>al motor<br />

neurons. Neuron counts <strong>in</strong> the sp<strong>in</strong>al cord demonstrated<br />

<strong>in</strong>creased cellular survival, with 53% of sp<strong>in</strong>al cord neurons<br />

surviv<strong>in</strong>g at 100 days <strong>in</strong> AEOL-10150-treated mice compared<br />

with 38% <strong>in</strong> untreated mice. Immunosta<strong>in</strong><strong>in</strong>g for glial<br />

fibrillary acidic prote<strong>in</strong> was reduced <strong>in</strong> treated mice,<br />

suggest<strong>in</strong>g that gliosis or neuronal <strong>in</strong>jury is reduced. Levels<br />

of prote<strong>in</strong>-bound nitrotyros<strong>in</strong>e (a marker of oxidative <strong>in</strong>jury)<br />

and malondialdehyde (a marker of lipid oxidation) were<br />

reduced <strong>in</strong> AEOL-10150-treated G93A mice [616156].<br />

In a follow-up study, AEOL-10150 was tested both as a<br />

s<strong>in</strong>gle agent and <strong>in</strong> comb<strong>in</strong>ation with the histone deacetylase<br />

<strong>in</strong>hibitor phenylbutyrone <strong>in</strong> a mur<strong>in</strong>e G93A SOD1<br />

transgenic model [633859]. The neurodegenerative effects of<br />

phenylbutyrate (400 mg/kg/day) and phenylbutyrate (400<br />

mg/kg/day) comb<strong>in</strong>ed with AEOL-10150 (2.5 mg/kg/day)<br />

were compared with a control. Treatments were<br />

adm<strong>in</strong>istered <strong>in</strong>traperitoneally, commenc<strong>in</strong>g at disease onset<br />

(between 85 and 92 days of age). In mice treated with<br />

AEOL-10150 alone there was a significant <strong>in</strong>crease <strong>in</strong><br />

survival, from 132 ± 5 to 146 ± 15 days (11%). Mice<br />

adm<strong>in</strong>istered with phenylbutyrone alone showed an<br />

<strong>in</strong>crease <strong>in</strong> survival from 126 ± 4 to 143 ± 9 days (13%).<br />

When AEOL-10150 was adm<strong>in</strong>istered together with<br />

phenylbutyrone, survival <strong>in</strong>creased to 150 ± 13 days (19%).<br />

The comb<strong>in</strong>ation therapy was significantly more effective<br />

than phenylbutyrone alone (p < 0.05). Motor performance <strong>in</strong><br />

mice treated with AEOL-10150 alone was not significantly<br />

<strong>in</strong>creased, whereas mice treated with phenylbutyrone, both<br />

alone and <strong>in</strong> comb<strong>in</strong>ation with AEOL-10150, showed a<br />

significantly improved motor performance compared with<br />

control. Loss of motor neurons <strong>in</strong> the lumbar sp<strong>in</strong>al cord<br />

was assessed histologically and was significantly reduced<br />

with all treatment comb<strong>in</strong>ations. Immunohistochemical<br />

analysis of malondialdehyde and 3-nitrotyros<strong>in</strong>e, thought to<br />

be relatively specific markers of oxidative damage, showed<br />

<strong>in</strong>creased expression <strong>in</strong> control mice, and a marked<br />

reduction at 115 days <strong>in</strong> all other treatment groups [633859].<br />

The mechanism of action of AEOL-10150 <strong>in</strong> G93A mice is<br />

unlikely to be due to SOD-like activity, as these mice<br />

overexpress SOD. Prevention of the formation of prote<strong>in</strong>bound<br />

nitrotyros<strong>in</strong>e and malondialdehyde suggests an<br />

antioxidant effect on the preservation of sp<strong>in</strong>al motor<br />

neurons [616156]. As it is currently unknown whether the<br />

best possible survival effects have been achieved, further<br />

studies to rigorously exam<strong>in</strong>e dose, route and frequency of<br />

adm<strong>in</strong>istration of AEOL-10150 <strong>in</strong> ALS models are ongo<strong>in</strong>g.<br />

Sp<strong>in</strong>al cord <strong>in</strong>jury<br />

C57BL/6J mice were subjected to sp<strong>in</strong>al cord compression<br />

for 60 m<strong>in</strong> at the T11 vertebral level. In the first experiment<br />

of a two-part study, AEOL-10150 was adm<strong>in</strong>istered as a 0.5mg/kg<br />

bolus dose, followed by a 1.0 mg/kg <strong>in</strong>travenous<br />

<strong>in</strong>fusion every hour for 24 h, beg<strong>in</strong>n<strong>in</strong>g 5 m<strong>in</strong> after onset of<br />

sp<strong>in</strong>al cord compression (n = 25). In the second experiment,<br />

AEOL-10150 was adm<strong>in</strong>istered as an <strong>in</strong>trathecal <strong>in</strong>jection<br />

(2.5 or 5.0 µg/kg; total n = 18). Rotarod performance<br />

demonstrated that <strong>in</strong>trathecal adm<strong>in</strong>istration of 5 µg of<br />

AEOL-10150 was associated with an approximately 30%<br />

improvement <strong>in</strong> neurological behavior (p < 0.05), and a<br />

reduction was observed <strong>in</strong> histological total damage score<br />

(19 ± 8; p = 0.03) compared with controls (26 ± 10).<br />

Intravenous adm<strong>in</strong>istration of AEOL-10150 produced no<br />

significant changes <strong>in</strong> these tests compared with controls<br />

[554429], [616364].<br />

Stroke<br />

AEOL-10150 was adm<strong>in</strong>istered <strong>in</strong> a C57BL/6J mouse model<br />

of stroke [616369]. Mice were subjected to transient (60 m<strong>in</strong>)<br />

middle cerebral artery occlusion (MCAO; n = 6) or sham<br />

surgery (n = 6), and were then treated with AEOL-10150 5<br />

m<strong>in</strong> after reperfusion. A bolus dose of AEOL-10150 (0.5<br />

mg/kg) was followed by cont<strong>in</strong>uous <strong>in</strong>travenous <strong>in</strong>fusion of<br />

1.0 mg/kg/h for 6 h. At this time, the bra<strong>in</strong>s were studied<br />

and mRNA expression was analyzed us<strong>in</strong>g an Affymetrix<br />

mur<strong>in</strong>e microarray. AEOL-10150 attenuated the <strong>in</strong>jury<strong>in</strong>duced<br />

<strong>in</strong>crease <strong>in</strong> expression of pro-<strong>in</strong>flammatory cytok<strong>in</strong>e<br />

genes. For example, MCAO caused a 12-fold upregulation <strong>in</strong><br />

macrophage <strong>in</strong>flammatory prote<strong>in</strong> (MIP)-2 <strong>in</strong> untreated<br />

animals, compared with a 6-fold <strong>in</strong>crease follow<strong>in</strong>g<br />

AEOL-10150 treatment. However, AEOL-10150 had no<br />

apparent effect on the expression of stress response genes,<br />

suggest<strong>in</strong>g that the protective effect of the drug may be<br />

<strong>in</strong>dependent of any stress response pathways. A possible<br />

explanation is that AEOL-10150 is compartmentalized to the<br />

extracellular space because of its +5 charge, and therefore<br />

produces no effect on the stress response genes, which are<br />

regulated by <strong>in</strong>tracellular events. However, studies with a<br />

range of manganese porphyr<strong>in</strong>s, <strong>in</strong>clud<strong>in</strong>g AEOL-10113<br />

(which also has a +5 charge), <strong>in</strong>dicated that they penetrated<br />

mitochondrial and cytosolic fractions of cortical cells <strong>in</strong><br />

concentrations sufficient for antioxidant activity [634343].<br />

Slight changes were observed <strong>in</strong> the expression of<br />

antioxidant genes, <strong>in</strong>clud<strong>in</strong>g glutathion<strong>in</strong>e transferase,<br />

neuronal nitric oxide synthase, Cu/Zn SOD, extracellular<br />

SOD and mitochondrial SOD. No significant changes were<br />

recorded <strong>in</strong> the expression of apoptosis and growth factor<br />

genes, suggest<strong>in</strong>g that AEOL-10150 has no effect on these<br />

pathways [616369].<br />

In a study <strong>in</strong> rats, AEOL-10150 and AEOL-10113 were<br />

adm<strong>in</strong>istered <strong>in</strong>tracerebroventricularly 90 m<strong>in</strong> after a 90-m<strong>in</strong><br />

MCAO [465629]. Dose escalation was performed, <strong>in</strong> which<br />

the <strong>in</strong>itial 300-ng dose of AEOL-10150 was doubled until


side effects were observed. The maximal dose of<br />

AEOL-10150 <strong>in</strong> rats that was clearly devoid of adverse<br />

behavioral effects was 4500 ng. AEOL-10113 caused<br />

behavioral side effects at twice the neuroprotective dose, but<br />

AEOL-10150 caused similar changes at 15-fold the<br />

neuroprotective dose [413580]. AEOL-10150 and<br />

AEOL-10113 reduced <strong>in</strong>farct size by 35% when adm<strong>in</strong>istered<br />

90 m<strong>in</strong> after occlusion. When AEOL-10150 was adm<strong>in</strong>istered<br />

6 h after occlusion, <strong>in</strong>farct size was reduced by 43% [465629].<br />

In a similar study, AEOL-10150 reduced <strong>in</strong>farct size by 40%,<br />

but with no associated functional improvement [468211].<br />

AEOL-10113 was not reported at 6 h, but <strong>in</strong> previous<br />

experiments a 54% reduction <strong>in</strong> <strong>in</strong>farct volume was<br />

reported, together with a reduction <strong>in</strong> neurological deficit<br />

[413580]. In another study, us<strong>in</strong>g the same dos<strong>in</strong>g schedule<br />

<strong>in</strong> mice, neuroprotective effects were observed <strong>in</strong> bra<strong>in</strong><br />

parenchymal prote<strong>in</strong> expression where AEOL-10150<br />

<strong>in</strong>hibited changes <strong>in</strong> prote<strong>in</strong> expression that were<br />

attributable to MCAO [428437].<br />

A comparable study of <strong>in</strong>travenous AEOL-10150 was<br />

conducted <strong>in</strong> a mur<strong>in</strong>e model [465629]. A similar doseescalation<br />

design was implemented <strong>in</strong> two cohorts,<br />

follow<strong>in</strong>g either MCAO or sham surgery, followed by an<br />

<strong>in</strong>travenous bolus dose of 0.5 mg/kg AEOL-10150 and a<br />

cont<strong>in</strong>uous <strong>in</strong>travenous <strong>in</strong>fusion at 1.0 mg/kg/h for 24 h<br />

(n = 6/group). A 25% reduction <strong>in</strong> <strong>in</strong>farct size and a<br />

reduction <strong>in</strong> neurological deficit were demonstrated<br />

[465629]. Uptake of AEOL-10150 <strong>in</strong>to the bra<strong>in</strong> was slow,<br />

dose- and time-dependent and greater <strong>in</strong> the ischemic<br />

hemisphere. AEOL-10150 had direct effects on bra<strong>in</strong><br />

parenchymal prote<strong>in</strong> expression, support<strong>in</strong>g the hypothesis<br />

that a potent catalytic antioxidant can <strong>in</strong>dependently cause<br />

diverse changes <strong>in</strong> prote<strong>in</strong> expression and ameliorate<br />

changes <strong>in</strong>duced by ischemic <strong>in</strong>sult [465629].<br />

One further <strong>in</strong> vitro study by Sheng et al exam<strong>in</strong>ed the ability of<br />

AEOL-10150 to reduce cell death <strong>in</strong> conditions of oxidative<br />

stress [465629]. Neuronal and glial cell cultures were prepared<br />

from embryonic (day 18) rat cerebral hemispheres, and<br />

AEOL-10150 was applied to the assays 30 m<strong>in</strong> prior to<br />

placement <strong>in</strong> oxygen/glucose deprivation (OGD). AEOL-10150<br />

<strong>in</strong>hibited cell death <strong>in</strong> a concentration-dependent manner (p <<br />

0.0001) follow<strong>in</strong>g OGD. The optimal effect of the drug occurred<br />

at 10 µM, at which 48% of the OGD-<strong>in</strong>duced lactate<br />

dehydrogenase release was <strong>in</strong>hibited. AEOL-10150 selectively<br />

<strong>in</strong>hibited aconitase <strong>in</strong>activation (measured 8 h after OGD)<br />

[465629]. The preservation of aconitase activity is used as a<br />

marker of specific <strong>in</strong>hibition of superoxide-mediated <strong>in</strong>jury<br />

[638331].<br />

Transplantation<br />

In human pancreatic islet-cell allotransplantation, a<br />

treatment be<strong>in</strong>g developed for diabetes mellitus, the<br />

mechanical and chemical <strong>in</strong>sults caused to transplanted cells<br />

by oxidative stresses significantly reduce their viability and<br />

function. In an experiment by Bott<strong>in</strong>o et al, AEOL-10150 was<br />

added to the culture medium of purified human islet cells,<br />

and also at the isolation phase [463528]. After 24 h, there was<br />

a 3-fold <strong>in</strong>crease <strong>in</strong> the mass of AEOL-10150-treated cells<br />

compared with untreated control cells. When transplanted<br />

AEOL-10150 Orrell 73<br />

to diabetic mice, glucose levels were normalized <strong>in</strong> n<strong>in</strong>e of<br />

n<strong>in</strong>e mice receiv<strong>in</strong>g AEOL-10150-treated islet cell cultures,<br />

but only five of eight animals receiv<strong>in</strong>g untreated cells. The<br />

<strong>in</strong> vitro glucose responsiveness and <strong>in</strong> vivo function of the<br />

cells that survived demonstrated that AEOL-10150 does not<br />

impair islet functional performance. AEOL-10150 seemed to<br />

protect the human islets from oxidative and free radical<br />

stresses, improv<strong>in</strong>g the preservation of the isolated tissue,<br />

suggest<strong>in</strong>g that the drug may be usefully applied to the<br />

procurement solution dur<strong>in</strong>g organ perfusion to obta<strong>in</strong> a<br />

more successful protective effect before transplant [463528].<br />

Pancreatic islet β-cells are reported to be highly susceptible<br />

to oxidative stress because of reduced endogenous<br />

antioxidant levels [632736]. Under conditions of extreme<br />

stress, for example, islet-cell isolation procedures follow<strong>in</strong>g<br />

cl<strong>in</strong>ical transplantation, the antioxidant defenses of the βcells<br />

may be overwhelmed, which may lead to a state of<br />

redox imbalance and the production of reactive oxygen<br />

species (ROS). A potential ROS-dependent target is nuclear<br />

factor (NF)κB. In a second study, Bott<strong>in</strong>o et al demonstrated<br />

that AEOL-10150 reduced the level of NFκB <strong>in</strong> treated islet<br />

β-cells, correlat<strong>in</strong>g with reduced production of cytok<strong>in</strong>es<br />

and chemok<strong>in</strong>es, and reduced activation of apoptosis and<br />

necrosis, further support<strong>in</strong>g the use of AEOL-10150 <strong>in</strong> the<br />

protection of pancreatic islet cells used for transplantation<br />

treatment of diabetes [632736].<br />

Hemorrhage-<strong>in</strong>duced lung <strong>in</strong>jury<br />

The effect of hemorrhage-<strong>in</strong>duced lung <strong>in</strong>jury was studied<br />

<strong>in</strong> extracellular (EC)-SOD knockout mice, with and without<br />

pre-treatment with a s<strong>in</strong>gle subcutaneous dose of<br />

AEOL-10150 (24 mg/kg) [616360]. Compared with wild-type<br />

mice, EC-SOD-deficient mice had <strong>in</strong>creased lung neutrophil<br />

accumulation, a 3.9-fold <strong>in</strong>crease <strong>in</strong> myeloperoxidase<br />

activity, a 1.5-fold <strong>in</strong>crease <strong>in</strong> NFκB activation, and a 1.5-fold<br />

<strong>in</strong>crease <strong>in</strong> lipid peroxidation 1 h after hemorrhage. Pretreatment<br />

with AEOL-10150 did not attenuate neutrophil<br />

accumulation <strong>in</strong> the lungs, but reduced NFκB activation and<br />

isoprostane formation <strong>in</strong> both wild-type and EC-SODdeficient<br />

mice. However, the beneficial effects of<br />

AEOL-10150 were moderate and no reduction <strong>in</strong> neutrophil<br />

recruitment to the lungs was observed, suggest<strong>in</strong>g that<br />

AEOL-10150 can attenuate markers of oxidative stress, but<br />

may not reduce lung <strong>in</strong>jury as measured by neutrophil<br />

accumulation [616360].<br />

Radiation-<strong>in</strong>duced lung <strong>in</strong>jury<br />

The effects of radiation-<strong>in</strong>duced <strong>in</strong>jury were exam<strong>in</strong>ed <strong>in</strong> 344<br />

Fisher rats. Follow<strong>in</strong>g the adm<strong>in</strong>istration of a s<strong>in</strong>gle<br />

irradiation dose (26 Gy) to the right hemithorax, rats were<br />

treated with AEOL-10150 (1, 10 or 30 mg/kg/day) for 10<br />

weeks, via a subcutaneous osmotic pump. Follow-up<br />

exam<strong>in</strong>ations at 20 weeks showed significantly improved<br />

breath<strong>in</strong>g rates <strong>in</strong> both the 10 and 30 mg/kg/day groups. In<br />

the same two groups, a reduction <strong>in</strong> oxidative stress (as<br />

measured by levels of 8-hydroxydeoxyguanos<strong>in</strong>e; 8OHdG),<br />

a reduction <strong>in</strong> macrophage levels and a significant decrease<br />

<strong>in</strong> structural disease were observed, compared with the<br />

control and 1-mg/kg/day groups. The doses and route of<br />

adm<strong>in</strong>istration used <strong>in</strong> this study were implemented <strong>in</strong>to a


74 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

phase I study of AEOL-10150 <strong>in</strong> ALS patients [629090],<br />

[638411].<br />

Tobacco-smoke-<strong>in</strong>duced lung <strong>in</strong>flammation<br />

Cigarette smokers experience airway <strong>in</strong>flammation and<br />

epithelial damage, which is thought to be caused by the<br />

formation of free radicals by chemicals <strong>in</strong> the smoke, lead<strong>in</strong>g<br />

to oxidative stress. AEOL-10150 (either 5 mg/kg<br />

adm<strong>in</strong>istered approximately 2 h before a 2-day toxicity<br />

study, or as eight weekly doses of 2 mg/kg <strong>in</strong> a long-term<br />

toxicity model) was adm<strong>in</strong>istered by <strong>in</strong>tratracheal<br />

<strong>in</strong>stillation to rats exposed to filtered air or tobacco smoke<br />

[616370], [616377]. A lower dose was used for the 8-week<br />

study <strong>in</strong> order to m<strong>in</strong>imize potential long-term toxicity.<br />

AEOL-10150 significantly reduced bronchoalveolar lavage<br />

cell numbers <strong>in</strong> tobacco-smoke-treated rats, with reductions<br />

<strong>in</strong> counts of neutrophils, macrophages and lymphocytes at<br />

different time po<strong>in</strong>ts. Squamous cell metaplasia was reduced<br />

from 12% of total airway epithelial area to 2% after 8 weeks<br />

of treatment with AEOL-10150. AEOL-10150 was also<br />

observed to attenuate decreases <strong>in</strong> levels of MIP-2 and<br />

<strong>in</strong>tracellular adhesion molecule-1, important prote<strong>in</strong>s <strong>in</strong> the<br />

migration and presentation of neutrophils and<br />

macrophages. The expression of these two prote<strong>in</strong>s is<br />

mediated by NFκB and, therefore, it was suggested<br />

that AEOL-10150 decreases tobacco-smoke-<strong>in</strong>duced<br />

<strong>in</strong>flammation <strong>in</strong> the lungs of rats by reduc<strong>in</strong>g oxidative<br />

stress and the resultant activation of NFκB [616370].<br />

Autoimmune disease<br />

The effect of AEOL-10150 (and AEOL-10113) on<br />

lipopolysaccharide-stimulated macrophages was studied to<br />

determ<strong>in</strong>e the role of oxidation-reduction reactions <strong>in</strong> the<br />

activation of the immune system. In the presence of<br />

AEOL-10150, the cells failed to elicit a pro-<strong>in</strong>flammatory<br />

response, and levels of the pro-<strong>in</strong>flammatory cytok<strong>in</strong>es tumor<br />

necrosis factor α and <strong>in</strong>terleuk<strong>in</strong>-1β were decreased. There was<br />

also a reduced ability to generate reactive oxygen species, with<br />

decreased superoxide and peroxynitrite production. These<br />

effects led to the <strong>in</strong>hibition of the NFκB pathway at the DNA<br />

b<strong>in</strong>d<strong>in</strong>g level, which, if mediated by the catalytic antioxidant<br />

<strong>in</strong>hibition, suggests that this pathway is dependent on the<br />

redox state with<strong>in</strong> the cell. This f<strong>in</strong>d<strong>in</strong>g implies that immune<br />

activation might not be an on/off response, but one that is<br />

mediated to some degree by free-radical signal<strong>in</strong>g. The<br />

potential of AEOL-10150 to suppress this immune response<br />

suggests long-term applications <strong>in</strong> prevent<strong>in</strong>g the activation of<br />

the adaptive immune response <strong>in</strong> organ-specific autoimmune<br />

diseases <strong>in</strong> which chronic <strong>in</strong>flammation causes delayed-type<br />

hypersensitivity and tissue destruction [616358].<br />

Mucositis<br />

AEOL-10150 was reported to reduce the <strong>in</strong>cidence and<br />

duration of radiation-<strong>in</strong>duced oral mucositis <strong>in</strong> a hamster<br />

model [432294]. Intraperitoneal (0.05, 0.2 and 0.3 mg/ml) or<br />

topical (0.05, 0.2, 0.3 and 1.0 mg/ml) AEOL-10150 was<br />

adm<strong>in</strong>istered three-times daily for 20 days, commenc<strong>in</strong>g a<br />

day before a s<strong>in</strong>gle 40 Gy dose of radiation. Relative to<br />

vehicle-treated control animals, <strong>in</strong>traperitoneal AEOL-10150<br />

reduced the number of days of severe mucositis (ulceration)<br />

by 35 to 59% at all doses, and topical adm<strong>in</strong>istration (of 1.0<br />

mg/ml) reduced the number of days by 36%. The drug also<br />

protected aga<strong>in</strong>st conditions that commonly arise <strong>in</strong> association<br />

with oxidative free radical damage, reduc<strong>in</strong>g mitochondrial<br />

aconitase <strong>in</strong>activation (by 4-fold with topical adm<strong>in</strong>istration<br />

and 2.5-fold with <strong>in</strong>traperitoneal adm<strong>in</strong>istration) and 8OHdG<br />

formation (by 1.5-fold follow<strong>in</strong>g either topical or <strong>in</strong>traperitoneal<br />

adm<strong>in</strong>istration) [432294]. These data have been presented <strong>in</strong><br />

abstract form only, with no <strong>in</strong>dication of dos<strong>in</strong>g based on<br />

weight. Total daily doses were equivalent to 0.03, 0.12, 0.18 and<br />

0.6 mg/day [432294].<br />

Cancer<br />

A more recent study exam<strong>in</strong>ed the effect of AEOL-10150 on<br />

the efficacy and toxicity of anticancer radiation therapy<br />

[595706]. Male C57BL/6 mice were <strong>in</strong>jected subcutaneously<br />

with RM9 prostate tumor cells before be<strong>in</strong>g treated with<br />

<strong>in</strong>traperitoneal AEOL-10150 (6 mg/kg) for 16 days.<br />

Radiation (10 Gy) was delivered on day 8. Three days after<br />

the application of irradiation, hematological analysis<br />

showed that radiation alone significantly slowed tumor<br />

progression (p ≤ 0.05) and that a slight antitumor response<br />

was observed with AEOL-10150 treatment alone. The most<br />

potent effect was observed when AEOL-10150 was<br />

comb<strong>in</strong>ed with radiation, after which tumor volumes were<br />

significantly reduced on days 8 and 10 to 14, compared with<br />

untreated controls. It was also suggested that AEOL-10150<br />

<strong>in</strong>creased the efficacy of radiation because smaller tumor<br />

volumes were recorded on days 10, 13 and 16 <strong>in</strong> the<br />

AEOL-10150 plus radiation group than <strong>in</strong> animals receiv<strong>in</strong>g<br />

radiation alone (p ≤ 0.05). Record<strong>in</strong>gs of body mass were<br />

similar among all groups dur<strong>in</strong>g the majority of the study.<br />

These f<strong>in</strong>d<strong>in</strong>gs support the utilization of AEOL-10150 as a<br />

possible therapy <strong>in</strong> slow<strong>in</strong>g tumor progression and suggest<br />

that greater tumor control may be possible when the<br />

compound is comb<strong>in</strong>ed with radiation [595706].<br />

Metabolism and pharmacok<strong>in</strong>etics<br />

Pharmacok<strong>in</strong>etic parameters were determ<strong>in</strong>ed <strong>in</strong> a rat study<br />

of AEOL-10150 (300 ng) <strong>in</strong>jected <strong>in</strong>tracerebroventricularly 90<br />

m<strong>in</strong> after reperfusion from MCAO [465629]. No compound<br />

was detected <strong>in</strong> the liver. Plasma concentrations were<br />

generally negligible, but reached levels of 4.6 and 3.2 ng/ml<br />

<strong>in</strong> two rats. Bra<strong>in</strong> parenchymal AEOL-10150 peaked with<strong>in</strong> 1<br />

h of <strong>in</strong>jection, and the tissue half-life was calculated to be<br />

approximately 10 h [465629].<br />

In a mouse model of MCAO and reperfusion, AEOL-10150<br />

was adm<strong>in</strong>istered as an <strong>in</strong>travenous bolus of 2.5 mg/kg,<br />

followed by <strong>in</strong>fusion of 1 mg/kg/h. The plasma<br />

concentration of AEOL-10150 was stable at 3 to 4 µg/ml. The<br />

drug concentration <strong>in</strong> both ipsilateral and contralateral bra<strong>in</strong><br />

regions <strong>in</strong>creased with time, but was 2- to 4-fold greater <strong>in</strong><br />

the ischemic hemisphere [468211].<br />

Model<strong>in</strong>g based on animal and human data predicted the<br />

efficacious dose of AEOL-10150 <strong>in</strong> humans with ALS to be<br />

approximately 12 mg daily. It therefore appears that a wide<br />

therapeutic w<strong>in</strong>dow exists for AEOL-10150, accord<strong>in</strong>g to<br />

current safety data and dose-l<strong>in</strong>ear pharmacok<strong>in</strong>etics <strong>in</strong> animals<br />

and humans [616116].<br />

A multicenter, double-bl<strong>in</strong>d, randomized, placebo-controlled,<br />

escalat<strong>in</strong>g-dose study of subcutaneously adm<strong>in</strong>istered s<strong>in</strong>gle<br />

doses of AEOL-10150 (3, 12, 30, 45, 60 and 75 mg) to 25 patients


(n = 3 or 4 per cohort) has been conducted [621716].<br />

Pharmacok<strong>in</strong>etic data from the study showed that responses<br />

were dose-dependent, AUC values rang<strong>in</strong>g from 354 to 12,167<br />

ng.h/ml (follow<strong>in</strong>g 3- and 75-mg doses). Cmax values ranged<br />

from 114.8 to 1584 ng/ml, Tmax values ranged from 1 to 2 h and<br />

mean half-life values from 2.6 to 6.4 h (3 and 75 mg) [621716].<br />

Toxicity<br />

A study <strong>in</strong> rats compared the relative behavioral neurotoxicity<br />

of AEOL-10113 and AEOL-10150 [465629]. Animals were<br />

exam<strong>in</strong>ed for 2 h after <strong>in</strong>jection, and if no adverse behavioral<br />

responses were observed the dose was doubled <strong>in</strong> a new set of<br />

rats. In animals treated with AEOL-10113, a behavioral<br />

syndrome with susta<strong>in</strong>ed proptosis (a protuberance of the<br />

eyeball out of its socket), ataxia (impaired muscle function or<br />

movement) and hypersensitivity to sound was observed. For<br />

AEOL-10113, an <strong>in</strong>tracerebroventricular dose of 600 ng was<br />

reached before m<strong>in</strong>or behavioral side effects became noticeable<br />

compared with 9 µg for AEOL-10150, a 15-fold reduction <strong>in</strong><br />

toxicity. No effect of the drugs on body temperature was<br />

detected [465629].<br />

When adm<strong>in</strong>istered to mice for 16 days, alone or <strong>in</strong><br />

comb<strong>in</strong>ation with radiation, AEOL-10150 (6 mg/kg/day)<br />

did not produce any detectable toxicities affect<strong>in</strong>g body<br />

mass, behavior or hematological analyses [595706].<br />

In male Wistar rats, <strong>in</strong>travenous AEOL-10150 <strong>in</strong> doses of<br />

> 0.1 mg/kg produced a reduction of mean arterial pressure<br />

of > 20%. The duration of hypotension was dose dependent,<br />

with 0.5 mg/kg caus<strong>in</strong>g irreversible profound hypotension,<br />

but smaller doses produc<strong>in</strong>g only transient effects. No<br />

change <strong>in</strong> mean arterial pressure was observed when an<br />

<strong>in</strong>tracerebroventricular route was used [465629].<br />

In a mur<strong>in</strong>e prostate cancer model, animals treated with<br />

AEOL-10150 (6 mg/kg) for 16 days had a significantly elevated<br />

white blood cell count due to granulocytosis (p ≤ 0.05) [595706].<br />

Levels of red blood cells and platelets, hemoglob<strong>in</strong> and<br />

hematocrit were similar among groups tested. A trend of<br />

elevated white blood cells was observed <strong>in</strong> the spleens of mice<br />

treated with AEOL-10150 (p < 0.1), with <strong>in</strong>creases <strong>in</strong> both<br />

granulocytes and macrophages (p < 0.05). Additional studies<br />

are needed to understand the biological significance, if any, of<br />

the <strong>in</strong>creased white blood cell counts [595706].<br />

Cl<strong>in</strong>ical development<br />

Phase I<br />

A multicenter, double-bl<strong>in</strong>d, randomized, placebo-controlled<br />

study evaluated escalat<strong>in</strong>g, subcutaneous s<strong>in</strong>gle doses of<br />

AEOL-10150 (3, 12, 30, 45, 60 and 75 mg) <strong>in</strong> 25 ALS patients<br />

[592224], [621716]. Recently reported pharmacok<strong>in</strong>etic data<br />

from the trial are detailed above, and side effects/<br />

tolerability detailed <strong>in</strong> the side effects and contra<strong>in</strong>dications<br />

section below.<br />

A second multicenter, multiple-dose study was expected to<br />

enroll 18 ALS patients to receive subcutaneous <strong>in</strong>jections of<br />

40, 60 or 75 mg of AEOL-10150 (n = 4/dose) or placebo<br />

(n = 6), twice daily for 6 days, with a s<strong>in</strong>gle <strong>in</strong>jection on the<br />

seventh day. The trial was to collect efficacy, safety and<br />

AEOL-10150 Orrell 75<br />

pharmacok<strong>in</strong>etic data, and was expected to be completed by<br />

the end of 2005 or early <strong>in</strong> 2006 [629382].<br />

Aeolus has announced plans to <strong>in</strong>itiate trials <strong>in</strong> other<br />

<strong>in</strong>dications. In February 2005, the company was to file an<br />

<strong>in</strong>vestigational new drug application prior to <strong>in</strong>itiat<strong>in</strong>g a<br />

phase I study of AEOL-10150 <strong>in</strong> radiation-<strong>in</strong>duced mucositis<br />

[583926].<br />

The company had announced <strong>in</strong> April 2004 that, depend<strong>in</strong>g<br />

on the results of phase I trials <strong>in</strong> ALS, a pivotal phase II/III<br />

trial <strong>in</strong> this <strong>in</strong>dication could be <strong>in</strong>itiated by the first half of<br />

2005 [533629]. In February 2005, the company stated its<br />

<strong>in</strong>tention to <strong>in</strong>itiate an efficacy study of AEOL-10150 <strong>in</strong><br />

stroke patients [583926]. At the time of publication, however,<br />

no further details of these studies were available.<br />

Side effects and contra<strong>in</strong>dications<br />

The most common side effects that have been reported<br />

from phase I trials of ALS patients were <strong>in</strong>jection-site<br />

reactions, dizz<strong>in</strong>ess and headache [592224]. The adverse<br />

events were considered mild <strong>in</strong> severity, and<br />

approximately 50% of these events were possibly related<br />

to the study medication. No serious adverse events,<br />

laboratory abnormalities or cardiovascular issues were<br />

observed [621716]. Initial observations from the multipledose<br />

study <strong>in</strong> ALS patients have demonstrated no serious<br />

adverse events [629382].<br />

S<strong>in</strong>gle doses of AEOL-10150 rang<strong>in</strong>g from 3 to 30 mg were<br />

well tolerated [592224], and no serious adverse events were<br />

reported. No cl<strong>in</strong>ically mean<strong>in</strong>gful abnormalities were noted<br />

<strong>in</strong> safety laboratory tests, vital signs, unified Park<strong>in</strong>son's<br />

disease rat<strong>in</strong>g scale, functional ALS assessments or<br />

electrocardiogram data. Further studies of up to 75 mg of<br />

AEOL-10150 <strong>in</strong> humans revealed no serious adverse events<br />

or laboratory abnormalities [616116].<br />

Patent summary<br />

WO-09510185, published <strong>in</strong> April 1995 by Duke University and<br />

the University of Melbourne Research Foundation, describes<br />

novel mimetics of SOD and <strong>in</strong>hibitors of xanth<strong>in</strong>e. Claims are<br />

made for various manganic derivatives of meth<strong>in</strong>e-substituted<br />

porphyr<strong>in</strong>s, prepared by conventional methods, <strong>in</strong>clud<strong>in</strong>g the<br />

products AEOL-10113 and AEOL-10150. In December 1996, the<br />

University of Alabama Research Foundation and Duke<br />

University published WO-09640223, describ<strong>in</strong>g the modulation<br />

of <strong>in</strong>tra- or extracellular levels of oxidants, such as superoxide<br />

radicals, hydrogen peroxides and peroxynitrite; potential was<br />

claimed <strong>in</strong> the therapy of ischemia, myocardial <strong>in</strong>farction,<br />

reperfusion <strong>in</strong>jury, and <strong>in</strong>flammatory disorders, such as asthma<br />

and rheumatoid arthritis.<br />

In July 2000, AEOL-10150 was first claimed <strong>in</strong> WO-00043395,<br />

which is expected to be granted as EP-01155019 <strong>in</strong> December<br />

2005, describ<strong>in</strong>g the modulation of cellular levels of oxidants<br />

us<strong>in</strong>g substituted porphyr<strong>in</strong>s. AEOL-10150 is specifically<br />

claimed <strong>in</strong> US-06544975. Both the European and US cases are <strong>in</strong><br />

the name of the National Jewish Medical & Research Center,<br />

Aeolus Pharmaceuticals Inc and Duke University. AEOL-10150<br />

should have solid patent protection at least until January 2020.


76 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

Further patents associated with the drug <strong>in</strong>clude WO-02060383<br />

(published <strong>in</strong> August 2002), which claims the use of a list of<br />

SOD mimetics, <strong>in</strong>clud<strong>in</strong>g AEOL-10150, for treat<strong>in</strong>g cancer, and<br />

WO-02098431 (published <strong>in</strong> December 2002), which specifically<br />

claims AEOL-10150 for the treatment of diabetes.<br />

<strong>Current</strong> op<strong>in</strong>ion<br />

Oxidative stress and free-radical-mediated damage have<br />

been implicated <strong>in</strong> a broad range of diseases. Many of these<br />

diseases, namely stroke, myocardial <strong>in</strong>farction, cancer, and<br />

neurodegenerative and <strong>in</strong>flammatory diseases, are common,<br />

especially <strong>in</strong> later life, and cause significant disability as a<br />

result of the tissue damage. In particular, if free-radicalmediated<br />

damage can be dim<strong>in</strong>ished or halted after the<br />

immediate <strong>in</strong>sult, for example, <strong>in</strong> stroke or myocardial<br />

<strong>in</strong>farction, there is the prospect of significantly improv<strong>in</strong>g<br />

survival and reduc<strong>in</strong>g disability. Nevertheless, to date, the<br />

results of cl<strong>in</strong>ical studies of other antioxidant (eg, vitam<strong>in</strong>s C<br />

and E, selegil<strong>in</strong>e and N-acetylcyste<strong>in</strong>e) and neuroprotective<br />

compounds (eg, β-lactam antibiotics and m<strong>in</strong>ocycl<strong>in</strong>e) have<br />

been largely disappo<strong>in</strong>t<strong>in</strong>g [625121], [638229]. This may be a<br />

consequence of the animal and tissue models used, and the<br />

difficulty <strong>in</strong> apply<strong>in</strong>g the therapeutic <strong>in</strong>terventions<br />

sufficiently early <strong>in</strong> cl<strong>in</strong>ical practice. The lack of efficacy may<br />

also relate to the compounds be<strong>in</strong>g <strong>in</strong>appropriate.<br />

Questions rema<strong>in</strong> as to the mechanism of action of<br />

metalloporphyr<strong>in</strong>s, <strong>in</strong>clud<strong>in</strong>g AEOL-10150. The therapeutic<br />

mechanism may not be their antioxidant properties, and more<br />

studies should be conducted <strong>in</strong> precl<strong>in</strong>ical models to determ<strong>in</strong>e<br />

alternative mechanisms, study<strong>in</strong>g markers other than those of<br />

oxidative stress. For example, heat shock prote<strong>in</strong>s are also<br />

implicated <strong>in</strong> the pathogenesis of ALS, and their modulation<br />

has produced some benefit <strong>in</strong> precl<strong>in</strong>ical studies [634318],<br />

[634320]. This f<strong>in</strong>d<strong>in</strong>g may have significant implications for<br />

target<strong>in</strong>g diseases, and determ<strong>in</strong><strong>in</strong>g the most effective<br />

compound for further studies. Also, the free-radical-scaveng<strong>in</strong>g<br />

ability of the metalloporphyr<strong>in</strong>s may be reduced or abolished<br />

by structural modifications. Includ<strong>in</strong>g such modified<br />

compounds as controls <strong>in</strong> studies of AEOL-10150 is important<br />

to clarify the therapeutic mechanisms.<br />

SOD mimetics and similar compounds that affect free radicals<br />

and oxidative stress have the potential for cl<strong>in</strong>ical efficacy.<br />

AEOL-10150 was apparently tolerated <strong>in</strong> phase I studies, and<br />

has the advantage of be<strong>in</strong>g subcutaneously adm<strong>in</strong>istered. For<br />

treatment of a chronic disease process, such as ALS, where<br />

oxidative damage is presumed to be ongo<strong>in</strong>g throughout the<br />

disease, treatment would presumably require regular<br />

adm<strong>in</strong>istration of the compound and access to the central<br />

nervous system. ALS would appear to be a sensible choice of<br />

disease <strong>in</strong> which to study the cl<strong>in</strong>ical effects of AEOL-10150<br />

because of the presumption of oxidative stress as a component<br />

of the pathology, and also because the rapid progression of the<br />

disease allows cl<strong>in</strong>ical efficacy to be studied <strong>in</strong> a relatively short<br />

time period. ALS is a serious and fatal disease <strong>in</strong> urgent need of<br />

effective treatment. A range of antioxidants have been<br />

evaluated <strong>in</strong> the treatment of this disorder, with no proven<br />

efficacy [625121], but these have usually been of low potency<br />

and specificity, and evaluated <strong>in</strong> poorly designed studies. The<br />

only current licensed medication for ALS, riluzole, has only<br />

slight efficacy [625097], [625122], and there is the expectation<br />

that other medications will have a more significant effect <strong>in</strong> the<br />

future, either alone or <strong>in</strong> comb<strong>in</strong>ation with riluzole and other<br />

compounds. The observation of an additive therapeutic effect of<br />

AEOL-10150 when comb<strong>in</strong>ed with sodium phenylbutyrate<br />

supports this view [633859], and is important when design<strong>in</strong>g<br />

precl<strong>in</strong>ical and cl<strong>in</strong>ical studies, and determ<strong>in</strong><strong>in</strong>g the eventual<br />

utility of the compound.<br />

Some caution is needed <strong>in</strong> the <strong>in</strong>terpretation of therapeutic<br />

studies <strong>in</strong> SOD1 transgenic mice, as a range of compounds have<br />

been demonstrated to have efficacy on survival, but this efficacy<br />

has not been translated to effects <strong>in</strong> humans [638229]. Also, a<br />

range of different SOD1 transgenic mouse models exist, with<br />

different mutations, different expression loads and different<br />

background survival, mak<strong>in</strong>g comparison of survival times or<br />

efficacy difficult. An important study <strong>in</strong> a mouse model would<br />

be to exam<strong>in</strong>e a comb<strong>in</strong>ation of riluzole and AEOL-10150,<br />

compar<strong>in</strong>g the comb<strong>in</strong>ation with the effects on animals treated<br />

with the <strong>in</strong>dividual agents and placebo. It is probable that any<br />

cl<strong>in</strong>ical trial <strong>in</strong> humans with ALS will require the patients to be<br />

tak<strong>in</strong>g riluzole as well as AEOL-10150, for ethical reasons. A<br />

criticism that may be raised concern<strong>in</strong>g the treatment of<br />

degenerative conditions, such as ALS (and other conditions<br />

such as cancer, stroke and heart disease), is that <strong>in</strong> prolong<strong>in</strong>g<br />

survival, suffer<strong>in</strong>g or disability may also be prolonged. Hence,<br />

the observation that mice treated with AEOL-10150 reta<strong>in</strong>ed<br />

their ability to walk on all four limbs and perform other normal<br />

activities throughout the extended period of survival, rather<br />

than experience a gradual deterioration or prolongation of<br />

lifespan <strong>in</strong> significant physical disability, is potentially<br />

important [616116], [616156].<br />

More effective antioxidants are also be<strong>in</strong>g synthesized, for<br />

example, through the modification of AEOL-10150 by <strong>in</strong>clud<strong>in</strong>g<br />

oxygen atoms [625100]. Three new Mn(III) porphyr<strong>in</strong> SOD-like<br />

catalysts, with ether oxygen atoms <strong>in</strong> the side cha<strong>in</strong>s, have been<br />

synthesized and characterized by the same laboratory [625100].<br />

When compared with AEOL-10113 and AEOL-10150,<br />

MnTDMOE-2-ImP 5+ (where all eight ethyl groups are replaced<br />

by methoxyethyl groups) was the most effective catalyst of<br />

SOD, while AEOL-10150 was stated to be of low efficacy<br />

[625100]. Comparative studies of these antioxidants <strong>in</strong> the G93A<br />

SOD1 mutant mouse would be of <strong>in</strong>terest because it is the best<br />

available ALS model. In one study, the synthetic superoxide<br />

dismutase/catalase mimetics (salen manganese complexes),<br />

EUK-8 and EUK-134 (Proteome Systems Ltd) were<br />

adm<strong>in</strong>istered <strong>in</strong>traperitoneally to low-express<strong>in</strong>g G93A mice,<br />

110 days before onset. Disease onset occurs later <strong>in</strong> these mice<br />

(170 days), and prolongation of up to 6 days occurs <strong>in</strong> the<br />

EUK-8-treated group, a 1.1-fold <strong>in</strong>crease <strong>in</strong> total life span. Us<strong>in</strong>g<br />

the survival <strong>in</strong>terval ratio, values of 1.2-fold for EUK-8 and<br />

1.6-fold for EUK-134 were calculated [625120]. In another<br />

study, iron porphyr<strong>in</strong> (FeTCPP) 5,10,15,20-tetrakis-4carboxyphenylporphyr<strong>in</strong><br />

was adm<strong>in</strong>istered to G93A SOD1<br />

mutant mice. The mean survival time was <strong>in</strong>creased by 7 days<br />

<strong>in</strong> treated mice compared with controls [625101].<br />

If cl<strong>in</strong>ical efficacy of AEOL-10150 is demonstrated <strong>in</strong> any one<br />

of the proposed treatment <strong>in</strong>dications, the possibilities of<br />

efficacy <strong>in</strong> the rema<strong>in</strong><strong>in</strong>g <strong>in</strong>dications would appear to be good.


Although subcutaneous adm<strong>in</strong>istration is of benefit for chronic<br />

conditions, <strong>in</strong>travenous adm<strong>in</strong>istration with access to<br />

appropriate tissues, especially bra<strong>in</strong> <strong>in</strong> stroke and sp<strong>in</strong>al cord <strong>in</strong><br />

trauma, is important. The recurrent problem <strong>in</strong> treat<strong>in</strong>g these<br />

acute conditions is diagnos<strong>in</strong>g and adm<strong>in</strong>ister<strong>in</strong>g the<br />

medication with<strong>in</strong> the first few hours of the <strong>in</strong>sult.<br />

Development history<br />

AEOL-10150 Orrell 77<br />

Precl<strong>in</strong>ical trials of AEOL-10150 have shown promise of<br />

efficacy <strong>in</strong> a range of diseases that cause significant<br />

mortality, disability and suffer<strong>in</strong>g. However, the<br />

mechanisms of action and relative efficacy of<br />

AEOL-10150 and other metalloporphyr<strong>in</strong>s require further<br />

study.<br />

Developer Country Status Indication Date Reference<br />

Aeolus Pharmaceuticals Inc US Phase I Motor neuron disease 31-OCT-04 583926<br />

Aeolus Pharmaceuticals Inc US Discovery Cerebrovascular ischemia 24-NOV-00 391004<br />

Aeolus Pharmaceuticals Inc US Discovery Lung <strong>in</strong>flammation 01-AUG-01 616377<br />

Aeolus Pharmaceuticals Inc US Discovery Mucositis 01-OCT-01 432294<br />

Aeolus Pharmaceuticals Inc US Discovery Sp<strong>in</strong>al cord <strong>in</strong>jury 04-MAR-04 554429<br />

Literature classifications<br />

Chemistry<br />

Study type Result Reference<br />

SAR. A number of related manganese (III) compounds were studied and compared. AEOL-10150, a stable<br />

and non-toxic manganese mesoporphyr<strong>in</strong>, was selected on the basis of its redox potentials (E1/2 value<br />

of +346 mV and log kcat value of 7.83).<br />

625100<br />

Biology<br />

Study type Effect studied Model Result Reference<br />

In vitro Efficacy. AEOL-10150 was added dur<strong>in</strong>g the After 24 h, there was a 3-fold <strong>in</strong>crease <strong>in</strong> 463528<br />

isolation and culture of purified human the mass of AEOL-10150-treated cells<br />

pancreatic islet cells.<br />

compared with untreated cells. When<br />

transplanted to diabetic mice, glucose<br />

levels were normalized <strong>in</strong> n<strong>in</strong>e out of n<strong>in</strong>e<br />

mice receiv<strong>in</strong>g AEOL-10150-treated isletcell<br />

cultures but <strong>in</strong> only five out of eight<br />

animals receiv<strong>in</strong>g untreated cells.<br />

In vivo Efficacy. SOD1-overexpress<strong>in</strong>g G93A mice Compared with placebo, the mean<br />

616156<br />

adm<strong>in</strong>istered one of three schedules <strong>in</strong>creases <strong>in</strong> survival for mice treated with<br />

(5 mg/kg AEOL-10150<br />

<strong>in</strong>traperitoneal AEOL-10150,<br />

<strong>in</strong>traperitoneally as a load<strong>in</strong>g dose <strong>in</strong>traperitoneal AEOL-10150 plus creat<strong>in</strong>e<br />

followed by daily ma<strong>in</strong>tenance doses and rofecoxib, and subcutaneous<br />

of 2.5 mg/kg; 2.5 mg/kg AEOL-10150 AEOL-10150 were 40.0, 38.8 and 40.5<br />

<strong>in</strong>traperitoneally with creat<strong>in</strong>e and days, respectively; survival ratios <strong>in</strong> the<br />

rofecoxib (2 and 0.005% <strong>in</strong> diet, same groups were 2.96, 2.87 and 2.43,<br />

respectively); or 2.5 mg/kg/day<br />

AEOL-10150 via subcutaneous<br />

adm<strong>in</strong>istration) were treated from the<br />

first day of symptom onset<br />

(~ 90 days of age).<br />

respectively.<br />

In vivo Efficacy. SOD1-overexpress<strong>in</strong>g G93A mice Compared with placebo, the mean<br />

633859<br />

adm<strong>in</strong>istered one of three dos<strong>in</strong>g survival of mice treated with AEOL-10150<br />

schedules <strong>in</strong>traperitoneally<br />

alone, with phenylbutyrate alone, and with<br />

(AEOL-10150 (2.5 mg/kg/day), the comb<strong>in</strong>ation of AEOL-10150 and<br />

phenylbutyrate (400 mg/kg/day), and phenylbutyrate <strong>in</strong>creased by 11, 13 and<br />

a comb<strong>in</strong>ation of AEOL-10150<br />

and phenylbutyrate at the same<br />

doses). Animals were treated from the<br />

first day of symptom onset (~ 90 days<br />

of age).<br />

19%, respectively.<br />

In vivo Efficacy. C57BL/6J mice (n = 18) subjected to Rotarod performance demonstrated that 554429<br />

sp<strong>in</strong>al cord compression for 60 m<strong>in</strong>, <strong>in</strong>trathecal adm<strong>in</strong>istration of AEOL-10150<br />

with AEOL-10150 or placebo<br />

was associated with ~ 30% improvement<br />

adm<strong>in</strong>istered 5 m<strong>in</strong> later. In two <strong>in</strong> neurological behavior (p < 0.05), and a<br />

studies, AEOL-10150 was<br />

reduction was seen <strong>in</strong> histological total<br />

adm<strong>in</strong>istered as a 0.5-mg/kg bolus damage score (19 ± 8; p = 0.03)<br />

dose followed by a 1.0-mg/kg<br />

<strong>in</strong>travenous <strong>in</strong>fusion every hour for 24<br />

compared with controls (26 ± 10).<br />

Intravenous adm<strong>in</strong>istration of<br />

h (n = 25), or as an <strong>in</strong>trathecal<br />

<strong>in</strong>jection (2.5 or 5.0 µg/kg).<br />

AEOL-10150 showed no significant<br />

changes compared with the control group.


78 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

Biology (cont<strong>in</strong>ued)<br />

Study type Effect studied Model Result Reference<br />

In vivo Efficacy. MCAO or sham surgery <strong>in</strong> mice A 25% reduction <strong>in</strong> <strong>in</strong>farct size and a<br />

465629<br />

(n = 6/group) followed by an<br />

reduction <strong>in</strong> neurological deficit were<br />

<strong>in</strong>travenous bolus dose of<br />

AEOL-10150 (0.5 mg/kg) and a<br />

cont<strong>in</strong>uous <strong>in</strong>travenous <strong>in</strong>fusion at<br />

1.0 mg/kg/h for 24 h (n = 6/group).<br />

demonstrated.<br />

Metabolism<br />

Study type Effect studied Model Result Reference<br />

In vivo Pharmacok<strong>in</strong>etics. AEOL-10150 (300 ng)<br />

The drug was not detected <strong>in</strong> the liver.<br />

465629<br />

adm<strong>in</strong>istered<br />

Plasma concentrations were generally<br />

<strong>in</strong>tracerebroventricularly 90 m<strong>in</strong> negligible, but reached 4.6 and 3.2 ng/ml <strong>in</strong><br />

after MCAO <strong>in</strong> rats.<br />

two rats. Bra<strong>in</strong> parenchymal AEOL-10150<br />

peaked with<strong>in</strong> 1 h of <strong>in</strong>jection, and the<br />

tissue half-life was calculated to be ~ 10 h.<br />

In vivo Pharmacok<strong>in</strong>etics. Post MCAO or sham surgery, mice<br />

received an <strong>in</strong>travenous bolus<br />

dose of AEOL-10150 (0.5 mg/kg)<br />

and a cont<strong>in</strong>uous <strong>in</strong>travenous<br />

<strong>in</strong>fusion of AEOL-10150 at 1.0<br />

mg/kg/h for 24 h.<br />

In vivo Pharmacok<strong>in</strong>etics. A phase I, double-bl<strong>in</strong>d,<br />

randomized, placebo-controlled,<br />

s<strong>in</strong>gle escalat<strong>in</strong>g-dose study of<br />

subcutaneous AEOL-10150 (3, 12,<br />

30, 45, 60 and 75 mg) <strong>in</strong> 25 ALS<br />

patients.<br />

Cl<strong>in</strong>ical<br />

Uptake of the drug <strong>in</strong>to the bra<strong>in</strong> was slow,<br />

dose- and time- dependent, and greater <strong>in</strong><br />

the ischemic hemisphere.<br />

Responses were dose dependent, with AUC<br />

values rang<strong>in</strong>g from 354 to 12,167 ng.h/ml<br />

(follow<strong>in</strong>g 3- and 75-mg doses, respectively).<br />

Cmax values ranged from 114.8 to 1584 ng/ml,<br />

Tmax ranged from 1 to 2 h, and mean half-lives<br />

from 2.6 to 6.4 h (follow<strong>in</strong>g doses of 3 and 75<br />

mg, respectively).<br />

465629<br />

621716<br />

Effect studied Model Result Reference<br />

Safety. A phase I, multicenter, double-bl<strong>in</strong>d, randomized, No serious adverse effects, laboratory<br />

621716<br />

placebo-controlled, s<strong>in</strong>gle escalat<strong>in</strong>g-dose study of abnormalities or cardiovascular issues were<br />

subcutaneous AEOL-10150 (3, 12, 30, 45, 60 and recorded. The most common adverse effects were<br />

75 mg) <strong>in</strong> 25 ALS patients.<br />

<strong>in</strong>jection-site reactions, dizz<strong>in</strong>ess and headache.<br />

Associated patent<br />

Title Substituted porphyr<strong>in</strong>s.<br />

Assignee National Jewish Medical and Research Center<br />

Publication WO-00043395 27-JUL-00<br />

Priority US-19990117010 25-JAN-99<br />

Inventors Crapo JD, Day BJ, Trova MP, Gauuan PJF, Kitchen DB.<br />

Associated references<br />

262608 Riluzole. A review of its pharmacodynamic and pharmacok<strong>in</strong>etic<br />

properties and therapeutic potential <strong>in</strong> amyotrophic lateral sclerosis.<br />

Bryson HM, Fulton B, Benfield P DRUGS 1996 52 4 549-563<br />

391004 Antioxidant small molecule program. Incara Pharmaceuticals Corp<br />

COMPANY WORLD WIDE WEB SITE 2000 November 23<br />

400330 Mutations <strong>in</strong> Cu/Zn superoxide dismutase gene are associated<br />

with familial amyotrophic lateral sclerosis. Rosen DR, Siddique T,<br />

Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan<br />

JP, Deng HX, Rahmani Z et al NATURE 1993 362 6415 59-62<br />

413580 Neuroprotection from delayed postischemic adm<strong>in</strong>istration of a<br />

metalloporphyr<strong>in</strong> catalytic antioxidant. Mackensen GB, Patel P, Sheng H,<br />

Calvi CL, Bat<strong>in</strong>ic Haberle I, Day BJ, Liang LP, Fridovich I, Crapo JD,<br />

Pearlste<strong>in</strong> RD, Warner DS J NEUROSCI 2001 21 13 4582-4592<br />

428437 Effects of metalloporphyr<strong>in</strong> catalytic antioxidants on rodent focal<br />

ischemic bra<strong>in</strong> damage. Sheng H, Bowler R, Enghild J, Patel M, Kim K,<br />

Crapo JD, Pearlste<strong>in</strong> RD, Warner DS ABSTR SOC NEUROSCI 2001 27 2<br />

Abs 762.15<br />

432294 AEOL 10150, a catalytic antioxidant, reduces the <strong>in</strong>cidence and<br />

duration of radiation-<strong>in</strong>duced oral mucositis <strong>in</strong> a hamster. Soris S, Patel<br />

M, Gammans R EUR J CANCER 2001 37 Suppl 6 S361<br />

449960 Metalloporphyr<strong>in</strong> class of therapeutic catalytic antioxidants.<br />

Patel M, Day BJ TRENDS PHARMACOL SCI 1999 20 9 359-364<br />

463528 Preservation of human islet cell functional mass by antioxidative<br />

action of a novel SOD mimic compound. Bott<strong>in</strong>o R,<br />

Balamurugan AN, Bertera S, Pietropaolo M, Trucco M, Piganelli JD<br />

DIABETES 2002 51 8 2561- 2567<br />

465629 Effects of metalloporphyr<strong>in</strong> catalytic antioxidants <strong>in</strong><br />

experimental bra<strong>in</strong> ischemia. Sheng H, Enghild JJ, Bowler R, Patel M,<br />

Bat<strong>in</strong>i-Haberle I, Calvi CL, Day BJ, Pearlste<strong>in</strong> RD, Crapo JD, Warner DS<br />

FREE RADIC BIOL MED 2002 33 7 947-961<br />

468211 Intravenous adm<strong>in</strong>istration of the Mn metalloporphyr<strong>in</strong> catalytic<br />

antioxidant AEOL 10150 protects aga<strong>in</strong>st ischemic bra<strong>in</strong> <strong>in</strong>jury <strong>in</strong> mice.<br />

Warner DS, Homi H, Crapo JD, Pearlste<strong>in</strong> RD, Sheng H ABSTR SOC<br />

NEUROSCI 2002 28 Abs 201.18<br />

478835 The natural history of amyotrophic lateral sclerosis. R<strong>in</strong>gel SP,<br />

Murphy JR, Alderson MK, Bryan W, England JD, Miller RG, Petajan JH, Smith<br />

SA, Roelofs RI, Ziter F NEUROLOGY 1993 43 7 1316-1322<br />

505222 Organometallics adm<strong>in</strong>istered at onset of disease enhance<br />

survival and preserve motor function of ALS transgenic mice. Crow JP,<br />

Hill JL, Jones P ACS 2003 226 INOR 615<br />

533629 Incara Pharmaceuticals closes on $10.26 million f<strong>in</strong>anc<strong>in</strong>g. Incara<br />

Pharmaceuticals Inc PRESS RELEASE 2004 April 19<br />

554429 Mouse sp<strong>in</strong>al cord compression <strong>in</strong>jury is ameliorated by<br />

<strong>in</strong>trathecal cationic manganese (III) porphyr<strong>in</strong> catalytic antioxidant<br />

therapy. Sheng H, Spasojevic I, Warner DS, Haberle IB NEUROSCI LETT<br />

2004 366 2 220-225


583926 Aeolus Pharmaceuticals announces first quarter f<strong>in</strong>ancial<br />

results. Aeolus Pharmaceuticals Inc PRESS RELEASE 2005 February 08<br />

592224 Aeolus Pharmaceuticals Inc announces optimistic AEOL 10150<br />

phase 1 cl<strong>in</strong>ical trial <strong>in</strong>terim results <strong>in</strong> patients with Lou Gehrig's<br />

disease. Aeolus Pharmaceuticals Inc PRESS RELEASE 2005 March 29<br />

595706 Effect of AEOL 10150 on prostate tumor response to radiation.<br />

Mak<strong>in</strong>de AY, Rizvi A, Luo X, Andres ML, Archambeau JO, Pearlste<strong>in</strong> RD,<br />

Slater JM, Gridley DS PROC AM ASSOC CANCER RES 2005 46 Abs 1991<br />

616116 Aeolus Pharmaceuticals Inc announces publication of results of<br />

AEOL 10150 studies <strong>in</strong> Annals of Neurology. Aeolus Pharmaceuticals Inc<br />

PRESS RELEASE 2005 August 04<br />

616156 Manganese porphyr<strong>in</strong> given at symptom onset markedly extends<br />

survival of ALS mice. Crow JP, Cal<strong>in</strong>gasan NY, Chen J, Hill J, Beal MF ANN<br />

NEUROL 2005 58 2 258-265<br />

616358 Mechanistic analysis of the immunomodulatory effects of a<br />

catalytic antioxidant on antigen-present<strong>in</strong>g cells: Implication for their<br />

use <strong>in</strong> target<strong>in</strong>g oxidation-reduction reactions <strong>in</strong> <strong>in</strong>nate immunity. Tse<br />

HM, Milton MJ, Piganelli JD FREE RADIC BIOL MED 2004 36 2 233-247<br />

616360 Evidence for extracellular superoxide dismutase as a mediator of<br />

hemorrhage-<strong>in</strong>duced lung <strong>in</strong>jury. Bowler RP, Aracoli J, Abraham E, Patel<br />

M, Chang LY, Crapo JD AM J PHYSIOL - LUNG CELL MOL PHYSIOL 2003<br />

284 4 L680-L687<br />

616364 Mn(III) meso tetrakis(N,N'-diethylimidazolium-2-yl)porphyr<strong>in</strong><br />

(AEOL-10150) offers protection <strong>in</strong> mouse model of sp<strong>in</strong>al cord <strong>in</strong>jury.<br />

Sheng H, Spasojevic I, Warner DS, Bat<strong>in</strong>ic-Haberle I FREE RADIC BIOL<br />

MED 2003 35 Suppl 1 S154<br />

616369 A catalytic antioxidant (AEOL 10150) attenuates expression of<br />

<strong>in</strong>flammatory genes <strong>in</strong> stroke. Bowler RP, Sheng H, Enghild JJ, Pearlste<strong>in</strong><br />

RD, Warner AS, Crapo JD FREE RADIC BIOL MED 2002 33 8 1141-1152<br />

616370 Inhibition of tobacco smoke-<strong>in</strong>duced lung <strong>in</strong>flammation by a<br />

catalytic antioxidant. Smith KR, Uyem<strong>in</strong>ami DL, Kodavanti UP, Chang LY,<br />

Crapo JD, P<strong>in</strong>kerton KE FREE RADIC BIOL MED 2002 33 8 1106-1114<br />

616377 Attenuation of cigarette smoke-<strong>in</strong>duced lung <strong>in</strong>flammation and<br />

remodel<strong>in</strong>g by treatment with the metalloporphyr<strong>in</strong> (AEOL 10150).<br />

P<strong>in</strong>kerton KE, Smith KR, Kodavanti U, Chang LY, Crapo JD FREE RADIC<br />

BIOL MED 2001 31 10 S49<br />

621716 Aeolus Pharmaceuticals reports positive safety results from<br />

completed phase I s<strong>in</strong>gle dose study of AEOL 10150 <strong>in</strong> 25 patients with<br />

ALS (Lou Gehrig's disease). Aeolus Pharmaceuticals Inc PRESS RELEASE<br />

2005 September 07<br />

625097 Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron<br />

disease (MND). Miller RG, Mitchell JD, Lyon M, Moore DH COCHRANE<br />

DATABASE SYST REV 2001 4 CD001447<br />

625100 New class of potent catalysts of O2 dismutation. Mn(III) orthomethoxyethylpyridyl-<br />

and di-ortho-methoxyethylimidazolylporphyr<strong>in</strong>s.<br />

Bat<strong>in</strong>ic-Haberle I, Spasojevic I, Stevens RD, Hambright P, Neta P, Okado-<br />

Matsumoto A, Fridovich I DALTON TRANS 2004 11 1696-1702.<br />

625101 Wu AS, Kiaei M, Aguirre N, Crow JP, Cal<strong>in</strong>gasan NY, Browne SE,<br />

Beal MF Iron porphyr<strong>in</strong> treatment extends survival <strong>in</strong> a transgenic animal<br />

model of amyotrophic lateral sclerosis. J NEUROCHEM 2003 85 1 142-<br />

150<br />

625109 Syntheses and superoxide dismut<strong>in</strong>g activities of partially (1-4)<br />

β-chlor<strong>in</strong>ated derivatives of manganese (III) meso-tetrakis (-ethylpyrid<strong>in</strong>ium-2-yl)<br />

porphyr<strong>in</strong>. Kachadourian R, Bat<strong>in</strong>ic-Haberle I, Fridovich I<br />

INORG CHEM 1999 38 2 391-396<br />

625112 High-performance liquid chromatography with<br />

spectrophotometric and electrochemical detection of a series of<br />

manganese (III) cationic porphyr<strong>in</strong>s. Kachadourian R, Menzeleev R, Agha<br />

B, Bocck<strong>in</strong>o SB, Day BJ J CHROMATOGR B ANAL TECHNOL BIOMED LIFE<br />

SCI 2002 767 1 61-67<br />

625113 Peroxynitrite scaveng<strong>in</strong>g by metalloporphyr<strong>in</strong>s and thiolates.<br />

Crow JP FREE RADIC BIOL MED 2000 28 10 1487-1494.<br />

625120 Synthetic superoxide dismutase/catalase mimetics reduce<br />

oxidative stress and prolong surival <strong>in</strong> a mouse amyotrophic lateral<br />

sclerosis model. Jung C, Rong Y, Doctrow S, Baudry M, Malfroy B, Xu Z<br />

NEUROSCI LETT 2001 304 3 157-160<br />

AEOL-10150 Orrell 79<br />

625121 Antioxidant treatment for amyotrophic lateral sclerosis/motor<br />

neuron disease. Orrell RW, Lane JM, Ross M COCHRANE DATABASE<br />

SYST REV 2004 18 4 CD002829<br />

625122 Dose-rang<strong>in</strong>g study of riluzole <strong>in</strong> amyotrophic lateral sclerosis.<br />

Lacomblez L, Bensimon G, Leigh PN, Guillet P, Me<strong>in</strong><strong>in</strong>ger V LANCET 1996<br />

347 9013 1425-1431<br />

629090 Protection of normal tissue from radiation-<strong>in</strong>duced <strong>in</strong>jury us<strong>in</strong>g<br />

AEOL 10150 presented at the annual meet<strong>in</strong>g of the American Society<br />

for Therapeutic Radiology and Oncology. Aeolus Pharmaceuticals Inc<br />

PRESS RELEASE 2005 October 18<br />

629382 Aeolus Pharmaceuticals announces <strong>in</strong>itiation of multiple dose<br />

study of AEOL 10150 <strong>in</strong> patients with Lou Gehrig's disease. Aeolus<br />

Pharmaceuticals Inc PRESS RELEASE 2005 October 19<br />

632736 Response of human islets to isolation stress and the effect of<br />

antioxidant treatment. Bott<strong>in</strong>o R, Balamurugan AN, Tse H,<br />

Thirunavvukarasu C, Ge X, Profozich J, Milton M, Ziegenfuss A, Trucco M,<br />

Piganeli JD DIABETES 2004 53 10 2559-2568<br />

633859 Additive neuroprotective effects of a histone deacetylase<br />

<strong>in</strong>hibitor and a catalytic antioxidant <strong>in</strong> a transgenic mouse model of<br />

amyotrophic lateral sclerosis. Petri S, Kiaei M, Kipiani K, Chen J,<br />

Cal<strong>in</strong>gasan NY, Damiano M, Manfredi G, Crow JP, Beal MF ABSTR SOC<br />

NEUROSCI 2005 35 Abs 213.15<br />

634304 Management of motor neuron disease. Howard RS, Orrell RW<br />

POSTGRAD MED J 2002 78 926 736-741<br />

634318 Mutant Cu/Zn superoxide dismutase prote<strong>in</strong>s have altered<br />

solubility and <strong>in</strong>teract with heat shock/stress prote<strong>in</strong>s <strong>in</strong> models of<br />

amyotrophic lateral sclerosis. Sh<strong>in</strong>der GA, Lacourse MC, M<strong>in</strong>otti S, Durham<br />

HD J BIOL CHEM 2001 276 16 12791-12796<br />

634320 Treatment with arimoclomol, a co<strong>in</strong>ducer of heat shock prote<strong>in</strong>s,<br />

delays disease progression <strong>in</strong> ALS mice. Kieran D, Kalmar B, Dick JR,<br />

Riddoch-Contreras J, Burnstock G, Greensmith L NAT MED 2004 10 4 402-<br />

405<br />

634325 Flav<strong>in</strong>-dependent antioxidant properties of a new series of meso-<br />

N,N'-dialkyl-imidazolium substituted manganese(III) porphyr<strong>in</strong>s.<br />

Kachadourian R, Johnson CA, M<strong>in</strong> E, Spasojevic I, Day BJ BIOCHEM<br />

PHARMACOL 2004 67 1 77-85<br />

634340 An alternative Ca 2+ -dependent mechanism of neuroprotection by<br />

the metalloporphyr<strong>in</strong> class of superoxide dismutase mimetics. Tauskela<br />

JS, Brunette E, O'Reilly N, Meal<strong>in</strong>g G, Comas T, Gendron TF, Monette R,<br />

Morley P FASEB J 2005 19 12 1734-1736<br />

634341 Paradoxical effects of metalloporphyr<strong>in</strong>s on doxorubic<strong>in</strong>-<strong>in</strong>duced<br />

apoptosis: Scaveng<strong>in</strong>g of reactive oxygen species versus <strong>in</strong>duction of<br />

heme oxygenase-1. Konorev EA, Kotamraju S, Zhao H, Kalivendi S, Joseph<br />

J, Kalyanaraman B FREE RADIC BIOL MED 2002 33 7 988-997<br />

634343 Dependence of excitotoxic neurodegeneration on mitochondrial<br />

aconitase <strong>in</strong>activation. Li Q-Y, Pedersen C, Day BJ, Patel M J<br />

NEUROCHEM 2001 78 47 746-755<br />

636040 Therapeutic developments <strong>in</strong> the treatment of amyotrophic<br />

lateral sclerosis. Jackson M, Llado J, Rothste<strong>in</strong> JD EXPERT OPIN INVEST<br />

DRUGS 2002 11 10 1343-1364<br />

638196 Natural history of amyotrophic lateral sclerosis <strong>in</strong> a database<br />

population. Validation of a scor<strong>in</strong>g system and a model for survival<br />

prediction. Haverkamp LJ, Appel V, Appel SH BRAIN 1995 118 3 707-719<br />

638197 Prognostic <strong>in</strong>dicators of survival <strong>in</strong> ALS. Stambler N, Charatan M,<br />

Cedarbaum JM NEUROLOGY 1998 50 1 66-72<br />

638203 Orrell RW, Habgood JJ, Gard<strong>in</strong>er I, K<strong>in</strong>g AW, Bowe FA, Hallewell RA,<br />

Marklund SL, Greenwood J, Lane RJ, deBelleroche J Cl<strong>in</strong>ical and functional<br />

<strong>in</strong>vestigation of 10 missense mutations and a novel frameshift <strong>in</strong>sertion<br />

mutation of the gene for copper-z<strong>in</strong>c superoxide dismutase <strong>in</strong> UK<br />

families with amyotrophic lateral sclerosis. NEUROLOGY 1997 48 3 746-<br />

751<br />

638218 Catalytic antioxidants: A radical approach to new therapeutics.<br />

Day BJ DRUG DISC TODAY 2004 9 13 557-566<br />

638220 Amyotrophic lateral sclerosis: Copper/z<strong>in</strong>c superoxide<br />

dismutase (SOD1) gene mutations. Orrell RW NEUROMUSCULAR<br />

DISORD 2000 10 1 63-68


80 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

638223 The genetics of motor neuron disease. Figlewicz DA, Orrell RW<br />

AMYOTROPHIC LATERAL SCLEROSIS OTHER MOTOR NEURON<br />

DISORD 2003 4 4 225-231<br />

638229 Amyotrophic lateral sclerosis: Recent advances and future<br />

therapies. Nirmalananthan N, Greensmith L CURR OPIN NEUROL 2005 18<br />

6 712-719<br />

638230 Oxidatively modified prote<strong>in</strong>s <strong>in</strong> ag<strong>in</strong>g and disease. Beal MF<br />

FREE RADIC BIOL MED 2002 32 9 797-803<br />

638233 Unravel<strong>in</strong>g the mechanisms <strong>in</strong>volved <strong>in</strong> motor neuron<br />

degeneration <strong>in</strong> ALS. Bruijn LJ, Miller TM, Cleveland DW ANNU REV<br />

NEUROSCI 2004 27 723-749<br />

638331 Inactivation-reactivation of aconitase <strong>in</strong> Escherichia coli. A<br />

sensitive measure of superoxide radical. Gardner PR, Fridovich I J BIOL<br />

CHEM 1992 267 13 8757-8763<br />

638411 Long term adm<strong>in</strong>istration of a small molecular weight catalytic<br />

metalloporphyr<strong>in</strong> antioxidant AEOL 10150 protects lungs from radiation<strong>in</strong>duced<br />

<strong>in</strong>jury. Aeolus Pharmaceuticals Inc COMPANY PRESENTATION<br />

2005 October 16-20


Vivitrex Alkermes/Cephalon<br />

Christ<strong>in</strong>e E Head<strong>in</strong>g<br />

Address<br />

Faculty of Science<br />

The Open University <strong>in</strong> the North<br />

Eldon House<br />

Regent Centre<br />

Gosforth<br />

Newcastle-upon-Tyne<br />

NE3 3PW<br />

UK<br />

Email: moore11@globalnet.co.uk<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 7(1):81-88<br />

© The Thomson Corporation ISSN 1472-4472<br />

Vivitrex, an <strong>in</strong>jectable, susta<strong>in</strong>ed-release formulation of the<br />

opioid antagonist naltrexone, is be<strong>in</strong>g developed by Alkermes<br />

and Cephalon for the potential once-monthly treatment of<br />

alcoholism and opiate use disorder. Alkermes and Cephalon are<br />

currently await<strong>in</strong>g Food and Drug Adm<strong>in</strong>istration review of<br />

the Vivitrex new drug application, which was granted Priority<br />

Review <strong>in</strong> May 2005.<br />

Introduction<br />

Vivitrex is an <strong>in</strong>jectable, extended-release naltrexone<br />

product that is currently <strong>in</strong> development by Alkermes Inc<br />

and licensee Cephalon Inc for alcohol and opiate<br />

dependence. Pharmacotherapies for substance-dependent<br />

conditions have traditionally focused on the substance itself;<br />

substitutes for the substance of abuse, plus receptor<br />

antagonists and agents that <strong>in</strong>terfere with the<br />

pharmacok<strong>in</strong>etics of the substance (eg, methadone and<br />

naltrexone for opiate dependence and disulfiram for alcohol<br />

dependence) have all proved useful <strong>in</strong> treat<strong>in</strong>g these<br />

conditions, and cont<strong>in</strong>ue to be developed. However, there is<br />

reliable evidence to suggest that certa<strong>in</strong> loci <strong>in</strong> the bra<strong>in</strong><br />

function abnormally <strong>in</strong> all dependencies, regardless of their<br />

cause [636843]. With<strong>in</strong> the mesolimbic dopam<strong>in</strong>e system<br />

(MLDS) is the nucleus accumbens (NA), which is associated<br />

with reward and drug-seek<strong>in</strong>g behavior caused by the<br />

elevation of dopam<strong>in</strong>e levels at the site. Both alcohol and<br />

opiates can raise levels of dopam<strong>in</strong>e <strong>in</strong> the NA, and the<br />

available evidence suggests that alcohol causes this by<br />

<strong>in</strong>creas<strong>in</strong>g the release of endogenous opioids [631895].<br />

Therefore, <strong>in</strong>hibition of opioid receptors by naltrexone is a<br />

rational way of reduc<strong>in</strong>g the rewards that both ethanol and<br />

opiates <strong>in</strong>duce.<br />

In 1984, the opioid receptor antagonist naltrexone was<br />

approved for the treatment of opiate dependence <strong>in</strong> the US;<br />

a decade later naltrexone was approved for the treatment of<br />

alcohol dependence [631898]. The drug has also been<br />

<strong>in</strong>vestigated for a variety of other dependencies. Naltrexone<br />

acts at µ-, δ- and κ-opioid receptors, each of which are<br />

implicated <strong>in</strong> one or more aspects of alcohol and opiate<br />

dependence. Of the three receptors, the µ-opioid receptor is<br />

believed to be the most significant regard<strong>in</strong>g alcohol and<br />

opioid self adm<strong>in</strong>istration, and its absence or blockade tends<br />

to be l<strong>in</strong>ked with dim<strong>in</strong>ished dependence [638453]. The<br />

general evidence support<strong>in</strong>g the use of naltrexone for<br />

alcohol dependence, as well as the relationship between<br />

Orig<strong>in</strong>ator Alkermes Inc<br />

Licensee Cephalon Inc<br />

Status Pre-registration<br />

.<br />

Indications Alcoholism, Opiate dependence.<br />

.<br />

Action Opioid antagonist<br />

.<br />

Technologies Controlled release formulation, Intramuscular<br />

formulation<br />

Synonym naltrexone (once-monthly controlled-release,<br />

Medisorb)<br />

Registry No: 16590-41-3<br />

N<br />

OH<br />

HO O H O<br />

81<br />

opioid receptors and alcoholism, can be found <strong>in</strong> a<br />

comprehensive review by Oswald and Wand [631895], and a<br />

broad overview of the actions of naltrexone and its use <strong>in</strong><br />

the treatment of opiate dependence can be found <strong>in</strong> a review<br />

by Kreek et al [638453].<br />

Several factors make the worldwide extent of abuse of<br />

and/or dependence on alcohol or opiates hard to quantify<br />

accurately. The dist<strong>in</strong>ction between heavy use and<br />

dependence is regularly blurred and the quoted figures are<br />

often outdated, but it has been claimed that around 10 to 14<br />

million <strong>in</strong>dividuals <strong>in</strong> the US are alcohol dependent<br />

[631992], [637673]. Several gender-l<strong>in</strong>ked differences are<br />

associated with alcohol use and dependence. One example<br />

of such a difference is <strong>in</strong> <strong>in</strong>cidence: an estimated 14% of men<br />

and 5% of women <strong>in</strong> the US will experience symptoms of<br />

alcohol abuse or dependence dur<strong>in</strong>g their lifetime [637682].<br />

Naltrexone is one of several therapeutic options for treat<strong>in</strong>g<br />

opiate or alcohol dependence. Despite its oral<br />

adm<strong>in</strong>istration, a major limitation with this treatment is poor<br />

patient compliance [593795]. One of several contributors to<br />

this poor compliance may be the high plasma levels of the<br />

metabolite 6β-naltrexol that result from first-pass<br />

metabolism [638460]. The presence of this metabolite has<br />

been correlated with both treatment dropout [638459] and<br />

an <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>cidence of side effects [631898]. In a study by<br />

K<strong>in</strong>g et al, <strong>in</strong>dividuals who experienced more side effects<br />

had significantly higher ur<strong>in</strong>ary levels of 6β-naltrexol<br />

follow<strong>in</strong>g oral naltrexone treatment [638460]. In contrast,<br />

there is some evidence that the metabolite could be valuable<br />

<strong>in</strong> the treatment of opiate addicts; a reduction of the<br />

withdrawal effects associated with µ-opioid receptor


82 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

antagonism by 6β-naltrexol may offer an advantage <strong>in</strong><br />

treat<strong>in</strong>g opioid overdose and addiction [638466]. More<br />

certa<strong>in</strong> contributors to poor patient compliance with oral<br />

naltrexone <strong>in</strong>clude fluctuat<strong>in</strong>g levels of naltrexone <strong>in</strong> the<br />

body and a lack of susta<strong>in</strong>ed motivation for overcom<strong>in</strong>g the<br />

addiction [616446], [636722].<br />

Because of the problems with side effects and patient<br />

compliance, several long-act<strong>in</strong>g naltrexone preparations<br />

have been explored by various research laboratories and<br />

cl<strong>in</strong>ics s<strong>in</strong>ce the early 1970s [441894], [616446], [637696],<br />

[637699], but many rema<strong>in</strong>ed experimental and lack product<br />

licenses [636732]. Reported reasons for the failure to<br />

commercialize these products <strong>in</strong>clude a paucity of evidence<br />

of clear success, naltrexone-release problems and <strong>in</strong>jectionsite<br />

reactions [616446], but a lack of <strong>in</strong>terest <strong>in</strong> develop<strong>in</strong>g<br />

these products also seems to have played a role [636732].<br />

Despite these hurdles, the development of Vivitrex, a depotrelease<br />

naltrexone product, is almost complete, and the<br />

product is near<strong>in</strong>g approval <strong>in</strong> the US [624146]. Similar<br />

products <strong>in</strong> development <strong>in</strong>clude a susta<strong>in</strong>ed-release,<br />

<strong>in</strong>jectable depot formulation of naltrexone from DrugAbuse<br />

Sciences Inc, which had reached phase III cl<strong>in</strong>ical trials for<br />

opiate dependence by 2002 [455296], and an implant for<br />

opiate dependence (naltrexone-poly(DL-lactide)) which has<br />

been used experimentally for several years <strong>in</strong> Australia. By<br />

2003, the DrugAbuse Sciences product had successfully<br />

completed one phase III cl<strong>in</strong>ical trial for alcoholism [475512],<br />

[638704] and the Food and Drug Adm<strong>in</strong>istration has agreed<br />

on the protocol for a second, pivotal phase III cl<strong>in</strong>ical trial <strong>in</strong><br />

alcohol-dependent patients. If this trial is successful,<br />

DrugAbuse Sciences expects that the product could be<br />

approved <strong>in</strong> the US and <strong>in</strong> Europe <strong>in</strong> 2008 [638704]. The<br />

naltrexone implant product is <strong>in</strong> development by Go<br />

Medical Industries Pty Ltd and is currently undergo<strong>in</strong>g<br />

cl<strong>in</strong>ical trials [631995].<br />

To date, Vivitrex has only reached phase II cl<strong>in</strong>ical trials for<br />

opiate dependence and, because of a lack of results for this<br />

<strong>in</strong>dication, this review will concentrate primarily on alcohol<br />

dependence. Successful phase III cl<strong>in</strong>ical trial results have<br />

lead Alkermes to predict a 2006 launch of Vivitrex for<br />

alcohol dependence [632485], and the FDA was scheduled to<br />

rule on US approval for this <strong>in</strong>dication by the end of 2005<br />

[624146].<br />

Synthesis and SAR<br />

Vivitrex is an extended-release depot <strong>in</strong>jection of naltrexone<br />

<strong>in</strong> which the active <strong>in</strong>gredient is encapsulated <strong>in</strong>to<br />

biodegradable polymer microspheres. These are fabricated<br />

from poly-lactide co-glycolide (PLG), a common medical<br />

polymer used <strong>in</strong> absorbance and extended-release<br />

pharmaceuticals, to form microspheres approximately 100<br />

µm <strong>in</strong> diameter [616446]. Alkermes's proprietary Medisorb<br />

technology is used to produce microspheres that, follow<strong>in</strong>g<br />

subcutaneous or <strong>in</strong>tramuscular adm<strong>in</strong>istration, can ma<strong>in</strong>ta<strong>in</strong><br />

a steady release rate of naltrexone <strong>in</strong>to the bloodstream for<br />

up to 1 month [593795], [616446].<br />

Follow<strong>in</strong>g <strong>in</strong>jection <strong>in</strong>to the body, PLG hydrolyzes to lactic<br />

and glycolic acids. These naturally occurr<strong>in</strong>g metabolic<br />

<strong>in</strong>termediates are further metabolized <strong>in</strong>to carbon dioxide<br />

and water. The ratio of lactide to glycolide <strong>in</strong> the polymer,<br />

the molecular weight of the polymer, and other<br />

manufactur<strong>in</strong>g conditions all <strong>in</strong>fluence the rate of release of<br />

the drug from the microsphere [616443].<br />

Precl<strong>in</strong>ical development<br />

Studies conducted <strong>in</strong> animals confirmed that a s<strong>in</strong>gle dose of<br />

Vivitrex can antagonize the effects of morph<strong>in</strong>e over a<br />

period of at least 4 weeks [616446]. In the rat hot plate test,<br />

the effect of placebo or Vivitrex on morph<strong>in</strong>e-<strong>in</strong>duced<br />

analgesia was assessed over a period of up to 70 days.<br />

Basel<strong>in</strong>e test<strong>in</strong>g was conducted prior to rats be<strong>in</strong>g assigned<br />

to a treatment group. Every 5 days, analgesia was <strong>in</strong>duced<br />

with an <strong>in</strong>traperitoneal <strong>in</strong>jection of morph<strong>in</strong>e (1 mg/kg) and<br />

the latency of hot plate response was detected 30 m<strong>in</strong> later.<br />

Rats pre-dosed with Vivitrex (50 mg/kg) adm<strong>in</strong>istered<br />

subcutaneously or <strong>in</strong>tramuscularly showed a reduced<br />

latency from day 1 to day 28 follow<strong>in</strong>g <strong>in</strong>jection (40 ± 0.54 s<br />

and 36 ± 0.40 s follow<strong>in</strong>g subcutaneous and <strong>in</strong>tramuscular<br />

<strong>in</strong>jection, respectively) compared with placebo-treated rats<br />

(57 ± 0.60 s), suggest<strong>in</strong>g a substantial block of morph<strong>in</strong>e<br />

analgesia. Studies <strong>in</strong>volv<strong>in</strong>g a second <strong>in</strong>tramuscular<br />

<strong>in</strong>jection of Vivitrex (50 mg/kg), adm<strong>in</strong>istered on day 34,<br />

were conducted <strong>in</strong> the same model; an <strong>in</strong>tramuscular<br />

<strong>in</strong>jection was used because it was thought to be the best<br />

route for Vivitrex adm<strong>in</strong>istration to humans. This <strong>in</strong>jection<br />

produced a similar effect to the <strong>in</strong>itial treatment and<br />

suppressed morph<strong>in</strong>e-<strong>in</strong>duced analgesia up to day 68 of the<br />

study [616446].<br />

Vivitrex-<strong>in</strong>duced changes <strong>in</strong> µ-opioid receptor density and<br />

immunoreactivity were assessed <strong>in</strong> rats from the same<br />

experimental groups. As mentioned previously, the µ-opioid<br />

receptor appears to be the opioid receptor that is most<br />

strongly l<strong>in</strong>ked to alcohol and opiate dependencies [638453].<br />

Rats were sacrificed over a range of days (from day 3 to day<br />

40) and µ-opioid receptor density was exam<strong>in</strong>ed <strong>in</strong> saturation<br />

b<strong>in</strong>d<strong>in</strong>g assays us<strong>in</strong>g [ 3H]DAMGO (D-ala 2, N-methyl-phe 4,<br />

glycol 5-enkephal<strong>in</strong>) and us<strong>in</strong>g autoradiography and<br />

immunoreactivity [616446]. Receptor density <strong>in</strong>creased up to<br />

2-fold follow<strong>in</strong>g a s<strong>in</strong>gle <strong>in</strong>tramuscular <strong>in</strong>jection of Vivitrex<br />

(50 mg/kg). Receptor density <strong>in</strong> the midbra<strong>in</strong> and striatum<br />

<strong>in</strong>creased with<strong>in</strong> 7 days by 100 and 110%, respectively,<br />

compared with placebo treatment, whereas density <strong>in</strong> the<br />

cortex <strong>in</strong>creased by 120% between days 32 and 40 [616446].<br />

No specific reason is known for these regional differences,<br />

but the distribution, b<strong>in</strong>d<strong>in</strong>g and elim<strong>in</strong>ation characteristics<br />

of naltrexone <strong>in</strong> bra<strong>in</strong> tissue may be relevant <strong>in</strong> determ<strong>in</strong><strong>in</strong>g<br />

which regions of this organ are most closely l<strong>in</strong>ked to<br />

dependency [616446].<br />

Similar results were obta<strong>in</strong>ed us<strong>in</strong>g radioligand b<strong>in</strong>d<strong>in</strong>g<br />

autoradiography <strong>in</strong> rats receiv<strong>in</strong>g one or two <strong>in</strong>tramuscular<br />

<strong>in</strong>jections of Vivitrex (50 mg/kg) 34 days apart, monitored 1<br />

or 2 months after the <strong>in</strong>itial <strong>in</strong>jection [616446]. Radioligand<br />

b<strong>in</strong>d<strong>in</strong>g was significantly <strong>in</strong>creased <strong>in</strong> all bra<strong>in</strong> regions<br />

studied, rang<strong>in</strong>g from 90% <strong>in</strong> the habenular nucleus to 160%<br />

<strong>in</strong> the dorsal raphe nucleus after 1 month. In the majority of<br />

regions, density <strong>in</strong>creased further <strong>in</strong> the follow<strong>in</strong>g month,<br />

reach<strong>in</strong>g 120% <strong>in</strong> the habenular nucleus and 220% <strong>in</strong> the


dorsal raphe nucleus. Immunohistochemistry at adjacent<br />

bra<strong>in</strong> sections revealed <strong>in</strong>creased µ-opioid receptor<br />

immunoreactivity at both 1 and 2 months after Vivitrex<br />

<strong>in</strong>jection; however, the effect was less than <strong>in</strong> the<br />

autoradiography studies, with only two of the 15 bra<strong>in</strong><br />

regions exam<strong>in</strong>ed show<strong>in</strong>g significant <strong>in</strong>creases over control<br />

after 1 month. The <strong>in</strong>vestigators of the report <strong>in</strong>terpreted the<br />

large <strong>in</strong>crease <strong>in</strong> µ-opioid receptor density, but small<br />

<strong>in</strong>crease <strong>in</strong> µ-opioid receptor immunoreactivity, as evidence<br />

of recruitment of active µ-opioid receptors from a pool of<br />

receptors, rather than an <strong>in</strong>crease <strong>in</strong> µ-opioid receptor<br />

prote<strong>in</strong> expression [616446].<br />

Metabolism and pharmacok<strong>in</strong>etics<br />

A s<strong>in</strong>gle <strong>in</strong>tramuscular or subcutaneous <strong>in</strong>jection of Vivitrex (50<br />

mg/kg) produced stable, pharmacologically relevant plasma<br />

concentrations <strong>in</strong> rats for approximately 1 month. AUC values<br />

of 332 and 360 ng.day/ml were observed follow<strong>in</strong>g<br />

<strong>in</strong>tramuscular and subcutaneous adm<strong>in</strong>istration, respectively.<br />

Maximum naltrexone plasma levels (15 ± 1.4 and 19 ± 3.6<br />

ng/ml follow<strong>in</strong>g subcutaneous and <strong>in</strong>tramuscular<br />

adm<strong>in</strong>istration of Vivitrex, respectively) were produced with<strong>in</strong><br />

3 days, with half-maximum levels reached with<strong>in</strong> 24 h. By 35<br />

days, naltrexone plasma concentrations were approach<strong>in</strong>g<br />

undetectable levels (< 1 ng/ml), and a similar pattern was<br />

observed follow<strong>in</strong>g a second Vivitrex <strong>in</strong>jection [616446].<br />

Naltrexone is primarily metabolized by the liver, produc<strong>in</strong>g the<br />

major metabolite 6β-naltrexol. This metabolite can be detected<br />

<strong>in</strong> both conjugated and non-conjugated form <strong>in</strong> plasma.<br />

Follow<strong>in</strong>g oral adm<strong>in</strong>istration, 1% of unchanged naltrexone is<br />

excreted <strong>in</strong> ur<strong>in</strong>e [631898]. The half-life of oral naltrexone <strong>in</strong><br />

humans is 4 to 9 h, compared with 12 to 18 h for 6β-naltrexol<br />

[631895], but us<strong>in</strong>g the Vivitrex formulation, the half-lives of<br />

naltrexone and 6β-naltrexol are greatly extended, and are<br />

quoted as 5 to 8 days [636722]. The pharmacok<strong>in</strong>etic benefits of<br />

the extended-release <strong>in</strong>jection compared with oral dos<strong>in</strong>g<br />

<strong>in</strong>clude an absence of high peak plasma concentrations, a<br />

decrease <strong>in</strong> gastro<strong>in</strong>test<strong>in</strong>al exposure, and avoidance of firstpass<br />

hepatic metabolism [616446]. Compared with oral<br />

naltrexone, Vivitrex reduces the ratio of 6β-naltrexol to the<br />

parent compound <strong>in</strong> the body [593795], [616443], which is<br />

consistent with f<strong>in</strong>d<strong>in</strong>gs of studies with other extended-release<br />

preparations. This reduction is thought to result from<br />

avoidance of the first-pass effect [631898].<br />

In a phase I, double-bl<strong>in</strong>d cl<strong>in</strong>ical trial, 42 healthy volunteers<br />

were randomized to receive placebo or Vivitrex as a s<strong>in</strong>gle<br />

<strong>in</strong>tramuscular (150, 300, 600 or 900 mg) or subcutaneous<br />

(150, 300 or 600 mg) <strong>in</strong>jection [390669]. Prelim<strong>in</strong>ary data<br />

regard<strong>in</strong>g plasma levels of naltrexone showed that the AUC<br />

and Cmax values were dose proportional, with slightly higher<br />

values observed follow<strong>in</strong>g <strong>in</strong>tramuscular dos<strong>in</strong>g (at 150, 300<br />

and 600 mg; <strong>in</strong>tramuscular AUC values of 49 ± 9, 84 ± 12 and<br />

189 ± 27 ng.day/ml were observed compared with<br />

subcutaneous AUC values of 31 ± 11, 65 ± 13 and 145 ± 28<br />

ng.day/ml, respectively). The <strong>in</strong>itial drug 'burst' (with<strong>in</strong> 48<br />

h) demonstrated a peak concentration that was only<br />

approximately 3-fold higher than steady-state levels, which<br />

were dose proportional, with<strong>in</strong> expected therapeutic levels,<br />

and ma<strong>in</strong>ta<strong>in</strong>ed for a full month [390669].<br />

Vivitrex Head<strong>in</strong>g 83<br />

Results from a phase II cl<strong>in</strong>ical trial <strong>in</strong> 30 alcohol-dependent<br />

patients adm<strong>in</strong>istered <strong>in</strong>tramuscular Vivitrex (400 mg)<br />

showed that mean trough serum naltrexone concentrations<br />

rema<strong>in</strong>ed relatively constant throughout the study (1.23<br />

ng/ml). Mean serum trough levels of 6β-naltrexol (2.91<br />

ng/ml) were slightly higher than naltrexone, but<br />

substantially lower than those observed follow<strong>in</strong>g oral<br />

naltrexone adm<strong>in</strong>istration. As outl<strong>in</strong>ed above, lower levels<br />

of 6β-naltrexol are thought to reduce the chances of adverse<br />

events and improve patient compliance [616443].<br />

Because <strong>in</strong>dividuals who consume large quantities of<br />

alcohol often suffer from liver damage, the<br />

pharmacok<strong>in</strong>etics of Vivitrex were exam<strong>in</strong>ed <strong>in</strong> patients<br />

with mild-to-moderate hepatic impairment [636722]. Six<br />

<strong>in</strong>dividuals with mild (Child-Pugh grade A) or moderate<br />

(Child-Pugh grade B) hepatic impairment and 13 healthy<br />

<strong>in</strong>dividuals each received a s<strong>in</strong>gle <strong>in</strong>tramuscular dose of<br />

Vivitrex (190 mg). The total exposure (AUC0-∞) of naltrexone<br />

and 6β-naltrexol was similar across all groups over 63 days<br />

(treatment comparison ratios were 0.97 and 1.08 for mild<br />

and moderate hepatic impairment, respectively, compared<br />

with control), <strong>in</strong>dicat<strong>in</strong>g that no dosage adjustment would<br />

be needed for alcohol users with impaired liver function<br />

[636722].<br />

Toxicity<br />

No toxic effects have been reported <strong>in</strong> animal studies,<br />

although the <strong>in</strong>creased density of µ-opioid receptors<br />

observed <strong>in</strong> rats poses a theoretical risk <strong>in</strong> the context of<br />

opiate abuse. Similar, long-last<strong>in</strong>g receptor changes have<br />

been observed with other naltrexone formulations and can<br />

potentially enhance hypersensitivity to opiates. The effects<br />

have also been observed with other opiate antagonists, and<br />

it has been suggested that the change results from the<br />

recruitment of receptors from a pool of receptors <strong>in</strong> response<br />

to the presence of antagonists [616446]. From <strong>in</strong>direct<br />

evidence, it has been suggested that the enhanced<br />

hypersensitivity <strong>in</strong>duced by Vivitrex is unlikely to <strong>in</strong>crease<br />

the euphoria, respiratory depression and tolerance that can<br />

result from the <strong>in</strong>take of opiates [616446]. In contrast, there<br />

is long-stand<strong>in</strong>g experimental evidence that hypersensitivity<br />

to the analgesic effects of opiates can occur after naltrexone<br />

exposure [638481], [638482].<br />

Cl<strong>in</strong>ical development<br />

Phase I<br />

In the phase I, randomized, double-bl<strong>in</strong>d, placebo-controlled<br />

study <strong>in</strong> which 42 healthy volunteers received either placebo<br />

or s<strong>in</strong>gle doses of Vivitrex <strong>in</strong> an escalat<strong>in</strong>g-dose paradigm<br />

(<strong>in</strong>tramuscular <strong>in</strong>jections of 150, 300, 600 or 900 mg, or<br />

subcutaneous <strong>in</strong>jections of 150, 300 or 600 mg), therapeutic<br />

levels of naltrexone were susta<strong>in</strong>ed for 1 month. In order for<br />

equivalent plasma levels to be achieved over this period<br />

us<strong>in</strong>g oral naltrexone, the total naltrexone dose would need<br />

to be 5-fold higher [393208].<br />

Phase II<br />

A multicenter, randomized, double-bl<strong>in</strong>d, placebocontrolled<br />

pilot study was conducted with 30 patients with a<br />

DSM-IV diagnosis of alcohol-dependence. Vivitrex (400 mg)


84 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

was adm<strong>in</strong>istered <strong>in</strong>tramuscularly once a month for 4 months<br />

to 25 patients, and the rema<strong>in</strong><strong>in</strong>g patients were given placebo;<br />

both groups were offered psychosocial support [494451],<br />

[616443]. At the end of this period, the mean percentage of<br />

heavy dr<strong>in</strong>k<strong>in</strong>g days <strong>in</strong> the Vivitrex group was reduced to half<br />

that of the placebo group (11.7% compared with 25.3%).<br />

Patients treated with Vivitrex also showed an <strong>in</strong>crease <strong>in</strong> the<br />

mean percentage of days abst<strong>in</strong>ent from alcohol (69.4%<br />

compared with 39.2% pre-treatment) and a reduction <strong>in</strong> the<br />

number of dr<strong>in</strong>ks consumed per dr<strong>in</strong>k<strong>in</strong>g day (3.8 compared<br />

with 7.4 pre-treatment) [616443].<br />

A trial designed to determ<strong>in</strong>e the pharmacok<strong>in</strong>etics and<br />

safety of a range of Vivitrex doses <strong>in</strong> opiate-dependent<br />

<strong>in</strong>dividuals was <strong>in</strong>itiated <strong>in</strong> 2002 [445176], but by November<br />

2005, no results were apparently available.<br />

Phase III<br />

A 6-month, double-bl<strong>in</strong>d, placebo-controlled, randomized<br />

study was conducted at 24 centers <strong>in</strong> 624 patients (423 men<br />

and 201 women) with DSM-IV-diagnosed alcohol<br />

dependence [593795]. All study groups were matched for<br />

men and women and patients received monthly<br />

<strong>in</strong>tramuscular <strong>in</strong>jections of Vivitrex (190 or 380 mg; n = 210<br />

and 205, respectively) or placebo (n = 209). All groups also<br />

received low-<strong>in</strong>tensity counsel<strong>in</strong>g. Patients receiv<strong>in</strong>g 380 mg<br />

Vivitrex showed a 25% reduction <strong>in</strong> heavy dr<strong>in</strong>k<strong>in</strong>g (def<strong>in</strong>ed<br />

as five or more dr<strong>in</strong>ks per day for men and four dr<strong>in</strong>ks per<br />

day for women) compared with the placebo group (p =<br />

0.02). In patients receiv<strong>in</strong>g 190 mg Vivitrex, heavy dr<strong>in</strong>k<strong>in</strong>g<br />

was reduced by 17% compared with patients receiv<strong>in</strong>g<br />

placebo (p = 0.07). Overall, the median number of heavy<br />

dr<strong>in</strong>k<strong>in</strong>g days <strong>in</strong> the group receiv<strong>in</strong>g 380 mg Vivitrex was<br />

reduced from 19 to 3 days a month [593795].<br />

Consider<strong>in</strong>g each gender separately, the number of heavy<br />

dr<strong>in</strong>k<strong>in</strong>g days for males receiv<strong>in</strong>g the high dose of Vivitrex fell<br />

by 48% compared with males given placebo (p < 0.0001),<br />

whereas the results from females treated with Vivitrex did not<br />

differ from those given placebo. Similarly, males adm<strong>in</strong>istered<br />

low-dose Vivitrex showed a 25% reduction <strong>in</strong> heavy dr<strong>in</strong>k<strong>in</strong>g<br />

days compared with placebo (p < 0.03), but there was no<br />

difference between the results from females treated with either<br />

Vivitrex or placebo [516479], [593795].<br />

Results of an open-label, 12-month extension trial that enrolled<br />

85% of <strong>in</strong>dividuals who completed the <strong>in</strong>itial phase III trial<br />

were presented <strong>in</strong> May 2005 [603348]. The results confirmed the<br />

susta<strong>in</strong>ed efficacy of Vivitrex. The trial recruited 115 of the 380mg<br />

dose patients, 102 of the 190-mg group and 60 patients from<br />

the placebo group. Gender was not a recruitment criterion.<br />

Patients from the placebo group were randomized to receive<br />

either 380 or 190 mg Vivitrex by monthly <strong>in</strong>tramuscular<br />

<strong>in</strong>jection. Patients <strong>in</strong> the high-dose group showed a reduction<br />

(not claimed as significant) <strong>in</strong> the median number of heavy<br />

dr<strong>in</strong>k<strong>in</strong>g days per month from 2.6 to 1.6 days. Patients switched<br />

from placebo to 380 mg Vivitrex showed a reduction <strong>in</strong> heavy<br />

dr<strong>in</strong>k<strong>in</strong>g days from 5.2 to 1.8 days per month [603348].<br />

There was evidence of a physiological improvement<br />

secondary to the reduction of alcohol <strong>in</strong>take from both the<br />

phase II and III trials, as <strong>in</strong>dicated by a reduction <strong>in</strong> the level<br />

of the hepatic enzyme γ-glutamyl transferase (GGT; a liver<br />

enzyme raised <strong>in</strong> ~ 70% of alcohol abusers that is frequently<br />

used as a marker of reduced alcohol <strong>in</strong>take) [638730]. A<br />

mean reduction <strong>in</strong> serum activity of GGT was observed <strong>in</strong><br />

both the phase II cl<strong>in</strong>ical trial [616443] and <strong>in</strong> the phase III<br />

cl<strong>in</strong>ical trial [593795].<br />

Side effects and contra<strong>in</strong>dications<br />

As discussed, Vivitrex is designed to reduce a number of<br />

problems associated with other naltrexone formulations,<br />

<strong>in</strong>clud<strong>in</strong>g the high concentration of its primary metabolite,<br />

which may contribute significantly to the side effects<br />

observed with oral naltrexone. In studies with other<br />

naltrexone formulations, 6β-naltrexol was l<strong>in</strong>ked with<br />

subjective reports of headache, nausea and anxiety [631898].<br />

Prelim<strong>in</strong>ary analysis of the results from cl<strong>in</strong>ical trials<br />

<strong>in</strong>dicated that Vivitrex was well tolerated and demonstrated<br />

no serious adverse events <strong>in</strong> healthy volunteers [390669],<br />

f<strong>in</strong>d<strong>in</strong>gs that were subsequently confirmed <strong>in</strong> patient trials.<br />

However, the side effects of substance dependence<br />

treatments often depend on the substance be<strong>in</strong>g abused.<br />

Substance abusers often fail to adhere to the planned<br />

therapeutic program so that the treatment drug may at some<br />

po<strong>in</strong>t be used alongside the abused substance. Thus, the<br />

risks associated with the use of Vivitrex for alcohol<br />

dependence differ from those that arise when the product is<br />

used for opiate dependence. It is also noteworthy that<br />

abusers might <strong>in</strong>crease their level of usage <strong>in</strong> order to<br />

surmount a blockade of effect produced by Vivitrex.<br />

In a phase II trial of 30 patients with alcohol dependence, an<br />

<strong>in</strong>tramuscular <strong>in</strong>jection of Vivitrex (400 mg) was generally safe<br />

and well tolerated, and reported adverse effects were mild to<br />

moderate. Nausea and headache were the most common<br />

adverse events, and both occurred equally <strong>in</strong> the placebo- and<br />

Vivitrex-treated groups [432929]. However, two patients<br />

discont<strong>in</strong>ued participation <strong>in</strong> the study because of adverse<br />

events (<strong>in</strong>jection site <strong>in</strong>duration and angioedema). Both events<br />

occurred after the second, monthly dose of Vivitrex and were<br />

moderate <strong>in</strong> severity [616443].<br />

In the 6-month, 624-patient phase III trial <strong>in</strong>volv<strong>in</strong>g alcoholdependent,<br />

active dr<strong>in</strong>kers, trial discont<strong>in</strong>uation ow<strong>in</strong>g to<br />

adverse events occurred <strong>in</strong> 14.1% of the 380-mg naltrexone<br />

group, 6.7% of the 190-mg group, and 6.7% of the placebo<br />

group [593795]. At least 10% of patients experienced some<br />

form of adverse event follow<strong>in</strong>g Vivitrex treatment, but less<br />

than 2% of patients discont<strong>in</strong>ued treatment because of<br />

<strong>in</strong>jection-site reaction [534413]. The most common adverse<br />

effects <strong>in</strong> the ma<strong>in</strong> trial were nausea, headache and fatigue,<br />

all of which have been observed with oral naltrexone<br />

formulations [593795]. Nausea was mild or moderate <strong>in</strong> 95%<br />

of cases, and usually occurred dur<strong>in</strong>g the first month. As<br />

well as loss of appetite, this was the most common adverse<br />

event <strong>in</strong> the 380-mg dose group. The frequency of serious<br />

adverse effects dur<strong>in</strong>g the trial was similar <strong>in</strong> all treatment<br />

groups, the most common be<strong>in</strong>g hospitalization for alcohol<br />

<strong>in</strong>toxication. However, two cases of pneumonia occurred <strong>in</strong><br />

the 380-mg group and, although not observed with<br />

naltrexone or microsphere medications previously, may


have been related to Vivitrex. Mean levels of alan<strong>in</strong>e<br />

am<strong>in</strong>otransferase and aspartate am<strong>in</strong>otransferase did not<br />

change significantly, <strong>in</strong>dicat<strong>in</strong>g a lack of hepatotoxicity<br />

[593795]. The most common adverse effects <strong>in</strong> the 12-month<br />

extension trial were headache, nasopharyngitis and<br />

respiratory tract <strong>in</strong>fections [603348].<br />

Patent summary<br />

Naltrexone was orig<strong>in</strong>ally claimed by Endo Laboratories Inc<br />

<strong>in</strong> 1967 (US-03332950). This patent expired <strong>in</strong> 1984, and by<br />

the late 1980s, any basic product protection elsewhere had<br />

also expired. The Medisorb extended-release technology was<br />

first claimed <strong>in</strong> WO-09742940 and granted as US-05817343<br />

and EP-00914095 <strong>in</strong> July 2002. Orig<strong>in</strong>ally developed by<br />

Medisorb Technologies International LP, the method was<br />

acquired by Alkermes <strong>in</strong> 1996.<br />

The patent status for Vivitrex will be resolved when it has been<br />

granted FDA approval (which was expected <strong>in</strong> December 2005)<br />

and a selection of relevant patents is subsequently published <strong>in</strong><br />

the Orange Book. Alkermes has claims to various patents<br />

cover<strong>in</strong>g areas such as the <strong>in</strong>jectable, extended-release of<br />

naltrexone compositions (WO-2004103342) and amorphous and<br />

polymorphic forms of naltrexone, which are reported to be<br />

advantageous <strong>in</strong> extended-release formulations (WO-<br />

2004108084). Moreover, two further patent applications (WO-<br />

2005089449 and WO-2005089486) cover comb<strong>in</strong>ations of<br />

naltrexone with an anticonvulsant or a dopam<strong>in</strong>e D2 partial<br />

agonist for treat<strong>in</strong>g alcoholism.<br />

<strong>Current</strong> op<strong>in</strong>ion<br />

A full understand<strong>in</strong>g of how opioids <strong>in</strong>fluence reward<br />

pathways is not yet available, but occupancy of opioid<br />

receptors by endogenous peptides or opiate drugs is known<br />

to <strong>in</strong>fluence the MLDS [631895]. Most experts <strong>in</strong> the field of<br />

neuroscience consider that this pathway plays a major role<br />

<strong>in</strong> reward mechanisms and drug-seek<strong>in</strong>g behavior, and<br />

believe that the sensitization of the MLDS observed <strong>in</strong><br />

dependence reflects a form of learnt or conditioned<br />

behavior. The various behavioral hypotheses that attempt to<br />

expla<strong>in</strong> dependence generally share the view that the effect<br />

experienced after substance <strong>in</strong>take re<strong>in</strong>forces the substanceseek<strong>in</strong>g<br />

behavior [636843]. If the l<strong>in</strong>k between <strong>in</strong>take and<br />

effect is broken (eg, by pharmacotherapeutic means) the<br />

learnt behavior can be overcome [631895], [636843].<br />

Pharmacotherapy alone rarely succeeds <strong>in</strong> elim<strong>in</strong>at<strong>in</strong>g<br />

dependence, but where patients have the correct motivation<br />

and psychosocial support, reductions <strong>in</strong> dependence can be<br />

achieved. It is therefore reasonable for cl<strong>in</strong>ical trials to<br />

<strong>in</strong>corporate both pharmacological and psychological<br />

elements. However, when <strong>in</strong>terpret<strong>in</strong>g the results of the<br />

phase II and phase III cl<strong>in</strong>ical trials of Vivitrex to date, it<br />

should be noted that they are placebo-controlled trials and<br />

do not compare psychosocial therapy alone with<br />

psychosocial therapy plus Vivitrex. It is perfectly possible<br />

that psychological elements of a placebo effect contributed<br />

to the improvements <strong>in</strong> the placebo-treated groups, and the<br />

design of the studies has wisely avoided the need to<br />

establish whether this is the case. It is also possible that<br />

genders respond differently to the psychological elements of<br />

treatment and much here rema<strong>in</strong>s to be elucidated.<br />

Vivitrex Head<strong>in</strong>g 85<br />

As discussed previously, the value of oral naltrexone <strong>in</strong> the<br />

long-term treatment of alcohol or opiate dependence has been<br />

greatly underm<strong>in</strong>ed by the failure of the substance abusers to<br />

adhere to the daily dos<strong>in</strong>g schedule [593795]. A reliable<br />

extended-release preparation that uses the <strong>in</strong>tramuscular route<br />

should provide an answer to the fluctuat<strong>in</strong>g plasma levels of<br />

naltrexone and high plasma levels of the naltrexone metabolite,<br />

and circumvent the changeable motivation seen <strong>in</strong> the users.<br />

Vivitrex is therefore likely to be welcomed as a new treatment<br />

for alcohol dependence that can be <strong>in</strong>itiated <strong>in</strong> active dr<strong>in</strong>kers,<br />

especially when consider<strong>in</strong>g the current absence of any truly<br />

satisfactory alternative products. Disulfiram and acamprosate<br />

are options for therapeutic <strong>in</strong>tervention <strong>in</strong> alcohol abuse, but<br />

both have limitations and, <strong>in</strong> contrast to Vivitrex, are not<br />

considered suitable for <strong>in</strong>itiation <strong>in</strong> active alcohol users<br />

[631992], [638487]. Disulfiram relies on an aversive effect<br />

produced by altered metabolism of ethyl alcohol, but the<br />

adverse side effects associated with this drug can be severe and<br />

even fatal [631992], [638487]. Acamprosate is thought to act on<br />

γ-am<strong>in</strong>obutyric acid and glutam<strong>in</strong>ergic receptors, with at least<br />

some of its actions be<strong>in</strong>g focused on the NA [631992].<br />

To date, the efficacy of Vivitrex has been confirmed for<br />

alcohol dependence only and, specifically, only <strong>in</strong> men. The<br />

trial report suggests that the difference <strong>in</strong> efficacy may be a<br />

consequence of different patient characteristics (eg, weight,<br />

smok<strong>in</strong>g and use of antidepressants) rather than a<br />

fundamental gender difference, but establish<strong>in</strong>g widespread<br />

efficacy <strong>in</strong> women may be difficult. Cl<strong>in</strong>icians may also be<br />

reluctant to use depot preparations <strong>in</strong> women who might<br />

become pregnant because of the universal pr<strong>in</strong>cipal of<br />

m<strong>in</strong>imiz<strong>in</strong>g medication dur<strong>in</strong>g the first trimester. A nonchemical<br />

treatment or one that can be halted abruptly might<br />

be preferred for women of childbear<strong>in</strong>g age.<br />

Should Vivitrex be developed further for opiate dependence,<br />

the safety issues will be different to those for alcohol<br />

dependence. Naltrexone is currently prescribed only for<br />

opiate addicts who are not active users because this agent<br />

can precipitate opiate withdrawal effects <strong>in</strong> active opiate<br />

users [631992]. Thus, to combat opiate abuse, Vivitrex might<br />

be more suited to use <strong>in</strong> an <strong>in</strong>-patient, rather than<br />

community, environment, where it would be harder for<br />

users to <strong>in</strong>crease their opiate <strong>in</strong>take <strong>in</strong> an attempt to<br />

surmount the naltrexone-<strong>in</strong>duced opioid antagonism.<br />

F<strong>in</strong>ally, it should be acknowledged that a great deal rema<strong>in</strong>s<br />

to be understood regard<strong>in</strong>g dependence on opiates and<br />

alcohol as well as appropriate treatments. For example, µopioid<br />

receptors have been researched and implicated <strong>in</strong><br />

dependence far more than δ- and κ-opioid receptors, which<br />

may also be <strong>in</strong>volved. At the receptor level, adaptive<br />

responses to alcohol or opiates are known to occur, and<br />

adaptive responses to antagonists are also observed. These<br />

responses have been observed with Vivitrex treatment, and<br />

the implications of such responses are not yet clear. In<br />

addition, from the behavioral po<strong>in</strong>t of view, the possible<br />

beneficial action of Vivitrex on crav<strong>in</strong>g has not yet been<br />

explored. Overall, it seems probable that Vivitrex has the<br />

capacity to make a significant contribution to the treatment<br />

of dependence long before its detailed mode of action has<br />

been elucidated.


86 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

Commercial op<strong>in</strong>ion<br />

In November 2005, an analyst from SunTrust Rob<strong>in</strong>son<br />

Humphrey stated that they believed that it would take some<br />

time to build the market for Vivitrex for alcoholism, and that<br />

peak sales could reach US $250 million <strong>in</strong> the future.<br />

Predicted sales of Vivitrex <strong>in</strong> fiscal 2007 (beg<strong>in</strong>n<strong>in</strong>g <strong>in</strong><br />

the second quarter of 2006) were estimated at<br />

US $65 million, lead<strong>in</strong>g to sales of US $110 million <strong>in</strong><br />

fiscal 2008, ris<strong>in</strong>g to US $175 million <strong>in</strong> fiscal 2010<br />

[638339].<br />

Licens<strong>in</strong>g<br />

Cephalon Inc<br />

In June 2005, Cephalon agreed to jo<strong>in</strong>tly develop and commercialize Vivitrex <strong>in</strong> the US. Alkermes was to receive an <strong>in</strong>itial<br />

payment of US $160 million from Cephalon and will receive an additional US $110 million if Vivitrex is approved, and could<br />

also receive up to US $220 million <strong>in</strong> milestone payments based on sales. The responsibility for develop<strong>in</strong>g the commercial<br />

strategy for the product will be shared by a jo<strong>in</strong>t commercialization team formed from both companies. Alkermes will be<br />

responsible for manufactur<strong>in</strong>g Vivitrex and seek<strong>in</strong>g market<strong>in</strong>g approval and Cephalon will conduct the market<strong>in</strong>g and sales<br />

of the product. Alkermes will be responsible for any cumulative losses of up to US $120 million until December 31 2007, or<br />

for 18 months after FDA approval. Dur<strong>in</strong>g this period, Cephalon will be liable for cumulative losses exceed<strong>in</strong>g US $120<br />

million. After that time, any pretax profit or loss will be shared equally by both companies [609280].<br />

Development history<br />

Developer Country Status Indication Date Reference<br />

Alkermes Inc US Pre-registration Alcoholism 01-APR-05 592847<br />

Cephalon Inc US Pre-registration Alcoholism 24-JUN-05 609507<br />

Alkermes Inc US Phase II Opiate dependence 22-JAN-02 435928<br />

Literature classifications<br />

Chemistry<br />

Study type Result Reference<br />

Preparation. Naltrexone is encapsulated <strong>in</strong>to biodegradable polymer microspheres (100 µm diameter) fabricated<br />

from PLG. Follow<strong>in</strong>g subcutaneous or <strong>in</strong>tramuscular adm<strong>in</strong>istration, the microspheres can ma<strong>in</strong>ta<strong>in</strong> a<br />

steady release rate of naltrexone <strong>in</strong>to the bloodstream for up to 1 month.<br />

616446<br />

Biology<br />

Study type Effect studied Model Result Reference<br />

In vivo Efficacy. The latency of response <strong>in</strong> a hot plate test Reduced latency from day 1 to 28 616446<br />

was measured <strong>in</strong> rats 30 m<strong>in</strong> after a was observed <strong>in</strong> rats pre-dosed with<br />

1.0-mg/kg <strong>in</strong>traperitoneal morph<strong>in</strong>e Vivitrex (40 ± 0.54 s and 36 ± 0.40 s<br />

<strong>in</strong>jection (adm<strong>in</strong>istered every 5 days). follow<strong>in</strong>g subcutaneous and<br />

Rats were adm<strong>in</strong>istered a s<strong>in</strong>gle 50- <strong>in</strong>tramuscular <strong>in</strong>jection, respectively)<br />

mg/kg dose of Vivitrex either<br />

compared with placebo-treated rats<br />

subcutaneously or <strong>in</strong>tramuscularly prior to<br />

test<strong>in</strong>g.<br />

(57 ± 0.60 s).<br />

In vivo Efficacy. Post-sacrifice radioligand b<strong>in</strong>d<strong>in</strong>g<br />

autoradiography assays us<strong>in</strong>g<br />

[ 3 Increased radioligand b<strong>in</strong>d<strong>in</strong>g was 616446<br />

observed <strong>in</strong> all bra<strong>in</strong> regions<br />

H]DAMGO were used to measure exam<strong>in</strong>ed, reach<strong>in</strong>g 120% <strong>in</strong> the<br />

receptor density <strong>in</strong> rats for up to 2 months habenular nucleus and 220% <strong>in</strong> the<br />

follow<strong>in</strong>g a 50-mg/kg <strong>in</strong>tramuscular<br />

<strong>in</strong>jection of Vivitrex.<br />

dorsal raphe nucleus.<br />

In vivo Efficacy. Post-sacrifice immunohistochemistry The <strong>in</strong>crease <strong>in</strong> receptor<br />

616446<br />

us<strong>in</strong>g receptor-target<strong>in</strong>g antibodies <strong>in</strong> rats immunoreactivity was less than <strong>in</strong><br />

1 or 2 months follow<strong>in</strong>g a 50-mg/kg the autoradiography studies, with<br />

<strong>in</strong>tramuscular <strong>in</strong>jection of Vivitrex.<br />

only two of the 15 bra<strong>in</strong> regions<br />

exam<strong>in</strong>ed show<strong>in</strong>g significant<br />

<strong>in</strong>creases after 1 month compared<br />

with control.<br />

Metabolism<br />

Study type Effect studied Model Result Reference<br />

In vivo Pharmacok<strong>in</strong>etics. Circulat<strong>in</strong>g levels of naltrexone <strong>in</strong> AUC = 332 and 360 ng.day/ml and Cmax = 616446<br />

rats measured 1 to 35 days 15 ± 1.4 and 19 ± 3.6 ng/ml after<br />

follow<strong>in</strong>g subcutaneous or<br />

subcutaneous and <strong>in</strong>tramuscular<br />

<strong>in</strong>tramuscular adm<strong>in</strong>istration of adm<strong>in</strong>istration of Vivitrex, respectively. By<br />

Vivitrex (50 mg/kg).<br />

day 35, drug levels were almost<br />

undetectable (< 1 ng/ml).


Metabolism (cont<strong>in</strong>ued)<br />

Vivitrex Head<strong>in</strong>g 87<br />

Study type Effect studied Model Result Reference<br />

In vivo Pharmacok<strong>in</strong>etics. Phase I, double-bl<strong>in</strong>d study of 42 AUC and Cmax were dose proportional, with 390669<br />

healthy volunteers randomized to slightly higher values observed follow<strong>in</strong>g<br />

receive placebo or Vivitrex as a <strong>in</strong>tramuscular adm<strong>in</strong>istration (AUC = 49 ±<br />

s<strong>in</strong>gle <strong>in</strong>tramuscular (150, 300, 9, 84 ± 12 and 189 ± 27 ng.day/ml at 150,<br />

600 or 900 mg) or subcutaneous 300 and 600 mg, respectively) compared<br />

(150, 300 or 600 mg) <strong>in</strong>jection. with subcutaneous adm<strong>in</strong>istration (AUC =<br />

31 ± 11, 65 ± 13 and 145 ± 28 ng.day/ml at<br />

150, 300 and 600 mg, respectively).<br />

In vivo Pharmacok<strong>in</strong>etics. Phase I, double-bl<strong>in</strong>d study of 42 Therapeutic naltrexone levels were<br />

393208<br />

healthy volunteers randomized to susta<strong>in</strong>able for a full month. Sufficient<br />

receive placebo or Vivitrex as a doses were 5-fold less than the equivalent<br />

s<strong>in</strong>gle <strong>in</strong>tramuscular (150, 300, dose required through oral naltrexone<br />

600 or 900 mg) or subcutaneous<br />

(150, 300 or 600 mg) <strong>in</strong>jection.<br />

adm<strong>in</strong>istration.<br />

In vivo Pharmacok<strong>in</strong>etics. Phase II, double-bl<strong>in</strong>d study of 30 The mean trough serum naltrexone<br />

616443<br />

healthy volunteers randomized to concentration rema<strong>in</strong>ed relatively constant<br />

receive <strong>in</strong>tramuscular Vivitrex (400 throughout the study. Serum levels of 6β-<br />

mg) or placebo once a month for 4 naltrexol were substantially lower than<br />

months.<br />

those observed follow<strong>in</strong>g oral naltrexone<br />

adm<strong>in</strong>istration.<br />

In vivo Pharmacok<strong>in</strong>etics. Control-matched study <strong>in</strong><br />

<strong>in</strong>dividuals with mild or moderate<br />

Total exposure (AUC0-∞) of naltrexone and<br />

6β-naltrexol was similar across all groups<br />

636722<br />

hepatic impairment. Six <strong>in</strong>dividuals over 63 days (treatment comparison ratios<br />

from each test group and 13 were 0.97 and 1.08 for mild and moderate<br />

healthy volunteers each received a hepatic impairment, respectively,<br />

s<strong>in</strong>gle 190-mg <strong>in</strong>tramuscular dose compared with control) <strong>in</strong>dicat<strong>in</strong>g that no<br />

of Vivitrex.<br />

dosage adjustment would be needed for<br />

alcohol users with impaired liver function.<br />

Cl<strong>in</strong>ical<br />

Effect studied Model Result Reference<br />

Efficacy. Phase II, multicenter, randomized, The mean percentage of heavy dr<strong>in</strong>k<strong>in</strong>g days was<br />

616443<br />

double-bl<strong>in</strong>d pilot study conducted with 30 reduced to 11.7% <strong>in</strong> the Vivitrex group compared with<br />

alcohol-dependent patients who received 25.3% <strong>in</strong> the placebo group. An <strong>in</strong>crease <strong>in</strong> the mean<br />

a 400-mg <strong>in</strong>tramuscular <strong>in</strong>jection of percentage of days abst<strong>in</strong>ent from alcohol (69.4%<br />

Vivitrex (n = 25) or placebo (n = 5) once a compared with 39.2% pre-treatment) and a reduction <strong>in</strong><br />

month for 4 months. Both treatment the number of dr<strong>in</strong>ks consumed per dr<strong>in</strong>k<strong>in</strong>g day (3.8<br />

groups received counsel<strong>in</strong>g.<br />

compared with 7.4 pre-treatment) was seen with Vivitrex<br />

treatment.<br />

Safety and Phase II, multicenter, randomized, Vivitrex was well tolerated and adverse effects were 616443<br />

tolerability. double-bl<strong>in</strong>d study conducted with 30 mild to moderate. Nausea and headache occurred<br />

alcohol-dependent patients who received<br />

<strong>in</strong>tramuscular <strong>in</strong>jections of 400 mg<br />

Vivitrex (n = 25) or placebo (n = 5) once a<br />

month for 4 months.<br />

similarly <strong>in</strong> both patient groups.<br />

Efficacy. Phase III, double-bl<strong>in</strong>d, placebo-<br />

There was a 48% reduction <strong>in</strong> heavy dr<strong>in</strong>k<strong>in</strong>g days for 516479<br />

controlled, randomized cl<strong>in</strong>ical trial <strong>in</strong> 624 males adm<strong>in</strong>istered the 380-mg dose compared with<br />

alcohol-dependent patients. Patients were placebo (p < 0.0001), whereas <strong>in</strong> females the results did<br />

enrolled to receive Vivitrex (190 or 380 not differ from placebo. Similarly, males adm<strong>in</strong>istered<br />

mg) or placebo once a month for 6 190 mg Vivitrex showed a 25% reduction <strong>in</strong> heavy<br />

months. All patients received counsel<strong>in</strong>g. dr<strong>in</strong>k<strong>in</strong>g days compared with placebo (p < 0.03), but<br />

there was no difference <strong>in</strong> the results from females<br />

treated with either Vivitrex or placebo.<br />

Efficacy and A 12-month, open-label extension of a Patients who cont<strong>in</strong>ued on the 380-mg dose showed a 603348<br />

tolerability. phase III cl<strong>in</strong>ical trial <strong>in</strong> 277 patients susta<strong>in</strong>ed reduction <strong>in</strong> the median number of heavy<br />

adm<strong>in</strong>istered monthly <strong>in</strong>tramuscular dr<strong>in</strong>k<strong>in</strong>g days per month (2.6 to 1.6 days). Patients<br />

<strong>in</strong>jections of Vivitrex (380 or 190 mg). switched from placebo to the 380-mg drug dose showed<br />

Patients formerly on placebo were a reduction <strong>in</strong> the median number of heavy dr<strong>in</strong>k<strong>in</strong>g<br />

switched randomly to either the 380- or days from 5.2 to 1.8 days per month. Vivitrex was well<br />

190-mg Vivitrex groups.<br />

tolerated over the total 18-month period.<br />

Associated patent<br />

Title Method for fabricat<strong>in</strong>g polymer-based controlled-release devices.<br />

Assignee Alkermes Inc<br />

Publication WO-09742940 20-NOV-97<br />

Priority US-19960649128 14-MAY-96<br />

Inventor Burke PA.<br />

Associated references<br />

390669 Alkermes releases abstract regard<strong>in</strong>g cl<strong>in</strong>ical data for Medisorb<br />

naltrexone - data from first cl<strong>in</strong>ical trial of <strong>in</strong>jectable susta<strong>in</strong>ed release<br />

formulation of alcoholism drug to be presented at December 2000<br />

scientific meet<strong>in</strong>g. Alkermes Inc PRESS RELEASE 2000 November 21<br />

393208 Alkermes presents phase I results of Medisorb (naltrexone).<br />

Alkermes Inc PRESS RELEASE 2000 December 11


88 <strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> 2006 Vol 7 No 1<br />

432929 Alkermes reports positive results of phase II cl<strong>in</strong>ical trial of Vivitrex<br />

for alcohol dependency at Annual Meet<strong>in</strong>g of the American College of<br />

Neuropsychopharmacology. Alkermes Inc PRESS RELEASE 2001 December<br />

10<br />

435928 Product pipel<strong>in</strong>e. Alkermes Inc COMPANY WORLD WIDE WEB SITE<br />

2002 January 15<br />

441894 Susta<strong>in</strong>ed-release naltrexone for alcoholism treatment: A prelim<strong>in</strong>ary<br />

study. Kranzler HR, Modesto-Lowe V, Neuwayser ES ALCOHOL CLIN EXP RES<br />

1998 22 5 1074-1079<br />

445176 Alkermes beg<strong>in</strong>s phase III trial of Vivitrex. Alkermes Inc PRESS<br />

RELEASE 2002 April 01<br />

455296 DrugAbuse Sciences Inc. INT BIOTECHNOL CONV & EXHIB 2002<br />

Suppl June 09-12<br />

475512 Phase III study shows DrugAbuse Sciences naltrexone depot<br />

beneficial <strong>in</strong> treat<strong>in</strong>g alcoholism. DrugAbuse Sciences Inc PRESS RELEASE<br />

2003 January 06<br />

494451 Alkermes's Vivitrex reduces heavy dr<strong>in</strong>k<strong>in</strong>g days by 50%. Alkermes<br />

Inc PRESS RELEASE 2003 June 23<br />

534413 Alkermes completes enrollment <strong>in</strong> long-term safety study of Vivitrex,<br />

naltrexone, long-act<strong>in</strong>g <strong>in</strong>jection for the treatment of alcohol dependence.<br />

Alkermes Inc PRESS RELEASE 2004 April 22<br />

592847 Alkermes announces submission of new drug application for Vivitrex<br />

for treatment of alcohol dependence. Alkermes Inc PRESS RELEASE 2005<br />

April 01<br />

593795 Efficacy and tolerability of long-act<strong>in</strong>g <strong>in</strong>jectable naltrexone for<br />

alcohol dependence: A randomized controlled trial. Garbutt JC, Kranzler HR,<br />

O'Malley SO, Gastfriend DR, Pett<strong>in</strong>ati HM, Silverman BL, Loewy JW, Ehrich EW J<br />

AM MED ASSOC 2005 293 13 1617-1625<br />

•• A full report of the multicenter phase III trial of Vivitrex, cover<strong>in</strong>g efficacy,<br />

tolerability and safety.<br />

603348 Alkermes's Vivitrex gives long-term benefit to alcoholics. Alkermes Inc<br />

PRESS RELEASE 2005 May 23<br />

609280 Cephalon and Alkermes announce agreement for the<br />

commercialization of Vivitrex for the treatment of alcohol dependence.<br />

Cephalon Inc, Alkermes Inc PRESS RELEASE 2005 June 24<br />

609507 Cephalon - announces agreement with ALKS to market Vivitrex for<br />

alcohol dependence. Geller M, Holley B, Kassum T CIBC WORLD MARKETS<br />

CORP 2005 June 24 1-11<br />

616443 A pilot evaluation of the safety and tolerability of repeat dose<br />

adm<strong>in</strong>istration of long-act<strong>in</strong>g <strong>in</strong>jectable naltrexone (Vivitrex) <strong>in</strong> patients with<br />

alcohol dependence. Johnson BA, Ait-Daoud N, Aub<strong>in</strong> HJ, Van Den Br<strong>in</strong>k W,<br />

Guzzetta R, Loewy J, Silverman B, Ehrich E ALCOHOL CLIN EXP RES 2004 28 9<br />

1356-1361<br />

616446 Vivitrex, an <strong>in</strong>jectable, extended-release formulation of naltrexone,<br />

provides pharmacok<strong>in</strong>etic and pharmacodynamic evidence of efficacy for 1<br />

month <strong>in</strong> rats. Bartus RT, Emerich DF, Hotz J, Blauste<strong>in</strong> M, Dean RL, Perdomo B,<br />

Basile AS NEUROPSYCHOPHARMACOLOGY 2003 28 11 1973-1982<br />

•• This is a comprehensive report of animal studies with Vivitrex.<br />

624146 FDA extends PDUFA date for Vivitrex to December 30, 2005;<br />

Cephalon and Alkermes cont<strong>in</strong>ue to anticipate Vivitrex launch <strong>in</strong> first half of<br />

2006. Celphalon Inc, Alkermes Inc PRESS RELEASE 2005 September 20<br />

631895 Opioids and alcoholism. Oswald LM, Wand GS PHYSIOL BEHAV 2004<br />

81 2 339-358<br />

•• A major review of experimental evidence and theory relat<strong>in</strong>g to the relationship<br />

between opioids and alcohol abuse.<br />

631898 Pharmacok<strong>in</strong>etics, safety, and tolerability of a depot formulation of<br />

naltrexone <strong>in</strong> alcoholics: An open-label trial. Galloway GP, Koch M, Cello R,<br />

Smith DE BMC PSYCHIATRY 2005 5 1 18<br />

631992 Acamprosate for the treatment of alcohol dependence. Boothby LA,<br />

Doer<strong>in</strong>g PL CLIN THER 2005 27 6 695-714<br />

• A review of current treatment options for alcohol dependence <strong>in</strong>clud<strong>in</strong>g<br />

experiences of naltrexone use.<br />

631995 Histological changes over time around the site of susta<strong>in</strong>ed release<br />

naltrexone-poly(DL-lactide) implants <strong>in</strong> humans. Hulse GK, Stalenberg V,<br />

McCallum D, Smit W, O'Neil G, Morris N, Tait RJ J CONTROL RELEASE 2005<br />

108 1 43-55<br />

632485 Alkermes reports second quarter fiscal 2006 f<strong>in</strong>ancial results;<br />

company reports profitable quarter; f<strong>in</strong>ancial expectations for fiscal 2006<br />

improve. Alkermes Inc PRESS RELEASE 2005 November 03<br />

636722 Pharmacok<strong>in</strong>etics of long-act<strong>in</strong>g naltrexone <strong>in</strong> subjects with mild to<br />

moderate hepatic impairment. Turncliff RZ, Dunbar JL, Dong Q, Silverman BL,<br />

Ehrich EW, Dilzer SC, Lasseter KC J CLIN PHARMACOL 2005 45 11 1259-1267<br />

636732 Naltrexone implants for opiate addiction: New life for a middle-aged<br />

drug. Brewer C PHARM J 2001 267 7162 260<br />

636738 DrugAbuse Sciences Product Portfolio. DrugAbuse Sciences Inc<br />

COMPANY COMMUNICATION 2005 November 17<br />

636843 Drug addiction: Bad habits add up. Robb<strong>in</strong>s TW, Everitt BJ NATURE<br />

1999 398 6728 567-570<br />

• A comprehensive overview of biological and psychological theories concern<strong>in</strong>g<br />

the basis of substance dependence.<br />

637673 Prevalence and correlates of alcohol use and DSM-IV alcohol<br />

dependence <strong>in</strong> the United States: Results of the National Longitud<strong>in</strong>al<br />

Alcohol Epidemiologic Survey. Grant BF J STUD ALCOHOL 1997 58 5 464-473<br />

637682 Alcohol consumption, alcohol abuse and alcohol dependence. The<br />

United States as an example. Grant BF ADDICTION 1994 89 11 1357-1365<br />

637696 Naltrexone implants can completely prevent early (1-month) relapse<br />

after opiate detoxification: A pilot study of two cohorts totall<strong>in</strong>g 101 patients<br />

with a note on naltrexone blood levels. Foster J, Brewer C, Steele T ADDICT<br />

BIOL 2003 8 2 211-217<br />

637699 Effects of naltrexone adm<strong>in</strong>istered repeatedly across 30 or 60 days<br />

on ethanol consumption us<strong>in</strong>g a limited access procedure <strong>in</strong> the rat.<br />

Stromberg MF, Volpicelli JR, O'Brien CP ALCOHOL CLIN EXP RES 1998 22 9<br />

2186-2191<br />

637953 DSM-IV Classification. DSM-IV: Dianostic and statistical manual of<br />

mental disorders. Fourth Edition. Barnes A, American Psychiatric Association,<br />

Wash<strong>in</strong>gton, DC, USA 1994 1-208<br />

638339 Alkermes Inc. Hazlett R SUNTRUST ROBINSON HUMPRHEY CAPITAL<br />

MARKETS 2005 November 04 1-5<br />

638453 Pharmacotherapy of addictions. Kreek MJ, LaForge KS, Butelman E<br />

NAT REV DRUG DISCOV 2002 1 9 710-726<br />

• An overview of the products currently <strong>in</strong> use and <strong>in</strong> development for<br />

dependencies, <strong>in</strong>clud<strong>in</strong>g a useful summary of the relevance of different opioid<br />

receptors <strong>in</strong> dependency.<br />

638459 A multicentre, randomized, double-bl<strong>in</strong>d, placebo-controlled trial of<br />

naltrexone <strong>in</strong> the treatment of alcohol dependence or abuse. Chick J, Anton R,<br />

Chec<strong>in</strong>ski K, Croop R, Drummond DC, Farmer R, Labriola D, Marshall J, Moncrieff<br />

J, Morgan MY, Peters T, Ritson B ALCOHOL ALCOHOL 2000 35 6 587-593<br />

638460 Naltrexone biotransformation and <strong>in</strong>cidence of subjective side<br />

effects: A prelim<strong>in</strong>ary study. K<strong>in</strong>g AC, Volpicelli JR, Gunduz M, O'Brien CP,<br />

Kreek MJ ALCOHOL CLIN EXP RES 1997 21 5 906-909<br />

638466 In vivo characterization of 6β-naltrexol, an opioid ligand with less<br />

<strong>in</strong>verse agonist activity compared with naltrexone and naloxone <strong>in</strong> opioiddependent<br />

mice. Raehal KM, Lowery JJ, Bhamidipati CM, Paol<strong>in</strong>o RM, Blair JR,<br />

Wang D, Sadee W, Bilsky EJ J PHARMACOL EXP THER 2005 313 3 1150-1162<br />

638481 Supersensitivity to opioid analgesics follow<strong>in</strong>g chronic opioid<br />

antagonist treatment: Relationship to receptor selectivity. Yoburn BC, Shah S,<br />

Chan K, Duttaroy A, Davis T PHARMACOL BIOCHEM BEHAV 1995 51 2-3 535-<br />

539<br />

638482 Naltrexone-<strong>in</strong>duced opiate receptor supersensitivity. Zuk<strong>in</strong> RS,<br />

Sugarman JR, Fitz-Syage ML, Gardner EL, Zuk<strong>in</strong> SR, G<strong>in</strong>tzler AR BRAIN RES<br />

1982 245 2 285-292<br />

638487 Pharmacological treatment of alcohol dependence: A review of the<br />

evidence. Garbutt JC, West SL, Carey TS, Lohr KN, Crews FT J AM MED<br />

ASSOC 1999 281 14 1318-1325<br />

638704 Product portfolio: Naltrexone depot. DrugAbuse Sciences Inc<br />

COMPANY WORLD WIDE WEB SITE December 2005<br />

638730 The abuse of alcohol and drugs. In: The Oxford Textbook of Psychiatry,<br />

Third Edition. Gelder M, Mayou R, Cowen P (Eds). Oxford University Press,<br />

Oxford, UK 1995 14 456-481


Erratum<br />

<strong>Current</strong> <strong>Op<strong>in</strong>ion</strong> <strong>in</strong> <strong>Investigational</strong> <strong>Drugs</strong> (2005) 6(7):686-689.<br />

Mario di Napoli & BethAnn McLaughl<strong>in</strong><br />

In the legend to Figure 1, PPi is an abbreviation of <strong>in</strong>organic pyrophosphate.<br />

89

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!